JP4402921B2 - Magnetic measuring device - Google Patents
Magnetic measuring device Download PDFInfo
- Publication number
- JP4402921B2 JP4402921B2 JP2003301410A JP2003301410A JP4402921B2 JP 4402921 B2 JP4402921 B2 JP 4402921B2 JP 2003301410 A JP2003301410 A JP 2003301410A JP 2003301410 A JP2003301410 A JP 2003301410A JP 4402921 B2 JP4402921 B2 JP 4402921B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- magnetic
- external force
- exciting
- yokes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000004907 flux Effects 0.000 claims description 32
- 238000005259 measurement Methods 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 14
- 239000000696 magnetic material Substances 0.000 description 11
- 239000012141 concentrate Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004637 bakelite Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Description
本発明は、磁性材料の磁気特性、より詳細には二次元磁気特性を測定するのに好適な磁気測定装置に関する。 The present invention, magnetic properties of the magnetic material, and more particularly relates to a preferred magnetic measurements equipment for measuring the two-dimensional magnetic properties.
電気機器の低損失化、高効率化の一手段として電気機器鉄心中の鉄損の軽減が挙げられるが、その一つのアプローチとして、磁性材料の磁気特性を正確に把握し、それをどのような形状で使用するかという構造上の改良が考えられる。 One way to reduce the loss and increase the efficiency of electrical equipment is to reduce iron loss in the core of electrical equipment. One approach is to accurately grasp the magnetic properties of magnetic materials and what A structural improvement of whether to use in shape is conceivable.
磁性材料の磁気特性を正確に把握するという点において、これまでは一方向励磁による一次元測定であったことから、その特性が正確に把握されていたとはいい難い。すなわち、単板試験法、エプスタイン試験法等による軸特性の測定法は一方向励磁による一次元測定であり、本来ベクトル量であるはずの磁束密度Bと磁界強度Hの関係を無視し測定方向(磁化容易軸方向)への写像量をスカラー値として測定していたに過ぎない。 In terms of accurately grasping the magnetic properties of magnetic materials, it has been a one-dimensional measurement by unidirectional excitation so far, so it is difficult to say that the properties have been accurately grasped. That is, the axial characteristic measurement method such as the single plate test method and the Epstein test method is a one-dimensional measurement by one-way excitation, and ignores the relationship between the magnetic flux density B and the magnetic field strength H, which should be a vector quantity, and the measurement direction ( The amount of mapping in the direction of the easy axis of magnetization was only measured as a scalar value.
しかしながら、異方性を有する磁性材料に磁化容易軸方向に対して傾きをもって磁界を印加した場合や、回転磁界下においては、磁束密度と磁界強度ベクトルの間に方向の差が生じる。この磁気特性を正確に把握するために、両者の関係をベクトル量として直接測定しようという試みから、近年では、交番及び回転等の様々な磁束条件下において磁性材料中の磁気特性を測定可能な二次元磁気測定装置が提案されている。この測定法で得られた磁気特性は二次元磁気特性と称され、試料全体の磁界強度と磁束密度をベクトル量として把握することができるので、材料の絶対的評価法として位置付けられている。 However, when a magnetic field is applied to an anisotropic magnetic material with an inclination with respect to the easy axis direction, or under a rotating magnetic field, a difference in direction occurs between the magnetic flux density and the magnetic field strength vector. In order to accurately grasp this magnetic characteristic, an attempt to directly measure the relationship between the two as a vector quantity has recently made it possible to measure the magnetic characteristic in a magnetic material under various magnetic flux conditions such as alternating and rotating. A two-dimensional magnetic measuring device has been proposed. The magnetic properties obtained by this measurement method are called two-dimensional magnetic properties, and the magnetic field strength and magnetic flux density of the entire sample can be grasped as vector quantities, and are positioned as absolute evaluation methods for materials.
図8を参照して、現在提案されている二次元磁気測定装置の概要を説明する。図8(a)に示すように、x方向に対極する一対の励磁用継鉄101xと、y方向に対極する一対の励磁用継鉄101yとが配置固定され、各励磁用継鉄101x、101yがヨーク102により磁気的に結合する。各励磁用継鉄101x、101yには励磁コイル103が巻き付けられる。
With reference to FIG. 8, the outline | summary of the two-dimensional magnetic measuring apparatus proposed now is demonstrated. As shown in FIG. 8 (a), a pair of
励磁用継鉄101x、101yに囲まれる位置には試料104が置かれる。試料104内に磁束を集中させるために、図8(b)に示すように、各励磁用継鉄101x、101yの先端両面が45度に傾斜するよう加工される。また、試料104内の磁束を均一にするために、試料104と各励磁用継鉄101x、101yとの間にエアギャップ105が形成される。
A
試料104の中央部領域には穴が形成され、ホルマール線を各方向に試料に応じて数ターン直交するように巻いたBコイル106が設けられる。また、試料104の上方には、ベークライトにホルマール線を使用し、Hyコイル上に直交してHxコイルを巻いたHコイル107が配置される。
A hole is formed in the central region of the
図9に示すように交番磁束、回転磁束を定義する。交番磁束においては最大磁束密度Bmaxと磁化容易軸からの傾き角φによって、回転磁束においては軸比α(短軸/長軸)と最大磁束密度Bmaxそして長軸の磁化容易軸からの傾き角φによって表現される。 As shown in FIG. 9, an alternating magnetic flux and a rotating magnetic flux are defined. In the alternating magnetic flux, the maximum magnetic flux density B max and the tilt angle φ from the easy axis, and in the rotating magnetic flux, the axial ratio α (short axis / long axis), the maximum magnetic flux density B max, and the long axis tilt from the easy axis. Expressed by the angle φ.
しかしながら、磁性材料を電気機器等に加工して使用する場合、その製造過程で切断、かしめ、据付により応力が印加され、残留応力や歪みの影響によって磁性材料の磁気特性が変化してしまう。そのため、応力を考慮した二次元磁気特性の測定技術が要求されている。 However, when a magnetic material is processed and used in an electrical device or the like, stress is applied by cutting, caulking, or installation in the manufacturing process, and the magnetic characteristics of the magnetic material change due to the influence of residual stress or distortion. Therefore, a technique for measuring two-dimensional magnetic characteristics in consideration of stress is required.
本発明は上記の点に鑑みてなされたものであり、各種磁性材料についての応力を考慮した二次元磁気特性を測定可能とすることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to enable measurement of two-dimensional magnetic characteristics in consideration of stress on various magnetic materials.
本発明の磁気測定装置の特徴とするところは、x方向及びy方向のうち任意に選択される方向から試料内に磁束が貫くようにして、該試料の磁気特性を測定する磁気測定装置であって、上記試料に対して所望の外力を付与することのできる外力付与手段を備え、長板形状とされた試料がx方向に配置固定されるとともに、上記試料の両側にy方向に互いに対極する一対の励磁用継鉄が配置固定され、上記試料の両端及び上記各励磁用継鉄に励磁コイルが巻き付けられている点にある。さらに、上記外力付与手段は、上記試料の長手方向の一端或いは両端に任意の引張荷重或いは圧縮荷重を付与するものである点にある。さらにまた、上記外力付与手段は、上記試料の端面全体に荷重を均一に作用させる点にある。 It is a feature of the magnetic measuring device of the present invention is a magnetic measuring device as the magnetic flux penetrates into the sample from a direction which is arbitrarily selected among the x and y directions, to measure the magnetic properties of the sample In addition, an external force applying means capable of applying a desired external force to the sample is provided, the long plate-shaped sample is arranged and fixed in the x direction, and opposite to each other in the y direction on both sides of the sample. A pair of exciting yokes is arranged and fixed, and an exciting coil is wound around both ends of the sample and each exciting yoke. Further, the external force applying means is for applying an arbitrary tensile load or compressive load to one or both ends in the longitudinal direction of the sample. Furthermore, the external force applying means is to apply a load uniformly to the entire end face of the sample.
本発明の磁気測定装置の他の特徴とするところは、x方向及びy方向のうち任意に選択される方向から試料内に磁束が貫くようにして、該試料の磁気特性を測定する磁気測定装置であって、上記試料に対して所望の外力を付与することのできる外力付与手段を備え、上記試料を挟んでx方向に対極する一対の励磁用継鉄と、上記試料を挟んでy方向に対極する一対の励磁用継鉄とが配置固定され、上記各励磁用継鉄に励磁コイルが巻き付けられている点にある。また、上記試料のx方向或いはy方向の両端が略垂直下方或いは略垂直上方に曲げ加工されており、上記外力付与手段は、上記曲げ加工された両端或いは一端に任意の引張荷重を付与するものである点にある。 Another feature of the magnetic measurement apparatus of the present invention is that the magnetic measurement apparatus measures the magnetic properties of the sample by allowing magnetic flux to penetrate into the sample from any direction selected from the x and y directions. And an external force applying means capable of applying a desired external force to the sample, a pair of exciting yokes opposite to each other in the x direction across the sample, and a y direction across the sample. A pair of exciting yokes opposite to each other are arranged and fixed, and an exciting coil is wound around each of the exciting yokes. Further, both ends in the x direction or y direction of the sample are bent substantially vertically downward or substantially vertically upward, and the external force applying means applies an arbitrary tensile load to the bent ends or one end. In that point.
本発明によれば、試料に対して所望の外力を付与することができるので、応力を考慮した二次元磁気特性を測定することができ、各種磁性材料について、残留応力や歪みの影響によって変化する磁気特性を評価等することが可能になる。 According to the present invention, since a desired external force can be applied to the sample, it is possible to measure two-dimensional magnetic characteristics in consideration of stress, and various magnetic materials change due to the effects of residual stress and strain. It becomes possible to evaluate the magnetic characteristics.
以下、図面を参照して、本発明による磁気測定装置の好適な実施形態について説明する。
(第1の実施形態)
図1〜6を参照して、第1の実施形態の磁気測定装置を説明する。長板形状とされた試料1がx方向に配置固定されるとともに、その試料1の両側にy方向に互いに対極する一対の励磁用継鉄2が配置固定され、試料1の両端及び各励磁用継鉄2には励磁コイル3が巻き付けられる。試料1は、例えば図5に示すように試材10から切り出すようにして製作され、磁化容易軸からの傾き角θBσをパラメータの一つとする。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a magnetic measuring device according to the invention will be described with reference to the drawings.
(First embodiment)
With reference to FIGS. 1-6, the magnetic measuring apparatus of 1st Embodiment is demonstrated. A long plate-
試料1と励磁用継鉄2とはヨーク4により磁気的に結合する。なお、試料1内に磁束を集中させるために励磁用継鉄2の先端両面が45度に傾斜するよう加工され、また、試料1内の磁束を均一にするために試料1と励磁用継鉄2との間にエアギャップが形成されることは上述した通りである。
The
また、具体的には図示しないが、試料1の中央部領域には穴が形成され、ホルマール線を各方向に試料に応じて数ターン直交するように巻いたBコイルが設けられる。また、試料1の上方には、アクリル又は水晶板にホルマール線を使用し、Hyコイル上に直交してHxコイルを巻いたHコイル5が配置される(図4を参照)。
Although not specifically shown, a hole is formed in the central region of the
ここで、図3(a)に示すように、試料1の長手方向の一端には、試料1に対して任意の引張荷重及び圧縮荷重を選択的に付与することのできる外力付与手段6が設けられる。外力付与手段6の具体的な構成は限定されないが、試料1の端面全体に荷重を均一に作用させるようにする。また、図示例では、外力付与手段6が試料1の一端側にのみ存在するが、両端側に存在していてもよい。また、試料1は、図2に示すように積層してもよいし、印加力を小さくできる1枚の板としてもかまわない。
Here, as shown in FIG. 3A, an external force applying means 6 that can selectively apply an arbitrary tensile load and compressive load to the
また、図3(b)に示すように、試料1上には、三軸歪みゲージ7が配置される。同図に示すように、三軸歪みゲージ7は、試料1の中央に向かうようにして60度位相をずらして配置された第1〜3の歪みゲージ7a〜7cにより構成され、中央の第1の歪みゲージが試料1の短手方向に沿って配置される。この三軸歪みゲージ7により測定される応力σをパラメータの一つとする。
In addition, as shown in FIG. 3B, a
測定システムとしては、図6に示すように、ここまで説明した磁気測定装置と制御装置50とを用いて、波形制御、波形処理、磁束密度B及び磁界強度Hの計算までソフトプログラミングで行われる。
As the measurement system, as shown in FIG. 6, using the magnetic measurement device and the
一般に磁気特性測定は正弦波磁束条件下で行われる。つまり、出力で任意の磁束密度が正弦波となるように印加磁界を波形制御して行われる。これにより、磁束密度Bと磁界強度Hとの関係が一意的に定まることになる。測定方法は、まず任意の磁束密度条件を作り出すためのパラメータ(磁束密度Bmax、傾き角φ、軸比α、周波数等)を入力し、設定波形と誘起磁束電圧波形の差分を励磁波形に加えることを波形制御が終了するまで繰り返し行う。波形制御が終了した後に磁束密度Bと磁界強度Hを測定する。また、1周期を512分割して波形近似している。 In general, magnetic characteristics are measured under sinusoidal magnetic flux conditions. That is, the applied magnetic field is controlled so that an arbitrary magnetic flux density becomes a sine wave at the output. Thereby, the relationship between the magnetic flux density B and the magnetic field strength H is uniquely determined. In the measurement method, parameters (magnetic flux density B max , tilt angle φ, axial ratio α, frequency, etc.) for creating an arbitrary magnetic flux density condition are first input, and the difference between the set waveform and the induced magnetic flux voltage waveform is added to the excitation waveform. This is repeated until the waveform control is completed. After the waveform control is completed, the magnetic flux density B and the magnetic field strength H are measured. One cycle is divided into 512 to approximate the waveform.
また、データロガー51にて時間経過に伴って変化する磁束密度Bと磁界強度Hを、パラメータ(応力σ及び磁化容易軸からの傾き角θBσ、磁束密度Bmax、傾き角φ、軸比α、周波数等)とともに記録していく。
Further, the magnetic flux density B and the magnetic field strength H that change with time in the
以上述べた第1の実施形態の磁気測定装置によれば、外力付与手段6により、試料1に対して任意の引張荷重及び圧縮荷重を付与しながら磁気特性を測定することができるので、応力を考慮した二次元磁気特性を測定することができ、各種磁性材料について、残留応力や歪みの影響によって変化する磁気特性を評価等することが可能になる。
According to the magnetic measuring apparatus of the first embodiment described above, the magnetic force can be measured while applying an arbitrary tensile load and compressive load to the
(第2の実施形態)
図7を参照して、第2の実施形態の磁気測定装置を説明する。x方向に対極する一対の励磁用継鉄11xと、y方向に対極する一対の励磁用継鉄11yとが配置固定され、各励磁用継鉄11x、11yが図示しないヨークにより磁気的に結合する。各励磁用継鉄11x、11yには励磁コイル13が巻き付けられる。
(Second Embodiment)
With reference to FIG. 7, the magnetic measurement apparatus of 2nd Embodiment is demonstrated. A pair of
励磁用継鉄11x、11yに囲まれる位置には試料14が置かれる。なお、試料14内に磁束を集中させるために励磁用継鉄11x、11yの先端両面が45度に傾斜するよう加工され、また、試料14内の磁束を均一にするために試料14と励磁用継鉄11x、11yとの間にエアギャップが形成されることは上述した通りである。
A
また、具体的には図示しないが、試料14の中央部領域には穴が形成され、ホルマール線を各方向に試料に応じて数ターン直交するように巻いたBコイルが設けられる。また、試料14の上方には、ベークライトにホルマール線を使用し、Hyコイル上に直交してHxコイルを巻いたHコイル15が配置される(図4を参照)。
Although not specifically shown, a hole is formed in the central region of the
ここで、図7(b)に示すように、試料14の両端(図示例ではx方向の両端)が略垂直下方に垂れ下げるように曲げ加工されており、その両端には、試料14に対して任意の引張荷重を付与することのできる外力付与手段16が設けられる。また、支持部材17が配設されており、引張荷重を付与する際に試料14が動かないように支持する。なお、試料14の両端が略垂直上方に曲げ加工されていてもよく、また、外力付与手段16が試料14の一端側にのみ存在していてもよい。
Here, as shown in FIG. 7 (b), both ends of the sample 14 (both ends in the x direction in the illustrated example) are bent so as to hang downward substantially vertically, Thus, an external force applying means 16 capable of applying an arbitrary tensile load is provided. A
また、第1の実施形態でも述べたように、試料14上には、三軸歪みゲージ7が配置される。図3に示すように、三軸歪みゲージ7は、試料1の中央に向かうようにして60度位相をずらして配置された第1〜3の歪みゲージ7a〜7cにより構成され、中央の第1の歪みゲージが試料1の短手方向に沿って配置される。この三軸歪みゲージ7により測定される応力σをパラメータの一つとする。
Further, as described in the first embodiment, the
以上述べた第2の実施形態の磁気測定装置によれば、外力付与手段16により、試料1に対して任意の引張荷重を付与しながら磁気特性を測定することができるので、応力を考慮した二次元磁気特性を測定することができ、各種磁性材料について、残留応力や歪みの影響によって変化する磁気特性を評価等することが可能になる。
According to the magnetic measurement apparatus of the second embodiment described above, the magnetic force can be measured while applying an arbitrary tensile load to the
なお、上記実施の形態において示した各部の形状及び構造は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその精神、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 It should be noted that the shapes and structures of the respective parts shown in the above embodiments are merely examples of implementation in carrying out the present invention, and these limit the technical scope of the present invention. It should not be interpreted. That is, the present invention can be implemented in various forms without departing from the spirit or main features thereof.
1、14 試料
2、11x、11y 励磁用継鉄
3、13 励磁コイル
4 ヨーク
5、15 Hコイル
6、16 外力付与手段
7 三軸歪みゲージ
1, 14
Claims (5)
上記試料に対して所望の外力を付与することのできる外力付与手段を備え、
長板形状とされた試料がx方向に配置固定されるとともに、上記試料の両側にy方向に互いに対極する一対の励磁用継鉄が配置固定され、上記試料の両端及び上記各励磁用継鉄に励磁コイルが巻き付けられていることを特徴とする磁気測定装置。 A magnetic measurement apparatus for measuring magnetic properties of a sample by allowing magnetic flux to penetrate into the sample from a direction arbitrarily selected from the x direction and the y direction,
Comprising an external force applying means capable of applying a desired external force to the sample;
A long plate-shaped sample is arranged and fixed in the x direction, and a pair of exciting yokes opposite to each other in the y direction are arranged and fixed on both sides of the sample, and both ends of the sample and the exciting yokes are arranged. magnetic measuring device characterized in that the excitation coil is wound around the.
上記試料に対して所望の外力を付与することのできる外力付与手段を備え、
上記試料を挟んでx方向に対極する一対の励磁用継鉄と、上記試料を挟んでy方向に対極する一対の励磁用継鉄とが配置固定され、上記各励磁用継鉄に励磁コイルが巻き付けられていることを特徴とする磁気測定装置。 A magnetic measurement apparatus for measuring magnetic properties of a sample by allowing magnetic flux to penetrate into the sample from a direction arbitrarily selected from the x direction and the y direction,
Comprising an external force applying means capable of applying a desired external force to the sample;
A pair of exciting yokes that are opposite to each other in the x direction across the sample and a pair of exciting yokes that are opposite to each other in the y direction across the sample are arranged and fixed, and each exciting yoke has an exciting coil. magnetic measuring device shall be the characterized in that the wound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301410A JP4402921B2 (en) | 2003-08-26 | 2003-08-26 | Magnetic measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301410A JP4402921B2 (en) | 2003-08-26 | 2003-08-26 | Magnetic measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005069933A JP2005069933A (en) | 2005-03-17 |
JP4402921B2 true JP4402921B2 (en) | 2010-01-20 |
Family
ID=34406044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003301410A Expired - Lifetime JP4402921B2 (en) | 2003-08-26 | 2003-08-26 | Magnetic measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4402921B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156268A (en) * | 2011-03-07 | 2011-08-17 | 中国人民解放军海军工程大学 | Device for measuring rotating magnetization characteristic of magnetic material |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4916896B2 (en) * | 2007-01-12 | 2012-04-18 | 新日本製鐵株式会社 | Electromagnetic field analysis system |
JP4910149B2 (en) * | 2007-03-09 | 2012-04-04 | 国立大学法人 岡山大学 | Two-dimensional magnetic property measuring device |
JP5157646B2 (en) * | 2008-05-28 | 2013-03-06 | 新日鐵住金株式会社 | Iron loss optimization system |
JP5399157B2 (en) * | 2009-07-22 | 2014-01-29 | 西日本電線株式会社 | Magnetic measurement sensor |
JP2011133383A (en) * | 2009-12-25 | 2011-07-07 | Nishi Nippon Electric Wire & Cable Co Ltd | Device for measuring two-dimensional vector magnetism |
JP2011220692A (en) * | 2010-04-02 | 2011-11-04 | Nippon Steel Corp | Two-dimensional magnetic characteristic measuring apparatus |
CN102103194A (en) * | 2010-11-22 | 2011-06-22 | 沈阳工业大学 | Device and method for measuring two-dimensional magnetic properties of electric steel sheet with adjustable magnetic circuit |
JP5527203B2 (en) * | 2010-12-28 | 2014-06-18 | Jfeスチール株式会社 | Single plate magnetic tester and method for measuring magnetic properties of electrical steel sheet using the same |
JP5769179B2 (en) * | 2013-02-01 | 2015-08-26 | 大分県 | Magnetic property tester |
CN103558568B (en) * | 2013-11-15 | 2017-03-01 | 沈阳工业大学 | The magnetic characteristic measurement apparatus of electrical sheet and combinations thereof structure difference stress direction |
JP6464425B2 (en) * | 2014-11-21 | 2019-02-06 | 富士通株式会社 | Magnetic characteristic measuring apparatus, magnetic characteristic measuring method, and magnetic characteristic measuring program |
CN108594144B (en) * | 2018-06-27 | 2024-01-19 | 河北工业大学 | Two-dimensional monolithic magnetic characteristic test system and method under bidirectional stress loading condition |
CN111308404B (en) * | 2019-12-25 | 2024-05-03 | 河北工业大学 | Two-dimensional magnetic characteristic measuring device under three-dimensional stress loading condition |
AT524528A1 (en) * | 2020-12-03 | 2022-06-15 | ViennaMagnetics GmbH | Dynamic Rotational Single Sheet Tester |
CN114779138A (en) * | 2022-04-08 | 2022-07-22 | 河北工业大学 | Magnetic characteristic test platform for superposed magnetic material |
CN118409255B (en) * | 2024-07-02 | 2024-08-27 | 华中科技大学 | Magnetization measuring sensor used under pulse strong magnetic field |
-
2003
- 2003-08-26 JP JP2003301410A patent/JP4402921B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156268A (en) * | 2011-03-07 | 2011-08-17 | 中国人民解放军海军工程大学 | Device for measuring rotating magnetization characteristic of magnetic material |
Also Published As
Publication number | Publication date |
---|---|
JP2005069933A (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4402921B2 (en) | Magnetic measuring device | |
JP4182121B2 (en) | Torsional vibration generation and measurement method using magnetic deformation, and torsional vibration generation and measurement apparatus using the same | |
US20120296577A1 (en) | Magnetoelastic force sensors, transducers, methods, and systems for assessing bending stress | |
JP2003215107A (en) | Eddy current flaw detection probe | |
JP2007298336A (en) | Apparatus for measuring magnetic characteristics | |
JP2006258481A (en) | Magnetic measuring apparatus and method | |
US11965858B2 (en) | Laminated iron core elastic matrix determination method and vibration analysis method | |
JP4044891B2 (en) | Magnetic field analysis method and computer program | |
KR100692391B1 (en) | Electro-Magnetic Acoustic Transducer generating and measuring bending vibration in rod member by using anti-symmetric magnetic field structure | |
CA1040885A (en) | Magnetoelastic transducer arrangement | |
JP2012202974A (en) | Magnetic characteristics evaluation device and magnetic characteristics measurement sample piece | |
JP2002214202A (en) | Eddy current flaw detection probe | |
JP4910149B2 (en) | Two-dimensional magnetic property measuring device | |
JP4410541B2 (en) | Magnetostriction analyzer, magnetostriction analysis method, computer program, and computer-readable recording medium | |
JP6822222B2 (en) | Magnetic property measuring instrument, magnetic property measuring system, and magnetic property measuring method | |
Alatawneh et al. | Rotational core loss and permeability measurements in machine laminations with reference to permeability asymmetry | |
JPH1130554A (en) | Method for measuring stress of steel pipe | |
JP3170382B2 (en) | Tube Magnetostrictive Stress Measurement Method and Apparatus | |
JP2018084940A (en) | Design method, manufacturing method, and design program of iron core | |
JP3417990B2 (en) | Torsional vibration generator and torsional vibration generating method | |
JP2001091502A (en) | Method for measuring degree of orientation of fiber of fiber-reinforced composite material | |
JPS58210579A (en) | Magnetism measuring device | |
Kuczmann | Measurement and simulation of vector hysteresis | |
JP2018009809A (en) | Stress control apparatus, magnetic characteristics measuring apparatus, stress control method and magnetic characteristics measuring method | |
RU2327152C2 (en) | Electromagnetic-acoustic converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091030 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4402921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |