JP4504164B2 - Method for manufacturing magnet for rotation angle sensor - Google Patents

Method for manufacturing magnet for rotation angle sensor Download PDF

Info

Publication number
JP4504164B2
JP4504164B2 JP2004331100A JP2004331100A JP4504164B2 JP 4504164 B2 JP4504164 B2 JP 4504164B2 JP 2004331100 A JP2004331100 A JP 2004331100A JP 2004331100 A JP2004331100 A JP 2004331100A JP 4504164 B2 JP4504164 B2 JP 4504164B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
rotation angle
magnetic
angle sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004331100A
Other languages
Japanese (ja)
Other versions
JP2006138820A (en
Inventor
敏樹 杉山
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2004331100A priority Critical patent/JP4504164B2/en
Publication of JP2006138820A publication Critical patent/JP2006138820A/en
Application granted granted Critical
Publication of JP4504164B2 publication Critical patent/JP4504164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転角センサ用磁石の製造方法に関する。   The present invention relates to a method for manufacturing a magnet for a rotation angle sensor.

特許文献1に、回転角センサが示されている。この回転角センサでは、磁気センサが、回転角センサ用磁石から発生する磁界を検出することで、回転角センサ用磁石の回転角度を検出する。回転角センサ用磁石は、円形磁性体にラジアル磁化処理を施すことで製造される。   Patent Document 1 discloses a rotation angle sensor. In this rotation angle sensor, the magnetic sensor detects the rotation angle of the rotation angle sensor magnet by detecting the magnetic field generated from the rotation angle sensor magnet. The rotation angle sensor magnet is manufactured by subjecting a circular magnetic body to radial magnetization.

円形磁性体は、回転軸を備え、円形磁性体の回転軸に直交する断面(以下、「平断面」とする)は一様な円となる。円形磁性体は、分割平面により2つの分割部分に分割される。ここで、分割平面は、回転軸を通り、且つ、平断面に直交する。円形磁性体は、回転角センサ用磁石とされ、回転角センサに取り付けられた後、回転軸を中心に回転する。円形磁性体の側面は、平断面の外縁を構成する。   The circular magnetic body has a rotation axis, and a cross section perpendicular to the rotation axis of the circular magnetic body (hereinafter referred to as “flat cross section”) is a uniform circle. The circular magnetic body is divided into two divided parts by a dividing plane. Here, the dividing plane passes through the rotation axis and is orthogonal to the plane cross section. The circular magnetic body is a rotation angle sensor magnet, and after being attached to the rotation angle sensor, rotates around the rotation axis. The side surface of the circular magnetic body constitutes the outer edge of the flat cross section.

図10は、円形磁性体M1の平断面を示す。Oは回転軸であり、PLは分割平面であり、M11、M12は分割部分であり、a、bは、分割平面PLと平断面の外縁との交点である。   FIG. 10 shows a flat cross section of the circular magnetic body M1. O is a rotation axis, PL is a dividing plane, M11 and M12 are dividing portions, and a and b are intersections of the dividing plane PL and the outer edge of the flat cross section.

次に、ラジアル磁化処理を、円形磁性体M1に施す場合を一例として説明する。ラジアル磁化処理は、分割部分M11に、回転軸Oに直交し、分割部分M11の側面から回転軸Oに向かい、分割部分M11の側面での大きさが一様な磁界MF14を掛け、分割部分M12に、回転軸Oに直交し、回転軸Oから分割部分M12の側面に向かい、分割部分M12の側面での大きさが一様な磁界MF15を掛けることである。磁界MF14の方向は、矢印DMF12で示され、磁界MF15の方向は、矢印DMF13で示される。円形磁性体M1にラジアル磁化処理を施すことで製造された回転角センサ用磁石M5からは、磁界MF16が発生する。磁界MF16は、磁力線LMF6で示される。   Next, a case where the radial magnetization process is performed on the circular magnetic body M1 will be described as an example. In the radial magnetization process, a magnetic field MF14 that is orthogonal to the rotation axis O, is directed from the side surface of the division portion M11 toward the rotation axis O, and has a uniform magnitude on the side surface of the division portion M11 is applied to the division portion M11. In addition, a magnetic field MF15 that is orthogonal to the rotation axis O, extends from the rotation axis O to the side surface of the divided portion M12, and has a uniform size on the side surface of the divided portion M12 is applied. The direction of the magnetic field MF14 is indicated by an arrow DMF12, and the direction of the magnetic field MF15 is indicated by an arrow DMF13. A magnetic field MF16 is generated from the rotation angle sensor magnet M5 manufactured by subjecting the circular magnetic body M1 to radial magnetization. The magnetic field MF16 is indicated by a magnetic field line LMF6.

