JP4503749B2 - AC elevator power supply - Google Patents

AC elevator power supply Download PDF

Info

Publication number
JP4503749B2
JP4503749B2 JP35361099A JP35361099A JP4503749B2 JP 4503749 B2 JP4503749 B2 JP 4503749B2 JP 35361099 A JP35361099 A JP 35361099A JP 35361099 A JP35361099 A JP 35361099A JP 4503749 B2 JP4503749 B2 JP 4503749B2
Authority
JP
Japan
Prior art keywords
battery
charge
elevator
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35361099A
Other languages
Japanese (ja)
Other versions
JP2001163534A5 (en
JP2001163534A (en
Inventor
隆夫 岡田
義知 吉野
一洋 塩出
和則 長谷川
新一 村上
茂 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Fujitec Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP35361099A priority Critical patent/JP4503749B2/en
Application filed by Furukawa Battery Co Ltd, Fujitec Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to AU14130/01A priority patent/AU1413001A/en
Priority to US10/129,131 priority patent/US6732838B1/en
Priority to PCT/JP2000/008061 priority patent/WO2001037396A1/en
Priority to CA002391616A priority patent/CA2391616C/en
Priority to EP00976270A priority patent/EP1235323A4/en
Priority to KR1020027006280A priority patent/KR100738167B1/en
Priority to CN008184755A priority patent/CN100407545C/en
Priority to TW089124232A priority patent/TWI241978B/en
Publication of JP2001163534A publication Critical patent/JP2001163534A/en
Priority to HK03100995.2A priority patent/HK1048895A1/en
Publication of JP2001163534A5 publication Critical patent/JP2001163534A5/ja
Application granted granted Critical
Publication of JP4503749B2 publication Critical patent/JP4503749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Elevator Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流エレベータの電源装置の改良に関するものである。
【0002】
【従来の技術】
近年、パワーエレクトロニクス素子及びそれを制御する技術の進歩により、インバータを用いて誘導電動機に可変電圧・可変周波数の交流電力を供給して速度制御を行い、エレベータかごを運転させるものが採用されている。
【0003】
即ち、図2に示すように、商用電源1からコンバータ2及びインバータ3を通じて誘導電動機IMに電流が供給されるが、この電流は理想的な速度指令4とパルス発生器PGからの実際のエレベータかご5の速度との突き合わせによる速度調節器6を介して可変周波数電流指令演算部7からの指令により、正弦波PWM制御装置8を介してインバータ3が操作されて、エレベータかご5が適当に速度制御されるものである。ここで、9は釣合い重りである。
【0004】
ところで、誘導電動機IMにより運転されるエレベータの場合は、エレベータかご5に定員いっぱい乗客が乗っている時や、誰も乗っておらず乗場呼びに応じて空かごとして運転される時など、その都度負荷が大幅に変動するが、特に下げ荷運転の場合には電力を回生しなければならず、通常抵抗Rによって熱として消費しているのが一般的で、電力の無駄づかいが多かった。又、当然負荷の大きな場合でも不都合なことが生じないように、予め電源容量に余裕を見て設計するのが普通である。
したがって、電源回線なども太い電線を使用したりしなければならなかった。
【0005】
このため、最近になって出願人は次に述べるような回生電力を無駄にしない効率の良い電源装置について提案をしている。
【0006】
即ち、図3はこの電源装置の回路図、図4は図3に示す回路の制御ブロック線図である。
【0007】
図中、図2と同一符号のものは同一のものを示すが、10は電源回路で、Tr1とTr2はトランジスタ、D1,D2はダイオード、Eは例えばニッケル水素畜電池のようなバッテリーで、このバッテリーEは例えば単電池8個を直列に接続したものを1郡電池(1ユニット)として、エレベータの容量に応じて所定の郡電池数を適宜決定する。QはバッテリーEの充電量を検出する容量計、Lは昇圧用のコイル、RTは電流検出器、11は停電時などの非常時にバッテリーEから、マイコン等の制御電源としても利用する非常電源、12は万一この電源回路10が故障した場合に切り離すための非常接点である。
【0008】
この電源回路10は図4に示すように、インバータ3の入力電圧Vabの定電圧制御を行うもので、一定の電圧指令に対し、インバータ3の入力電圧Vabを負帰還させて突き合わせ制御を行う。
この偏差信号eが伝達関数G1及びリミッター回路20を介して電流指令を作り出し、電流検出器RTからの電流帰還と突き合わせ、伝達関数G2を通じて比較器21に入力させる。
【0009】
この比較器21では、例えば三角波発生器22からの三角波αと伝達関数G2からの出力信号を比較することにより、トランジスタTr1,Tr2の制御信号βを作り出している。トランジスタTr2の前段には否定素子23を接続しているので、トランジスタTr1とTr2が同時にONすることはない。
【0010】
今仮に、商用電源1が200Vとすると、コンバータ2を経た電圧は通常280V程度になるが、ここで、図4の電圧指令を350V程度に設定すれば、電源回路10の制御系はインバータ3の入力電圧Vabを350Vに維持しようと電圧制御される。
【0011】
即ち、入力電圧Vabが350Vの場合は、偏差信号eはゼロであり、リミッター回路20を通じた電流指令iもゼロとなり、比較器21の出力は図5に示す波形となる。
【0012】
つまり、トランジスタTr1とTr2を同じ時間交互にON状態に導く制御信号βを比較器21は出力するので、バッテリーEは充電と放電を同じ時間づつ交互に繰り返して、インバータ3の入力電圧Vabを350Vに維持しようとする。
【0013】
そして、万一入力電圧Vabが350Vよりも低くなれば、比較器21の出力は図6(a)に示す状態になり、トランジスタTr1をON状態にする時間が短く、トランジスタTr2をON状態にする時間が長くなり、結局バッテリーEからの放電を優先させることになる。
【0014】
一方、入力電圧Vabが350Vよりも高くなれば、今度は比較器21の出力は図6(b)に示す状態になり、トランジスタTr2をON状態にする時間が短く、トランジスタTr1をON状態にする時間が長くなり、結局バッテリーEへの充電を優先させて、指令電圧を維持しようと電圧制御される。
【0015】
因みに、バッテリーEを放電させる場合の通常のルートはバッテリーE、電流検出器RT、コイルL、トランジスタTr2、バッテリーEであり、一方バッテリーEを充電させる場合の通常のルートは端子a、接点12、トランジスタTr1、コイルL、電流検出器RT、バッテリーE、端子bである。そして、各トランジスタTr1,Tr2のOFF時にはダイオードD2或いはD1を通じてコイルLによるバッテリーEの充電・放電電流が瞬間的に流れる。
【0016】
ここで、容量計Qによって検出されるバッテリーEの充電状態が例えば30%以下の場合には、リミッター回路20の放電側のリミッター値をゼロにして、制御系としては充電のみを行わせ、またバッテリーEの充電状態が例えば80%以上の場合には、リミッター回路20の充電側のリミッター値をゼロにして、放電のみを行わせるようにすれば、過充電や完全放電を防ぐことでバッテリーの寿命を延ばすことが可能である。
【0017】
エレベータ停止時に商用電源からバッテリーに充電を行うことで、容量計Qによって検出される充電状態を例えば60%程度になるようにすれば、バッテリーの充電状態を最良な状態に維持させることができる。(万一60%を超える状態であれば、非常電源11のようにバッテリーから交流電源を作り、制御電源として使用すれば良い。)
因みに、最良な状態とは、次のエレベータの運転が回生運転・駆動運転の何れであってもバッテリーの充電・放電が自由に行える状態を意味する。
【0018】
そして、万一インバータ3の入力電圧Vabが高くなりすぎた場合は、トランジスタTr3をONさせて、抵抗Rで回生電力を消費させるようにする。
【0019】
このリミッター回路20のリミッター値の操作は、前述のバッテリーEの充電状態だけでなく、エレベータの運転状態に応じて変化させる事も可能である。
平日や休日、或いは時間帯によってバッテリーEの充電量における適量を変化させても良い。即ち、例えばオフィスビルの出勤時などの力行運転の連続が予想される場合には、バッテリーEの充電量を多目にして、補助電源としての利用を優先し、逆にお昼のような回生運転の連続が予想される場合は、バッテリーEの充電量を低目に抑えて回生動作を優先させる。そして、通常時は力行・回生がほぼ交互に行われるので、バッテリーEの充電量を60%程度に設定する。
【0020】
【発明が解決しようとする課題】
しかし、このバッテリーEが複数の単電池からなる場合、バッテリーEへの充放電を頻繁に繰り返すと、単電池ごと或いは郡電池ごとの端子電圧がバラツイてくるため、単電池ごと或いは各郡電池ごとの充電量を適正に保つことができなくなってくる問題があった。
【0021】
本発明は、上記の点に鑑みなされたもので、複数の単電池からなるバッテリーの各電池の充電量にバラツキが生じた場合でも適宜適正に補正できる装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、商用電源と、商用電源からの電力により動作して交流の電力を発生するインバータと、該インバータが発生する交流の電力によって駆動される電動機と、充電/放電が可能なバッテリーと、該バッテリーに充電と放電を行なわしめるための充電/放電回路と、該充電回路を閉路するための充電制御素子と、前記放電回路を閉路するための放電制御素子と、前記充電制御素子と前記放電制御素子のオン/オフで前記充電/放電回路の動作を制御することにより、商用電源の全波整流電圧より高い一定の電圧に相当する値の電圧指令を目標値として前記インバータへの入力電力を制御する制御回路とを備え、該制御回路は前記充電制御素子と前記放電制御素子を交互にオン/オフすることで、前記電動機からの回生電力によって前記バッテリーを充電すると共に、該バッテリーの発生電力を前記インバータに供給する交流エレベータにおいて、前記バッテリーへの充電或いは放電を指示する働きを持つリミッターを有する電流指令回路を備え、
1.前記バッテリーは、複数の単電池の組み合わせからなり、所定の条件下では前記バッテリーの放電を阻止する手段を備える。
2.前記バッテリーは、複数の単電池の組み合わせからなり、所定の条件下では前記バッテリーの充電を阻止する手段を備える。
ものである。
【0023】
【発明の実施の形態】
本発明は、所定の条件下であれば、敢えてバッテリーの充電モード或いは放電モードの運転を選択するものである。
【0024】
【実施例】
以下、本発明の一実施例について、図面を用いて説明する。
図1は本発明の一実施例を示す電源装置の回路図、図7は図1に示す回路の制御ブロック線図であり、図中図2及び図4と同一符号のものは同一のものを示すが、20′は放電側のリミッター値(制限値)をゼロに設定した充電モードを指令するリミッター、20"は充電側のリミッター値をゼロに設定した放電モードを指令するリミッターである。
【0025】
E'は本発明に係るバッテリーで例えば単電池Bが8個直列に接続されたものが1ユニット(郡電池)とし、これが複数組み直列に配置されてバッテリーE'が構成されている。31乃至31nは各郡電池の端子電圧V1乃至Vnをそれぞれ検出する絶縁増幅器、32は絶縁増幅器31乃至31nの出力をディジタル信号に変換するA/Dコンバータ、33は周知のマイクロコンピュータでA/D変換された電圧V1乃至Vnをそれぞれモニターし、これらの電圧値(例えば通常9.6v程度)にバラツキ(例えば0.4v程度の差)が生じれば、図4に示すリミッター20に信号を送り、例えば図7(a)に示すような電流リミッター20'に設定する。
【0026】
この場合は、放電側のリミッター値をゼロにして、充電のみを行う充電モード運転を選択することになる。(当然ながら、充電側のリミッター値をゼロにするリミッター20"を設定した放電モードの運転を選択しても良い)
【0027】
この結果、バッテリーE'を構成する単電池Bの各端子電圧が十分に高くなるまで(例えば電池内部でガス発生が始まる電圧となるまで)、各単電池B全ての充電が徹底的に行われる。
【0028】
この時、容量計Qが設置されている場合、この容量計Qのプリセットも同時に行えば、容量計Qの検出誤差の累積も解消させることができる。
【0029】
尚、以上の説明では、バッテリーE'への充電モードの運転の一例について述べたが、これは逆に放電モードの運転をさせるようにすることも可能である。
即ち、各単電池B或いは各郡電池の端子電圧が十分低くなるまで(例えば単電池Bの定格電圧の約1/3以下になるまで)、充電側のリミッター値をゼロに設定してリミッター20"のようにし、エレベータの運転を続け、各単電池B全ての放電を完全に行って電池の充電量のバラツキを解消させ、同時に容量計Qをリセットさせて容量計Qの誤差を解消させる方法も考えられる。
【0030】
【発明の効果】
以上述べたように本発明によれば、新しい電源装置により、エレベータの通常の運転を行いながら適宜回生電力を吸収するとともに、駆動電力を補う装置において、バッテリーを構成する単電池或いは各郡電池の充電量にバラツキが生じても、適宜自動的に充電量を揃えることができ、この新しい電源装置の効果をいかんなく発揮させることができる。また、容量計を利用している場合には、この容量計の検出誤差を解消させることもできる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す電源装置の回路図である。
【図2】従来の交流エレベータの制御装置の一例を示す概略図である。
【図3】新しい電源装置の回路図である。
【図4】図3に示す回路の制御ブロック線図である。
【図5】図4の各部の信号を示す図である。
【図6】図4の各部の信号を示す図である。
【図7】本発明の一実施例を示す電源装置の制御ブロック線図である。
【符号の説明】
1 商用電源
3 インバータ
10 電源装置
E,E′ バッテリー
B 単電池
Q 容量計
Tr1,Tr2 トランジスタ
20、20′、20″ リミッター回路
21 比較器
1 三角波発生器
31、31n 絶縁増幅器
32 A/Dコンバータ
1 マイクロコンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a power supply device for an AC elevator.
[0002]
[Prior art]
2. Description of the Related Art In recent years, power electronics elements and technologies for controlling them have been used to control the speed of inverter motors by supplying variable voltage / variable frequency AC power to induction motors to drive elevator cars. .
[0003]
That is, as shown in FIG. 2, a current is supplied from the commercial power source 1 to the induction motor IM through the converter 2 and the inverter 3, and this current is the ideal speed command 4 and the actual elevator car from the pulse generator PG. In response to a command from the variable frequency current command calculation unit 7 through the speed regulator 6 by matching with the speed 5, the inverter 3 is operated through the sine wave PWM control device 8, and the elevator car 5 is appropriately speed controlled. It is what is done. Here, 9 is a counterweight.
[0004]
By the way, in the case of an elevator driven by the induction motor IM, each time, for example, when there are full passengers in the elevator car 5, or when no one is on board and the car is driven as an empty car according to the hall call, etc. Although the load fluctuates greatly, the power must be regenerated especially in the case of a down load operation, and is usually consumed as heat by the resistance R, and the power is often wasted. Of course, it is usual to design the power supply capacity in advance so that no inconvenience occurs even when the load is large.
Therefore, it was necessary to use a thick electric wire for the power line.
[0005]
For this reason, the applicant has recently proposed an efficient power supply apparatus that does not waste regenerative power as described below.
[0006]
3 is a circuit diagram of the power supply apparatus, and FIG. 4 is a control block diagram of the circuit shown in FIG.
[0007]
In the figure, the same reference numerals as those in FIG. 2 denote the same components, but 10 is a power supply circuit, Tr1 and Tr2 are transistors, D1 and D2 are diodes, and E is a battery such as a nickel metal hydride battery. As the battery E, for example, one unit battery (one unit) obtained by connecting eight unit cells in series is appropriately determined according to the capacity of the elevator. Q is a capacity meter that detects the amount of charge of the battery E, L is a boosting coil, RT is a current detector, 11 is an emergency power source that is also used as a control power source for a microcomputer, etc. from the battery E in an emergency such as a power failure, Reference numeral 12 denotes an emergency contact for disconnection in the event that the power supply circuit 10 fails.
[0008]
As shown in FIG. 4, the power supply circuit 10 performs constant voltage control of the input voltage Vab of the inverter 3, and performs matching control by negatively feeding back the input voltage Vab of the inverter 3 to a constant voltage command.
The deviation signal e creates a current command via the transfer function G1 and the limiter circuit 20, matches the current command from the current detector RT, and inputs it to the comparator 21 through the transfer function G2.
[0009]
In the comparator 21, for example, the control signal β of the transistors Tr1 and Tr2 is generated by comparing the triangular wave α from the triangular wave generator 22 with the output signal from the transfer function G2. Since the negative element 23 is connected to the previous stage of the transistor Tr2, the transistors Tr1 and Tr2 are not simultaneously turned on.
[0010]
If the commercial power source 1 is 200V, the voltage passed through the converter 2 is normally about 280V. Here, if the voltage command of FIG. The voltage is controlled to maintain the input voltage Vab at 350V.
[0011]
That is, when the input voltage Vab is 350 V, the deviation signal e is zero, the current command i through the limiter circuit 20 is also zero, and the output of the comparator 21 has the waveform shown in FIG.
[0012]
That is, since the comparator 21 outputs a control signal β that alternately turns the transistors Tr1 and Tr2 into the ON state for the same time, the battery E alternately repeats charging and discharging at the same time, and the input voltage Vab of the inverter 3 is set to 350V. Try to keep on.
[0013]
If the input voltage Vab becomes lower than 350 V, the output of the comparator 21 is in the state shown in FIG. 6A, the time for turning on the transistor Tr1 is short, and the transistor Tr2 is turned on. The time becomes longer, and eventually discharge from the battery E is prioritized.
[0014]
On the other hand, if the input voltage Vab is higher than 350 V, the output of the comparator 21 will be in the state shown in FIG. 6B, the time for turning on the transistor Tr2 is short, and the transistor Tr1 is turned on. The time is long, and voltage control is performed to maintain the command voltage by giving priority to the charging of the battery E.
[0015]
Incidentally, the normal route for discharging the battery E is the battery E, the current detector RT, the coil L, the transistor Tr2, and the battery E. On the other hand, the normal route for charging the battery E is the terminal a, the contact 12, The transistor Tr1, the coil L, the current detector RT, the battery E, and the terminal b. When the transistors Tr1 and Tr2 are OFF, the charging / discharging current of the battery E by the coil L flows instantaneously through the diode D2 or D1.
[0016]
Here, when the charging state of the battery E detected by the capacity meter Q is, for example, 30% or less, the limiter value on the discharge side of the limiter circuit 20 is set to zero, and the control system performs only charging. For example, when the charge state of the battery E is 80% or more, the limiter value on the charge side of the limiter circuit 20 is set to zero so that only discharge is performed, thereby preventing overcharge and complete discharge. It is possible to extend the life.
[0017]
By charging the battery from the commercial power source when the elevator is stopped, the state of charge of the battery can be maintained at the optimum state by setting the state of charge detected by the capacity meter Q to, for example, about 60%. (If it exceeds 60%, an AC power source may be made from a battery like the emergency power source 11 and used as a control power source.)
Incidentally, the best state means a state where the battery can be freely charged / discharged regardless of whether the next elevator operation is a regenerative operation or a driving operation.
[0018]
If the input voltage Vab of the inverter 3 becomes too high, the transistor Tr3 is turned on and the regenerative power is consumed by the resistor R.
[0019]
The operation of the limiter value of the limiter circuit 20 can be changed according to not only the above-described charging state of the battery E but also the operating state of the elevator.
An appropriate amount of the charge amount of the battery E may be changed according to weekdays, holidays, or time zones. That is, for example, when continuous power running is expected, such as when working in an office building, the amount of charge of the battery E is taken into account, giving priority to use as an auxiliary power source, and conversely, regenerative operation like noon. Is expected, the regenerative operation is prioritized by keeping the charge amount of the battery E low. In normal times, power running and regeneration are performed almost alternately, so the charge amount of the battery E is set to about 60%.
[0020]
[Problems to be solved by the invention]
However, when the battery E is composed of a plurality of single cells, if the charging and discharging to the battery E is repeated frequently, the terminal voltage for each single cell or each group battery varies, so each unit cell or each group battery There has been a problem that the charge amount of can not be maintained properly.
[0021]
The present invention has been made in view of the above points, and an object of the present invention is to provide an apparatus that can appropriately correct even when the amount of charge of each battery of a plurality of single cells varies.
[0022]
[Means for Solving the Problems]
The present invention includes a commercial power source, an inverter that operates with power from the commercial power source to generate AC power, an electric motor that is driven by AC power generated by the inverter, a battery that can be charged / discharged, A charge / discharge circuit for charging and discharging the battery; a charge control element for closing the charge circuit; a discharge control element for closing the discharge circuit; the charge control element and the discharge By controlling the operation of the charging / discharging circuit by turning on / off the control element, the voltage command of a value corresponding to a constant voltage higher than the full-wave rectified voltage of the commercial power supply is used as a target value to input power to the inverter. A control circuit for controlling the charge control element and the discharge control element by alternately turning on and off the charge control element and the regenerative power from the motor. Which charges Terry, in alternating elevator for supplying electric power generated in the battery to the inverter, includes a current command circuit having a limiter has a function of instructing the charge or discharge to the battery,
1. The battery includes a combination of a plurality of single cells, and includes means for preventing discharge of the battery under predetermined conditions.
2. The battery includes a combination of a plurality of single cells, and includes means for preventing charging of the battery under a predetermined condition.
Is.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention dares to select the battery charging mode or discharging mode operation under a predetermined condition.
[0024]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a power supply device showing an embodiment of the present invention, FIG. 7 is a control block diagram of the circuit shown in FIG. 1, and the same reference numerals in FIG. 2 and FIG. As shown, 20 'is a limiter for instructing a charging mode in which the discharge-side limiter value (limit value) is set to zero, and 20 "is a limiter for instructing a discharging mode in which the charging-side limiter value is set to zero.
[0025]
E ′ is a battery according to the present invention in which, for example, eight unit cells B are connected in series to form one unit (group battery), and a plurality of such units are arranged in series to form battery E ′. 31 to 31n are insulation amplifiers for detecting the terminal voltages V1 to Vn of the group batteries, 32 is an A / D converter for converting the outputs of the insulation amplifiers 31 to 31n into digital signals, and 33 is a known microcomputer. Each of the converted voltages V1 to Vn is monitored, and if a variation (for example, a difference of about 0.4 v) occurs in these voltage values (for example, about 9.6 v), a signal is sent to the limiter 20 shown in FIG. The current limiter 20 ′ is set as shown in FIG.
[0026]
In this case, the charge mode operation in which only the charging is performed with the discharge-side limiter value set to zero is selected. (Of course, the operation in the discharge mode in which the limiter 20 "for setting the limiter value on the charging side to zero may be selected)
[0027]
As a result, until each terminal voltage of the unit cell B constituting the battery E ′ becomes sufficiently high (for example, until the voltage at which gas generation starts inside the cell), all the unit cells B are thoroughly charged. .
[0028]
At this time, if the capacity meter Q is installed, if the capacity meter Q is preset at the same time, the accumulation of detection errors of the capacity meter Q can be eliminated.
[0029]
In the above description, an example of the operation in the charging mode for the battery E ′ has been described, but it is also possible to reversely operate in the discharging mode.
That is, until the terminal voltage of each unit cell B or each group battery becomes sufficiently low (for example, until about 1/3 or less of the rated voltage of the unit cell B), the limiter value on the charging side is set to zero. "How to continue the operation of the elevator, completely discharge each single battery B to eliminate variation in the amount of charge of the battery, and simultaneously reset the capacity meter Q to eliminate the error of the capacity meter Q Is also possible.
[0030]
【The invention's effect】
As described above, according to the present invention, the regenerative power is appropriately absorbed by the new power supply device while performing normal operation of the elevator, and in the device that supplements the drive power, the unit cell or each group battery constituting the battery Even if the amount of charge varies, the amount of charge can be automatically and appropriately adjusted, and the effects of this new power supply device can be exhibited. Further, when a capacity meter is used, the detection error of the capacity meter can be eliminated.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a power supply device showing an embodiment of the present invention.
FIG. 2 is a schematic diagram showing an example of a conventional AC elevator control device.
FIG. 3 is a circuit diagram of a new power supply device.
4 is a control block diagram of the circuit shown in FIG. 3; FIG.
FIG. 5 is a diagram showing signals at various parts in FIG. 4;
6 is a diagram showing signals at various parts in FIG. 4. FIG.
FIG. 7 is a control block diagram of a power supply device showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Commercial power supply 3 Inverter 10 Power supply device E, E 'Battery B Cell B Q Capacity meter
Tr1, Tr2 Transistors 20, 20 ', 20 "Limiter circuit 21 Comparator 1 Triangular wave generator 31, 31n Insulation amplifier 32 A / D converter 1 Microcomputer

Claims (9)

商用電源と、商用電源からの電力により動作して交流の電力を発生するインバータと、該インバータが発生する交流の電力によって駆動される電動機と、充電/放電が可能なバッテリーと、該バッテリーに充電と放電を行なわしめるための充電/放電回路と、該充電回路を閉路するための充電制御素子と、前記放電回路を閉路するための放電制御素子と、前記充電制御素子と前記放電制御素子のオン/オフで前記充電/放電回路の動作を制御することにより、商用電源の全波整流電圧より高い一定の電圧に相当する値の電圧指令を目標値として前記インバータへの入力電力を制御する制御回路とを備え、該制御回路は前記充電制御素子と前記放電制御素子を交互にオン/オフすることで、前記電動機からの回生電力によって前記バッテリーを充電すると共に、該バッテリーの発生電力を前記インバータに供給する交流エレベータにおいて、前記バッテリーへの充電或いは放電を指示する働きを持つリミッターを有する電流指令回路を備え、前記バッテリーは、複数の単電池の組み合わせからなり、所定の条件下では前記バッテリーの放電を阻止する手段を備えたことを特徴とする交流エレベータの電源装置。A commercial power source, an inverter that operates with power from the commercial power source to generate AC power, an electric motor that is driven by AC power generated by the inverter, a chargeable / dischargeable battery, and a charge to the battery A charge / discharge circuit for discharging the discharge circuit, a charge control element for closing the charge circuit, a discharge control element for closing the discharge circuit, and turning on the charge control element and the discharge control element A control circuit for controlling the input power to the inverter with a voltage command of a value corresponding to a constant voltage higher than the full-wave rectified voltage of the commercial power supply as a target value by controlling the operation of the charging / discharging circuit by turning off / off And the control circuit alternately turns on and off the charge control element and the discharge control element, thereby causing the battery to be regenerated by regenerative power from the motor. In the AC elevator that supplies the generated electric power of the battery to the inverter, the AC elevator includes a current command circuit having a limiter that functions to instruct charging or discharging of the battery, and the battery includes a plurality of unit cells. A power supply apparatus for an AC elevator comprising a combination and provided with means for preventing discharge of the battery under a predetermined condition. 商用電源と、商用電源からの電力により動作して交流の電力を発生するインバータと、該インバータが発生する交流の電力によって駆動される電動機と、充電/放電が可能なバッテリーと、該バッテリーに充電と放電を行なわしめるための充電/放電回路と、該充電回路を閉路するための充電制御素子と、前記放電回路を閉路するための放電制御素子と、前記充電制御素子と前記放電制御素子のオン/オフで前記充電/放電回路の動作を制御することにより、商用電源の全波整流電圧より高い一定の電圧に相当する値の電圧指令を目標値として前記インバータへの入力電力を制御する制御回路とを備え、該制御回路は前記充電制御素子と前記放電制御素子を交互にオン/オフすることで、前記電動機からの回生電力によって前記バッテリーを充電すると共に、該バッテリーの発生電力を前記インバータに供給する交流エレベータにおいて、前記バッテリーへの充電或いは放電を指示する働きを持つリミッターを有する電流指令回路を備え、前記バッテリーは、複数の単電池の組み合わせからなり、所定の条件下では前記バッテリーの充電を阻止する手段を備えたことを特徴とする交流エレベータの電源装置。A commercial power source, an inverter that operates with power from the commercial power source to generate AC power, an electric motor that is driven by AC power generated by the inverter, a chargeable / dischargeable battery, and a charge to the battery A charge / discharge circuit for discharging the discharge circuit, a charge control element for closing the charge circuit, a discharge control element for closing the discharge circuit, and turning on the charge control element and the discharge control element A control circuit for controlling the input power to the inverter with a voltage command of a value corresponding to a constant voltage higher than the full-wave rectified voltage of the commercial power supply as a target value by controlling the operation of the charging / discharging circuit by turning off / off And the control circuit alternately turns on and off the charge control element and the discharge control element, thereby causing the battery to be regenerated by regenerative power from the motor. In the AC elevator that supplies the generated electric power of the battery to the inverter, the AC elevator includes a current command circuit having a limiter that functions to instruct charging or discharging of the battery, and the battery includes a plurality of unit cells. A power supply device for an AC elevator comprising a combination and provided with means for preventing charging of the battery under predetermined conditions. 前記バッテリーは、複数の単電池を1群電池として複数組の群電池の組み合わせからなり、エレベータの容量に応じて該群電池数を決定することを特徴とする請求項1又は請求項2に記載の交流エレベータの電源装置。3. The battery according to claim 1, wherein the battery includes a combination of a plurality of group cells, each of which includes a plurality of single cells, and determines the number of the group cells according to the capacity of the elevator. AC elevator power supply. 所定の条件下とは各単電池での充電量にバラツキが生じた時、であることを特徴とする請求項1又は請求項2に記載の交流エレベータの電源装置。3. The AC elevator power supply apparatus according to claim 1 or 2, wherein the predetermined condition is when the amount of charge in each unit cell varies. 所定の条件下とは各群電池での充電量にバラツキが生じた時、であることを特徴とする請求項3に記載の交流エレベータの電源装置。4. The AC elevator power supply apparatus according to claim 3, wherein the predetermined condition is when the amount of charge in each group battery varies. 充電量のバラツキとは、各単電池若しくは各群電池の端子電圧どうしが所定値以上相違する状態であることを特徴とする請求項4又は請求項5に記載の交流エレベータの電源装置。6. The AC elevator power supply apparatus according to claim 4, wherein the variation in the charge amount is a state in which terminal voltages of the single cells or the group batteries are different from each other by a predetermined value or more. 充電側又は放電側のリミッター値をゼロにする充電又は放電阻止手段を備えたことを特徴とする請求項1又は請求項2に記載の交流エレベータの電源装置。3. The AC elevator power supply apparatus according to claim 1, further comprising charging or discharging prevention means for setting a charging-side or discharging-side limiter value to zero. 4. 該バッテリーの充電完了時に、該バッテリーの放電阻止手段を解消することを特徴とする請求項1に記載の交流エレベータの電源装置。2. The AC elevator power supply apparatus according to claim 1, wherein when the charging of the battery is completed, the discharge prevention means of the battery is eliminated. 該バッテリーの放電完了時に、該バッテリーの充電阻止手段を解消することを特徴とする請求項2に記載の交流エレベータの電源装置。3. The AC elevator power supply apparatus according to claim 2, wherein when the battery is completely discharged, the charging prevention means for the battery is eliminated.
JP35361099A 1999-11-17 1999-12-13 AC elevator power supply Expired - Lifetime JP4503749B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP35361099A JP4503749B2 (en) 1999-12-13 1999-12-13 AC elevator power supply
CN008184755A CN100407545C (en) 1999-11-17 2000-11-15 Power supply for AC elevator
PCT/JP2000/008061 WO2001037396A1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
CA002391616A CA2391616C (en) 1999-11-17 2000-11-15 Power source device for a.c. elevator
EP00976270A EP1235323A4 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
KR1020027006280A KR100738167B1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
AU14130/01A AU1413001A (en) 1999-11-17 2000-11-15 Power supply for ac elevator
US10/129,131 US6732838B1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
TW089124232A TWI241978B (en) 1999-11-17 2000-11-16 Power source device for an ac elevator
HK03100995.2A HK1048895A1 (en) 1999-11-17 2003-02-11 Power supply for ac elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35361099A JP4503749B2 (en) 1999-12-13 1999-12-13 AC elevator power supply

Publications (3)

Publication Number Publication Date
JP2001163534A JP2001163534A (en) 2001-06-19
JP2001163534A5 JP2001163534A5 (en) 2006-02-02
JP4503749B2 true JP4503749B2 (en) 2010-07-14

Family

ID=18432018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35361099A Expired - Lifetime JP4503749B2 (en) 1999-11-17 1999-12-13 AC elevator power supply

Country Status (1)

Country Link
JP (1) JP4503749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078927A1 (en) 2008-12-19 2010-07-15 Man Diesel Diesel engine, predetermined breaking point component therefor and method for preventing damage to a diesel engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261010B2 (en) * 2000-02-28 2009-04-30 三菱電機株式会社 Elevator control device
JP2005263479A (en) * 2004-03-22 2005-09-29 Mitsubishi Electric Corp Elevator device
JP4619039B2 (en) * 2004-05-12 2011-01-26 東芝エレベータ株式会社 Elevator control device
JP4804020B2 (en) * 2005-03-24 2011-10-26 東芝エレベータ株式会社 Electric storage control device for elevator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JPH10304588A (en) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd Power source equipment
JPH11215731A (en) * 1998-01-20 1999-08-06 Sony Corp Apparatus and method for charging of lithium ion battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI81465C (en) * 1986-12-22 1990-10-10 Kone Oy Device for coupling an accumulator battery to an elevator inverter DC direct current circuit
JPH0710150B2 (en) * 1987-09-03 1995-02-01 富士電機株式会社 How to operate the current reversible tipper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JPH10304588A (en) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd Power source equipment
JPH11215731A (en) * 1998-01-20 1999-08-06 Sony Corp Apparatus and method for charging of lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078927A1 (en) 2008-12-19 2010-07-15 Man Diesel Diesel engine, predetermined breaking point component therefor and method for preventing damage to a diesel engine

Also Published As

Publication number Publication date
JP2001163534A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US6732838B1 (en) Power supply for ac elevator
US6471013B2 (en) Apparatus for controlling charging and discharging of supplemental power supply of an elevator system
KR100407630B1 (en) Controller of elevator
US6435313B2 (en) Controller for dynamically allocating regenerative power to a rechargeable power supply of an elevator
JP4452399B2 (en) AC elevator power supply
JP2001240321A (en) Control device of elevator
JP3541121B2 (en) Emergency power supply for power failure processing
EP1511152B1 (en) Uninterruptible power supply
US6002220A (en) Electric power storage air-conditioning system
JP4503749B2 (en) AC elevator power supply
JP4463912B2 (en) AC elevator power supply
JP4402409B2 (en) Elevator control device
JP4503746B2 (en) AC elevator power supply
CN112803443A (en) Power supply system, power supply control method and energy storage air conditioning equipment
JP4503750B2 (en) AC elevator power supply
JP5602473B2 (en) Elevator control device
JP5055658B2 (en) AC elevator power supply
JP2004336833A (en) Controller of electric power transformer for rolling stock
JP2778485B2 (en) Uninterruptible power system
JP2001247273A (en) Elevator operating device at service interruption
EP3640175B1 (en) Decentralized power management in an elevator system
JP3252709B2 (en) Electric curtain drive
JPH03124201A (en) Auxiliary battery charger for electric car
JP2003312952A (en) Control device for elevator
JPH05244704A (en) Auxiliary power supply for motor vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4503749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term