JP2013185902A - Method and device for measuring crystal orientation - Google Patents
Method and device for measuring crystal orientation Download PDFInfo
- Publication number
- JP2013185902A JP2013185902A JP2012050344A JP2012050344A JP2013185902A JP 2013185902 A JP2013185902 A JP 2013185902A JP 2012050344 A JP2012050344 A JP 2012050344A JP 2012050344 A JP2012050344 A JP 2012050344A JP 2013185902 A JP2013185902 A JP 2013185902A
- Authority
- JP
- Japan
- Prior art keywords
- crystal orientation
- magnetic field
- steel sheet
- crystal
- output signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
本発明は、鋼板の結晶粒の結晶方位を非破壊で測定する結晶方位測定方法および結晶方位測定装置に関する。 The present invention relates to a crystal orientation measuring method and a crystal orientation measuring apparatus for nondestructively measuring the crystal orientation of crystal grains of a steel sheet.
鋼板の結晶粒の結晶方位や集合組織は、製品特性の重要な指標である。一般に、結晶方位の測定は、原子が規則正しく並んでいることに着目し、回折現象を利用して行なわれる。結晶方位の測定方法としては、例えば、X線による回折現象を用いたX線極点図法やX線ラウエ法、電子線による特性X線を用いたコッセル線法、電子線を用いた後方散乱電子線回折法(EBSD)などが知られている。これらの測定法は、結晶粒の格子間隔を既知として、ブラッグの回折条件を満たす回折の方向から結晶方位を測定する。 The crystal orientation and texture of the crystal grains of the steel sheet are important indicators of product characteristics. In general, the measurement of crystal orientation is performed using a diffraction phenomenon, focusing on the fact that atoms are regularly arranged. Examples of the crystal orientation measurement method include X-ray pole figure method using X-ray diffraction phenomenon, X-ray Laue method, Kossel line method using characteristic X-ray by electron beam, and backscattered electron beam using electron beam A diffraction method (EBSD) or the like is known. In these measurement methods, the crystal orientation is measured from the direction of diffraction satisfying the Bragg diffraction condition with the lattice spacing of crystal grains being known.
また、通常、X線回折やX線ラウエ法では数mm程度の領域の測定を行うのに対し、EBSDや、透過型電子顕微鏡(TEM)で観察されるKikuchi線を解析して測定するTEM/Kikuchi線法では、数nmの領域を測定できる。そのため、EBSDやTEM/Kikuchi線法は、金属の塑性変形による集合組織の解析などに用いられる。 In general, X-ray diffraction and X-ray Laue methods measure an area of several millimeters, whereas TEM / A is a measurement method that analyzes and measures Kikuchi lines observed with an EBSD or a transmission electron microscope (TEM). In the Kikuchi line method, a region of several nm can be measured. Therefore, EBSD and the TEM / Kikuchi line method are used for analysis of textures caused by plastic deformation of metals.
また、回折現象を利用せずに結晶方位を測定する方法として、マイクロファセットピット法が知られている。このマイクロファセットピット法は、結晶方位によって腐食速度に差があることを利用して、適切な条件下で結晶粒を腐食させて特定の結晶面から構成される腐食孔を作り、その方向を観察することで結晶方位を測定する。 A micro facet pit method is known as a method for measuring crystal orientation without using a diffraction phenomenon. This micro facet pit method makes use of the fact that the corrosion rate varies depending on the crystal orientation, and corrodes the crystal grains under appropriate conditions to create corrosion holes composed of specific crystal planes and observe the direction. Thus, the crystal orientation is measured.
ところで、方向性電磁鋼板は、数mmから数cm程度の粗大な結晶粒を持ち、GOSS方位と呼ばれる特殊な結晶方位を示す。GOSS方位は磁気特性に優れていることから、方向性電磁鋼板の結晶方位の制御は、製品の特性を決定づける上で重要である。そのため、方向性電磁鋼板を製造中(オンライン)に非破壊で結晶方位を測定する技術が望まれている。 By the way, the grain-oriented electrical steel sheet has coarse crystal grains of about several millimeters to several centimeters and exhibits a special crystal orientation called a GOSS orientation. Since the GOSS orientation is excellent in magnetic properties, control of the crystal orientation of the grain-oriented electrical steel sheet is important in determining the product characteristics. Therefore, a technique for measuring the crystal orientation in a non-destructive manner during production (online) of a grain-oriented electrical steel sheet is desired.
特許文献1には、超音波を用いて方向性電磁鋼板の結晶方位の変化を測定する技術が記載されている。これは、超音波のバースト波を入射して多重反射させることにより、結晶方位の変化による音速変化を検知して、目的となる結晶方位からのズレの程度を検知するものである。また、特許文献2には、磁気を利用して、方向性電磁鋼板の二次再結晶不良部と健全部とを弁別する技術が記載されている。これらの技術は、数mmから数cmの領域の測定を行なうものであり、数μmの領域の測定は困難である。そのため、用途を限定する必要があり、例えば方向性電磁鋼板の結晶方位の不良部を検出する際に用いられる。
Patent Document 1 describes a technique for measuring a change in crystal orientation of a grain-oriented electrical steel sheet using ultrasonic waves. In this method, an ultrasonic burst wave is incident and subjected to multiple reflection, thereby detecting a change in sound velocity due to a change in crystal orientation and detecting a degree of deviation from the target crystal orientation.
回折現象を利用した結晶方位の測定は、精度は高いものの、時間やコストがかかる。例えば、1測定点あたりにかかる時間は、X線ラウエ法では30分程度、コッセルパターン法では15分程度である。また、通常、測定の結果得られた回折パターンはコンピュータにより解析されるが、入射方位などの誤差要因により精度が劣化するおそれがある。 Measurement of crystal orientation using the diffraction phenomenon is highly accurate but takes time and cost. For example, the time taken per measurement point is about 30 minutes for the X-ray Laue method and about 15 minutes for the Kossel pattern method. In general, the diffraction pattern obtained as a result of the measurement is analyzed by a computer, but there is a possibility that the accuracy may be deteriorated due to an error factor such as an incident direction.
その点で、EBSD法では、近年のコンピュータの性能の向上にともなってかかる時間や精度は改善されているものの、装置が高額かつ大掛かりという問題は残っている。しかも、EBSD法は、測定対象に電子線を照射するため、真空での測定が必須であり、製造中に走行する方向性電磁鋼板を測定対象とすることは困難である。 In this respect, the EBSD method has improved the time and accuracy required with the recent improvement in computer performance, but the problem remains that the apparatus is expensive and large. Moreover, since the EBSD method irradiates the measurement object with an electron beam, measurement in a vacuum is indispensable, and it is difficult to use a directional electrical steel sheet that is traveling during manufacture as the measurement object.
また、EBSD法やTEM/Kikuchi法では、通常、数mm角から数cm角程度のサンプルを採取して、表面を研磨して真空中で測定する。そのため、EBSD法やTEM/Kikuchi法は、実質的に測定対象を破壊して測定する。 In the EBSD method and the TEM / Kikuchi method, a sample of several mm square to several cm square is usually taken, the surface is polished, and measurement is performed in a vacuum. Therefore, the EBSD method and the TEM / Kikuchi method substantially measure the measurement object while destroying the measurement object.
特許文献1に記載の技術をはじめ、超音波を用いた測定は、非破壊で行なうものの、板厚の変化や測定対象の傾きなどにきわめて敏感であり、結晶方位を定量的に測定することは困難である。また、特許文献2に記載の技術によれば、基準とする圧延方向からの結晶方位のズレの有無を測定できるものの、ズレ量を定量的に測定することは困難である。
Although measurement using ultrasonic waves, including the technique described in Patent Document 1, is performed nondestructively, it is extremely sensitive to changes in the plate thickness and the inclination of the measurement object, and quantitative measurement of crystal orientation is not possible. Have difficulty. Further, according to the technique described in
さらに、方向性電磁鋼板の結晶方位と鉄損とは互いに強い関連性があるため、鉄損を測定することで結晶方位を推定することが可能である。しかしながら、鉄損に影響する因子は結晶方位以外にも多数存在するため、鉄損のみの測定では結晶方位を推定することはできない。 Furthermore, since the crystal orientation of the grain-oriented electrical steel sheet and the iron loss are strongly related to each other, it is possible to estimate the crystal orientation by measuring the iron loss. However, since there are many factors affecting the iron loss in addition to the crystal orientation, the crystal orientation cannot be estimated by measuring the iron loss alone.
本発明は、上記に鑑みてなされたものであって、製造中の方向性電磁鋼板の粗大な結晶粒の結晶方位を簡易かつ短時間に測定可能な結晶方位測定方法および結晶方位測定装置を提供することを目的とする。 The present invention has been made in view of the above, and provides a crystal orientation measuring method and a crystal orientation measuring apparatus that can easily and quickly measure the crystal orientation of coarse crystal grains of a grain-oriented electrical steel sheet being manufactured. The purpose is to do.
上述した課題を解決し、目的を達成するために、本発明に係る結晶方位測定方法は、直流磁場と、該直流磁場に直交する成分を含む交流磁場とを鋼板に同時に印加して、前記鋼板の内部エネルギーの大きさに比例する出力信号を測定するステップと、前記出力信号の測定値に基づいて鋼板の結晶方位を算出するステップと、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the crystal orientation measurement method according to the present invention applies a DC magnetic field and an AC magnetic field containing a component orthogonal to the DC magnetic field to the steel sheet at the same time, Measuring the output signal proportional to the magnitude of the internal energy of the steel sheet, and calculating the crystal orientation of the steel sheet based on the measured value of the output signal.
また、本発明に係る結晶方位測定方法は、上記発明において、前記直流磁場の方向に対して鋼板を回転させて回転角度ごとの出力信号を記憶するステップと、前記回転角度ごとの出力に基づいて、特定の結晶方位を算出するステップと、を含むことを特徴とする。 Further, the crystal orientation measuring method according to the present invention is based on the above-mentioned invention, the step of rotating the steel sheet with respect to the direction of the DC magnetic field and storing the output signal for each rotation angle, and the output for each rotation angle. And a step of calculating a specific crystal orientation.
また、本発明に係る結晶方位測定方法は、上記発明において、前記特定の結晶方位は、鋼板の磁化容易軸の方向と磁化困難軸の方向であることを特徴とする。 The crystal orientation measuring method according to the present invention is characterized in that, in the above invention, the specific crystal orientation is a direction of an easy axis of magnetization of a steel plate and a direction of a hard axis of magnetization.
また、本発明に係る結晶方位測定装置は、直流磁場と、該直流磁場に直交する成分を含む交流磁場とを鋼板に同時に印加して、前記鋼板の内部エネルギーの大きさに比例する出力信号を測定する手段と、前記出力信号の測定値に基づいて鋼板の結晶方位を算出する手段とを備えることを特徴とする。 Further, the crystal orientation measuring apparatus according to the present invention simultaneously applies a DC magnetic field and an AC magnetic field including a component orthogonal to the DC magnetic field to the steel sheet, and outputs an output signal proportional to the magnitude of the internal energy of the steel sheet. And means for measuring and means for calculating the crystal orientation of the steel sheet based on the measured value of the output signal.
本発明によれば、方向性電磁鋼板の粗大な結晶粒の結晶方位を簡易かつ短時間に測定することができる。 According to the present invention, the crystal orientation of coarse crystal grains of a grain-oriented electrical steel sheet can be measured easily and in a short time.
以下、図面を参照して、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.
まず、図1を参照して、本実施の形態の結晶方位測定装置1の概略構成について説明する。図1に示すように、結晶方位測定装置1は、交流磁化装置2と直流電磁石3と制御装置4とを備える。交流磁化装置2は、フェライトや電磁鋼板積層コアなどのU型のコア21に励磁用コイル22と検出用コイル23とを巻装して構成されている。この交流磁化装置2と直流電磁石3とは、交流磁化装置2による交流磁場が直流電磁石3による直流磁場Aに直交する成分Bを持つように、鋼板5に近接して配置されている。制御装置4は、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPU等を用いて実現され、交流磁化装置2および直流電磁石3を制御して、後述する結晶方位測定処理を実行する。
First, a schematic configuration of the crystal orientation measuring apparatus 1 of the present embodiment will be described with reference to FIG. As shown in FIG. 1, the crystal orientation measuring device 1 includes an AC
なお、本実施例においては、直流電磁石3を交流磁化装置2の外側に配置しているが、これに限定されない。交流磁化装置2と直流電磁石3とを鋼板5を挟んで対向させる構成でもよい。また、交流磁化装置2のコア21は、I型やE型でもよい。励磁用コイル22と検出用コイル23とを別々のコア21に巻装してもよい。直流電磁石3を永久磁石としてもよい。
In the present embodiment, the
ここで、図2を参照して、本実施の形態の結晶方位測定処理の原理について説明する。方向性電磁鋼板のような強磁性体結晶は、結晶方位により磁化し易さが異なる。磁化し易い方向を磁化容易軸と呼び、鉄などの立法晶では[100]方向がこれに当たる。外部磁場が印加されていない場合の自発磁化の方向は、磁化容易軸の方向x1になる。一方、磁化し難い方向を磁化困難軸と呼び、鉄では[111]方向がこれに当たる。なお、[100]方向と[111]方向とがなす角度は54.7°である。すなわち、鉄について磁化容易軸の方向x1と磁化困難軸の方向x2とがなす角度は54.7°である。 Here, with reference to FIG. 2, the principle of the crystal orientation measurement process of the present embodiment will be described. Ferromagnetic crystals such as grain-oriented electrical steel sheets are easily magnetized depending on the crystal orientation. The direction that is easy to magnetize is called the easy axis of magnetization, and this is the [100] direction in the case of a cubic crystal such as iron. The direction of spontaneous magnetization when no external magnetic field is applied is the direction x1 of the easy magnetization axis. On the other hand, the direction in which magnetization is difficult is called a magnetization difficult axis, and in iron, the [111] direction corresponds to this. The angle formed by the [100] direction and the [111] direction is 54.7 °. That is, for iron, the angle formed by the direction x1 of the easy axis and the direction x2 of the hard axis is 54.7 °.
このような強磁性体結晶に直流磁場を印加すると、結晶の磁化方向は、外部磁場(直流磁場)の方向Aと自発磁化の方向とを合成した方向となり、結晶の内部エネルギーが変化する。直流磁場の方向Aが自発磁化の方向、すなわち、磁化容易軸の方向x1と一致した場合に内部エネルギーは極小となり、直流磁場の方向Aと磁化困難軸x2の方向と一致した場合に内部エネルギーは極大となる。 When a DC magnetic field is applied to such a ferromagnetic crystal, the magnetization direction of the crystal becomes a direction obtained by combining the direction A of the external magnetic field (DC magnetic field) and the direction of spontaneous magnetization, and the internal energy of the crystal changes. When the direction A of the direct current magnetic field coincides with the direction of spontaneous magnetization, that is, the direction x1 of the easy axis, the internal energy becomes minimum, and when the direction A of the direct current magnetic field coincides with the direction of the hard axis x2, the internal energy becomes It becomes maximum.
次に、このような強磁性体結晶に直流磁場Aとこの直流磁場に直交する成分Bを持つ交流磁場とを印加すると、結晶が受ける外部磁場の方向は、直流磁場の方向Aと交流磁場の方向とのベクトル和となり、交流磁場により揺動する。その際、結晶の磁化の安定度(内部エネルギー)は、結晶方位と直流磁場の方向との関係により変化する。直流磁場の方向Xが磁化容易軸の方向x1と一致した場合に内部エネルギーは極小となり、結晶の磁化の安定度が高くなる。一方、直流磁場の方向Aと磁化困難軸の方向x2とが一致した場合に内部エネルギーは極大となり、結晶の磁化の安定度が低くなる。そこで、本実施の形態では、この外部磁場の変化による結晶の磁化の安定度を電気信号として検出して、これに基づいて結晶方位を算出する。 Next, when a DC magnetic field A and an AC magnetic field having a component B orthogonal to the DC magnetic field are applied to such a ferromagnetic crystal, the direction of the external magnetic field received by the crystal is the direction of the DC magnetic field A and the AC magnetic field. It becomes a vector sum with the direction and fluctuates by an alternating magnetic field. At that time, the stability (internal energy) of the magnetization of the crystal changes depending on the relationship between the crystal orientation and the direction of the DC magnetic field. When the direction X of the DC magnetic field coincides with the direction x1 of the easy axis, the internal energy becomes minimum, and the stability of the magnetization of the crystal is increased. On the other hand, when the direction A of the direct current magnetic field coincides with the direction x2 of the hard axis, the internal energy becomes maximum, and the stability of magnetization of the crystal is lowered. Therefore, in the present embodiment, the stability of the magnetization of the crystal due to the change in the external magnetic field is detected as an electric signal, and the crystal orientation is calculated based on this.
以下、図3のフローチャートを参照して、結晶方位測定装置1による結晶方位測定処理手順について説明する。図3のフローチャートは、例えば、操作者により結晶方位測定の指示入力があったタイミングで開始となり、結晶方位測定処理はステップS1の処理に進む。 Hereinafter, the crystal orientation measurement processing procedure by the crystal orientation measuring apparatus 1 will be described with reference to the flowchart of FIG. The flowchart in FIG. 3 starts, for example, at a timing when an instruction input for crystal orientation measurement is input by the operator, and the crystal orientation measurement processing proceeds to processing in step S1.
ステップS1の処理では、制御装置4が、交流磁化装置2および直流電磁石3に電流を通電し、鋼板5に直流磁場と交流磁場とを同時に印加する。この際に印加される交流磁場は、直流磁場に直交する成分を含む。これにより、ステップS1の処理は完了し、結晶方位測定処理は、ステップS2の処理に進む。
In the process of step S <b> 1, the
ステップS2の処理では、制御装置4が、検出用コイル23の出力信号を取得してメモリに記憶する。このとき、制御装置4は、図4に示すように、鋼板5を交流磁化装置2および直流電磁石3に対して近接させながら矢印C方向に回転させ、所定の角度ごとに取得した出力信号を測定値として記憶する。制御装置4は、出力信号の実効値処理または振幅の算出処理を行なって測定値とする。なお、この出力信号は、外部磁場および自発磁化による鋼板5の内部エネルギーの大きさに比例する。これにより、ステップS2の処理は完了し、結晶方位測定処理は、ステップS3の処理に進む。なお、ステップS2の処理で、鋼板5を固定して、交流磁化装置2および直流電磁石3を回転させてもよい。
In the process of step S2, the
ステップS3の処理では、制御装置4が、メモリに記憶した測定値が極大になる角度の情報を取得する。これにより、ステップS3の処理は完了し、結晶方位測定処理は、ステップS4の処理に進む。
In the process of step S3, the
図5は、本実施の形態により取得された鋼板5の交流磁化装置2および直流電磁石3に対する回転角度ごとの出力信号の測定値を示す。鋼板5の圧延方向と直流磁場の方向Aが一致している場合を0°としている。ここで、鋼板5は、製造プロセスにおける成分調整や再結晶処理などにより、圧延方向と磁化容易軸方向とがほぼ一致するように製造される。したがって、磁化容易軸の方向はほぼ0°である。図5に示すように、磁化容易軸の方向で測定値が極小となる。また、測定値が極大となる角度が磁化困難軸の方向である。
FIG. 5 shows measured values of output signals for each rotation angle with respect to the
ステップS4の処理では、制御装置4が、ステップS3で取得した測定値が極大となる角度に基づいて、磁化困難軸の方向と磁化容易軸の方向を算出する。上記のように、測定値が極大となる角度が磁化困難軸の方向である。また、磁化困難軸の方向から、この磁化困難軸と54.7°の角度をなす磁化容易軸の方向が算出できる。これにより、ステップS4の処理は完了し、一連の結晶方位測定処理は終了する。
In the process of step S4, the
なお、図5において測定値が極小となる角度を特定できれば、これを磁化容易軸の方向としてもよい。また、特定した磁化容易軸の方向から54.7°の方向を磁化困難軸の方向としてもよい。 If the angle at which the measured value is minimized in FIG. 5 can be specified, this may be used as the direction of the easy magnetization axis. Further, the direction of 54.7 ° from the direction of the specified easy axis of magnetization may be the direction of the hard axis of magnetization.
本実施の形態の結晶方位測定処理の計測の自由度は鋼板5の平面上に限定され、測定される結晶方位は磁化容易軸または磁化困難軸の鋼板の平面への射影となる。しかしながら、鋼板の垂直方向の結晶方位は製造プロセスで決定され、大きく変化することはまれであるため、鋼板の平面への射影で足りる。
The degree of freedom of measurement in the crystal orientation measurement process of the present embodiment is limited to the plane of the
以上、説明したように、本実施の形態の結晶方位測定装置1によれば、直流磁場と交流磁場を同時に印加するだけで、製造中の方向性電磁鋼板の粗大な結晶粒の結晶方位を簡易かつ短時間に測定できる。 As described above, according to the crystal orientation measuring apparatus 1 of the present embodiment, the crystal orientation of coarse crystal grains of the grain-oriented electrical steel sheet being manufactured can be simplified simply by simultaneously applying a DC magnetic field and an AC magnetic field. And it can be measured in a short time.
また、上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様等に応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。 Further, the above embodiment is merely an example for carrying out the present invention, and the present invention is not limited to these, and various modifications according to specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the present invention.
(実施例)
本実施例において、方向性電磁鋼板の二次再結晶粒の結晶方位を測定した。この測定対象の方向性電磁鋼板は、結晶の直径が数mm〜2cm程度の多結晶構造をなし、板厚は0.3mm程度である。交流磁化装置2は、個々の結晶粒の結晶方位が測定できるように、長手方向に5mm,幅方向に10mmのものを使用した。交流磁化装置2の励磁用コイル22の励磁周波数は、100〜10kHzとした。この励磁周波数は、励磁用コイル22のインピーダンスや測定対象の板厚により適宜変更する。
(Example)
In this example, the crystal orientation of the secondary recrystallized grains of the grain-oriented electrical steel sheet was measured. The grain-oriented electrical steel sheet to be measured has a polycrystalline structure with a crystal diameter of about several mm to 2 cm, and the plate thickness is about 0.3 mm. The
なお、直流電磁石3の励磁強度が強すぎると、交流磁場による揺動が相対的に小さくなり、磁化困難軸と磁化容易軸との出力差が低下する。一方、直流電磁石3の励磁強度が弱すぎると、角度の変化に対して挙動が不安定になる。そこで、交流磁化装置2の励磁用コイル22の励磁強度や交流磁化装置2と直流電磁石3との励磁強度比は、測定対象に応じて実験により最適値を設定する。
If the excitation intensity of the
図6は、測定対象の方向性電磁鋼板の7種の結晶粒について圧延方向を0°として測定した結果を示す。図6に示すように、全体として磁化困難軸の方向([111]方向)である54.7°の付近で極大となっているが、個々の結晶粒では極大となる角度が異なっており、個々の結晶粒の結晶方位が微妙にずれていることがわかる。このずれは製造プロセスに起因するものと考えられる。 FIG. 6 shows the results of measuring the seven crystal grains of the grain-oriented electrical steel sheet to be measured with the rolling direction set to 0 °. As shown in FIG. 6, the maximum is in the vicinity of 54.7 ° which is the direction of the hard axis ([111] direction) as a whole, but the maximum angle is different for each crystal grain. It can be seen that the crystal orientations of the individual crystal grains are slightly shifted. This shift is considered to be caused by the manufacturing process.
図7は、本実施の形態の結晶方位測定方法をEBSD法と比較した結果を示す。測定対象の方向性電磁鋼板の結晶粒について、それぞれの方法で圧延方向と磁化容易軸の方向([100]方向)とがなす角度を算出して対比させたものである。図7に示すように、2つの方法による結果のずれは2°以内であり、本実施の形態の結晶方位測定方法が有効であることがわかる。 FIG. 7 shows the result of comparing the crystal orientation measurement method of the present embodiment with the EBSD method. With respect to the crystal grains of the grain-oriented electrical steel sheet to be measured, the angle formed by the rolling direction and the direction of the easy axis ([100] direction) is calculated and compared by each method. As shown in FIG. 7, the difference between the results of the two methods is within 2 °, which indicates that the crystal orientation measurement method of the present embodiment is effective.
1 結晶方位測定装置
2 交流磁化装置
21 コア
22 励磁用コイル
23 検出用コイル
3 直流電磁石
4 制御装置
5 鋼板
DESCRIPTION OF SYMBOLS 1 Crystal
Claims (4)
前記出力信号の測定値に基づいて鋼板の結晶方位を算出するステップと、
を含むことを特徴とする結晶方位測定方法。 Applying a direct-current magnetic field and an alternating-current magnetic field containing a component orthogonal to the direct-current magnetic field to the steel sheet at the same time, and measuring an output signal proportional to the magnitude of the internal energy of the steel sheet;
Calculating the crystal orientation of the steel sheet based on the measured value of the output signal;
A crystal orientation measuring method comprising:
前記回転角度ごとの出力に基づいて、特定の結晶方位を算出するステップと、
を含むことを特徴とする請求項1に記載の結晶方位測定方法。 Storing an output signal for each rotation angle by rotating the steel sheet relative to the direction of the DC magnetic field;
Calculating a specific crystal orientation based on the output for each rotation angle;
The crystal orientation measuring method according to claim 1, comprising:
前記出力信号の測定値に基づいて鋼板の結晶方位を算出する手段と、
を備えることを特徴とする結晶方位測定装置。 Means for simultaneously applying a DC magnetic field and an AC magnetic field containing a component orthogonal to the DC magnetic field to the steel sheet to measure an output signal proportional to the magnitude of the internal energy of the steel sheet;
Means for calculating the crystal orientation of the steel sheet based on the measured value of the output signal;
A crystal orientation measuring apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050344A JP2013185902A (en) | 2012-03-07 | 2012-03-07 | Method and device for measuring crystal orientation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050344A JP2013185902A (en) | 2012-03-07 | 2012-03-07 | Method and device for measuring crystal orientation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013185902A true JP2013185902A (en) | 2013-09-19 |
Family
ID=49387460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012050344A Pending JP2013185902A (en) | 2012-03-07 | 2012-03-07 | Method and device for measuring crystal orientation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013185902A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190075211A (en) | 2017-12-21 | 2019-07-01 | 주식회사 포스코 | Measuring apparatus of crystal grain boundary |
JP2021106227A (en) * | 2019-12-26 | 2021-07-26 | Tdk株式会社 | Orientation detection device and orientation detection method for unmagnetized magnet |
JP2021124425A (en) * | 2020-02-06 | 2021-08-30 | Tdk株式会社 | Orientation detection device of unmagnetized magnet and orientation detection method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5546143A (en) * | 1978-09-28 | 1980-03-31 | Ono Sokki Co Ltd | Measuring method of magnetism anisotropy pattern |
JPH06265525A (en) * | 1993-03-15 | 1994-09-22 | Kobe Steel Ltd | Apparatus for measuring particle size of crystal of steel plate |
JPH09304346A (en) * | 1996-05-17 | 1997-11-28 | Nippon Steel Corp | Magnetic head device |
WO2010024454A1 (en) * | 2008-08-27 | 2010-03-04 | Jfeスチール株式会社 | Magnetic measuring method and device |
-
2012
- 2012-03-07 JP JP2012050344A patent/JP2013185902A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5546143A (en) * | 1978-09-28 | 1980-03-31 | Ono Sokki Co Ltd | Measuring method of magnetism anisotropy pattern |
JPH06265525A (en) * | 1993-03-15 | 1994-09-22 | Kobe Steel Ltd | Apparatus for measuring particle size of crystal of steel plate |
JPH09304346A (en) * | 1996-05-17 | 1997-11-28 | Nippon Steel Corp | Magnetic head device |
WO2010024454A1 (en) * | 2008-08-27 | 2010-03-04 | Jfeスチール株式会社 | Magnetic measuring method and device |
JP2010054254A (en) * | 2008-08-27 | 2010-03-11 | Jfe Steel Corp | Magnetic measuring method and device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190075211A (en) | 2017-12-21 | 2019-07-01 | 주식회사 포스코 | Measuring apparatus of crystal grain boundary |
JP2021106227A (en) * | 2019-12-26 | 2021-07-26 | Tdk株式会社 | Orientation detection device and orientation detection method for unmagnetized magnet |
JP2021124425A (en) * | 2020-02-06 | 2021-08-30 | Tdk株式会社 | Orientation detection device of unmagnetized magnet and orientation detection method thereof |
JP7502867B2 (en) | 2020-02-06 | 2024-06-19 | Tdk株式会社 | Apparatus and method for detecting orientation of unmagnetized magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5262436B2 (en) | Magnetic measurement method and apparatus | |
CN109521083B (en) | Electromagnetic and acoustic composite nondestructive testing device, system and method | |
RU2593677C2 (en) | Electromagnetic sensor and calibration thereof | |
JP4512079B2 (en) | Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet | |
JP6562055B2 (en) | Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet | |
JP2009204342A (en) | Eddy current type sample measurement method and eddy current sensor | |
Yamagashira et al. | Vector magnetic properties and 2-D magnetostriction of various electrical steel sheets under rotating flux condition | |
JP2013185902A (en) | Method and device for measuring crystal orientation | |
US10254181B2 (en) | Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation | |
US8316726B2 (en) | Biaxial stress management | |
CN109521082B (en) | Magneto-acoustic composite nondestructive testing device, magneto-acoustic composite nondestructive testing system and magneto-acoustic composite nondestructive testing method | |
Bavendiek et al. | Magnetic anisotropy under arbitrary excitation in finite element models | |
Lahyaoui et al. | Effect of mechanical stress on magnetization and magnetostriction strain behavior of non-oriented Si-Fe steels at different directions and under pseudo-DC conditions | |
Lee et al. | Examination of magnetic properties of nonoriented electrical steels using ring-type specimens | |
JP2002372519A (en) | Non-destructive measuring method of secular deterioration associated with change in brittleness of ferromagnetic structure material | |
JP2012184931A (en) | Method of measuring fraction of structure in steel plate | |
Yue et al. | Measurement and analysis of the non-symmetry of transverse magnetisation and resulting loss in grain-oriented steel using a modified RSST | |
Cardelli et al. | Towards online evaluation of Goss-texture in grain-oriented ferromagnetic sheets | |
JP6822222B2 (en) | Magnetic property measuring instrument, magnetic property measuring system, and magnetic property measuring method | |
JP4073472B1 (en) | Method and apparatus for evaluating chilled structure of cast parts | |
Takahashi et al. | Development of the 2-D single-sheet tester using diagonal exciting coil and the measurement of magnetic properties of grain-oriented electrical steel sheet | |
Gorkunov et al. | Effect of the Crystallographic Texture Type on the Anisotropy of the Magnetic Leakage Field Parameters of Steel Sheets | |
TWI515446B (en) | System and method for measuring magnetic properties | |
JP2019211292A (en) | Device for evaluating surface stress and/or hardness of magnetic substance | |
JPH01269049A (en) | Method of inspecting deterioration of metallic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161122 |