ここで、回転角センサ用磁石について、平断面の外縁に固定される点をd1、平断面の外縁に任意に設定される点をd2、平断面の半径のうち、回転軸と点d1とを連結する半径をr1、平断面の半径のうち、回転軸と点d2とを連結する半径をr2、半径r1と半径r2とがなす角の大きさであって、回転軸を中心とした右回転方向を正方向として測定されるものをθ(deg)とし、角度θと点d2での磁束密度との関係を示す磁束密度分布グラフを作成した場合、磁束密度分布グラフの形状が矩形波の波形となることが望ましい。磁束密度分布グラフの形状が矩形波の波形となる場合、磁気センサが検出する磁界が、回転角センサ用磁石の回転角度に比例するので、磁気センサが回転角センサ用磁石の回転角度を正確に検出することができるからである。   Here, regarding the rotation angle sensor magnet, a point fixed to the outer edge of the flat cross section is d1, a point arbitrarily set to the outer edge of the flat cross section is d2, and the rotation axis and the point d1 are set out of the radius of the flat cross section. The connecting radius is r1, the radius of the plane cross section is r2, the radius connecting the point d2 is r2, and the angle between the radius r1 and the radius r2 is the right rotation around the rotation axis. When a magnetic flux density distribution graph showing the relationship between the angle θ and the magnetic flux density at the point d2 is created with θ (deg) being measured with the direction being the positive direction, the magnetic flux density distribution graph has a rectangular waveform. It is desirable that When the magnetic flux density distribution graph has a rectangular waveform, the magnetic field detected by the magnetic sensor is proportional to the rotation angle of the rotation angle sensor magnet, so the magnetic sensor accurately determines the rotation angle of the rotation angle sensor magnet. This is because it can be detected.

図11に、回転角センサ用磁石M5に対応する磁束密度分布グラフC4を示す。磁束密度分布グラフC4は、横軸を角度θ、縦軸を磁束密度B4とする平面上に描かれる。点d2が点aに一致する場合、角度θは120となり、点d2が点bに一致する場合、角度θは300となる。
特開平8−35809号公報
FIG. 11 shows a magnetic flux density distribution graph C4 corresponding to the rotation angle sensor magnet M5. The magnetic flux density distribution graph C4 is drawn on a plane with the horizontal axis representing the angle θ and the vertical axis representing the magnetic flux density B4. When the point d2 coincides with the point a, the angle θ becomes 120, and when the point d2 coincides with the point b, the angle θ becomes 300.
JP-A-8-35809

しかし、図10の磁力線LMF6が示すように、点d2が点aまたは点bに近いほど、磁束密度B4が大きくなるので、磁束密度分布グラフC4は、角度θが120または300となる部分でピークP5〜P8を有する。したがって、磁束密度分布グラフC4の形状は矩形波の波形と異なる。   However, as indicated by the line of magnetic force LMF6 in FIG. 10, the magnetic flux density B4 increases as the point d2 is closer to the point a or b, so that the magnetic flux density distribution graph C4 has a peak at a portion where the angle θ is 120 or 300. P5-P8. Therefore, the shape of the magnetic flux density distribution graph C4 is different from the waveform of the rectangular wave.

本発明はこのような従来の課題を解決するためになされたものであり、その主に目的とするところは、磁束密度分布グラフの形状を従来よりも矩形波の波形に近づける回転角センサ用磁石の製造方法を提供することである。   The present invention has been made to solve such a conventional problem, and its main object is to provide a magnet for a rotation angle sensor that makes the shape of a magnetic flux density distribution graph closer to a rectangular waveform than before. It is to provide a manufacturing method.

上記目的を達成するため、本発明に係る回転角センサ用磁石の製造方法は、回転軸を備え、回転軸に直交する断面が一様な円となる円形磁性体に、ラジアル磁化処理及び調整磁化処理のうち一方の磁化処理を施すことと、一方の磁化処理が施された円形磁性体に、ラジアル磁化処理及び調整磁化処理のうち、他方の磁化処理を施すことと、からなり、円形磁性体は、回転軸を通り、断面に直交する分割平面により2つの分割部分に分割され、ラジアル磁化処理は、2つの分割部分のうち、一方の分割部分に、回転軸に直交し、断面の外縁を構成する側面から回転軸に向かい、側面での大きさが一様な第1の磁界を掛け、2つの分割部分のうち、他方の分割部分に、回転軸に直交し、回転軸から側面に向かい、側面での大きさが一様な第2の磁界を掛けることであり、調整磁化処理は、分割平面と側面とが交差する交差部分に、分割平面に直交し、一方の分割部分から他方の分割部分に向かう第3の磁界を掛けることである。   In order to achieve the above object, a method of manufacturing a magnet for a rotation angle sensor according to the present invention includes a rotary magnetic axis, a circular magnetic body having a uniform cross-section orthogonal to the rotary axis, a radial magnetization process and an adjusted magnetization. A circular magnetic body comprising: performing one magnetization process of the processes; and subjecting the circular magnetic body subjected to the one magnetization process to the other of the radial magnetization process and the adjustment magnetization process. Is divided into two divided parts by a dividing plane that passes through the rotation axis and is orthogonal to the cross section, and radial magnetization treatment is performed in one of the two divided parts at one of the divided parts at right angles to the rotation axis and the outer edge of the cross section. A first magnetic field having a uniform size on the side surface is applied from the side surface to the rotation axis, and the other divided portion of the two divided portions is orthogonal to the rotation axis and from the rotation axis to the side surface. Second magnet with uniform size on the side And by multiplying the adjustment magnetization process, the intersection of the dividing plane and the side surfaces intersect, perpendicular to the dividing plane, is from one of the divided portions applying a third magnetic field toward the other split parts.

本発明に係る回転角センサ用磁石の製造方法によれば、円形磁性体にラジアル磁化処理及び調整磁化処理を施すことで、磁束密度分布グラフのピークをなまらせることができるので、磁束密度分布グラフの形状を従来よりも矩形波の波形に近づけることができる。   According to the method of manufacturing a magnet for a rotation angle sensor according to the present invention, the peak of the magnetic flux density distribution graph can be smoothed by subjecting the circular magnetic body to the radial magnetization process and the adjustment magnetization process. This shape can be made closer to a rectangular waveform than before.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、ラジアル磁化処理装置1を示す。ラジアル磁化処理装置1は、磁化用コイル11、21と、磁化用磁性体12、22を備える。磁化用コイル11は磁化用磁性体12の側面に巻き付けられ、磁化用コイル21は、磁化用磁性体22の側面に巻き付けられる。磁化用磁性体12の上端面121は下方向に凹んだ曲面となっており、その曲率半径は、平断面の半径rに一致し、磁化用磁性体22の下端面221は上方向に凹んだ曲面となっており、その曲率半径は、平断面の半径rに一致する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a radial magnetization processing apparatus 1. The radial magnetization processing apparatus 1 includes magnetization coils 11 and 21 and magnetization magnetic bodies 12 and 22. The magnetization coil 11 is wound around the side surface of the magnetization magnetic body 12, and the magnetization coil 21 is wound around the side surface of the magnetization magnetic body 22. The upper end surface 121 of the magnetizing magnetic body 12 is a curved surface that is recessed downward, the radius of curvature thereof coincides with the radius r of the flat cross section, and the lower end surface 221 of the magnetizing magnetic body 22 is recessed upward. It is a curved surface, and its radius of curvature coincides with the radius r of the flat section.

ラジアル磁化処理装置1は、磁化用磁性体12の上端面121に分割部分M11の側面をはめ込み、磁化用磁性体22の下端面221に分割部分M12の側面をはめ込み、磁化用コイル11、21に電流を流すことで、磁界MF1を分割部分M11に掛け、磁界MF2を分割部分M12に掛ける。これにより、ラジアル磁化処理装置1は、円形磁性体M1を磁化する。矢印DMF3は、磁界MF1の方向を示し、矢印DMF4は、磁界MF2の方向を示し、矢印DMF1は、磁化用磁性体12の内部に発生する磁界の方向を示し、矢印DMF2は、磁化用磁性体22の内部に発生する磁界の方向を示す。磁化用磁性体12の上端面121は下方向に凹んだ曲面となっており、その曲率半径は、平断面の半径rに一致するので、磁界MF1は、回転軸Oに直交し、分割部分M11の側面から回転軸Oに向かう。また、分割部分M11の側面では、磁界MF1の大きさは一様となる。磁化用磁性体22の下端面221は上方向に凹んだ曲面となっており、その曲率半径は、平断面の半径rに一致するので、磁界MF2は、回転軸Oに直交し、回転軸Oから分割部分M12の側面に向かう。また、分割部分M12の側面では、磁界MF2の大きさは一様となる。   In the radial magnetization processing apparatus 1, the side surface of the divided portion M <b> 11 is fitted into the upper end surface 121 of the magnetization magnetic body 12, and the side surface of the divided portion M <b> 12 is fitted into the lower end surface 221 of the magnetization magnetic body 22. By passing a current, the magnetic field MF1 is applied to the divided portion M11 and the magnetic field MF2 is applied to the divided portion M12. Thereby, the radial magnetization processing apparatus 1 magnetizes the circular magnetic body M1. The arrow DMF3 indicates the direction of the magnetic field MF1, the arrow DMF4 indicates the direction of the magnetic field MF2, the arrow DMF1 indicates the direction of the magnetic field generated inside the magnetization magnetic body 12, and the arrow DMF2 indicates the magnetization magnetic body. The direction of the magnetic field generated inside 22 is shown. The upper end surface 121 of the magnetizing magnetic body 12 is a curved surface that is recessed downward, and the radius of curvature thereof coincides with the radius r of the plane cross section, so that the magnetic field MF1 is orthogonal to the rotational axis O and is divided into portions M11. Toward the rotation axis O. Further, the magnitude of the magnetic field MF1 is uniform on the side surface of the divided portion M11. The lower end surface 221 of the magnetizing magnetic body 22 is a curved surface that is recessed upward, and the radius of curvature thereof coincides with the radius r of the plane cross section, so that the magnetic field MF2 is orthogonal to the rotational axis O and the rotational axis O To the side of the divided part M12. Further, the magnitude of the magnetic field MF2 is uniform on the side surface of the divided portion M12.

図2は、ラジアル磁化処理装置1が円形磁性体M1を磁化することで製造した磁石M2を示す。MF5は、磁石M2から発生する磁界であり、LMF1は、磁界MF5を示す磁力線である。   FIG. 2 shows a magnet M2 manufactured by the radial magnetization processing apparatus 1 magnetizing the circular magnetic body M1. MF5 is a magnetic field generated from the magnet M2, and LMF1 is a line of magnetic force indicating the magnetic field MF5.

図3は、調整磁化処理装置2を示す。調整磁化処理装置2は、中空コイル30を備える。中空コイル30に電流が流れると、中空コイル30内部に磁界MF6が発生し、中空コイル30外部に磁界MF7が発生する。磁力線LMF2は、磁界MF7を示し、矢印DMF7は、磁界MF6の方向を示す。磁界MF6の大きさ及び方向は一様である。   FIG. 3 shows the adjusted magnetization processing apparatus 2. The adjustment magnetization processing device 2 includes a hollow coil 30. When a current flows through the hollow coil 30, a magnetic field MF6 is generated inside the hollow coil 30, and a magnetic field MF7 is generated outside the hollow coil 30. Magnetic field line LMF2 indicates magnetic field MF7, and arrow DMF7 indicates the direction of magnetic field MF6. The magnitude and direction of the magnetic field MF6 are uniform.

図4は、調整磁化処理装置2が円形磁性体M1を磁化する様子を示す。LMF3は、磁界MF6を示す磁力線である。調整磁化処理装置2は、分割平面PLが磁界MF6に直交するように、円形磁性体M1を中空コイル30内部に設置し、中空コイル30に電流を流すことで、磁界MF6を円形磁性体M1に掛ける。これにより、調整磁化処理装置2は、円形磁性体M1を磁化する。磁界MF6は、分割平面PLに直交し、分割部分M11から分割部分M12に向かう。   FIG. 4 shows how the adjustment magnetization processing device 2 magnetizes the circular magnetic body M1. LMF3 is a line of magnetic force indicating the magnetic field MF6. The adjustment magnetization processing apparatus 2 installs the circular magnetic body M1 inside the hollow coil 30 so that the division plane PL is orthogonal to the magnetic field MF6, and causes a current to flow through the hollow coil 30 so that the magnetic field MF6 is applied to the circular magnetic body M1. Multiply. Thereby, the adjustment magnetization processing apparatus 2 magnetizes the circular magnetic body M1. The magnetic field MF6 is orthogonal to the division plane PL and travels from the division part M11 to the division part M12.

図5は、調整磁化処理装置2が円形磁性体M1を磁化することで製造した磁石M3を示す。MF8は、磁石M3から発生する磁界であり、LMF3は、磁界MF8を示す磁力線である。   FIG. 5 shows a magnet M3 manufactured by magnetizing the circular magnetic body M1 by the adjustment magnetization processing device 2. MF8 is a magnetic field generated from the magnet M3, and LMF3 is a magnetic field line indicating the magnetic field MF8.

図6は、角度θと磁石M2の点d2での磁束密度B1との関係を示す磁束密度分布グラフC1と、角度θと磁石M3の点d2での磁束密度B2との関係を示す磁束密度分布グラフC2である。角度θは、半径r1と半径r2とがなす角の大きさであって、回転軸を中心とした右回転方向を正方向として測定されるものである。本実施の形態では、図2及び図5に示すように、点d1は点bに一致する。   FIG. 6 shows a magnetic flux density distribution graph C1 showing the relationship between the angle θ and the magnetic flux density B1 at the point d2 of the magnet M2, and a magnetic flux density distribution showing the relationship between the angle θ and the magnetic flux density B2 at the point d2 of the magnet M3. It is a graph C2. The angle θ is the size of the angle formed by the radius r1 and the radius r2, and is measured with the right rotation direction around the rotation axis as the positive direction. In the present embodiment, the point d1 coincides with the point b as shown in FIGS.

図2の磁力線LMF1が示すように、点d2が点aまたは点bに近いほど、磁束密度B1が大きくなるので、磁束密度分布グラフC1は、角度θが0、180または360となる部分でピークP1〜P4を有する。   As the magnetic field line LMF1 in FIG. 2 indicates, the closer the point d2 is to the point a or b, the larger the magnetic flux density B1, so the magnetic flux density distribution graph C1 peaks at a portion where the angle θ is 0, 180, or 360. P1-P4.

磁界MF6は、分割平面PLに直交し、分割部分M11から分割部分M12に向かう。また、磁界MF6の大きさは一様となる。このため、図5の磁力線LMF3が示すように、点d2が点aまたは点bに近いほど、磁束密度B2が小さくなる。また、磁束密度分布グラフC2の形状は、sin波の波形となる。   The magnetic field MF6 is orthogonal to the division plane PL and travels from the division part M11 to the division part M12. Further, the magnitude of the magnetic field MF6 is uniform. For this reason, as the magnetic field line LMF3 in FIG. 5 indicates, the closer the point d2 is to the point a or the point b, the smaller the magnetic flux density B2. The shape of the magnetic flux density distribution graph C2 is a sin wave waveform.

次に、本実施の形態に係る回転角センサ用磁石の製造方法を説明する。ラジアル磁化処理装置1は、図1に示すように、磁化用磁性体12の上端面121に分割部分M11の側面をはめ込み、磁化用磁性体22の下端面221に分割部分M12の側面をはめ込み、磁化用コイル11、21に電流を流す。これにより、ラジアル磁化処理装置1は、磁石M2を製造する。   Next, a method for manufacturing the rotation angle sensor magnet according to the present embodiment will be described. As shown in FIG. 1, the radial magnetization processing apparatus 1 fits the side surface of the divided portion M11 into the upper end surface 121 of the magnetization magnetic body 12, and fits the side surface of the divided portion M12 into the lower end surface 221 of the magnetization magnetic body 22. A current is passed through the magnetizing coils 11 and 21. Thereby, the radial magnetization processing apparatus 1 manufactures the magnet M2.

次いで、調整磁化処理装置2は、図4に示すように、分割平面PLが磁界MF6に直交するように、磁石M2を中空コイル30内部に設置し、中空コイル30に電流を流す。これにより、調整磁化処理装置2は、回転角センサ用磁石M4を製造する。   Next, as shown in FIG. 4, the adjustment magnetization processing device 2 installs the magnet M <b> 2 inside the hollow coil 30 so that the division plane PL is orthogonal to the magnetic field MF <b> 6, and causes a current to flow through the hollow coil 30. Thereby, the adjustment magnetization processing apparatus 2 manufactures the magnet M4 for rotation angle sensors.

図7は、回転角センサ用磁石M4を示す。本実施の形態に係る回転角センサ用磁石の製造方法は、実質的には、円形磁性体M1に磁界MF9、MF10を掛けることである。磁界MF9の方向は、矢印DMF9で示され、磁界MF10の方向は、矢印DMF10で示される。   FIG. 7 shows a rotation angle sensor magnet M4. The manufacturing method of the rotation angle sensor magnet according to the present embodiment is substantially to apply the magnetic fields MF9 and MF10 to the circular magnetic body M1. The direction of the magnetic field MF9 is indicated by an arrow DMF9, and the direction of the magnetic field MF10 is indicated by an arrow DMF10.

分割部分M11中のある点で、磁界MF9と図2に示す磁界MF1とを比較すると、磁界MF9は、磁界MF1と同じ大きさであり、磁界MF9の左右方向(具体的には、直径abの方向)成分の絶対値は、磁界MF1の左右方向成分の絶対値よりも小さく、磁界MF9の上下方向(具体的には、分割平面PLに直交する方向)成分の絶対値は、磁界MF1の上下方向成分の絶対値よりも大きい。分割部分M12中のある点で、磁界MF10と図2に示す磁界MF2とを比較すると、磁界MF10は、磁界MF2と同じ大きさであり、磁界MF10の左右方向成分の絶対値は、磁界MF2の左右方向成分の絶対値よりも小さく、磁界MF10の上下方向成分の絶対値は、磁界MF2の上下方向成分の絶対値よりも大きい。したがって、回転角センサ用磁石M4の点d2での磁束密度をB3とし、点d2を固定し、この点d2での磁束密度B1と磁束密度B3とを比較すると、磁束密度B3の左右方向成分の絶対値は、磁束密度B1の左右方向成分の絶対値よりも小さく、磁束密度B3の上下方向成分の絶対値は、磁束密度B1の上下方向成分の絶対値よりも大きい。   Comparing the magnetic field MF9 and the magnetic field MF1 shown in FIG. 2 at a certain point in the divided portion M11, the magnetic field MF9 has the same size as the magnetic field MF1, and the magnetic field MF9 has a horizontal direction (specifically, a diameter ab (Direction) component is smaller than the absolute value of the horizontal component of the magnetic field MF1, and the absolute value of the vertical component (specifically, the direction perpendicular to the division plane PL) of the magnetic field MF9 is the vertical value of the magnetic field MF1. It is larger than the absolute value of the direction component. When the magnetic field MF10 is compared with the magnetic field MF2 shown in FIG. 2 at a certain point in the divided portion M12, the magnetic field MF10 has the same magnitude as the magnetic field MF2, and the absolute value of the horizontal component of the magnetic field MF10 is the same as that of the magnetic field MF2. The absolute value of the vertical component of the magnetic field MF10 is smaller than the absolute value of the horizontal component, and is larger than the absolute value of the vertical component of the magnetic field MF2. Therefore, when the magnetic flux density at the point d2 of the rotation angle sensor magnet M4 is B3, the point d2 is fixed, and when the magnetic flux density B1 and the magnetic flux density B3 at this point d2 are compared, The absolute value is smaller than the absolute value of the horizontal component of the magnetic flux density B1, and the absolute value of the vertical component of the magnetic flux density B3 is larger than the absolute value of the vertical component of the magnetic flux density B1.

図8は、角度θと磁束密度B3との関係を示す磁束密度分布グラフC3である。磁束密度B1、B3は上述した関係を有するので、図6及び図8に示すように、磁束密度分布グラフC3は、ピークP1〜P4での磁束密度B1の絶対値を減少させ、減少させた分だけ、ピークP1〜P4間での磁束密度B1の絶対値を増加させたものとなる(矢印E1〜E3、及び破線E4〜E7参照)。   FIG. 8 is a magnetic flux density distribution graph C3 showing the relationship between the angle θ and the magnetic flux density B3. Since the magnetic flux densities B1 and B3 have the relationship described above, the magnetic flux density distribution graph C3 reduces the absolute value of the magnetic flux density B1 at the peaks P1 to P4 as shown in FIGS. Only the absolute value of the magnetic flux density B1 between the peaks P1 to P4 is increased (see arrows E1 to E3 and broken lines E4 to E7).

以上により、磁束密度分布グラフC3は、磁束密度分布グラフC1のピークP1〜P4をなまらせたものとなるので、本実施の形態に係る回転角センサ用磁石の製造方法は、磁束密度分布グラフC3の形状を、従来よりも矩形波の波形に近づけることができる。   As described above, the magnetic flux density distribution graph C3 is obtained by smoothing the peaks P1 to P4 of the magnetic flux density distribution graph C1, and therefore, the manufacturing method of the magnet for the rotation angle sensor according to the present embodiment is the magnetic flux density distribution graph C3. This shape can be made closer to a rectangular wave waveform than in the prior art.

磁界MF6の大きさは一様なので、磁束密度分布グラフC1のピークP1〜P4を一様になまらせることができる。したがって、本実施の形態に係る回転角センサ用磁石の製造方法は、この点においても、磁束密度分布グラフC3の形状を、従来よりも矩形波の波形に近づけることができる。   Since the magnitude of the magnetic field MF6 is uniform, the peaks P1 to P4 of the magnetic flux density distribution graph C1 can be uniformly smoothed. Therefore, the manufacturing method of the magnet for a rotation angle sensor according to the present embodiment can make the shape of the magnetic flux density distribution graph C3 closer to a rectangular wave waveform than in the prior art.

本実施の形態に係る回転角センサ用磁石の製造方法は、中空コイル30を用いることで、磁界MF6を発生させることとしたので、磁界MF6を確実且つ安定して発生させることができる。   Since the method for manufacturing the rotation angle sensor magnet according to the present embodiment generates the magnetic field MF6 by using the hollow coil 30, the magnetic field MF6 can be generated reliably and stably.

次に、本実施の形態の変形例を説明する。図9は、調整磁化処理装置3が磁石M2を磁化する様子を示す。調整磁化処理装置3は、磁化用コイル41、51で構成されるヘルムホルツコイルを備える。MF12は、磁化用コイル41内部に発生する磁界であり、MF13は、磁化用コイル51内部に発生する磁界であり、DMF11は、磁界MF12の方向を示す矢印であり、DMF12は、磁界MF13の方向を示す矢印である。   Next, a modification of the present embodiment will be described. FIG. 9 shows how the adjustment magnetization processing device 3 magnetizes the magnet M2. The adjustment magnetization processing apparatus 3 includes a Helmholtz coil composed of magnetization coils 41 and 51. MF12 is a magnetic field generated inside the magnetizing coil 41, MF13 is a magnetic field generated inside the magnetizing coil 51, DMF11 is an arrow indicating the direction of the magnetic field MF12, and DMF12 is the direction of the magnetic field MF13. It is an arrow which shows.

調整磁化処理装置3は、磁化用コイル41、51に電源を流すことで、磁化用コイル41と磁化用コイル51との間に磁界MF6を発生する。そこで、本変形例では、調整磁化処理装置2の代わりに、調整磁化処理装置3を用いて、磁石M2を磁化する。具体的には、調整磁化処理装置3は、分割平面PLが磁界MF6に直交するように、磁石M2を設置し、磁化用コイル41、51に電流を流す。これにより、調整磁化処理装置3は、磁石M2を磁化する。   The adjustment magnetization processing device 3 generates a magnetic field MF 6 between the magnetization coil 41 and the magnetization coil 51 by supplying power to the magnetization coils 41 and 51. Therefore, in the present modification, the magnet M2 is magnetized using the adjustment magnetization processing device 3 instead of the adjustment magnetization processing device 2. Specifically, the adjustment magnetization processing apparatus 3 installs the magnet M2 so that the division plane PL is orthogonal to the magnetic field MF6, and causes a current to flow through the magnetization coils 41 and 51. Thereby, the adjustment magnetization processing apparatus 3 magnetizes the magnet M2.

本変形例に係る回転角センサ用磁石の製造方法は、ヘルムホルツコイルを用いることで、磁界MF6を発生させることとしたので、磁界MF6を確実且つ安定して発生させることができる。   Since the magnetic angle MF6 is generated by using the Helmholtz coil in the method for manufacturing the rotation angle sensor magnet according to this modification, the magnetic field MF6 can be generated reliably and stably.

なお、本発明の趣旨を逸脱しない範囲で本実施の形態及び変形例を変形して良いのは勿論である。例えば、本実施の形態では、円形磁性体M1は円筒であるが、円柱であってもよい。また、磁石M2の全体に磁界MF6を掛けたが、磁石M2の側面(円形磁性体M1の側面に対応する部分)と分割平面とが交差する交差部分にのみ磁界MF6を掛けても良い。また、調整磁化処理装置2または調整磁化処理装置3が円形磁性体M1を磁化することで磁石M3を製造し、ラジアル磁化処理装置1が磁石M3を磁化することで、回転角センサ用磁石M4を製造しても良い。   Needless to say, the present embodiment and modifications may be modified without departing from the spirit of the present invention. For example, in the present embodiment, the circular magnetic body M1 is a cylinder, but may be a column. Further, although the magnetic field MF6 is applied to the entire magnet M2, the magnetic field MF6 may be applied only to the intersection where the side surface of the magnet M2 (the portion corresponding to the side surface of the circular magnetic body M1) and the division plane intersect. Further, the adjustment magnetization processing device 2 or the adjustment magnetization processing device 3 manufactures the magnet M3 by magnetizing the circular magnetic body M1, and the radial magnetization processing device 1 magnetizes the magnet M3, so that the rotation angle sensor magnet M4 is obtained. It may be manufactured.

ラジアル磁化処理装置を示す説明図である。It is explanatory drawing which shows a radial magnetization processing apparatus. 円形磁性体にラジアル磁化処理を施すことで製造された磁石を示す説明図である。It is explanatory drawing which shows the magnet manufactured by giving a radial magnetization process to a circular magnetic body. 調整磁化処理装置を示す説明図である。It is explanatory drawing which shows an adjustment magnetization processing apparatus. 調整磁化処理の様子を示す説明図である。It is explanatory drawing which shows the mode of adjustment magnetization process. 円形磁性体に調整磁化処理を施すことで製造された磁石を示す説明図である。It is explanatory drawing which shows the magnet manufactured by performing an adjustment magnetization process to a circular magnetic body. 磁束密度分布グラフを示す説明図である。It is explanatory drawing which shows a magnetic flux density distribution graph. 円形磁性体にラジアル磁化処理及び調整磁化処理を施すことで製造された回転角センサ用磁石を示す説明図である。It is explanatory drawing which shows the magnet for rotation angle sensors manufactured by giving a radial magnetization process and an adjustment magnetization process to a circular magnetic body. 磁束密度分布グラフを示す説明図である。It is explanatory drawing which shows a magnetic flux density distribution graph. 調整磁化処理の様子を示す説明図である。It is explanatory drawing which shows the mode of adjustment magnetization process. 従来の回転角センサ用磁石を示す説明図である。It is explanatory drawing which shows the conventional magnet for rotation angle sensors. 磁束密度分布グラフを示す説明図である。It is explanatory drawing which shows a magnetic flux density distribution graph.

符号の説明Explanation of symbols

M1…円形磁性体
M11、M12…分割部分
M4…回転角センサ用磁石
O…回転軸
PL…分割平面
1…ラジアル磁化処理装置
2、3…調整磁化処理装置
11、21…磁化用コイル
12、22…磁化用磁性体
121…上端面
221…下端面
M1 ... Circular magnetic body M11, M12 ... Divided part M4 ... Magnet for rotation angle sensor O ... Rotating shaft PL ... Divided plane 1 ... Radial magnetization processing device 2, 3 ... Adjustment magnetization processing device 11, 21 ... Magnetizing coil 12, 22 ... Magnetic body 121 ... Upper end surface 221 ... Lower end surface

Claims (4)

回転軸を備え、前記回転軸に直交する断面が一様な円となる円形磁性体に、ラジアル磁化処理及び調整磁化処理のうち一方の磁化処理を施すことと、
前記一方の磁化処理が施された円形磁性体に、前記ラジアル磁化処理及び前記調整磁化処理のうち、他方の磁化処理を施すことと、からなり、
前記円形磁性体は、前記回転軸を通り、前記断面に直交する分割平面により2つの分割部分に分割され、
前記ラジアル磁化処理は、前記2つの分割部分のうち、一方の分割部分に、前記回転軸に直交し、前記断面の外縁を構成する側面から前記回転軸に向かい、前記側面での大きさが一様な第1の磁界を掛け、前記2つの分割部分のうち、他方の分割部分に、前記回転軸に直交し、前記回転軸から前記側面に向かい、前記側面での大きさが一様な第2の磁界を掛けることであり、
前記調整磁化処理は、前記分割平面と前記側面とが交差する交差部分に、前記分割平面に直交し、前記一方の分割部分から前記他方の分割部分に向かう第3の磁界を掛けることである回転角センサ用磁石の製造方法。
Applying a magnetization process of one of a radial magnetization process and an adjustment magnetization process to a circular magnetic body having a rotation axis and having a uniform cross section perpendicular to the rotation axis;
Applying the other of the radial magnetization process and the adjustment magnetization process to the circular magnetic body subjected to the one magnetization process,
The circular magnetic body is divided into two divided parts by a dividing plane passing through the rotation axis and orthogonal to the cross section,
In the radial magnetization process, one of the two divided parts is perpendicular to the rotation axis and is directed from the side surface constituting the outer edge of the cross section toward the rotation axis, and the size on the side surface is uniform. The first magnetic field is applied, and the other divided portion of the two divided portions is perpendicular to the rotation axis, is directed from the rotation shaft to the side surface, and has a uniform size on the side surface. Two magnetic fields,
The adjustment magnetization process is to apply a third magnetic field perpendicular to the division plane and from the one division portion toward the other division portion at an intersection where the division plane and the side surface intersect. Manufacturing method of magnet for angle sensor.
請求項1記載の回転角センサ用磁石の製造方法において、
前記第3の磁界の大きさは一様である回転角センサ用磁石の製造方法。
In the manufacturing method of the magnet for rotation angle sensors according to claim 1,
A method of manufacturing a magnet for a rotation angle sensor, wherein the magnitude of the third magnetic field is uniform.
請求項1または2記載の回転角センサ用磁石の製造方法において、
前記第3の磁界は、中空コイルの中空部分に生じる回転角センサ用磁石の製造方法。
In the manufacturing method of the magnet for rotation angle sensors according to claim 1 or 2,
The third magnetic field is a method for manufacturing a magnet for a rotation angle sensor generated in a hollow portion of a hollow coil.
請求項1〜3の何れか1項に記載の回転角センサ用磁石の製造方法において、
前記第3の磁界は、ヘルムホルツコイルを構成する2つのコイル間に生じる回転角センサ用磁石の製造方法。
In the manufacturing method of the magnet for rotation angle sensors of any one of Claims 1-3,
The third magnetic field is a method for manufacturing a magnet for a rotation angle sensor generated between two coils constituting a Helmholtz coil.
JP2004331100A 2004-11-15 2004-11-15 Method for manufacturing magnet for rotation angle sensor Expired - Fee Related JP4504164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331100A JP4504164B2 (en) 2004-11-15 2004-11-15 Method for manufacturing magnet for rotation angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331100A JP4504164B2 (en) 2004-11-15 2004-11-15 Method for manufacturing magnet for rotation angle sensor

Publications (2)

Publication Number Publication Date
JP2006138820A JP2006138820A (en) 2006-06-01
JP4504164B2 true JP4504164B2 (en) 2010-07-14

Family

ID=36619736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331100A Expired - Fee Related JP4504164B2 (en) 2004-11-15 2004-11-15 Method for manufacturing magnet for rotation angle sensor

Country Status (1)

Country Link
JP (1) JP4504164B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020501A (en) * 2002-06-20 2004-01-22 Yaskawa Electric Corp Method of manufacturing magnetic type multiple rotational encoder system and magnetic gear wheel
JP2004271495A (en) * 2003-01-14 2004-09-30 Nippon Soken Inc Rotation angle sensor and rotation angle sensing device equipped therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020501A (en) * 2002-06-20 2004-01-22 Yaskawa Electric Corp Method of manufacturing magnetic type multiple rotational encoder system and magnetic gear wheel
JP2004271495A (en) * 2003-01-14 2004-09-30 Nippon Soken Inc Rotation angle sensor and rotation angle sensing device equipped therewith

Also Published As

Publication number Publication date
JP2006138820A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN112865459B (en) Hollow cup structure motor with bow-shaped permanent magnet
US8601671B2 (en) Method of manufacturing permanent-magnet synchronous motor
JP6333944B2 (en) System and method for reducing rotational noise in a magnetoelastic torque sensing device
CN109948298B (en) Permanent magnet motor magnetic field calculation method adopting non-uniform segmented Halbach array
CN103727873B (en) Rotation angle detection device
US10656121B2 (en) Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
JP2010145371A (en) Angle detection apparatus
JP4504164B2 (en) Method for manufacturing magnet for rotation angle sensor
CN104048789A (en) Non-contacting torque sensor with injection molded magnets
JP4402921B2 (en) Magnetic measuring device
Yamaguchi et al. Uniform internal finishing of SUS304 stainless steel bent tube using a magnetic abrasive finishing process
CN102142725A (en) Rotor of permanent-magnet alternating current servo motor
CN202034840U (en) Rotor of permanent magnet alternating-current servo motor
JP2006289227A (en) Magnetic treatment apparatus
US7719395B2 (en) Magnetizer and magnetizing method
JP5920386B2 (en) Magnet for rotation angle sensor and rotation angle sensor
JP2018124192A (en) Magnetic encoder and manufacturing method therefor
JP2013185902A (en) Method and device for measuring crystal orientation
JP4456163B2 (en) Rotation angle detector
JP5573592B2 (en) Magnetization method of multi-pole magnet encoder
JP2009171654A (en) Permanent magnet-embedded rotor and its manufacturing method
JP2019062120A (en) Magnetization device and magnetization method of magnetic encoder
US11298782B2 (en) Welding jig assembly
JP2009257898A (en) Non-contact torque sensor
JP2006126024A (en) Manufacturing method of encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees