JP4501742B2 - Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method - Google Patents

Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method Download PDF

Info

Publication number
JP4501742B2
JP4501742B2 JP2005082814A JP2005082814A JP4501742B2 JP 4501742 B2 JP4501742 B2 JP 4501742B2 JP 2005082814 A JP2005082814 A JP 2005082814A JP 2005082814 A JP2005082814 A JP 2005082814A JP 4501742 B2 JP4501742 B2 JP 4501742B2
Authority
JP
Japan
Prior art keywords
toner
resin fine
fine particle
particle dispersion
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005082814A
Other languages
Japanese (ja)
Other versions
JP2006267301A (en
Inventor
毅 庄子
真由子 宇田
正伸 二宮
博 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2005082814A priority Critical patent/JP4501742B2/en
Publication of JP2006267301A publication Critical patent/JP2006267301A/en
Application granted granted Critical
Publication of JP4501742B2 publication Critical patent/JP4501742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真法、静電記録法等により形成される静電荷像を現像する際に用いる静電荷像現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法に関する。   The present invention relates to a toner for developing an electrostatic charge image used for developing an electrostatic charge image formed by an electrophotographic method, an electrostatic recording method, or the like, a manufacturing method thereof, an electrostatic charge image developer, and an image forming method.

電子写真法など静電荷像を経て画像情報を可視化する方法は、現在様々な分野で利用されている。電子写真法においては帯電、露光工程により感光体上に静電荷像を形成し、トナーを含む現像剤で静電荷像を現像し、転写、定着工程を経て可視化される。   A method of visualizing image information through an electrostatic charge image such as electrophotography is currently used in various fields. In electrophotography, an electrostatic image is formed on a photoreceptor by charging and exposure processes, the electrostatic image is developed with a developer containing toner, and visualized through a transfer and fixing process.

ここで用いられる現像剤には、トナーとキャリアとからなる2成分現像剤と、磁性トナーまたは非磁性トナーを単独で用いる1成分現像剤とが知られている。トナーの製造方法は、通常、熱可塑性樹脂を顔料、帯電制御剤、ワックスなどの離型剤とともに溶融混練し、冷却後、微粉砕・分級してトナーを得る混練粉砕法が用いられている。これらトナーは、必要に応じて流動性やクリーニング性を改善する目的で無機、有機の微粒子をトナー粒子表面に添加する。これらの方法はかなり優れたトナーを製造できるが、つぎのようないくつかの問題を有している。   As the developer used here, a two-component developer composed of a toner and a carrier and a one-component developer using a magnetic toner or a non-magnetic toner alone are known. As a method for producing the toner, a kneading and pulverizing method is generally used in which a thermoplastic resin is melt-kneaded together with a release agent such as a pigment, a charge control agent, and a wax, and after cooling, is finely pulverized and classified. In these toners, inorganic and organic fine particles are added to the surface of the toner particles as necessary for the purpose of improving fluidity and cleaning properties. Although these methods can produce a considerably good toner, they have several problems as follows.

通常の混練粉砕法では、トナー形状及びトナーの表面構造が不定型であり、使用材料の粉砕性や粉砕工程の条件により微妙に変化するため、トナー形状及び表面構造を制御することは困難である。また、混練粉砕法では材料選択の範囲に制約がある。具体的には、樹脂着色剤分散体が十分に脆く、通常の粉砕機で微粉砕できるものがよいが、樹脂着色剤分散体を脆くすると、現像機中で機械的せん断力などを受けてトナーから微粉が発生したり、トナー形状に変化をきたすことがある。2成分現像剤では、発生した微粉がキャリア表面に固着して現像剤の帯電性の劣化を加速し、1成分現像剤では、粒度分布の拡大によりトナー飛散を生じたり、トナー形状の変化により現像性が低下して、画質が劣化しやすくなる。   In a normal kneading and pulverizing method, the toner shape and the surface structure of the toner are indeterminate, and change slightly depending on the pulverization properties of the materials used and the conditions of the pulverization process, so it is difficult to control the toner shape and the surface structure. . In the kneading and pulverizing method, the range of material selection is limited. Specifically, the resin colorant dispersion is sufficiently brittle and can be finely pulverized by an ordinary pulverizer. However, when the resin colorant dispersion is fragile, the toner is subjected to mechanical shearing force in the developing machine. May generate fine powder or change the toner shape. In the two-component developer, the generated fine powder adheres to the carrier surface and accelerates the deterioration of the chargeability of the developer. In the one-component developer, toner scattering occurs due to the expansion of the particle size distribution, and development occurs due to a change in the toner shape. The image quality is likely to be deteriorated.

また、ワックスなどの離型剤を多量に内添したトナーは、熱可塑性樹脂との組み合せによって、トナー表面への離型剤の露出に影響を及ぼすことが多い。特に高分子量成分により弾性が増した、やや粉砕されにくい樹脂とポリエチレンのような脆いワックスとの組み合せでは、トナー表面にポリエチレンの露出が多く見られる。このトナーは定着時の離型性や感光体上からの未転写トナーのクリーニングには有利であるものの、表層のポリエチレンが機械力で容易に現像ロール、感光体、キャリアなどに移行し、これらを汚染して信頼性を低下させる。   In addition, a toner in which a large amount of a release agent such as wax is internally added often affects the exposure of the release agent to the toner surface in combination with a thermoplastic resin. In particular, in the case of a combination of a resin that has increased elasticity due to a high molecular weight component and is slightly pulverized, and a brittle wax such as polyethylene, a large amount of polyethylene is exposed on the toner surface. Although this toner is advantageous for releasability at the time of fixing and cleaning of untransferred toner from the photoreceptor, the polyethylene on the surface layer is easily transferred to the developing roll, photoreceptor, carrier, etc. by mechanical force. Contamination reduces reliability.

さらに、トナー形状が不定型になると、流動性助剤を添加してもトナーの流動性を充分に確保することができず、使用中に機械的せん断力を受けて微粉がトナー凹部に移動し、経時的に流動性が低下したり、流動性助剤がトナー内部に埋没され、現像性、転写性、クリーニング性を悪化させる。また、クリーニングにより回収されたトナーを再び現像機に戻して使用するときに、画質の低下を生じやすい。これらを防ぐために、さらに流動性助剤を増加すると、感光体上への黒点の発生や助剤粒子の飛散を生じる。   Furthermore, if the toner shape is indefinite, the fluidity of the toner cannot be sufficiently ensured even if a flow aid is added, and the fine powder moves to the toner recesses due to mechanical shearing force during use. The fluidity decreases with time, or the fluidity aid is buried in the toner, and the developability, transferability, and cleaning properties are deteriorated. In addition, when the toner collected by the cleaning is returned to the developing machine and used again, the image quality is liable to deteriorate. In order to prevent these problems, if the flow aid is further increased, black spots are generated on the photoconductor and the aid particles are scattered.

上記のように電子写真プロセスにおいては様々な機械的ストレスの下でも、トナーが安定して性能を維持するために、トナー表面への離型剤の露出を抑制したり、定着性を損なわずに表面硬度を高くするとともに、トナー自体の機械的強度の向上と、十分な帯電性・定着性を両立させることが重要である。   As described above, in the electrophotographic process, the toner remains stable even under various mechanical stresses, so that the exposure of the release agent to the toner surface is suppressed and the fixing property is not impaired. It is important to increase the surface hardness, and at the same time, improve both the mechanical strength of the toner itself and sufficient charging and fixing properties.

さらに近年、高画質化への要求が高まり、特にカラー画像形成では高精細な画像を実現するために、トナーの小径化傾向が著しい。しかし、従来の粒度分布のままで、単純に小径化すると、微粉側トナーの存在により、キャリアや感光体の汚染や、トナーの飛散が著しくなり、高画質と高信頼性を同時に実現することは難しい。これを解消するためには、トナーの粒度分布をシャープにし、かつ小粒径化を可能にすることが重要になる。   Further, in recent years, there has been a growing demand for higher image quality, and in particular in the formation of color images, there is a significant tendency to reduce the diameter of toner in order to realize high-definition images. However, if the particle size distribution is simply reduced while maintaining the conventional particle size distribution, the presence of the toner on the fine powder side causes significant contamination of the carrier and photoconductor, and toner scattering, so that high image quality and high reliability can be realized at the same time. difficult. In order to solve this problem, it is important to sharpen the particle size distribution of the toner and to make it possible to reduce the particle size.

近年デジタルフルカラー複写機やプリンターにおいては色画像原稿をB(ブルー)、R(レッド)、G(グリーン)の各フィルターで色分解した後、オリジナル原稿に対応した20〜70μmの範囲のドット径からなる潜像をY(イエロー)、M(マゼンタ)、C(シアン)、Bk(黒)の各現像剤を用い、減色混合作用を利用して現像するが、従来の白黒機に比べてデジタルフルカラー複写機などでは多量の現像剤を転写させる必要があり、さらに、小径のドット径に対応する必要があるため、均一帯電性、持続性、トナー強度、粒度分布のシャープネスがますます重要になる。これらの点から粒度分布がシャープで小粒子径のトナーの製造に適した凝集・融合合一法が優れている。   In recent years, in digital full-color copiers and printers, color image originals are separated by B (blue), R (red), and G (green) filters, and then the dot diameter is in the range of 20 to 70 μm corresponding to the original original. The latent image is developed using Y (yellow), M (magenta), C (cyan), and Bk (black) developers and utilizing a subtractive color mixing effect, but digital full color compared to conventional black and white machines. In copiers and the like, it is necessary to transfer a large amount of developer, and further, it is necessary to cope with a small dot diameter. Therefore, uniform chargeability, durability, toner strength, and sharpness of particle size distribution are increasingly important. From these points of view, an agglomeration and fusion method suitable for the production of a toner having a sharp particle size distribution and a small particle size is excellent.

フルカラー複写機等に搭載されるトナーは、多量のトナーが確実に混色することが重要であり、その際の色再現性の向上やOHP透明性が必須となる。また、トナー形状やその表面構造を制御する手段として、乳化重合凝集法によるトナーの製造方法が提案されている(例えば、特許文献1又は2参照。)。
これらの方法は、一般に乳化重合などにより樹脂微粒子分散液を調製し、一方、溶媒に着色剤を分散した着色剤分散液を作成し、これらを混合してトナー粒径に相当する凝集粒子を形成し、加熱して融合・合一させ、トナーを製造する方法である。この方法を用いると、粒度分布がシャープで小粒子径のトナーの製造が可能となるだけでなく、トナー形状の制御が可能、トナー表面への離型剤露出の抑制が可能となる。
It is important for a toner mounted on a full-color copying machine or the like that a large amount of toner is mixed with certainty, and improvement of color reproducibility and OHP transparency at that time are essential. Further, as a means for controlling the toner shape and its surface structure, a toner production method by an emulsion polymerization aggregation method has been proposed (for example, see Patent Document 1 or 2).
In these methods, a resin particle dispersion is generally prepared by emulsion polymerization or the like, while a colorant dispersion in which a colorant is dispersed in a solvent is prepared and mixed to form aggregated particles corresponding to the toner particle size. Then, the toner is manufactured by heating and fusing and coalescing. When this method is used, not only the toner having a sharp particle size distribution and a small particle diameter can be produced, but also the toner shape can be controlled and the exposure of the release agent to the toner surface can be suppressed.

一般に、これらの電子写真用トナーには熱可塑性樹脂が用いられており、低エネルギー定着と粉体ブロッキング性の両立をはかるためにトナーに用いる結着樹脂のレオロジー、及び、ガラス転移温度(Tg)を最適化制御することが提案されている(例えば、特許文献3乃至5参照。)。また、近年の電子写真プロセスは、上記のようなデジタル化、高速化の進展の要請により、定着速度の高速化に対応するために、より低いガラス転移温度を有する結着樹脂が用いられてきている。   Generally, a thermoplastic resin is used in these electrophotographic toners, and the rheology of the binder resin used for the toner and the glass transition temperature (Tg) in order to achieve both low energy fixing and powder blocking properties. It has been proposed to optimize the control (see, for example, Patent Documents 3 to 5). In recent electrophotographic processes, a binder resin having a lower glass transition temperature has been used in order to cope with an increase in fixing speed in response to the demand for the advancement of digitization and high speed as described above. Yes.

しかし、この種の結着樹脂を含むトナー画像は、ガラス転移温度近傍あるいはそれ以上の温度の熱が加わった場合、画像部分の樹脂成分が溶融して印字物の裏面あるいは他の印字物に付着し、画像の欠損が起こるという問題、即ちドキュメントオフセットの問題が発生する。また、最近は両面印刷が増加しているが、両面出力においては必然的に画像部分同士が接触した状態におかれるため、片面出力の場合よりもさらに画像欠損が生じ易い。   However, when a toner image containing this type of binder resin is heated to a temperature near or above the glass transition temperature, the resin component of the image portion melts and adheres to the back side of the printed matter or other printed matter. However, a problem that an image is lost, that is, a document offset problem occurs. In recent years, double-sided printing has been increasing. However, in double-sided output, image portions are inevitably brought into contact with each other, and thus image loss is more likely to occur than in single-sided output.

これらの定着された出力画像のオフセットの問題、即ち、ドキュメントオフセットを改良するために、熱硬化性樹脂をトナーに外部添加してポリエステル結着樹脂を硬化反応させることにより、ドキュメントオフセットと低温定着性との両立を図ることが提案されてきている(例えば、特許文献6参照。)。   In order to improve the offset problem of the fixed output image, that is, the document offset, the thermosetting resin is externally added to the toner to cause the polyester binder resin to undergo a curing reaction, so that the document offset and the low temperature fixability are achieved. (See, for example, Patent Document 6).

しかし、近年の強い環境保全への動きによる低エネルギー定着の要求や、両面印刷化への要求、定着時のトナー染み込みの悪いコート紙などの使用、また、それらの高画質対応としての定着画像ハーフトーンなどでの定着対応要求など、様様なストレス要求があり、このような技術だけでは、低温定着時のドキュメントオフセット(画像欠損)を獲得し、両特性を両立させることが難しくなってきているのが現状である。
特開昭63−282752 号公報 や特開平6−250439号公報 特公平2−37586 号公報、 特開平1−225967号公報、 特開平2−235069号公報 特開平4−186368号公報
However, there is a demand for low energy fixing due to the recent movement toward strong environmental conservation, demand for double-sided printing, use of coated paper with poor toner penetration at the time of fixing, and half-fixed image as a response to high image quality. There are various stress requirements, such as a request for fixing with tones, etc., and with such technology alone, it is becoming difficult to acquire document offset (image loss) at low temperature fixing and achieve both characteristics. Is the current situation.
JP 63-282275 A JP-A-6-250439 JP-B-2-37586, JP-A-1-225967, Japanese Patent Laid-Open No. 2-235069 JP-A-4-186368

本発明は上記従来の問題点に鑑みてなされたものであり、低温定着性に優れ、かつドキュメントオフセット性に優れた画像を形成可能な静電荷像現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法に関する。   The present invention has been made in view of the above-described conventional problems, and is an electrostatic image developing toner capable of forming an image excellent in low-temperature fixability and excellent in document offset property, a method for producing the same, and electrostatic image development. The present invention relates to an agent and an image forming method.

即ち、本発明は、
<1> 結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーである。
That is, the present invention
<1> binder resin and a colorant and a volume average particle size of 0.1~0.5μm inorganic fine particles and a volume average particle diameter a specific gravity of 1.0 to 2.0 is 0.1~1.0μm The toner for developing an electrostatic charge image is obtained by coating the surface of core particles having a glass transition temperature of 20 to 40 ° C. containing fine terpene-modified novolak resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C.

<3> 前記被覆層が、ガラス転移温度の異なる少なくとも2層の樹脂層からなり、前記コア粒子のガラス転移温度と前記少なくとも2層の樹脂層のうちの最外層のガラス転移温度との差が30℃以上である<1>に記載の静電荷像現像用トナーである。 <3> The coating layer includes at least two resin layers having different glass transition temperatures, and the difference between the glass transition temperature of the core particles and the glass transition temperature of the outermost layer of the at least two resin layers is The electrostatic charge image developing toner according to <1 >, which is 30 ° C. or higher.

<4> 隣り合う前記樹脂層間の酸価の差が2.0mgKOH/g以下である<3>に記載の静電荷像現像用トナーである。   <4> The electrostatic image developing toner according to <3>, wherein the difference in acid value between adjacent resin layers is 2.0 mgKOH / g or less.

<5> 前記被覆層の厚みが、0.1〜0.9μmである<1>、<3>又は<4>のいずれか1つに記載の静電荷像現像用トナーである。 <5> The electrostatic image developing toner according to any one of <1> , <3>, and <4>, wherein the coating layer has a thickness of 0.1 to 0.9 μm.

<6> 体積平均粒径が、3〜9μmである<1>、<3>、<4>又は<5>のいずれか1つに記載の静電荷像現像用トナーである。 <6> The electrostatic image developing toner according to any one of <1> , <3>, <4>, or <5>, having a volume average particle diameter of 3 to 9 μm.

<7> 結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーの製造方法であって、体積平均粒径が1.0μm以下の結着樹脂微粒子を分散した結着樹脂微粒子分散液、着色剤分散液体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子を分散した無機微粒子分散液及び体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子を分散したテルペン変性ノボラック樹脂微粒子分散液を混合して凝集粒子を形成する凝集工程と、前記凝集粒子の表面に被覆樹脂微粒子を付着させる付着工程と、前記被覆樹脂微粒子が付着した凝集粒子を加熱して融合させる融合工程と、を少なくとも有する静電荷像現像用トナーの製造方法である。 <7> binder resin and a colorant and a volume average particle size of 0.1~0.5μm inorganic fine particles and a volume average particle diameter a specific gravity of 1.0 to 2.0 is 0.1~1.0μm For producing electrostatic charge image developing toner comprising coating the surface of core particles having a glass transition temperature of 20 to 40 ° C. containing fine terpene-modified novolak resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C. A binder resin fine particle dispersion in which binder resin fine particles having a volume average particle size of 1.0 μm or less are dispersed, a colorant dispersion , a volume average particle size of 0.1 to 0.5 μm, and a specific gravity of 1 An inorganic fine particle dispersion in which inorganic fine particles of 0.0 to 2.0 are dispersed and a terpene-modified novolak resin fine particle dispersion in which a terpene-modified novolak resin fine particle having a volume average particle size of 0.1 to 1.0 μm is mixed. Agglomeration step to form agglomerated particles and before A deposition step of depositing the coating resin particles to the surface of the agglomerated particles, wherein the coating resin particles are fused by heating the aggregated particles adhering fusion step, at least has the production method of the toner for electrostatic image development of.

<8> 結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーを少なくとも含有する静電荷像現像剤である。 <8> binder resin and a colorant and a volume average particle size of 0.1~0.5μm inorganic fine particles and a volume average particle diameter a specific gravity of 1.0 to 2.0 is 0.1~1.0μm At least a toner for developing an electrostatic image formed by coating the surface of a core particle having a glass transition temperature of 20 to 40 ° C. containing fine terpene-modified novolak resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C. An electrostatic charge image developer.

<9> 樹脂被覆層を有するキャリアをさらに含有する<8>に記載の静電荷像現像剤である。   <9> The electrostatic charge image developer according to <8>, further including a carrier having a resin coating layer.

<10> 潜像保持体表面に静電荷像を形成する潜像形成工程と、現像剤担持体に担持された現像剤を用いて前記潜像保持体表面に形成された静電荷像を現像してトナー画像を形成する現像工程と、前記潜像保持体表面に形成されたトナー画像を被転写体表面に転写する転写工程と、前記被転写体表面に転写されたトナー画像を熱定着する定着工程と、を少なくとも有する画像形成方法であって、前記現像剤が、結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーを少なくとも含有する、画像形成方法である。 <10> A latent image forming step of forming an electrostatic charge image on the surface of the latent image carrier, and developing the electrostatic charge image formed on the surface of the latent image carrier using a developer carried on the developer carrier. A developing step for forming a toner image, a transfer step for transferring the toner image formed on the surface of the latent image holding member to the surface of the transfer target, and a fixing for thermally fixing the toner image transferred on the surface of the transfer target. An image forming method having at least a step, wherein the developer has a binder resin, a colorant, a volume average particle size of 0.1 to 0.5 μm, and a specific gravity of 1.0 to 2.0. Coating the surface of core particles having a glass transition temperature of 20 to 40 ° C. containing inorganic fine particles and terpene-modified novolak resin fine particles having a volume average particle size of 0.1 to 1.0 μm and a glass transition temperature of 50 to 100 ° C. A small amount of toner for developing an electrostatic charge image coated with a layer. Both contained an image forming method.

本発明によれば、低温定着性に優れ、かつドキュメントオフセット性に優れた画像を形成可能な静電荷像現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法を提供可能である。   According to the present invention, it is possible to provide an electrostatic image developing toner capable of forming an image excellent in low-temperature fixability and excellent in document offset property, a manufacturing method thereof, an electrostatic image developer, and an image forming method.

以下、本発明の静電荷像現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法を詳細に説明する。
<静電荷像現像用トナー及びその製造方法>
本発明の静電荷像現像用トナー(以下、「本発明のトナー」と称することがある。)は、結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなるものである。
Hereinafter, the toner for developing an electrostatic image of the present invention, a production method thereof, an electrostatic image developer, and an image forming method will be described in detail.
<Electrostatic image developing toner and method for producing the same>
The toner for developing an electrostatic charge image of the present invention (hereinafter sometimes referred to as “the toner of the present invention”) has a binder resin, a colorant, a volume average particle size of 0.1 to 0.5 μm, and a specific gravity. The surface of the core particle having a glass transition temperature of 20 to 40 ° C. containing inorganic fine particles of 1.0 to 2.0 is coated with a coating layer having a glass transition temperature of 50 to 100 ° C.

本発明のトナーは、コア(コア粒子)−シェル(被覆層)型の2重構造を有する。コア部が低いガラス転移温度で低温定着性の機能をもち、シェル部が高いガラス転移温度でドキュメントオフセット耐性の機能をもち、定着時、及び画像でコア部及びシェル部の機能をうまく両立させたトナーである。
コア粒子のガラス転移温度は20〜40℃であり、好ましくは、20〜30℃である。コア粒子のガラス転移温度が20℃を下回ると定着後の画像表面上にコア粒子に含まれる低ガラス転移温度の結着樹脂成分が露出する確立が高まり、定着画像のドキュメントオフセット性が低下する。また、40℃を超えると定着時にコア粒子の低ガラス転移温度成分が寄与しにくくなり、低温定着性が損なわれる。また、被覆層はガラス転移温度が50〜100℃であり、好ましくは、60〜80℃である。被覆層のガラス転移温度が50℃を下回ると定着後の画像表面上に高ガラス転移温度の樹脂成分が存在しなくなるため、定着画像のドキュメントオフセット性が低下する。
The toner of the present invention has a core (core particle) -shell (coating layer) type double structure. The core part has a low-temperature fixability function at a low glass transition temperature, the shell part has a document offset resistance function at a high glass transition temperature, and the core part and shell part functions are well balanced at the time of fixing and images. Toner.
The glass transition temperature of the core particles is 20 to 40 ° C, and preferably 20 to 30 ° C. When the glass transition temperature of the core particles is lower than 20 ° C., the probability that the binder resin component having a low glass transition temperature contained in the core particles is exposed on the surface of the fixed image is increased, and the document offset property of the fixed image is lowered. On the other hand, when the temperature exceeds 40 ° C., the low glass transition temperature component of the core particles hardly contributes at the time of fixing, and the low-temperature fixability is impaired. The coating layer has a glass transition temperature of 50 to 100 ° C, preferably 60 to 80 ° C. When the glass transition temperature of the coating layer is lower than 50 ° C., the resin component having a high glass transition temperature does not exist on the image surface after fixing, and the document offset property of the fixed image is lowered.

なお、本発明のトナーのガラス転移温度(Tg)の測定には、例えばパーキンエルマー社製のDSC−7(示差熱分析計)を用いる。装置の検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正にはインジウムの融解熱を用いる。サンプルは、アルミニウム製パンを用い、対照用に空パンをセットして昇温速度10℃/分で測定を行った。
また分子量のピーク面積の算出にはゲルパーミエションクロマトグラフィー(GPCを用い、以下の条件で行った。GPCは「HLC−8120GPC、SC−8020(東ソー(株)社製)装置」を用い、カラムは「TSKgel、SuperHM−H(東ソー(株)社製6.0mmID×15cm)」を2本用い、溶離液としてTHF(テトラヒドロフラン)を用いた。実験条件としては、試料濃度0.5%、流速0.6ml/min.、サンプル注入量10μl、測定温度40℃、IR検出器を用いて実験を行った。また、検量線は東ソー社製「polystylene標準試料TSK standard」:「A−500」、「F−1」、「F−10」、「F−80」、「F−380」、「A−2500」、「F−4」、「F−40」、「F−128」、「F−700」の10サンプルから作製した。
これをリテンションタイム範囲ごとにピーク面積をスライスし、その面積比から分布割合を求めた。
For the measurement of the glass transition temperature (Tg) of the toner of the present invention, for example, DSC-7 (differential thermal analyzer) manufactured by Perkin Elmer is used. The temperature correction of the detection part of the apparatus uses the melting points of indium and zinc, and the correction of heat quantity uses the heat of fusion of indium. As the sample, an aluminum pan was used, and an empty pan was set as a control, and measurement was performed at a heating rate of 10 ° C./min.
The calculation of the molecular weight peak area was performed by gel permeation chromatography (using GPC under the following conditions. GPC was “HLC-8120GPC, SC-8020 (manufactured by Tosoh Corporation))” Two columns, “TSKgel, SuperHM-H (6.0 mm ID × 15 cm, manufactured by Tosoh Corporation)” were used, and THF (tetrahydrofuran) was used as an eluent. The experiment was conducted using a flow rate of 0.6 ml / min, a sample injection volume of 10 μl, a measurement temperature of 40 ° C., an IR detector, and the calibration curve is “polystylen standard sample TSK standard” manufactured by Tosoh Corporation: “A-500”. , “F-1”, “F-10”, “F-80”, “F-380”, “A-2500”, “F-4”, “F-40”, “F 128 ", was made from 10" F-700 ".
The peak area was sliced for each retention time range, and the distribution ratio was obtained from the area ratio.

本発明のトナーにおいては、コア粒子のガラス転移温度と被覆層のガラス転移温度とが異なるが、本発明のトナーの構成上、20〜40℃と50〜100℃の異なる二つの温度領域に各々ピークが容易に観察できるため、示差熱分析計から得られたデータからコア粒子のガラス転移温度と被覆層のガラス転移温度とを区別することができる。
また、被覆層が複数の樹脂層からなる場合、本発明のトナーの構成上、50〜100℃の範囲に複数の異なるピークが観察される。ピーク観察での分離が容易でない場合は、必要に応じて測定軸の拡大調整を行うことによりピーク観察が可能となる。
In the toner of the present invention, the glass transition temperature of the core particle and the glass transition temperature of the coating layer are different. However, due to the constitution of the toner of the present invention, the toner particles have two different temperature ranges of 20 to 40 ° C. Since the peak can be easily observed, the glass transition temperature of the core particle and the glass transition temperature of the coating layer can be distinguished from the data obtained from the differential thermal analyzer.
When the coating layer is composed of a plurality of resin layers, a plurality of different peaks are observed in the range of 50 to 100 ° C. due to the constitution of the toner of the present invention. If separation by peak observation is not easy, peak observation can be performed by adjusting the magnification of the measurement axis as necessary.

本発明に係るコア粒子は、体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0の無機微粒子を含む。比較的小粒径で、比重も小さめの無機微粒子をコア粒子に内添加することで、定着時にこれらの無機微粒子が画像表面上に存在しやすくなり、結着樹脂成分が表面に存在する確立を低くさせることができる。これにより、該無機微粒子をコア粒子中に含まないコア−シェル型トナーよりも、低ガラス転移温度のコア樹脂分、及び高ガラス転移温度のシェル樹脂分も画像表面上に存在することを抑制でき、定着後の定着画像が複数枚重なった時の画像を形成するトナー材料の移動、いわゆるドキュメントオフセット性を保つことがより良好となる。
したがって、高速印刷や、低エネルギーでの定着や定着画像のハーフトーンなど、低温定着とドキュメントオフセット性の両立にストレスな条件においても、その両立が可能となる。
The core particles according to the present invention include inorganic fine particles having a volume average particle size of 0.1 to 0.5 μm and a specific gravity of 1.0 to 2.0. By adding inorganic fine particles with a relatively small particle size and a small specific gravity to the core particles, these inorganic fine particles are likely to be present on the image surface during fixing, and it is established that the binder resin component is present on the surface. Can be lowered. As a result, it is possible to suppress the presence of a core resin component having a low glass transition temperature and a shell resin component having a high glass transition temperature on the image surface as compared with a core-shell type toner that does not contain the inorganic fine particles in the core particles. Further, it is better to keep the movement of the toner material for forming an image when a plurality of fixed images after fixing overlap, that is, the so-called document offset property.
Accordingly, both high-speed printing, low-energy fixing, and halftone of a fixed image can be achieved even under stressful conditions for compatibility between low-temperature fixing and document offset.

無機微粒子は、湿式で添加することができる。添加する無機微粒子としては、シリカ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウム、リン酸三カルシウムなど通常トナー表面の外添剤として使うすべてのものを使用することができ、イオン性界面活性剤や高分子酸、高分子塩基で分散して使用することが好ましい。得られた無機微粒子分散液中の無機微粒子の体積平均粒径は、例えばレーザー回析式粒度分布測定装置(LA−700堀場製作所製)で測定する。無機微粒子の体積平均粒径は0.1〜1.0μmであることが必要であり、0.1〜0.5μmが好ましい。無機微粒子の体積平均粒径が上記範囲でないとコア粒子への内部添加が難しく、トナー表面への露出などが起こる場合がある。   The inorganic fine particles can be added by a wet method. As the inorganic fine particles to be added, all of those usually used as external additives on the toner surface such as silica, alumina, titania, calcium carbonate, magnesium carbonate, and tricalcium phosphate can be used. It is preferable to use by dispersing with a molecular acid or a polymer base. The volume average particle diameter of the inorganic fine particles in the obtained inorganic fine particle dispersion is measured, for example, with a laser diffraction particle size distribution measuring apparatus (LA-700, manufactured by Horiba, Ltd.). The volume average particle size of the inorganic fine particles is required to be 0.1 to 1.0 μm, and preferably 0.1 to 0.5 μm. If the volume average particle size of the inorganic fine particles is not within the above range, internal addition to the core particles is difficult, and exposure to the toner surface may occur.

無機微粒子の比重は1.0〜2.0が必要であり、好ましくは1.0〜1.5の範囲が適当である。1.0未満では無機微粒子分散液にすることが困難になったり、トナー表面への露出などを起こしたりする。また、2.0を超えると、比重の増加により定着時に画像表面に存在することが難しくなる。   The specific gravity of the inorganic fine particles needs to be 1.0 to 2.0, preferably 1.0 to 1.5. If it is less than 1.0, it becomes difficult to form an inorganic fine particle dispersion, or exposure to the toner surface may occur. On the other hand, if it exceeds 2.0, it becomes difficult to exist on the image surface at the time of fixing due to an increase in specific gravity.

以下に、無機微粒子の比重測定の方法を示す。
<無機微粒子の比重測定>
ルシャテリエ比重瓶を用いJIS−K−0061の5−2−1に準拠して比重を測定した。操作は次の通り行う。
(1)ルシャテリエ比重瓶に約250mlのエチルアルコールを入れ、メニスカスが目盛りの位置にくるように調整する。
(2)ルシャテリエ比重瓶を恒温水槽に浸し、液温が20.0±0.2°Cになったとき、メニスカスの位置を比重瓶の目盛りで正確に読み取る。(精度0.025mlとする)
(3)試料約100gを正確に量り取り、その質量をWとする。
(4)量り取った試料をルシャテリエ比重瓶に入れ泡を除く。
(5)ルシャテリエ比重瓶を恒温水槽に浸し、液温が20.0±0.2°Cになったとき、メニスカスの位置を比重瓶の目盛りで正確に読み取る。(精度0.025mlとする)
(6)次式により比重Sを算出する。
The method for measuring the specific gravity of inorganic fine particles will be described below.
<Specific gravity measurement of inorganic fine particles>
The specific gravity was measured according to JIS-K-0061 5-2-1 using a Le Chatelier specific gravity bottle. The operation is as follows.
(1) About 250 ml of ethyl alcohol is put into a Lechatelier specific gravity bottle and adjusted so that the meniscus is at the position of the scale.
(2) The Lechatelier specific gravity bottle is immersed in a constant temperature water bath, and when the liquid temperature reaches 20.0 ± 0.2 ° C., the position of the meniscus is accurately read with the scale of the specific gravity bottle. (Accuracy 0.025ml)
(3) About 100 g of the sample is accurately weighed and its mass is designated W.
(4) Place the weighed sample in a Le Chatelier specific gravity bottle and remove the foam.
(5) The Lechatelier specific gravity bottle is immersed in a constant temperature water bath, and when the liquid temperature reaches 20.0 ± 0.2 ° C., the position of the meniscus is accurately read with the scale of the specific gravity bottle. (Accuracy 0.025ml)
(6) The specific gravity S is calculated by the following equation.

D=W/(L2 − L1 )
S=D/0.9982
D = W / (L2−L1)
S = D / 0.9982

式中、Dは試料の密度(20°C)(g/cm3)、Sは試料の比重(20°C)、Wは試料の見かけの質量(g)、L1は試料をルシャテリエ比重瓶に入れる前のメニスカスの読み(20°C)(ml)、L2は試料をルシャテリエ比重瓶に入れた後のメニスカスの読み(20°C)(ml)、0.9982は20°Cにおける水の密度(g/cm3)である。 In the formula, D is the density of the sample (20 ° C) (g / cm 3 ), S is the specific gravity of the sample (20 ° C), W is the apparent mass of the sample (g), L1 is the sample in a Le Chatelier specific gravity bottle Meniscus reading (20 ° C) (ml) before loading, L2 is the meniscus reading (20 ° C) (ml) after placing the sample in a Le Chatelier specific gravity bottle, 0.9982 is the density of water at 20 ° C (G / cm 3 ).

本発明のトナーの被覆層の厚みは、0.1〜0.9μmが好ましく、さらに好ましくは0.2〜0.8μmである。被覆層の厚みが0.1μmを下回ると、定着後の画像表面上にコア部の低ガラス転移温度成分が露出する確立が高まり、ドキュメントオフセット性が不十分になる。また、被覆層の厚みが0.9μmを超えると、定着時にコア部の低ガラス転移温度成分が寄与しにくくなり、低温定着性が低下する。
被覆層の厚みは、下記方法でもとめた。
(1)透過型電子顕微鏡で、下記方法により測定される体積平均粒径の80〜120%の粒径のトナーについて10000倍の倍率でトナー断面図を写真撮影する。
(2)撮影された写真を観察して各トナーの被覆層の膜厚を測定する。
(3)トナー100個についての被覆層の厚みを測定し、その平均値を被覆層の厚みとした。
The thickness of the coating layer of the toner of the present invention is preferably from 0.1 to 0.9 μm, more preferably from 0.2 to 0.8 μm. When the thickness of the coating layer is less than 0.1 μm, the probability that the low glass transition temperature component of the core portion is exposed on the image surface after fixing is increased, and the document offset property becomes insufficient. On the other hand, when the thickness of the coating layer exceeds 0.9 μm, the low glass transition temperature component of the core part hardly contributes at the time of fixing, and the low temperature fixing property is lowered.
The thickness of the coating layer was also stopped by the following method.
(1) Using a transmission electron microscope, photograph a cross-sectional view of the toner at a magnification of 10,000 times for a toner having a particle diameter of 80 to 120% of the volume average particle diameter measured by the following method.
(2) The photographed photograph is observed to measure the film thickness of the coating layer of each toner.
(3) The thickness of the coating layer for 100 toners was measured, and the average value was taken as the thickness of the coating layer.

本発明のトナーの体積平均粒径は、3〜9μmが好ましく、さらに好ましくは3〜8μmである。体積平均粒径が3μmを下回ると帯電性が不十分になり、現像性が低下することがあり、9μmを超えると画像の解像性が低下する。
トナーの粒径は、例えば、コールターカウンターTA II(ベックマン−コールター社製)、マルチサイザーII(ベックマン−コールター社製)等の測定器を用いて50μmのアパーチャー径で測定することにより求めることができる。この際、測定はトナーを電解質水溶液(アイソトン水溶液)に分散させ、超音波により30秒以上分散させた後に行う。
測定した粒度分布を基にして、分割された粒度範囲(チャンネル)に対して体積、数、それぞれに小径側から累積分布を描き、累積50%となる粒径を体積平均粒径(D50V)、数平均粒径(D50P)と定義する。
The toner of the present invention preferably has a volume average particle size of 3 to 9 μm, more preferably 3 to 8 μm. When the volume average particle size is less than 3 μm, the chargeability becomes insufficient and the developability may be lowered, and when it exceeds 9 μm, the resolution of the image is lowered.
The particle size of the toner can be determined, for example, by measuring with an aperture diameter of 50 μm using a measuring instrument such as Coulter Counter TA II (manufactured by Beckman-Coulter) or Multisizer II (manufactured by Beckman-Coulter). . In this case, the measurement is performed after the toner is dispersed in an electrolyte aqueous solution (isoton aqueous solution) and dispersed by ultrasonic waves for 30 seconds or more.
Based on the measured particle size distribution, the cumulative distribution is drawn from the small diameter side to the divided particle size range (channel) from the small diameter side, and the particle size that becomes 50% cumulative is the volume average particle size (D50V), It is defined as the number average particle size (D50P).

本発明に係るコア粒子は、体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子を含むことが好ましい。テルペン変性ノボラック樹脂微粒子は、Tgを有さず、100℃以上の高温域において融点を有する。そのため、コア粒子に、テルペン変性ノボラック樹脂微粒子を添加することで、定着時にコア粒子の結着樹脂が溶融し、これらの樹脂微粒子との間で相分離がおこりやすくなり、高融点成分の樹脂が画像表面上に存在しやすくなる。また、結着樹脂成分が画像表面に存在する確立を低くさせることができる。これにより、該テルペン変性ノボラック樹脂微粒子を含まないコア−シェル型トナーよりも、低ガラス転移温度のコア樹脂分、及び高ガラス転移温度のシェル樹脂分も画像表面上に存在することを抑制でき、かつ、高融点成分の樹脂を画像表面上に存在させることができるため、低温定着時のドキュメントオフセット性を保つことがより良好となる。したがって、高速印刷や、低エネルギーでの定着や定着画像のハーフトーンなど、低温定着とドキュメントオフセット性の両立にストレスな条件においても、その両立が可能となる。   The core particles according to the present invention preferably contain terpene-modified novolak resin fine particles having a volume average particle size of 0.1 to 1.0 μm. The terpene-modified novolak resin fine particles do not have Tg and have a melting point in a high temperature range of 100 ° C. or higher. Therefore, by adding terpene-modified novolak resin fine particles to the core particles, the binder resin of the core particles melts at the time of fixing, and phase separation easily occurs between these resin fine particles. It tends to exist on the image surface. Further, the probability that the binder resin component is present on the image surface can be reduced. Thereby, it is possible to suppress the presence of a core resin component having a low glass transition temperature and a shell resin component having a high glass transition temperature on the image surface as compared with a core-shell type toner not containing the terpene-modified novolak resin fine particles, In addition, since a resin having a high melting point component can be present on the image surface, it is better to maintain document offset at the time of low-temperature fixing. Accordingly, both high-speed printing, low-energy fixing, and halftone of a fixed image can be achieved even under stressful conditions for compatibility between low-temperature fixing and document offset.

テルペン変性ノボラック樹脂微粒子は、湿式で添加することができる。本発明において用いられるテルペン変性ノボラック樹脂とは、通常のノボラック樹脂をテルペン類で修飾・変性したものである。ノボラック樹脂としてはノボラックの2核体、3核体或いはそれ以上の多核体を含み、オルソ−オルソ結合あるいはその異性体も含み得る。具体的にはフェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。   The terpene-modified novolac resin fine particles can be added by a wet method. The terpene-modified novolak resin used in the present invention is obtained by modifying and modifying a normal novolak resin with terpenes. The novolak resin includes a novolak dinuclear, trinuclear or higher polynuclear body, and may include an ortho-ortho bond or an isomer thereof. Specific examples include phenol novolac resins and cresol novolac resins.

テルペン類としてはヘミテルペン、セスキテルペン、ジテルペン、セスタテルペン、トリテルペン、テトラテルペン類及びこれらから誘導される化合物(アルコール、アルデヒド、ケトン、オキシド、及びエステル等)が挙げられ、具体的な例としては、ピネン、ジペンテン、リモネン、パラメンタン、ピナン、テルペンダイマー、パラメンタジエン、ターペネオール、ジヒドロターピネオール、カンファー、ミルテノール、シネオール、ボルネオール、カルベオール、カルボンオキサイド、カルビルアセテート、シトロネラール、シトロネロール、サイメン、ジヒドロカルベオール、ジヒドロカルボン、ジヒドロカルビルアセテート、ジヒドロターピネオール、ジヒドロターピニルアセテート、イソボニルアセテート、リナロール、メントール、ミルテノール、テルピネン、アビエチン酸、ネオアビエチン酸、レボピマール酸、パルストリン酸等が挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。   Examples of terpenes include hemiterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, tetraterpenes and compounds derived from these (alcohols, aldehydes, ketones, oxides, esters, etc.), and specific examples include Pinene, dipentene, limonene, paramentan, pinane, terpene dimer, paramentadiene, terpenol, dihydroterpineol, camphor, myrtenol, cineol, borneol, carveol, carboxoxide, carbyl acetate, citronellal, citronellol, cymen, dihydrocarbeo, Dihydrocarbon, dihydrocarbyl acetate, dihydroterpineol, dihydroterpinyl acetate, isobornyl acetate, linalool, menthol Le, myrtenol, terpinene, abietic acid, neoabietic acid, levopimaric acid and palustric acid. These may be used alone or in combination of two or more.

定着した画像の強度の点からみて、環状構造を有するテルペン類を使用することが好ましい。テルペン変性ノボラック樹脂としては、微粉末、塊状、フレーク状、棒状、マーブル状のものを用いることができる。これらを必要に応じて粉砕、粉末状にし、水中にイオン性界面活性剤や高分子酸や高分子塩基などの高分子電解質とともに分散し、融点以上に加熱するとともにホモジナイザーや圧力吐出型分散機で強い剪断をかけて微粒子化し、樹脂微粒子の分散液を作成する。   From the viewpoint of the strength of the fixed image, it is preferable to use terpenes having a cyclic structure. As the terpene-modified novolak resin, fine powder, lump, flake, rod or marble can be used. These are pulverized and powdered as necessary, dispersed in water with polymer electrolytes such as ionic surfactants, polymer acids, and polymer bases, heated above the melting point, and homogenizers or pressure discharge type dispersers A fine shear is applied to make fine particles to create a dispersion of resin fine particles.

テルペン変性ノボラック樹脂微粒子の体積平均粒径は、例えばレーザー回析式粒度分布測定装置(LA−700堀場製作所製)で測定する。体積平均粒径は0.1〜1.0μmが好ましく、さらに好ましくは0.1〜0.5μmである。体積平均粒径が0.1μm未満では、コア粒子に含有されていても、ドキュメントオフセット性に対して十分な効果を発揮することができない。また、体積平均粒径が1.0μmを超えるとコア粒子への内部添加が難しくなり、コア粒子への内部添加による本発明の効果が発揮できなくなる。   The volume average particle diameter of the terpene-modified novolak resin fine particles is measured by, for example, a laser diffraction particle size distribution measuring apparatus (LA-700, manufactured by Horiba, Ltd.). The volume average particle size is preferably from 0.1 to 1.0 μm, more preferably from 0.1 to 0.5 μm. When the volume average particle size is less than 0.1 μm, even if it is contained in the core particles, a sufficient effect on the document offset property cannot be exhibited. If the volume average particle size exceeds 1.0 μm, internal addition to the core particles becomes difficult, and the effect of the present invention due to internal addition to the core particles cannot be exhibited.

本発明において、テルペン変性ノボラック樹脂をトナーに対して3〜30質量部含有させることが好ましく、10〜20質量部の範囲で含有させることがより好ましい。テルペン変性ノボラック樹脂の含有量が3質量部未満の場合は、低温定着時に、画像表面を十分に被覆することができず、その効果の発現が不十分となる。一方、テルペン変性ノボラック樹脂の含有量が30質量部より大きい場合には低温定着性に悪影響を及ぼす。   In the present invention, the terpene-modified novolak resin is preferably contained in an amount of 3 to 30 parts by weight, more preferably 10 to 20 parts by weight, based on the toner. When the content of the terpene-modified novolak resin is less than 3 parts by mass, the image surface cannot be sufficiently covered at the time of low-temperature fixing, and the effect thereof becomes insufficient. On the other hand, when the content of the terpene-modified novolak resin is larger than 30 parts by mass, the low-temperature fixability is adversely affected.

本発明に係る被覆層は、ガラス転移温度の異なる少なくとも2層の樹脂層からなり、コア粒子のガラス転移温度と少なくとも2層の樹脂層のうちの最外層のガラス転移温度との差が30℃以上であることが好ましい。被覆層を少なくとも2層にすることで低ガラス転移温度樹脂がトナー表面に出るのを防ぎ、ドキュメントオフセットを防止することができるようになる。また、コア粒子のガラス転移温度と少なくとも2層の樹脂層のうちの最外層のガラス転移温度との差が30℃以下である場合、低温定着性とドキュメントオフセット防止の両立の実現が困難となることがある。
被覆層が少なくとも2層の樹脂層からなる場合、そのうちの1層のガラス転移温度が50〜100℃であればよい。また、内側の樹脂層から外側の樹脂層に向かってガラス転移温度が高くなることが好ましい。
The coating layer according to the present invention comprises at least two resin layers having different glass transition temperatures, and the difference between the glass transition temperature of the core particles and the glass transition temperature of the outermost layer of the at least two resin layers is 30 ° C. The above is preferable. By providing at least two coating layers, the low glass transition temperature resin can be prevented from coming out on the toner surface, and document offset can be prevented. Moreover, when the difference between the glass transition temperature of the core particles and the glass transition temperature of the outermost layer of at least two resin layers is 30 ° C. or less, it is difficult to realize both low-temperature fixability and document offset prevention. Sometimes.
When a coating layer consists of at least two resin layers, the glass transition temperature of one layer should just be 50-100 degreeC. Moreover, it is preferable that a glass transition temperature becomes high toward an outer resin layer from an inner resin layer.

本発明に係る被覆層がガラス転移温度の異なる少なくとも2層の樹脂層からなる場合、被覆層の厚さの合計は0.3〜0.9μmが好ましい。被覆層の厚さが0.3μm未満である場合、多層構造の実現が困難であり被覆層の効果が十分に発揮されないことからドキュメントオフセットが抑制されない。被覆層の厚さが0.9μmより大きい場合、被覆層が厚すぎて低ガラス転移温度であるコア粒子が機能せず低温定着性の実現が困難となる。   When the coating layer according to the present invention is composed of at least two resin layers having different glass transition temperatures, the total thickness of the coating layer is preferably 0.3 to 0.9 μm. When the thickness of the coating layer is less than 0.3 μm, it is difficult to realize a multilayer structure, and the effect of the coating layer is not sufficiently exhibited, so that document offset is not suppressed. When the thickness of the coating layer is larger than 0.9 μm, the coating layer is too thick, and the core particles having a low glass transition temperature do not function and it is difficult to realize low-temperature fixability.

本発明に係る被覆層がガラス転移温度の異なる少なくとも2層の樹脂層からなる場合、隣り合う樹脂層間の酸価の差を2.0mgKOH/g以下とすることが好ましい。ここで、酸価とは試料1g中に含まれる酸を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価の差を2.0mgKOH/g以下とすることで樹脂層間における電気的反発を少なくし、容易に被覆層の形成が可能となり、コア粒子と被覆層とがより相溶しやすくなる。
なお、本発明において樹脂層の酸価とは、被覆樹脂の酸価をいう。
When the coating layer according to the present invention is composed of at least two resin layers having different glass transition temperatures, the difference in acid value between adjacent resin layers is preferably 2.0 mgKOH / g or less. Here, the acid value refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid contained in 1 g of the sample. By setting the difference in acid value to 2.0 mgKOH / g or less, the electric repulsion between the resin layers is reduced, the coating layer can be easily formed, and the core particles and the coating layer are more compatible.
In the present invention, the acid value of the resin layer refers to the acid value of the coating resin.

本発明のトナーの酸価は3〜20mgKOH/gの範囲のものが好ましい。酸価が3mgKOH/g未満の場合、十分な帯電特性が得られず、20mgKOH/gより大きい場合はトナーの吸湿特性が悪化して帯電不良や環境依存性の低下など帯電特性に問題を生ずる。   The toner of the present invention preferably has an acid value in the range of 3 to 20 mgKOH / g. When the acid value is less than 3 mgKOH / g, sufficient charging characteristics cannot be obtained. When the acid value is more than 20 mgKOH / g, the moisture absorption characteristics of the toner are deteriorated, causing problems in charging characteristics such as poor charging and lowering of environmental dependency.

本発明のトナーは、混練粉砕法、重合法、ヘテロ凝集法等のいずれの方法で製造してもよいが、一般に乳化重合等により製造された樹脂微粒子のイオン性界面活性剤による分散液を用い、これに反対極性のイオン性界面活性剤に分散した着色剤分散液、無機微粒子分散液を混合して、ヘテロ凝集を生じさせ、トナー径に相当する凝集粒子を形成し、その後樹脂のガラス転移温度以上に加熱することにより凝集粒子を融合・合一し、洗浄、乾燥してトナーを得る方法で、トナー形状は不定形から球形まで適宜製造することができる。   The toner of the present invention may be produced by any method such as a kneading pulverization method, a polymerization method, a heteroaggregation method, etc., but generally a dispersion of resin fine particles produced by emulsion polymerization or the like is used. The colorant dispersion dispersed in the ionic surfactant having the opposite polarity and the inorganic fine particle dispersion are mixed to form heteroaggregation to form aggregated particles corresponding to the toner diameter, and then the glass transition of the resin. The toner shape can be appropriately manufactured from an indeterminate shape to a spherical shape by a method in which the aggregated particles are fused and united by heating to a temperature higher than that, washed and dried to obtain a toner.

本発明の静電荷像現像用トナーは、体積平均粒径が1.0μm以下の結着樹脂微粒子を分散した結着樹脂微粒子分散液、着色剤分散液及び体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子を分散した無機微粒子分散液を混合して凝集粒子を形成する凝集工程と、前記凝集粒子の表面に被覆樹脂微粒子を付着させる付着工程と、前記被覆樹脂微粒子が付着した凝集粒子を加熱して融合させる融合工程と、を少なくとも経て製造されることが好ましい。   The electrostatic charge image developing toner of the present invention has a binder resin fine particle dispersion in which binder resin fine particles having a volume average particle size of 1.0 μm or less are dispersed, a colorant dispersion, and a volume average particle size of 0.1 to 0. An agglomeration step in which an inorganic fine particle dispersion in which inorganic fine particles having a specific gravity of 1.0 to 2.0 are dispersed is mixed to form agglomerated particles, and adhesion for attaching the coated resin fine particles to the surface of the agglomerated particles It is preferable to produce at least a process and a fusion process in which the aggregated particles to which the coating resin fine particles are adhered are heated and fused.

上記方法は、原料分散液を一括して混合し凝集させる方法であるが、凝集工程の初期の段階で極性のイオン性分散剤の量のバランスを予めずらしておき、例えば硝酸カルシウム等の無機金属塩、もしくはポリ塩化アルミニウム等の無機金属塩の重合体を用いてこれをイオン的に中和し、ガラス転移温度以下で第1段階のコア粒子となる凝集粒子を形成し、安定した後、第2段階として前記のバランスのずれを補填するような極性、量の被覆樹脂微粒子分散液を添加することによりコア粒子となる凝集粒子の表面に被覆樹脂微粒子を付着させ(付着工程)、さらに必要に応じてコア粒子となる凝集粒子又は追加された被覆樹脂微粒子に含まれる樹脂のガラス転移温度以下の高い温度でわずかに加熱することにより安定化させた後、ガラス転移温度以上に加熱して(融合工程)第2段階で加えた粒子をコア粒子となる凝集粒子の表面に付着させたまま融合・合一させてもよい。
さらに、この凝集の段階的操作は複数回繰り返してもよい。凝集の段階的操作を複数回繰り返すことにより、コア粒子の表面を少なくとも2層の樹脂層で被覆することができる。また、凝集粒子中に離型剤をトナー重量当たり固形分換算で5〜25質量%含有させてもよい。離型剤は被覆樹脂微粒子を付着する前に添加する方が、帯電性、耐久性の点から好ましい。
The above method is a method in which the raw material dispersion is mixed and agglomerated in a lump, but the balance of the amount of polar ionic dispersant is shifted in advance in the initial stage of the agglomeration process, and an inorganic metal such as calcium nitrate is used. This is ionically neutralized using a salt or a polymer of an inorganic metal salt such as polyaluminum chloride to form aggregated particles that become core particles of the first stage below the glass transition temperature. The coating resin fine particles are adhered to the surface of the agglomerated particles to be the core particles by adding a coating resin fine particle dispersion of polarity and quantity that compensates for the above-mentioned balance deviation in two steps (adhesion step), and further required The glass transition temperature is then stabilized by slightly heating at a high temperature below the glass transition temperature of the resin contained in the aggregated particles to be core particles or added coating resin fine particles. By heating to above (fusion step) particles may remain by coalescence was attached to the surface of the agglomerated particles as the core particles was added in the second stage.
Furthermore, this stepwise operation of aggregation may be repeated a plurality of times. The surface of the core particle can be coated with at least two resin layers by repeating the stepping operation of aggregation a plurality of times. Further, a release agent may be contained in the aggregated particles in an amount of 5 to 25% by mass in terms of solid content per toner weight. The release agent is preferably added before adhering the coating resin fine particles from the viewpoint of chargeability and durability.

コア粒子中に体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子を含有させるには、凝集工程の段階で該テルペン変性ノボラック樹脂微粒子分散液をさらに混合させればよい。   In order to contain the terpene-modified novolak resin fine particles having a volume average particle size of 0.1 to 1.0 μm in the core particles, the terpene-modified novolak resin fine particle dispersion may be further mixed in the aggregation step.

結着樹脂微粒子及び被覆樹脂微粒子等の樹脂微粒子に使用される重合体は特に制限されないが、例えば、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のビニル基を有するエステル類;アクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;エチレン、プロピレン、ブタジエンなどのポリオレフィン類などの単量体の重合体またはこれらを2種以上組み合せて得られる共重合体、又はそれらの混合物、さらにはエポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、あるいはこれらと前記ビニル系樹脂との混合物、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等を挙げることができる。   The polymer used for the resin fine particles such as the binder resin fine particles and the coated resin fine particles is not particularly limited. For example, styrenes such as styrene, parachlorostyrene, and α-methylstyrene; methyl acrylate, ethyl acrylate, acrylic Has vinyl groups such as n-propyl acid, n-butyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate Esters; Vinyl nitriles such as acrylonitrile and methacrylonitrile; Vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether; Vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone and vinyl isopropenyl ketone; Polymers of monomers such as polyolefins such as len and butadiene, copolymers obtained by combining two or more of these, or mixtures thereof, as well as epoxy resins, polyester resins, polyurethane resins, polyamide resins, and cellulose resins And non-vinyl condensation resins such as polyether resins, mixtures of these with the vinyl resins, and graft polymers obtained by polymerizing vinyl monomers in the presence of these.

樹脂微粒子分散液中の微粒子の粒径は、例えばレーザー回析式粒度分布測定装置(堀場製作所製、LA−700)で測定することができる。本発明で用いる樹脂微粒子の体積平均粒径は、50〜400nmが好ましく、さらに好ましくは70〜350nmである。50nm未満では、凝集速度が低下しやすく、生産性の低下や粒度分布の広がりをおこしやすい。また、400nmを超えると、凝集性は良好であるが、凝集体が空隙を含みやすくなり、球形化が困難となり、形状制御が困難となる。   The particle size of the fine particles in the resin fine particle dispersion can be measured, for example, with a laser diffraction particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.). The volume average particle size of the resin fine particles used in the present invention is preferably 50 to 400 nm, more preferably 70 to 350 nm. If it is less than 50 nm, the aggregation rate tends to decrease, and the productivity tends to decrease and the particle size distribution tends to expand. If it exceeds 400 nm, the cohesiveness is good, but the aggregate tends to contain voids, making it difficult to form a sphere and making shape control difficult.

前記のビニル系単量体は、イオン性界面活性剤などを用いて乳化重合させ樹脂微粒子分散液を作成することができる。その他の樹脂は油性で水への溶解度の比較的低い溶剤に溶解するものを用い、樹脂をそれらの溶剤に解かしてイオン性の界面活性剤や高分子電解質とともにホモジナイザーなどの分散機により水中に分散させ、その後加熱又は減圧して溶剤を蒸散することにより、樹脂微粒子分散液を作成することができる。   The vinyl monomer can be emulsion-polymerized using an ionic surfactant or the like to prepare a resin fine particle dispersion. Other resins are those that are oily and soluble in solvents with relatively low solubility in water. Dissolve the resin in these solvents and disperse in water with a disperser such as a homogenizer together with an ionic surfactant or polymer electrolyte. Then, the resin fine particle dispersion can be prepared by evaporating the solvent by heating or depressurization.

本発明で使用する離型剤は、ASTMD3418−8に準拠して測定された主体極大吸熱ピークが50〜140℃の範囲にある物質が好ましい。50℃未満であると定着時にオフセットを生じやすくなる。また、140℃を超えると定着温度が高くなり、定着画像表面の平滑性が得られず光沢性を損なう。本発明の主体極大吸熱ピークの測定には、例えばパーキンエルマー社製のDSC−7(示差熱分析計)を用いることができる。装置の検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正にはインジウムの融解熱を用いる。サンプルは、アルミニウム製パンを用い、対照用に空パンをセットし、昇温速度10℃/minで測定を行う。   The release agent used in the present invention is preferably a substance having a main maximum endothermic peak measured in accordance with ASTM D3418-8 in the range of 50 to 140 ° C. If it is less than 50 ° C., an offset tends to occur during fixing. On the other hand, if it exceeds 140 ° C., the fixing temperature becomes high, and the smoothness of the surface of the fixed image cannot be obtained, and the glossiness is impaired. For the measurement of the main maximum endothermic peak of the present invention, for example, DSC-7 (differential thermal analyzer) manufactured by Perkin Elmer can be used. The temperature correction of the detection part of the apparatus uses the melting points of indium and zinc, and the correction of heat quantity uses the heat of fusion of indium. For the sample, an aluminum pan is used, an empty pan is set for control, and the measurement is performed at a heating rate of 10 ° C./min.

本発明で使用する離型剤は、例えばポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;加熱により軟化点を有するシリコーン類;オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス;ミツロウのごとき動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロシュワックス等のような鉱物、石油系ワックス;及びそれらの変性物を使用することができる。   Release agents used in the present invention include, for example, low molecular weight polyolefins such as polyethylene, polypropylene, and polybutene; silicones having a softening point upon heating; fatty acids such as oleic acid amide, erucic acid amide, ricinoleic acid amide, and stearic acid amide Amides; plant waxes such as carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil; animal waxes such as beeswax; montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, fishertro Minerals such as schwax and the like, petroleum-based waxes; and their modified products can be used.

これらのワックス類は、水中にイオン性界面活性剤や高分子酸や高分子塩基などの高分子電解質とともに分散し、融点以上に加熱するとともにホモジナイザーや圧力吐出型分散機で強い剪断をかけて微粒子化し、1μm以下の離型剤微粒子の分散液を作成する。本発明において、トナー中に分散させる離型剤の添加量は、トナー質量部に対して5〜25質量%の範囲が適当である。
得られた離型剤分散液中の離型剤微粒子の体積平均粒径は、例えばレーザー回析式粒度分布測定装置(LA−700堀場製作所製)で測定する。離型剤微粒子の体積平均粒径は、50〜400nmが好ましく、70〜350nmがさらに好ましい。50nm未満では定着時の離型剤の必要量が多くなりやすく、また400nmを超えると凝集が不安定となりやすい場合がある。
These waxes are dispersed in water together with ionic surfactants, polymer electrolytes such as polymer acids and polymer bases, heated above their melting point, and subjected to strong shearing with a homogenizer or pressure discharge type disperser. Then, a dispersion of release agent fine particles of 1 μm or less is prepared. In the present invention, the addition amount of the release agent dispersed in the toner is suitably in the range of 5 to 25% by mass with respect to the toner mass part.
The volume average particle size of the release agent fine particles in the obtained release agent dispersion is measured, for example, with a laser diffraction particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.). The volume average particle size of the release agent fine particles is preferably 50 to 400 nm, and more preferably 70 to 350 nm. If the thickness is less than 50 nm, the required amount of the release agent at the time of fixing tends to increase, and if it exceeds 400 nm, aggregation may be unstable.

本発明で使用する着色剤は、色相角、彩度、明度、耐候性、OHP透明性、トナー中での分散性の観点から選択される。例えば、黒色顔料としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭、非磁性フェライト、マグネタイト等が挙げられる。黄色顔料としては、例えば、黄鉛、亜鉛黄、黄色酸化鉄、カドミウムイエロー、クロムイエロー、ハンザイエロー、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、スレンイエロー、キノリンイエロー、パーメネントイエローNCG等が挙げられる。   The colorant used in the present invention is selected from the viewpoints of hue angle, saturation, brightness, weather resistance, OHP transparency, and dispersibility in the toner. For example, examples of the black pigment include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon, nonmagnetic ferrite, and magnetite. Examples of yellow pigments include yellow lead, zinc yellow, yellow iron oxide, cadmium yellow, chrome yellow, hansa yellow, hansa yellow 10G, benzidine yellow G, benzidine yellow GR, selenium yellow, quinoline yellow, and permanent yellow NCG. Is mentioned.

橙色顔料としては赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ベンジジンオレンジG、インダスレンブリリアントオレンジRK、インダスレンブリリアントオレンジGK等が挙げられる。赤色顔料としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、ウオッチヤングレッド、パーマネントレッド4R、リソールレッド、ブリリアンカーミン3B、ブリリアンカーミン6B、デイポンオイルレッド、ピラゾロンレッド、ローダミンBレーキ、レーキレッドC、ローズベンガル、エオキシンレッド、アリザリンレーキ等が挙げられる。   Examples of the orange pigment include red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, benzidine orange G, indanthrene brilliant orange RK, indanthrene brilliant orange GK and the like. Red pigments include Bengala, cadmium red, red lead, mercury sulfide, watch young red, permanent red 4R, risor red, brilliantamine 3B, brilliantamine 6B, dapon oil red, pyrazolone red, rhodamine B rake, lake red C , Rose bengal, oxin red, alizarin lake and the like.

青色顔料としては、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、ファストスカイブルー、インダスレンブルーBC、アニリンブルー、ウルトラマリンブルー、カルコオイルブルー、メチレンブルークロライド、フタロシアニンブルー、フタロシアニングリーン、マラカイトグリーンオクサレレートなどが挙げられる。紫色顔料としては、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ等が挙げられる。緑色顔料としては、酸化クロム、クロムグリーン、ピグメント・グリーン、マラカイトグリーンレーキ、ファイナルイエローグリーンG等が挙げられる。   Blue pigments include bitumen, cobalt blue, alkali blue rake, Victoria blue rake, fast sky blue, indanthrene blue BC, aniline blue, ultramarine blue, calco oil blue, methylene blue chloride, phthalocyanine blue, phthalocyanine green, malachite green oxare. Rate and so on. Examples of purple pigments include manganese purple, fast violet B, and methyl violet lake. Examples of the green pigment include chromium oxide, chromium green, pigment green, malachite green lake, final yellow green G, and the like.

白色顔料としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等が挙げられる。体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等が挙げられる。また、染料としては、塩基性、酸性、分散、直接染料等の各種染料、例えば、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等が挙げられる。これらの顔料及び染料は単独、もしくは混合し、さらには固溶体の状態で使用できる。   Examples of white pigments include zinc white, titanium oxide, antimony white, and zinc sulfide. Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Examples of the dye include various dyes such as basic, acidic, dispersed, and direct dyes, such as nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue. These pigments and dyes can be used alone or in combination, and further in a solid solution state.

これらの着色剤は公知の方法で分散液中に分散させることができるが、例えば、回転せん断型ホモジナイザーやボールミル、サンドミル、アトライター等のメディア式分散機、高圧対向衝突式の分散機等が好ましく用いられる。本発明において、トナー中に分散させる着色剤の添加量は、トナー中に4〜15質量%の範囲が適当である。なお、黒色着色剤として磁性体を用いる場合は、他の着色剤とは異なり、30〜100質量%の範囲が適当である。   These colorants can be dispersed in the dispersion by a known method. For example, a rotary shear type homogenizer, a media mill such as a ball mill, a sand mill, or an attritor, a high-pressure counter collision type disperser, or the like is preferable. Used. In the present invention, the addition amount of the colorant dispersed in the toner is suitably in the range of 4 to 15% by mass in the toner. In addition, when using a magnetic body as a black coloring agent, the range of 30-100 mass% is suitable unlike other coloring agents.

またトナーを磁性トナーとして用いる場合は磁性粉を含有させてもよい。磁性粉としては、磁場中で磁化される物質が用いられ、鉄、コバルト、ニッケルのような強磁性の粉末、もしくはフェライト、マグネタイト等化合物が用いられる。本発明では、特に水相中でトナーを製造するため磁性体の水相移行性に注意を払う必要がある。好ましくは表面を改質し、例えば疎水化処理等を施して使用することが好ましい。   Moreover, when using a toner as a magnetic toner, you may contain a magnetic powder. As the magnetic powder, a material that is magnetized in a magnetic field is used, and a ferromagnetic powder such as iron, cobalt, or nickel, or a compound such as ferrite or magnetite is used. In the present invention, since the toner is produced in the aqueous phase, attention must be paid to the aqueous phase migration of the magnetic material. The surface is preferably modified and used, for example, after being subjected to a hydrophobic treatment.

本発明のトナーの形状係数SF1は画像形成性の点より110〜145の範囲が好ましい。形状係数SF1は、(周囲長の2乗/投影面積)の平均値として、例えば、以下の方法で算出される。即ち、スライドグラス上に散布したトナーの光学顕微鏡像をビデオカメラを通じてルーゼックス画像解析装置に取り込み、50個以上のトナーの周囲長の2乗/投影面積(ML2/A)を計算してその平均値を求める。 The shape factor SF1 of the toner of the present invention is preferably in the range of 110 to 145 from the viewpoint of image formability. The shape factor SF1 is calculated as an average value of (the square of the perimeter / projection area), for example, by the following method. That is, an optical microscope image of the toner spread on the slide glass is taken into a Luzex image analyzer through a video camera, and the square of the circumference of 50 or more toners / projection area (ML 2 / A) is calculated and averaged. Find the value.

本発明のトナーには、帯電性をより向上させ安定化させるために帯電制御剤を使用することができる。帯電制御剤としては4級アンモニウム塩化合物、ニグロシン系化合物、アルミニウム、鉄、クロムなどの錯体からなる染料やトリフェニルメタン系顔料など通常使用される種々の帯電制御剤を使用することが出来るが、凝集や融合・合一時の安定性に影響するイオン強度の制御と廃水汚染の低減の観点から水に溶解しにくい材料の方が好ましい。   In the toner of the present invention, a charge control agent can be used in order to further improve and stabilize the chargeability. As the charge control agent, various commonly used charge control agents such as quaternary ammonium salt compounds, nigrosine compounds, dyes composed of complexes of aluminum, iron, chromium and triphenylmethane pigments can be used. A material that is difficult to dissolve in water is preferable from the viewpoint of controlling the ionic strength that affects the stability of aggregation, fusion, and temporary combination and reducing wastewater contamination.

本発明のトナーには、帯電性を安定させるために湿式で無機微粒子を添加することができる。添加する無機微粒子としては、シリカ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウム、リン酸三カルシウムなど通常トナー表面の外添剤として使うすべてのものを使用することができ、イオン性界面活性剤や高分子酸、高分子塩基で分散して使用することが好ましい。   To the toner of the present invention, inorganic fine particles can be added in a wet manner in order to stabilize the chargeability. As the inorganic fine particles to be added, all of those usually used as external additives on the toner surface such as silica, alumina, titania, calcium carbonate, magnesium carbonate, and tricalcium phosphate can be used. It is preferable to use by dispersing with a molecular acid or a polymer base.

また、本発明においては、流動性付与やクリーニング性向上の目的で、トナーを乾燥した後、シリカ、アルミナ、チタニア、炭酸カルシウムなどの無機粒子やビニル系樹脂、ポリエステル、シリコーンなどの樹脂微粒子を外添剤としてせん断をかけながらトナー表面に添加することが好ましい。   In the present invention, for the purpose of imparting fluidity and improving cleaning properties, after drying the toner, inorganic particles such as silica, alumina, titania and calcium carbonate, and resin fine particles such as vinyl resin, polyester and silicone are removed. The additive is preferably added to the toner surface while being sheared.

本発明のトナーの製造方法において、乳化重合、樹脂微粒子分散、着色剤分散、離型剤分散、凝集、又はその安定化などに用いる界面活性剤として、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤、アミン塩型、4級アンモニウム塩型等のカチオン系界面活性剤、また、ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン性界面活性剤を併用することも効果的である。分散手段としては、回転せん断型ホモジナイザーやメデイアを有するボールミル、サンドミル、ダイノミルなどを使用することができる。   In the toner production method of the present invention, as a surfactant used for emulsion polymerization, resin fine particle dispersion, colorant dispersion, release agent dispersion, aggregation, or stabilization thereof, for example, sulfate ester salt type, sulfonate salt type Anionic surfactants such as phosphate esters and soaps, cationic surfactants such as amine salts and quaternary ammonium salts, polyethylene glycols, alkylphenol ethylene oxide adducts, polyhydric alcohols, etc. It is also effective to use a nonionic surfactant in combination. As the dispersing means, a rotary shear type homogenizer, a ball mill having a media, a sand mill, a dyno mill, or the like can be used.

また、樹脂と着色剤とからなる複合体を用いる場合、該複合体は樹脂と着色剤とを溶剤中に溶解分散した後、上記の適当な分散剤と共に水中に分散し、加熱、減圧により溶剤を除去する方法や、乳化重合により作成された樹脂微粒子表面に機械的せん断力で付与する方法や、電気的に吸着、固定化する方法により作成、準備することができる。これらの方法は、追加粒子としての着色剤の遊離を抑制したり、帯電性の着色剤依存性を改善するのに有効である。   In the case of using a composite composed of a resin and a colorant, the composite is dissolved and dispersed in a solvent after the resin and the colorant are dissolved, and then dispersed in water together with the appropriate dispersant. It can be prepared and prepared by a method for removing the surface, a method for imparting to the surface of resin fine particles prepared by emulsion polymerization with a mechanical shear force, or a method for electrically adsorbing and fixing. These methods are effective in suppressing the liberation of the colorant as additional particles and improving the dependency of the chargeable colorant.

重合終了後、任意の洗浄工程、固液分離工程、乾燥工程を経て所望のトナーを得るが、洗浄工程は、帯電性の点からイオン交換水で十分に置換洗浄を施すことが好ましい。また、固液分離工程は、特に制限はないが、生産性の点から吸引濾過、加圧濾過等が好ましい。乾燥工程も特に制限はないが、生産性の点から凍結乾燥、フラッシュジェット乾燥、流動乾燥、振動型流動乾燥等が好ましく用いられる。   After completion of the polymerization, a desired toner is obtained through any washing step, solid-liquid separation step, and drying step. In the washing step, it is preferable to sufficiently perform substitution washing with ion-exchanged water from the viewpoint of chargeability. The solid-liquid separation step is not particularly limited, but suction filtration, pressure filtration and the like are preferable from the viewpoint of productivity. The drying process is not particularly limited, but freeze drying, flash jet drying, fluidized drying, vibration fluidized drying and the like are preferably used from the viewpoint of productivity.

本発明では、前記の構成を採用することにより、低温定着性に優れ、かつドキュメントオフセットに優れた画像を提供することが可能になった。   In the present invention, it is possible to provide an image excellent in low-temperature fixability and excellent in document offset by adopting the above configuration.

<静電荷像現像剤>
本発明の静電荷像現像剤は、結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーを少なくとも含有するものである。
<Electrostatic image developer>
The electrostatic charge image developer of the present invention includes a glass transition containing a binder resin, a colorant, and inorganic fine particles having a volume average particle size of 0.1 to 0.5 μm and a specific gravity of 1.0 to 2.0. It contains at least an electrostatic image developing toner obtained by coating the surface of core particles having a temperature of 20 to 40 ° C. with a coating layer having a glass transition temperature of 50 to 100 ° C.

なお、本発明の静電荷像現像用トナーを単独で用いると一成分系の静電荷像現像剤として調製され、また、キャリアと組み合わせて用いると二成分系の静電荷像現像剤として調製される。
二成分系の静電荷像現像剤に使用し得るキャリアとしては、特に制限はなく、公知のキャリアを用いることができる。例えば酸化鉄、ニッケル、コバルト等の磁性金属、フェライト、マグネタイト等の磁性酸化物や、これら芯材表面に樹脂被覆層を有する樹脂コートキャリア、磁性分散型キャリア等を挙げることができる。またマトリックス樹脂に導電材料などが分散された樹脂分散型キャリアであってもよい。本発明においては、帯電特性の制御を良好に行うことができるために帯電分布の狭い現像剤を得ることが可能となることから、樹脂被覆層を表面に設けたキャリアを用いた現像剤を用いることが好ましい。
When the electrostatic image developing toner of the present invention is used alone, it is prepared as a one-component electrostatic image developer, and when used in combination with a carrier, it is prepared as a two-component electrostatic image developer. .
The carrier that can be used in the two-component electrostatic image developer is not particularly limited, and a known carrier can be used. Examples thereof include magnetic metals such as iron oxide, nickel and cobalt, magnetic oxides such as ferrite and magnetite, resin-coated carriers having a resin coating layer on the surface of the core material, and magnetic dispersion carriers. Further, a resin dispersion type carrier in which a conductive material or the like is dispersed in a matrix resin may be used. In the present invention, it is possible to obtain a developer having a narrow charge distribution because the charge characteristics can be controlled well, so a developer using a carrier having a resin coating layer provided on the surface is used. It is preferable.

キャリアに使用される被覆樹脂・マトリックス樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルエーテル、ポリビニルケトン、塩化ビニル−酢酸ビニル共重合体、スチレン−アクリル酸共重合体、オルガノシロキサン結合からなるストレートシリコーン樹脂またはその変性品、フッ素樹脂、ポリエステル、ポリカーボネート、フェノール樹脂、エポキシ樹脂等を例示することができるが、これらに限定されるものではない。   Coating resins and matrix resins used for carriers include polyethylene, polypropylene, polystyrene, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, polyvinyl ether, polyvinyl ketone, vinyl chloride-vinyl acetate copolymer, styrene-acrylic. Examples thereof include, but are not limited to, acid copolymers, straight silicone resins composed of organosiloxane bonds or modified products thereof, fluororesins, polyesters, polycarbonates, phenol resins, epoxy resins and the like.

導電材料としては、金、銀、銅といった金属やカーボンブラック、更に酸化チタン、酸化亜鉛、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、酸化スズ、カーボンブラック等を例示することができるが、これらに限定されるものではない。   Examples of the conductive material include metals such as gold, silver and copper, carbon black, titanium oxide, zinc oxide, barium sulfate, aluminum borate, potassium titanate, tin oxide, and carbon black. It is not limited.

またキャリアの芯材としては、鉄、ニッケル、コバルト等の磁性金属、フェライト、マグネタイト等の磁性酸化物、ガラスビーズ等が挙げられるが、キャリアを磁気ブラシ法に用いるためには、磁性材料であることが好ましい。キャリアの芯材の体積平均粒径としては、一般的には10〜500μmであり、好ましくは30〜100μmである。   Examples of the core material of the carrier include magnetic metals such as iron, nickel, and cobalt, magnetic oxides such as ferrite and magnetite, and glass beads. However, in order to use the carrier for the magnetic brush method, it is a magnetic material. It is preferable. The volume average particle size of the core material of the carrier is generally 10 to 500 μm, preferably 30 to 100 μm.

またキャリアの芯材の表面に樹脂被覆するには、前記被覆樹脂、および必要に応じて各種添加剤を適当な溶媒に溶解した表面層形成用溶液により被覆する方法が挙げられる。溶媒としては、特に限定されるものではなく、使用する被覆樹脂、塗布適性等を勘案して適宜選択すればよい。   In order to coat the surface of the core material of the carrier with a resin, a method of coating the surface with a coating solution for forming the surface layer in which the coating resin and, if necessary, various additives are dissolved in an appropriate solvent may be mentioned. The solvent is not particularly limited and may be appropriately selected in consideration of the coating resin to be used, coating suitability, and the like.

具体的な樹脂被覆方法としては、キャリアの芯材を表面層形成用溶液中に浸漬する浸漬法、表面層形成用溶液をキャリアの芯材表面に噴霧するスプレー法、キャリアの芯材を流動エアーにより浮遊させた状態で表面層形成用溶液を噴霧する流動床法、ニーダーコーター中でキャリアの芯材と表面層形成溶液とを混合し、溶剤を除去するニーダーコーター法が挙げられる。   Specific resin coating methods include a dipping method in which the carrier core material is immersed in the surface layer forming solution, a spray method in which the surface layer forming solution is sprayed on the surface of the carrier core material, and the carrier core material is fluidized air. And a kneader coater method in which the core material of the carrier and the surface layer forming solution are mixed in a kneader coater to remove the solvent.

二成分系の静電荷像現像剤における本発明の静電荷像現像用トナーと上記キャリアとの混合比(質量比)としては、トナー:キャリア=1:100〜30:100程度の範囲であり、3:100〜20:100程度の範囲がより好ましい。   The mixing ratio (mass ratio) of the electrostatic image developing toner of the present invention and the carrier in a two-component electrostatic image developer is in the range of toner: carrier = 1: 100 to 30: 100, The range of about 3: 100 to 20: 100 is more preferable.

<画像形成方法>
本発明の画像形成方法は、潜像保持体表面に静電荷像を形成する潜像形成工程と、現像剤担持体に担持された現像剤を用いて前記潜像保持体表面に形成された静電荷像を現像してトナー画像を形成する現像工程と、前記潜像保持体表面に形成されたトナー画像を被転写体表面に転写する転写工程と、前記被転写体表面に転写されたトナー画像を熱定着する定着工程と、を少なくとも有するものであり、前記現像剤として、本発明の静電荷像現像剤を用いる。
<Image forming method>
The image forming method of the present invention comprises a latent image forming step for forming an electrostatic charge image on the surface of the latent image carrier and a developer formed on the surface of the latent image carrier using a developer carried on the developer carrier. A developing step of developing a charge image to form a toner image, a transferring step of transferring the toner image formed on the surface of the latent image holding member to the surface of the transfer target, and a toner image transferred to the surface of the transfer target And a fixing step for heat-fixing the toner. The electrostatic image developer of the present invention is used as the developer.

前記現像剤は、一成分系、二成分系のいずれの態様であってもよい。上記の各工程は、いずれも画像形成方法において公知の工程が利用できる。また、本発明の画像形成方法は、上記した工程以外の工程を含むものであってもよい。   The developer may be either a one-component system or a two-component system. As each of the above steps, a known step in the image forming method can be used. The image forming method of the present invention may include steps other than the steps described above.

前記潜像保持体としては、例えば、電子写真感光体および誘電記録体等が使用できる。
電子写真感光体の場合、該電子写真感光体の表面を、コロトロン帯電器、接触帯電器等により一様に帯電した後、露光し、静電荷像を形成する(潜像形成工程)。次いで、表面に現像剤層を形成させた現像ロールと接触若しくは近接させて、静電荷像にトナーを付着させ、電子写真感光体上にトナー像を形成する(現像工程)。形成されたトナー像は、コロトロン帯電器等を利用して紙等の被転写体表面に転写される(転写工程)。さらに、被転写体表面に転写されたトナー像は、定着機により熱定着され、最終的なトナー像が形成される。
尚、前記定着機による熱定着の際には、オフセット等を防止するため、通常、前記定着機における定着部材に離型剤が供給される。
As the latent image holding member, for example, an electrophotographic photosensitive member and a dielectric recording member can be used.
In the case of an electrophotographic photosensitive member, the surface of the electrophotographic photosensitive member is uniformly charged by a corotron charger, a contact charger or the like and then exposed to form an electrostatic charge image (latent image forming step). Next, the toner is attached to the electrostatic image by bringing it into contact with or in proximity to a developing roll having a developer layer formed on the surface, thereby forming a toner image on the electrophotographic photosensitive member (developing step). The formed toner image is transferred onto the surface of a transfer medium such as paper using a corotron charger or the like (transfer process). Further, the toner image transferred to the surface of the transfer target is heat-fixed by a fixing device, and a final toner image is formed.
In the heat fixing by the fixing machine, a release agent is usually supplied to a fixing member in the fixing machine in order to prevent an offset or the like.

本発明の静電荷像現像用トナー(二成分現像剤に含まれるものを含む。以下同様。)において、結着樹脂中に架橋構造がある場合には、その効果から離型性に優れ、離型剤の使用量を低減する、若しくは離型剤を使用せずに定着を行うことができる。   In the electrostatic image developing toner of the present invention (including those contained in a two-component developer; the same applies hereinafter), if the binder resin has a crosslinked structure, it is excellent in releasability due to its effect. Fixing can be performed without using a mold release agent or without using a mold release agent.

前記離型剤は、定着後の被転写体および画像へのオイルの付着をなくす観点からは使用しない方が好ましいが、前記離型剤の供給量を0mg/cm2にすると、定着時に前記定着部材と紙等の被転写体とが接触した際に、前記定着部材の磨耗量が増大し、前記定着部材の耐久性が低下してしまう場合があるので、必要ならば、前記離型剤の使用量が8.0×10-3mg/cm2以下の範囲で、前記定着部材に微量に供給されていることが好ましい。 The release agent is preferably not used from the viewpoint of eliminating oil adhesion to the transfer target and image after fixing. However, when the supply amount of the release agent is 0 mg / cm 2 , the fixing agent is fixed during fixing. When the member and the transfer medium such as paper come into contact with each other, the amount of wear of the fixing member may increase and the durability of the fixing member may decrease. It is preferable that the amount used is supplied to the fixing member in a small amount within a range of 8.0 × 10 −3 mg / cm 2 or less.

前記離型剤の供給量が、8.0×10-3mg/cm2を越えると、定着後に画像表面に付着した離型剤のために画質が低下し、特にOHPのような透過光を利用する場合には、かかる現象が顕著に現れることがある。また、被転写体への離型剤の付着が顕著になり、ベタ付きが発生することもある。さらに、前記離型剤の供給量は、多くなるほど離型剤を貯蔵しておくタンク容量も大きくしなければならず、定着装置自体の大型化を招く要因ともなる。 When the supply amount of the release agent exceeds 8.0 × 10 −3 mg / cm 2 , the image quality deteriorates due to the release agent adhering to the image surface after fixing, and in particular, transmitted light such as OHP is transmitted. When used, such a phenomenon may be prominent. Further, the adhesion of the release agent to the transfer target becomes remarkable, and stickiness may occur. Furthermore, the larger the supply amount of the release agent, the larger the capacity of the tank for storing the release agent, which causes an increase in the size of the fixing device itself.

前記離型剤としては、特に制限はないが、例えば、ジメチルシリコーンオイル、フッ素オイル、フロロシリコーンオイルやアミノ変性シリコーンオイル等の変性オイル等の液体離型剤が挙げられる。中でも、前記定着部材の表面に吸着し、均質な離型剤層を形成しうる観点より、アミノ変性シリコーンオイル等の変性オイルが、前記定着部材に対する塗れ性に優れ、好ましい。また、均質な離型剤層を形成しうる観点より、フッ素オイル、フロロシリコーンオイルが好ましい。   Although there is no restriction | limiting in particular as said mold release agent, For example, liquid mold release agents, such as modified oils, such as dimethyl silicone oil, fluorine oil, fluoro silicone oil, and amino modified silicone oil, are mentioned. Among these, modified oils such as amino-modified silicone oil are preferable because they are adsorbed on the surface of the fixing member and can form a homogeneous release agent layer, because they have excellent wettability to the fixing member. Further, from the viewpoint of forming a homogeneous release agent layer, fluorine oil and fluorosilicone oil are preferable.

前記加熱圧着に用いる定着部材であるローラあるいはベルトの表面に、前記離型剤を供給する方法としては、特に制限はなく、例えば、液体離型剤を含浸したパッドを用いるパッド方式、ウエブ方式、ローラ方式、非接触型のシャワー方式(スプレー方式)等が挙げられ、なかでも、ウエブ方式、ローラ方式が好ましい。これらの方式の場合、前記離型剤を均一に供給でき、しかも供給量をコントロールすることが容易な点で有利である。尚、シャワー方式により前記定着部材の全体に均一に前記離型剤を供給するには、別途ブレード等を用いる必要がある。   The method for supplying the release agent to the surface of the roller or belt, which is a fixing member used for the thermocompression bonding, is not particularly limited. For example, a pad method using a pad impregnated with a liquid release agent, a web method, Examples thereof include a roller method and a non-contact type shower method (spray method). Among these, a web method and a roller method are preferable. These methods are advantageous in that the release agent can be supplied uniformly and it is easy to control the supply amount. In order to supply the release agent uniformly to the entire fixing member by the shower method, it is necessary to use a separate blade or the like.

前記離型剤の供給量は、以下のようにして測定できる。即ち、その表面に離型剤を供給した定着部材に、一般の複写機で使用される普通紙(代表的には、富士ゼロックス(株)製の複写用紙、商品名J紙)を通過させると、該普通紙上に離型剤が付着する。この付着した離型剤をソックスレー抽出器を用いて抽出する。ここで、溶媒にはヘキサンを用いる。
このヘキサン中に含まれる離型剤の量を、原子吸光分析装置にて定量することで、普通紙に付着した離型剤の量を定量できる。この量を離型剤の定着部材への供給量と定義する。
The supply amount of the release agent can be measured as follows. That is, when a normal paper (typically a copy paper manufactured by Fuji Xerox Co., Ltd., trade name J paper) used in a general copying machine is passed through a fixing member supplied with a release agent on its surface. The release agent adheres to the plain paper. The attached release agent is extracted using a Soxhlet extractor. Here, hexane is used as the solvent.
By quantifying the amount of the release agent contained in the hexane with an atomic absorption analyzer, the amount of the release agent adhering to the plain paper can be quantified. This amount is defined as the amount of release agent supplied to the fixing member.

トナー像を転写する被転写体(記録材)としては、例えば、電子写真方式の複写機、プリンター等に使用される普通紙、OHPシート等が挙げられる。
定着後における画像表面の平滑性をさらに向上させるには、前記被転写体の表面もできるだけ平滑であることが好ましく、例えば、普通紙の表面を樹脂等でコーティングしたコート紙、印刷用のアート紙等を好適に使用することができる。
Examples of the transfer target (recording material) to which the toner image is transferred include plain paper, OHP sheet, and the like used in electrophotographic copying machines and printers.
In order to further improve the smoothness of the image surface after fixing, it is preferable that the surface of the transfer object is as smooth as possible. For example, coated paper in which the surface of plain paper is coated with a resin or the like, art paper for printing Etc. can be used suitably.

本発明の画像形成方法は、本発明の静電荷像現像剤(本発明の静電荷像現像用トナー)を用いているため低温定着性に優れ、かつドキュメントオフセット性に優れた画像を形成可能である。   The image forming method of the present invention uses the electrostatic charge image developer of the present invention (the toner for developing an electrostatic charge image of the present invention), and therefore can form an image having excellent low-temperature fixability and excellent document offset property. is there.

以下、本発明について実施例を用いてさらに詳細に説明するが、本発明は下記実施例により限定されるものではない。
下記の樹脂微粒子分散液、着色剤分散液、無機微粒子分散液、離形剤分散液、テルペン変性ノボラック樹脂微粒子分散液をそれぞれ調製し、これらを所定の割合で混合し攪拌しながら、これに無機金属塩の重合体を添加しイオン的に中和して凝集粒子を形成する。無機水酸化物で系内のpHを弱酸性から中性に調整した後、前記樹脂微粒子のガラス転移温度以上に加熱して融合・合一させる。その後、十分な洗浄、固液分離、乾燥の各工程を経て所望のトナーを得た。以下、それぞれの調製方法を説明する。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by the following Example.
The following resin fine particle dispersion, colorant dispersion, inorganic fine particle dispersion, release agent dispersion, and terpene-modified novolak resin fine particle dispersion were prepared, mixed at a predetermined ratio, and stirred, A metal salt polymer is added and ionically neutralized to form aggregated particles. After adjusting the pH of the system from weakly acidic to neutral with an inorganic hydroxide, the mixture is heated to a temperature higher than the glass transition temperature of the resin fine particles to be fused and united. Then, the desired toner was obtained through sufficient steps of washing, solid-liquid separation, and drying. Hereinafter, each preparation method is demonstrated.

(樹脂微粒子分散液1Aの調製)
スチレン(和光純薬製) 200質量部
nブチルアクリレート(和光純薬製) 200質量部
βカルボキシエチルアクリレート(ローディア日華製) 9質量部
1、10デカンジオールジアクリレート(新中村化学製) 1.5質量部
ドデカンチオール(和光純薬製) 2.7質量部
以上を混合溶解し、これをアニオン性界面活性剤ダウファックス(ダウケミカル社製)4質量部を含有するイオン交換水550質量部に溶解し、さらにフラスコ中で分散、乳化し10分間ゆっくりと攪拌・混合しながら、過硫酸アンモニウム6質量部を溶解したイオン交換水50質量部を投入した。次いで系内の窒素置換を十分に行った後、フラスコ内を攪拌しながらオイルバスで系内が70℃になるまで加熱し、5時間そのまま乳化重合を継続した。これにより体積平均粒径196nm、ガラス転移温度28.3℃のアニオン性の樹脂微粒子分散液1Aを得た。
(Preparation of resin fine particle dispersion 1A)
Styrene (manufactured by Wako Pure Chemical Industries) 200 parts by mass n-butyl acrylate (manufactured by Wako Pure Chemical Industries) 200 parts by mass β-carboxyethyl acrylate (manufactured by Rhodia Nikka) 9 parts by mass 1, 10 decanediol diacrylate (manufactured by Shin-Nakamura Chemical) 5 parts by mass dodecanethiol (manufactured by Wako Pure Chemical Industries, Ltd.) 2.7 parts by mass The above is mixed and dissolved, and this is added to 550 parts by mass of ion-exchanged water containing 4 parts by mass of the anionic surfactant Dowfax (manufactured by Dow Chemical). Dissolved, further dispersed and emulsified in a flask, and slowly stirred and mixed for 10 minutes, and then charged with 50 parts by mass of ion-exchanged water in which 6 parts by mass of ammonium persulfate was dissolved. Next, after sufficiently replacing the nitrogen in the system, the system was heated in an oil bath while stirring the flask until it reached 70 ° C., and emulsion polymerization was continued for 5 hours. As a result, an anionic resin fine particle dispersion 1A having a volume average particle size of 196 nm and a glass transition temperature of 28.3 ° C. was obtained.

(樹脂微粒子分散液2Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン210質量部、nブチルアクリレート190質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液2Aを得た。体積平均粒径195nm、ガラス転移温度32.1℃であった。
(Preparation of resin fine particle dispersion 2A)
In the adjustment of the resin fine particle dispersion 1A, a resin fine particle dispersion 2A was obtained in the same manner as the adjustment of the resin fine particle dispersion 1A except that 210 parts by mass of styrene and 190 parts by mass of n-butyl acrylate were used. The volume average particle size was 195 nm and the glass transition temperature was 32.1 ° C.

(樹脂微粒子分散液3Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン230質量部、nブチルアクリレート170質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液3Aを得た。体積平均粒径199nm、ガラス転移温度35.5℃であった。
(Preparation of resin fine particle dispersion 3A)
In the adjustment of the resin fine particle dispersion 1A, a resin fine particle dispersion 3A was obtained in the same manner as the adjustment of the resin fine particle dispersion 1A except that 230 parts by mass of styrene and 170 parts by mass of n-butyl acrylate were used. The volume average particle diameter was 199 nm and the glass transition temperature was 35.5 ° C.

(樹脂微粒子分散液4Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン250質量部、nブチルアクリレート150質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液4Aを得た。体積平均粒径200nm、ガラス転移温度38.9℃であった。
(Preparation of resin fine particle dispersion 4A)
A resin fine particle dispersion 4A was obtained in the same manner as the adjustment of the resin fine particle dispersion 1A except that the resin fine particle dispersion 1A was adjusted to 250 parts by mass of styrene and 150 parts by mass of n-butyl acrylate. The volume average particle size was 200 nm and the glass transition temperature was 38.9 ° C.

(樹脂微粒子分散液5Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン315質量部、nブチルアクリレート75質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液5Aを得た。体積平均粒径201nm、ガラス転移温度54.2℃であった。
(Preparation of resin fine particle dispersion 5A)
A resin fine particle dispersion 5A was obtained in the same manner as the adjustment of the resin fine particle dispersion 1A except that the resin fine particle dispersion 1A was adjusted to 315 parts by mass of styrene and 75 parts by mass of n-butyl acrylate. The volume average particle size was 201 nm, and the glass transition temperature was 54.2 ° C.

(樹脂微粒子分散液6Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン330質量部、nブチルアクリレート70質量部、βカルボキシエチルアクリレート9.5質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液6Aを得た。体積平均粒径198nm、ガラス転移温度58.7℃であった。
(Preparation of resin fine particle dispersion 6A)
Resin fine particle dispersion liquid 1A was prepared in the same manner as the resin fine particle dispersion liquid 1A except that 330 parts by mass of styrene, 70 parts by mass of n-butyl acrylate, and 9.5 parts by mass of β-carboxyethyl acrylate were used. 6A was obtained. The volume average particle size was 198 nm and the glass transition temperature was 58.7 ° C.

(樹脂微粒子分散液7Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン360質量部、nブチルアクリレート40質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液7Aを得た。体積平均粒径202nm、ガラス転移温度62.4℃であった。
(Preparation of resin fine particle dispersion 7A)
Resin fine particle dispersion 7A was obtained in the same manner as the adjustment of resin fine particle dispersion 1A, except that in the adjustment of resin fine particle dispersion 1A, 360 parts by mass of styrene and 40 parts by mass of n-butyl acrylate were used. The volume average particle size was 202 nm, and the glass transition temperature was 62.4 ° C.

(樹脂微粒子分散液8Aの調製)
樹脂微粒子分散液1Aの調整において、スチレン375質量部、nブチルアクリレート25質量部としたこと以外は樹脂微粒子分散液1Aの調整と同様にして樹脂微粒子分散液8Aを得た。体積平均粒径199nm、ガラス転移温度68.2℃であった。
(Preparation of resin fine particle dispersion 8A)
A resin fine particle dispersion 8A was obtained in the same manner as the adjustment of the resin fine particle dispersion 1A, except that the adjustment of the resin fine particle dispersion 1A was changed to 375 parts by mass of styrene and 25 parts by mass of n-butyl acrylate. The volume average particle diameter was 199 nm and the glass transition temperature was 68.2 ° C.

(着色剤分散液1Aの調製)
フタロシアニン顔料(大日精化社製、PVFASTBLUE) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて着色剤分散液1Aを調製した。着色剤分散液1Aにおける着色剤の数平均粒径は150nmであった。
(Preparation of colorant dispersion 1A)
Phthalocyanine pigment (manufactured by Dainichi Seika Co., Ltd., PVFASTBLUE) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more, and homogenizer (manufactured by IKA, After dispersing for 10 minutes using an ultra turrax T50), a colorant dispersion 1A was prepared by applying to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP). The number average particle diameter of the colorant in the colorant dispersion 1A was 150 nm.

(着色剤分散液2Aの調製)
カーボンブラック(CABOT社製、R330) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Aと同様の条件にて着色剤分散液2Aを調製した。着色剤分散液2Aにおける着色剤の数平均粒径は155nmであった。
(Preparation of colorant dispersion 2A)
Carbon black (manufactured by CABOT, R330) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more are mixed and the same as the colorant dispersion 1A Colorant dispersion 2A was prepared under the conditions. The number average particle diameter of the colorant in the colorant dispersion 2A was 155 nm.

(着色剤分散液3Aの調製)
C.Iピグメント・レッド122(大日製化社製、ECR−185)90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Aと同様の条件にて着色剤分散液3Aを調製した。着色剤分散液3Aにおける着色剤の数平均粒径は165nmであった。
(Preparation of colorant dispersion 3A)
C. I Pigment Red 122 (manufactured by Dainichi Chemical Co., Ltd., ECR-185) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass Colorant dispersion 3A was prepared under the same conditions as colorant dispersion 1A. The number average particle diameter of the colorant in the colorant dispersion 3A was 165 nm.

(着色剤分散液4Aの調製)
C.Iピグメントイエロー74(クラリアント社製) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Aと同様の条件にて着色剤分散液4Aを調製した。着色剤分散液4Aにおける着色剤の数平均粒径は175nmであった。
(Preparation of colorant dispersion 4A)
C. I Pigment Yellow 74 (manufactured by Clariant) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more and the same as the colorant dispersion 1A A colorant dispersion 4A was prepared under the conditions. The number average particle diameter of the colorant in the colorant dispersion 4A was 175 nm.

(無機微粒子分散液1Aの調製)
シリカゾル(比重1.6) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.4μmのシリカ微粒子を含有する無機微粒子分散液1Aを得た。
(Preparation of inorganic fine particle dispersion 1A)
Silica sol (specific gravity 1.6) 50 parts by mass Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by mass Ion-exchanged water 200 parts by mass The above was mixed and homogenizer (IKA, Ultra Turrax T50). ) For 10 minutes, and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) to obtain an inorganic fine particle dispersion 1A containing silica fine particles having a volume average particle size of 0.4 μm.

(無機微粒子分散液2Aの調製)
シリカゾル(比重3.0) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.4μmの微粒子を含有する無機微粒子分散液2Aを得た。
(Preparation of inorganic fine particle dispersion 2A)
Silica sol (specific gravity 3.0) 50 parts by mass Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by mass Ion-exchanged water 200 parts by mass The above was mixed and a homogenizer (IKA, Ultra Turrax T50). ) Was applied for 10 minutes, and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) to obtain an inorganic fine particle dispersion 2A containing fine particles having a volume average particle diameter of 0.4 μm.

(無機微粒子分散液3Aの調製)
シリカゾル(比重1.8) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径1.1μmのシリカ微粒子を含有する無機微粒子分散液3Aを得た。
(Preparation of inorganic fine particle dispersion 3A)
Silica sol (specific gravity 1.8) 50 parts by mass Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by mass Ion-exchanged water 200 parts by mass The above is mixed, and a homogenizer (IKA, Ultra Turrax T50) is mixed. ) For 10 minutes, and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) to obtain an inorganic fine particle dispersion 3A containing silica fine particles having a volume average particle size of 1.1 μm.

(離型剤分散液1Aの調製)
パラフィンワックス(日本精蝋社製、HNP0190、融点85℃)50質量部
カチオン性界面活性剤(花王社製、サニゾールB50) 5質量部
イオン交換水 200質量部
上記成分を95℃に加熱して、ホモジナイザー(IKA 社製、ウルトラタラックスT50)で十分に分散した後、圧力吐出型ホモジナイザーで分散処理し、体積平均粒径200nmの離型剤粒子を含有する離型剤分散液1Aを得た。
(Preparation of release agent dispersion 1A)
Paraffin wax (manufactured by Nippon Seiwa Co., Ltd., HNP0190, melting point 85 ° C.) 50 parts by mass Cationic surfactant (manufactured by Kao Corporation, Sanizol B50) 5 parts by mass Ion-exchanged water 200 parts by mass The above components are heated to 95 ° C., After sufficiently dispersing with a homogenizer (manufactured by IKA, Ultra Turrax T50), it was dispersed with a pressure discharge type homogenizer to obtain a release agent dispersion 1A containing release agent particles having a volume average particle diameter of 200 nm.

(トナー1Aの製造)
(凝集工程)
イオン交換水 500質量部
樹脂微粒子分散液1A 200質量部
樹脂微粒子分散液5A 25質量部
着色剤分散液1A 36質量部
無機微粒子分散液1A 10質量部
離型剤分散液1A 35質量部
凝集剤〔浅田化学社製、ポリ塩化アルミニウム〕 0.5質量部
以上の混合成分を丸型ステンレス製フラスコ中で、ホモジナイザー(ウルトラタラックスT50、IKA社製)で混合分散した。その後、加熱用オイルバスでフラスコを撹拌しながら凝集温度を30℃まで加熱した。その後32℃で1.5時間保持した。
(付着工程)
上記調製した凝集粒子を含む分散液に、樹脂微粒子分散液5Aを25質量部緩やかに添加し、加熱用オイルバスの温度を上げて35℃で1時間保持した。
(融合工程)
次に、1mol/Lの水酸化ナトリウム水溶液をpHが6.0になるように添加した後、ステンレス製フラスコを密閉し、磁力シールを用いて撹拌を継続しながら85℃まで緩やかに加熱し、その後96℃まで加熱し1mol/Lの硝酸水溶液をpH5.0になるまで加え、5時間保持した。その後、冷却、ろ過し、イオン交換水で十分に洗浄した後、真空乾燥機を用いて乾燥させることによりトナー1Aを作製した。体積平均粒径は5.3μm、被覆層厚みは0.41μmであった。
(Manufacture of toner 1A)
(Aggregation process)
Ion-exchanged water 500 parts by weight Resin fine particle dispersion 1A 200 parts by weight Resin fine particle dispersion 5A 25 parts by weight Colorant dispersion 1A 36 parts by weight Inorganic fine particle dispersion 1A 10 parts by weight Release agent dispersion 1A 35 parts by weight Flocculant [ Asada Chemical Co., Ltd., polyaluminum chloride] 0.5 parts by mass The above mixed components were mixed and dispersed in a round stainless steel flask using a homogenizer (Ultra Turrax T50, manufactured by IKA). Thereafter, the agglomeration temperature was heated to 30 ° C. while stirring the flask in a heating oil bath. Thereafter, it was kept at 32 ° C. for 1.5 hours.
(Adhesion process)
25 parts by mass of resin fine particle dispersion 5A was slowly added to the dispersion containing the aggregated particles prepared above, and the temperature of the heating oil bath was raised and maintained at 35 ° C. for 1 hour.
(Fusion process)
Next, after adding a 1 mol / L sodium hydroxide aqueous solution so that the pH becomes 6.0, the stainless steel flask was sealed, and gently heated to 85 ° C. while continuing stirring using a magnetic seal, Thereafter, the mixture was heated to 96 ° C., a 1 mol / L aqueous nitric acid solution was added until pH 5.0, and the mixture was held for 5 hours. Thereafter, the toner 1A was produced by cooling, filtering, thoroughly washing with ion-exchanged water, and drying using a vacuum dryer. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.41 μm.

(トナー2Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液2Aを175質量部用い、付着工程にて樹脂微粒子分散液6Aを25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を35℃と変更した以外はトナー1Aの製造と同様にしてトナー2Aを得た。体積平均粒径は5.4μm、被覆層厚みは0.50μmであった。
(Manufacture of toner 2A)
Instead of resin fine particle dispersion 1A, 175 parts by mass of resin fine particle dispersion 2A was used, and 25 parts by mass of resin fine particle dispersion 6A was added in the adhering step. A toner 2A was obtained in the same manner as in the production of the toner 1A, except that the heating temperature when the resin fine particle dispersion was added in the adhesion step was changed to 35 ° C. The volume average particle diameter was 5.4 μm, and the coating layer thickness was 0.50 μm.

(トナー3Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液3Aを150質量部用い、付着工程にて樹脂微粒子分散液7Aを20質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を37℃と変更した以外はトナー1Aの製造と同様にしてトナー3Aを得た。体積平均粒径は、6.3μm、被覆層厚みは0.74μmであった。
(Manufacture of toner 3A)
In place of the resin fine particle dispersion 1A, 150 parts by mass of the resin fine particle dispersion 3A was used, and 20 parts by mass of the resin fine particle dispersion 7A was added in the attaching step. A toner 3A was obtained in the same manner as in the production of the toner 1A except that the heating temperature when the resin fine particle dispersion was added in the attaching step was changed to 37 ° C. The volume average particle diameter was 6.3 μm, and the coating layer thickness was 0.74 μm.

(トナー4Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液4Aを160質量部用い、32℃で凝集させ、付着工程にて樹脂微粒子分散液8Aを15質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を37℃と変更した以外はトナー1Aの製造と同様にしてトナー4Aを得た。体積平均粒径は6.5μm、被覆層厚みは0.62μmであった。
(Manufacture of toner 4A)
In place of the resin fine particle dispersion 1A, 160 parts by mass of the resin fine particle dispersion 4A was aggregated at 32 ° C., and 15 parts by mass of the resin fine particle dispersion 8A was added in the attaching step. A toner 4A was obtained in the same manner as in the production of the toner 1A except that the heating temperature when the resin fine particle dispersion was added in the attaching step was changed to 37 ° C. The volume average particle diameter was 6.5 μm, and the coating layer thickness was 0.62 μm.

(トナー5Aの製造)
無機微粒子分散液1Aの代わりに、無機微粒子分散液2Aを用いた以外はトナー1Aの製造と同様にしてトナー5Aを得た。体積平均粒径は5.3μm、被覆層厚みは0.41μmであった。
(Manufacture of toner 5A)
A toner 5A was obtained in the same manner as in the production of the toner 1A except that the inorganic fine particle dispersion 2A was used instead of the inorganic fine particle dispersion 1A. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.41 μm.

(トナー6Aの製造)
無機微粒子分散液1Aの代わりに、無機微粒子分散液3Aを用いた以外はトナー1Aの製造と同様にしてトナー6Aを得た。体積平均粒径は5.3μm、被覆層厚みは0.41μmであった。
(Manufacture of toner 6A)
A toner 6A was obtained in the same manner as in the production of the toner 1A except that the inorganic fine particle dispersion 3A was used instead of the inorganic fine particle dispersion 1A. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.41 μm.

(トナー7Aの製造)
無機微粒子分散液1Aを添加しない以外はトナー1Aの製造と同様にしてトナー7Aを得た。体積平均粒径は5.3μm、被覆層厚みは0.40μmであった。
(Manufacture of toner 7A)
A toner 7A was obtained in the same manner as in the production of the toner 1A except that the inorganic fine particle dispersion 1A was not added. The volume average particle size was 5.3 μm, and the coating layer thickness was 0.40 μm.

(トナー8Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液5Aを用い、凝集温度を55℃とし、付着工程にて樹脂微粒子分散液5Aの代わりに樹脂微粒子分散液6Aを用い、加熱温度を59℃とした以外は、トナー1Aの製造と同様にしてトナー8Aを得た。体積平均粒径は5.3μm、被覆層厚みは0.53μmであった。
(Manufacture of toner 8A)
The resin fine particle dispersion 5A was used instead of the resin fine particle dispersion 1A, the aggregation temperature was 55 ° C., the resin fine particle dispersion 6A was used instead of the resin fine particle dispersion 5A in the adhesion step, and the heating temperature was 59 ° C. Except for the above, Toner 8A was obtained in the same manner as in the manufacture of Toner 1A. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.53 μm.

(トナー9Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液2Aを用い、付着工程にて樹脂微粒子分散液5Aの代わりに樹脂微粒子分散液4Aを用い、加熱温度を40℃とした以外は、トナー1Aの製造と同様にしてトナー9Aを得た。体積平均粒径は5.8μm、被覆層厚みは0.63μmであった。
(Manufacture of toner 9A)
Production of toner 1A except that resin fine particle dispersion 2A is used instead of resin fine particle dispersion 1A, resin fine particle dispersion 4A is used instead of resin fine particle dispersion 5A, and the heating temperature is 40 ° C. in the attaching step. In the same manner as described above, a toner 9A was obtained. The volume average particle diameter was 5.8 μm, and the coating layer thickness was 0.63 μm.

(トナー10Aの製造)
樹脂微粒子分散液1Aの代わりに樹脂微粒子分散液5Aを用い、凝集温度を55℃し、付着工程にて樹脂微粒子分散液5Aの代わりに樹脂微粒子分散液4Aを用い、加熱温度を55℃とした以外は、トナー1Aの製造と同様にしてトナー10Aを得た。体積平均粒径は5.9μm、被覆層厚みは0.76μmであった。
(Manufacture of toner 10A)
The resin fine particle dispersion 5A was used in place of the resin fine particle dispersion 1A, the aggregation temperature was 55 ° C., and the resin fine particle dispersion 4A was used in place of the resin fine particle dispersion 5A in the attaching step, and the heating temperature was 55 ° C. Except for the above, a toner 10A was obtained in the same manner as in the production of the toner 1A. The volume average particle diameter was 5.9 μm, and the coating layer thickness was 0.76 μm.

(外添トナーの作製)
トナー1A〜10Aのそれぞれのトナー100質量部に対し、疎水性シリカ(キャボット製、TS720)を0.70質量部添加し、サンプルミルで混合して外添トナー1A〜10Aを得た。
(Preparation of external toner)
0.70 parts by mass of hydrophobic silica (Cabot, TS720) was added to 100 parts by mass of each of the toners 1A to 10A, and mixed with a sample mill to obtain externally added toners 1A to 10A.

(画像出力)
外添トナー1A〜10Aを8質量部とキャリア100質量部とをボールミルで5分間攪拌、混合して現像剤1A〜10Aを調整し、以下の手順で定着性能等の評価のための画像出力を行った。キャリアは樹脂被覆型のキャリアであり、メチルメタクリレート(Mw78000、綜研化学社製)を1質量%コートした体積平均粒径が50μmのフェライトキャリアを用いた。調整された現像剤を、定着器を取り外した富士ゼロックス社製カラー複写機Docucolor1250の現像器にセットし未定着画像を出力した。出力画像は40x40mmの大きさのハーフトーン画像で、画像トナー量は0.20mg/cm2となるよう調整した。用紙は富士ゼロックスオフィスサプライ社製の商品名「Jコート紙」を用いた。
(Image output)
8 parts by mass of externally added toners 1A to 10A and 100 parts by mass of carrier are stirred and mixed in a ball mill for 5 minutes to adjust developers 1A to 10A, and image output for evaluation of fixing performance and the like is performed according to the following procedure. went. The carrier was a resin-coated carrier, and a ferrite carrier having a volume average particle diameter of 50 μm coated with 1% by mass of methyl methacrylate (Mw 78000, manufactured by Soken Chemical Co., Ltd.) was used. The adjusted developer was set in a developing unit of a color copying machine Doccolor 1250 manufactured by Fuji Xerox Co., Ltd., from which the fixing unit was removed, and an unfixed image was output. The output image was a halftone image having a size of 40 × 40 mm, and the image toner amount was adjusted to 0.20 mg / cm 2 . As the paper, the product name “J Coated Paper” manufactured by Fuji Xerox Office Supply Co., Ltd. was used.

(定着方法)
定着はDocucolor1250複写機から取り出した定着器を、定着器のロール温度を変更できるように改造し、定着ロールにはその表面材料をテフロン(登録商標)チューブに替えたものを使用した。定着器の用紙搬送速度は毎秒160mmとした。トナー1A〜10Aの未定着画像を定着器の温度を90℃から180℃まで適宜変えて定着し定着画像を得た。
(Fixing method)
For fixing, the fixing device taken out from the Doccolor 1250 copier was remodeled so that the roll temperature of the fixing device could be changed, and the fixing roll was replaced with a Teflon (registered trademark) tube. The sheet conveying speed of the fixing device was 160 mm per second. Unfixed images of toners 1A to 10A were fixed by appropriately changing the temperature of the fixing device from 90 ° C. to 180 ° C. to obtain a fixed image.

(最低定着温度評価方法)
トナー1A〜10Aの最低定着温度は、低温オフセットを起こさずに定着を開始する温度とした。
(Minimum fixing temperature evaluation method)
The minimum fixing temperature of the toners 1A to 10A was set to a temperature at which fixing is started without causing a low temperature offset.

(ドキュメントオフセット評価方法)
現像剤1A〜10Aを用いて120℃にて形成された定着画像の画像同士を重ね合わせて80g/cm2の荷重下、60℃雰囲気に7日間放置し、その後これらを引き剥がし、ドキュメントオフセットの有無を目視で確認して評価した。評価基準は、まったく力を加えずに剥離できたものと剥離させるのに力を加えても画像劣化のなかったものを○、軽微な画像劣化のあったものを△、著しい画像劣化が発生したものを×とした。
(Document offset evaluation method)
The images of fixed images formed at 120 ° C. using developers 1A to 10A are superposed on each other and left in a 60 ° C. atmosphere under a load of 80 g / cm 2 for 7 days. The presence or absence was visually confirmed and evaluated. The evaluation criteria were ○ that the image was not deteriorated even if the force was applied to peel it, and △ that there was slight image deterioration, and marked image deterioration occurred. The thing was made into x.

参考例1A〜4A、比較例1A〜6A)
参考例1A〜4A、比較例1A〜6Aのトナーに対する性能評価を、コア粒子及び被覆層のガラス転移温度並びに無機微粒子の体積平均粒径及び比重とともに表1に示した。
( Reference Examples 1A to 4A, Comparative Examples 1A to 6A)
The performance evaluations for the toners of Reference Examples 1A to 4A and Comparative Examples 1A to 6A are shown in Table 1 together with the glass transition temperatures of the core particles and the coating layer, and the volume average particle diameter and specific gravity of the inorganic fine particles.

参考例1A〜4Aのトナーに関しては、いずれも最低定着温度が120℃以下であり、なおかつ、ドキュメントオフセットの発生も起こらなかった。
比較例1A〜2Aにおいて、添加する無機微粒子の比重が大きかったり、粒子径が大きかったりすると、所望のコアーシェル構造のガラス転移温度制御により、低温定着は獲得できても、ドキュメントオフセット性が若干悪い。
比較例3Aは、所望の無機微粒子を添加しないと、所望のコアーシェル構造のガラス転移温度制御により、低温定着は獲得できるが、ドキュメントオフセット性が悪い。
比較例4A〜6Aは、コア粒子、被覆層のガラス転移温度が共に高すぎるとドキュメントオフセット性は良好であるが低温定着性が悪い。反対に、コア粒子、被覆層のガラス転移温度が共に低すぎると、低温定着性は良好でもドキュメントオフセット性がとれない。また、コア粒子のガラス転移温度が高く、被覆層のガラス転移温度が低いと、低温定着性もドキュメントオフセット性も共に悪いことになる。
For the toners of Reference Examples 1A to 4A, the minimum fixing temperature was 120 ° C. or lower, and no document offset occurred.
In Comparative Examples 1A to 2A, if the specific gravity of the inorganic fine particles to be added is large or the particle diameter is large, the document offset property is slightly poor even though low temperature fixing can be obtained by controlling the glass transition temperature of the desired core-shell structure.
In Comparative Example 3A, if the desired inorganic fine particles are not added, low-temperature fixing can be obtained by controlling the glass transition temperature of the desired core-shell structure, but the document offset property is poor.
In Comparative Examples 4A to 6A, when the glass transition temperatures of the core particles and the coating layer are both too high, the document offset property is good but the low-temperature fixability is bad. On the other hand, if the glass transition temperatures of the core particles and the coating layer are both too low, the document offset property cannot be obtained even if the low-temperature fixability is good. If the glass transition temperature of the core particles is high and the glass transition temperature of the coating layer is low, both the low-temperature fixability and the document offset property are poor.

(樹脂微粒子分散液1Bの調製)
スチレン(和光純薬製) 160質量部
nブチルアクリレート(和光純薬製) 230質量部
βカルボキシエチルアクリレート(ローディア日華製) 9質量部
1、10デカンジオールジアクリレート(新中村化学製) 1.5質量部
ドデカンチオール(和光純薬製) 2.7質量部
以上を混合溶解し、これをアニオン性界面活性剤ダウファックス(ダウケミカル社製)4質量部を含有するイオン交換水550質量部に溶解し、さらにフラスコ中で分散、乳化し10分間ゆっくりと攪拌・混合しながら、過硫酸アンモニウム6質量部を溶解したイオン交換水50質量部を投入した。次いで系内の窒素置換を十分に行った後、フラスコ内を攪拌しながらオイルバスで系内が70℃になるまで加熱し、5時間そのまま乳化重合を継続した。これにより体積平均粒径196nm、ガラス転移温度20.1℃のアニオン性の樹脂微粒子分散液1Bを得た。
(Preparation of resin fine particle dispersion 1B)
Styrene (manufactured by Wako Pure Chemical Industries) 160 parts by mass n-butyl acrylate (manufactured by Wako Pure Chemical Industries) 230 parts by mass β-carboxyethyl acrylate (manufactured by Rhodia Nikka) 9 parts by mass 1, 10 decanediol diacrylate (manufactured by Shin-Nakamura Chemical) 5 parts by mass dodecanethiol (manufactured by Wako Pure Chemical Industries, Ltd.) 2.7 parts by mass The above is mixed and dissolved, and this is added to 550 parts by mass of ion-exchanged water containing 4 parts by mass of the anionic surfactant Dowfax (manufactured by Dow Chemical). Dissolved, further dispersed and emulsified in a flask, and slowly stirred and mixed for 10 minutes, and then charged with 50 parts by mass of ion-exchanged water in which 6 parts by mass of ammonium persulfate was dissolved. Next, after sufficiently replacing the nitrogen in the system, the system was heated in an oil bath while stirring the flask until it reached 70 ° C., and emulsion polymerization was continued for 5 hours. As a result, an anionic fine resin particle dispersion 1B having a volume average particle size of 196 nm and a glass transition temperature of 20.1 ° C. was obtained.

(樹脂微粒子分散液2Bの調製)
樹脂微粒子分散液1Bの調整において、スチレン2000質量部、nブチルアクリレート200質量部としたこと以外は樹脂微粒子分散液1Bの調整と同様にして樹脂微粒子分散液2Bを得た。体積平均粒径195nm、ガラス転移温度28.3℃であった。
(Preparation of resin fine particle dispersion 2B)
Resin fine particle dispersion 2B was obtained in the same manner as in the preparation of resin fine particle dispersion 1B except that in the adjustment of resin fine particle dispersion 1B, 2,000 parts by mass of styrene and 200 parts by mass of n-butyl acrylate were used. The volume average particle size was 195 nm and the glass transition temperature was 28.3 ° C.

(樹脂微粒子分散液3Bの調製)
樹脂微粒子分散液1Bの調整において、スチレン250質量部、nブチルアクリレート150質量部としたこと以外は樹脂微粒子分散液1Bの調整と同様にして樹脂微粒子分散液3Bを得た。体積平均粒径199nm、ガラス転移温度38.9℃であった。
(Preparation of resin fine particle dispersion 3B)
A resin fine particle dispersion 3B was obtained in the same manner as the adjustment of the resin fine particle dispersion 1B except that the resin fine particle dispersion 1B was adjusted to 250 parts by mass of styrene and 150 parts by mass of n-butyl acrylate. The volume average particle size was 199 nm and the glass transition temperature was 38.9 ° C.

(樹脂微粒子分散液4Bの調製)
樹脂微粒子分散液1Bの調整において、スチレン300質量部、nブチルアクリレート100質量部としたこと以外は樹脂微粒子分散液1Bの調整と同様にして樹脂微粒子分散液4Bを得た。体積平均粒径200nm、ガラス転移温度51.0℃であった。
(Preparation of resin fine particle dispersion 4B)
Resin fine particle dispersion 4B was obtained in the same manner as in the preparation of resin fine particle dispersion 1B except that 300 parts by mass of styrene and 100 parts by mass of n-butyl acrylate were used in the adjustment of resin fine particle dispersion 1B. The volume average particle size was 200 nm and the glass transition temperature was 51.0 ° C.

(樹脂微粒子分散液5Bの調製)
樹脂微粒子分散液1Bの調整において、スチレン360質量部、nブチルアクリレート40質量部としたこと以外は樹脂微粒子分散液1Bの調整と同様にして樹脂微粒子分散液5Bを得た。体積平均粒径201nm、ガラス転移温度62.4℃であった。
(Preparation of resin fine particle dispersion 5B)
In the adjustment of the resin fine particle dispersion 1B, a resin fine particle dispersion 5B was obtained in the same manner as the adjustment of the resin fine particle dispersion 1B except that 360 parts by mass of styrene and 40 parts by mass of n-butyl acrylate were used. The volume average particle size was 201 nm, and the glass transition temperature was 62.4 ° C.

(樹脂微粒子分散液6Bの調製)
樹脂微粒子分散液1Bの調整において、スチレン390質量部、nブチルアクリレート10質量部、βカルボキシエチルアクリレート9.5質量部としたこと以外は樹脂微粒子分散液1Bの調整と同様にして樹脂微粒子分散液6Bを得た。体積平均粒径198nm、ガラス転移温度75.8℃、であった。
(Preparation of resin fine particle dispersion 6B)
Resin fine particle dispersion 1B was prepared in the same manner as the resin fine particle dispersion 1B except that 390 parts by mass of styrene, 10 parts by mass of n-butyl acrylate, and 9.5 parts by mass of β-carboxyethyl acrylate were prepared. 6B was obtained. The volume average particle size was 198 nm, and the glass transition temperature was 75.8 ° C.

(着色剤分散液1Bの調製)
フタロシアニン顔料(大日精化社製、PVFASTBLUE) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて着色剤分散液1Bを調製した。着色剤分散液1Bにおける着色剤の数平均粒径は150nmであった。
(Preparation of colorant dispersion 1B)
Phthalocyanine pigment (manufactured by Dainichi Seika Co., Ltd., PVFASTBLUE) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more, and homogenizer (manufactured by IKA, After dispersing for 10 minutes using an ultra turrax T50), a colorant dispersion 1B was prepared by applying to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP). The number average particle diameter of the colorant in the colorant dispersion 1B was 150 nm.

(テルペン変性ノボラック樹脂微粒子分散液1Bの調製)
PR−12603(住友デュレズ社製) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間5500rpmで分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.11μmの樹脂微粒子を含有するテルペン変性ノボラック樹脂微粒子分散液1Bを得た。
(Preparation of terpene-modified novolak resin fine particle dispersion 1B)
PR-12603 (Sumitomo Durez) 50 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by weight ion-exchanged water 200 parts by weight or more, homogenizer (IKA, Ultrata) Terpene-modified novolac resin fine particles containing resin fine particles having a volume average particle size of 0.11 μm after being dispersed at 5500 rpm for 10 minutes using Lux T50) and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) Dispersion 1B was obtained.

(テルペン変性ノボラック樹脂微粒子分散液2Bの調製)
PR−12603(住友デュレズ社製) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間4500rpmで分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.52μmの樹脂微粒子を含有するテルペン変性ノボラック樹脂微粒子分散液2Bを得た。
(Preparation of terpene-modified novolak resin fine particle dispersion 2B)
PR-12603 (Sumitomo Durez) 50 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by weight ion-exchanged water 200 parts by weight or more, homogenizer (IKA, Ultrata) Terpene-modified novolak resin fine particles containing resin fine particles having a volume average particle diameter of 0.52 μm after being dispersed at 4500 rpm for 10 minutes using Lux T50) and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) Dispersion 2B was obtained.

(テルペン変性ノボラック樹脂微粒子分散液3Bの調製)
PR−12603(住友デュレズ社製) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間3000rpmで分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.98μmの樹脂微粒子を含有するテルペン変性ノボラック樹脂微粒子分散液3Bを得た。
(Preparation of terpene-modified novolak resin fine particle dispersion 3B)
PR-12603 (Sumitomo Durez) 50 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by weight ion-exchanged water 200 parts by weight or more, homogenizer (IKA, Ultrata) Terpene-modified novolac resin fine particles containing resin fine particles having a volume average particle size of 0.98 μm after being dispersed at 3000 rpm for 10 minutes using Lux T50) and then subjected to a circulating ultrasonic disperser (RUS-600TCVP, manufactured by Nippon Seiki Seisakusho) Dispersion 3B was obtained.

(テルペン変性ノボラック樹脂微粒子分散液4Bの調製)
PR−12603(住友デュレズ社製) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間1500rpmで分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径1.3μmの樹脂微粒子を含有するテルペン変性ノボラック樹脂微粒子分散液4Bを得た。
(Preparation of terpene-modified novolak resin fine particle dispersion 4B)
PR-12603 (Sumitomo Durez) 50 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by weight ion-exchanged water 200 parts by weight or more, homogenizer (IKA, Ultrata) Terpene-modified novolak resin fine particles containing resin fine particles having a volume average particle size of 1.3 μm after being dispersed at 1500 rpm for 10 minutes using a Lux T50) and then subjected to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP) Dispersion 4B was obtained.

(テルペン変性ノボラック樹脂微粒子分散液5Bの調製)
PR−12603(住友デュレズ社製) 50質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 5質量部
イオン交換水 200質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間7000rpmで分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて、体積平均粒径0.06μmの樹脂微粒子を含有するテルペン変性ノボラック樹脂微粒子分散液5Bを得た。
(Preparation of terpene-modified novolak resin fine particle dispersion 5B)
PR-12603 (Sumitomo Durez) 50 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 5 parts by weight ion-exchanged water 200 parts by weight or more, homogenizer (IKA, Ultrata) Terpene-modified novolac resin fine particles containing resin fine particles having a volume average particle size of 0.06 μm after being dispersed at 7000 rpm for 10 minutes using Lux T50) and then subjected to a circulating ultrasonic disperser (RUS-600TCVP, manufactured by Nippon Seiki Seisakusho) Dispersion 5B was obtained.

(離型剤分散液1Bの調製)
パラフィンワックス(日本精蝋社製、HNP0190、融点85℃)50質量部
カチオン性界面活性剤(花王社製、サニゾールB50) 5質量部
イオン交換水 200質量部
前記成分を95℃に加熱して、ホモジナイザー(IKA 社製、ウルトラタラックスT50)で十分に分散した後、圧力吐出型ホモジナイザーで分散処理し、体積平均粒径200nmの離型剤粒子を含有する離型剤分散液1Bを得た。
(Preparation of release agent dispersion 1B)
Paraffin wax (manufactured by Nippon Seiwa Co., Ltd., HNP0190, melting point 85 ° C.) 50 parts by mass Cationic surfactant (manufactured by Kao Corporation, SANISOL B50) 5 parts by mass Ion-exchanged water 200 parts by mass After sufficiently dispersing with a homogenizer (manufactured by IKA, Ultra Turrax T50), it was dispersed with a pressure discharge type homogenizer to obtain a release agent dispersion 1B containing release agent particles having a volume average particle diameter of 200 nm.

(トナー1Bの製造)
(凝集工程)
イオン交換水 500質量部
樹脂微粒子分散液1B 200質量部
着色剤分散液1B 36質量部
テルペン変性ノボラック樹脂微粒子分散液2B 80質量部
離型剤分散液1B 35質量部
無機微粒子分散液1A 10質量部
凝集剤〔浅田化学社製、ポリ塩化アルミニウム〕 0.5質量部
以上の混合成分を丸型ステンレス製フラスコ中で、ホモジナイザー(ウルトラタラックスT50、IKA社製)で混合分散した。その後、加熱用オイルバスでフラスコを撹拌しながら凝集温度を25℃まで加熱し1.5時間保持した。
(付着工程)
上記調製した凝集粒子を含む分散液に、樹脂微粒子分散液5Bを25質量部緩やかに添加し、加熱用オイルバスの温度を上げて30℃で1時間保持した。
(融合工程)
次に、1mol/Lの水酸化ナトリウム水溶液をpHが6.0になるように添加した後、ステンレス製フラスコを密閉し、磁力シールを用いて撹拌を継続しながら85℃まで緩やかに加熱し、その後96℃まで加熱し1mol/Lの硝酸水溶液をpH5.0になるまで加え、5時間保持した。その後、冷却、ろ過し、イオン交換水で十分に洗浄した後、真空乾燥機を用いて乾燥させることによりトナー1Bを作製した。体積平均粒径は5.3μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 1B)
(Aggregation process)
Ion-exchanged water 500 parts by weight Resin fine particle dispersion 1B 200 parts by weight Colorant dispersion 1B 36 parts by weight Terpene-modified novolak resin fine particle dispersion 2B 80 parts by weight Release agent dispersion 1B 35 parts by weight Inorganic fine particle dispersion 1A 10 parts by weight Flocculant [manufactured by Asada Chemical Co., Ltd., polyaluminum chloride] 0.5 parts by mass The above mixed components were mixed and dispersed in a round stainless steel flask using a homogenizer (Ultra Turrax T50, manufactured by IKA). Thereafter, the agglomeration temperature was heated to 25 ° C. while stirring the flask in a heating oil bath and held for 1.5 hours.
(Adhesion process)
25 parts by mass of resin fine particle dispersion 5B was slowly added to the dispersion containing the aggregated particles prepared above, and the temperature of the heating oil bath was raised and maintained at 30 ° C. for 1 hour.
(Fusion process)
Next, after adding a 1 mol / L sodium hydroxide aqueous solution so that the pH becomes 6.0, the stainless steel flask was sealed, and gently heated to 85 ° C. while continuing stirring using a magnetic seal, Thereafter, the mixture was heated to 96 ° C., a 1 mol / L nitric acid aqueous solution was added until pH 5.0, and the mixture was held for 5 hours. Thereafter, the mixture was cooled, filtered, sufficiently washed with ion-exchanged water, and then dried using a vacuum drier to produce toner 1B. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.4 μm.

(トナー2Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを用い凝集温度を30℃とし、それ以外はトナー1Bの製造と同様にしてトナー2Bを得た。体積平均粒径は5.4μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 2B)
Toner 2B was obtained in the same manner as in the production of toner 1B except that resin particle dispersion 2B was used instead of resin particle dispersion 1B and the aggregation temperature was 30 ° C. The volume average particle diameter was 5.4 μm, and the coating layer thickness was 0.4 μm.

(トナー3Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液3Bを用い凝集温度を40℃とし、付着工程にて加熱温度を45℃とした。それ以外はトナー1Bの製造と同様にしてトナー3Bを得た。体積平均粒径は、6.3μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 3B)
The resin fine particle dispersion 3B was used in place of the resin fine particle dispersion 1B, the aggregation temperature was 40 ° C., and the heating temperature was 45 ° C. in the attaching step. Otherwise, the toner 3B was obtained in the same manner as in the production of the toner 1B. The volume average particle diameter was 6.3 μm, and the coating layer thickness was 0.4 μm.

(トナー4Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを用い、30℃で凝集させ、付着工程にて樹脂微粒子分散液5Bの代わりに樹脂微粒子分散液4Bを25質量部添加し加熱温度を55℃とした。それ以外はトナー1Bの製造と同様にしてトナー4Bを得た。体積平均粒径は6.5μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 4B)
The resin fine particle dispersion 2B is used in place of the resin fine particle dispersion 1B and is aggregated at 30 ° C., and 25 parts by mass of the resin fine particle dispersion 4B is added instead of the resin fine particle dispersion 5B in the adhesion step, and the heating temperature is 55 ° C. It was. Otherwise, the toner 4B was obtained in the same manner as in the production of the toner 1B. The volume average particle diameter was 6.5 μm, and the coating layer thickness was 0.4 μm.

(トナー5Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを用い、30℃で凝集させ、付着工程にて樹脂微粒子分散液5Bの代わりに樹脂微粒子分散液6Bを25質量部添加し加熱温度を50℃とした。それ以外はトナー1Bの製造と同様にしてトナー5Bを得た。体積平均粒径は6.3μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 5B)
The resin fine particle dispersion 2B is used in place of the resin fine particle dispersion 1B and is aggregated at 30 ° C., and 25 parts by mass of the resin fine particle dispersion 6B is added instead of the resin fine particle dispersion 5B in the attaching step, and the heating temperature is 50 ° C. It was. Otherwise, the toner 5B was obtained in the same manner as in the production of the toner 1B. The volume average particle diameter was 6.3 μm, and the coating layer thickness was 0.4 μm.

(トナー6Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを210質量部用い、30℃で凝集させ、付着工程にて樹脂微粒子分散液5Bを15質量部添加し加熱温度を33℃とした。それ以外はトナー1Bの製造と同様にしてトナー6Bを得た。体積平均粒径は6.0μm、被覆層厚みは0.12μmであった。
(Manufacture of toner 6B)
210 parts by mass of resin fine particle dispersion 2B was used in place of resin fine particle dispersion 1B and agglomerated at 30 ° C., and 15 parts by mass of resin fine particle dispersion 5B was added in the adhering step, and the heating temperature was set to 33 ° C. Otherwise, the toner 6B was obtained in the same manner as in the production of the toner 1B. The volume average particle diameter was 6.0 μm, and the coating layer thickness was 0.12 μm.

(トナー7Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを160質量部用い、30℃で凝集させ、付着工程にて樹脂微粒子分散液5Bを65質量部添加し加熱温度を40℃とした。それ以外はトナー1Bの製造と同様にしてトナー7Bを得た。体積平均粒径は5.9μm、被覆層厚みは0.89μmであった。
(Manufacture of toner 7B)
In place of resin fine particle dispersion 1B, 160 parts by mass of resin fine particle dispersion 2B was aggregated at 30 ° C., and 65 parts by mass of resin fine particle dispersion 5B was added in the adhering step, and the heating temperature was set to 40 ° C. Otherwise, the toner 7B was obtained in the same manner as in the production of the toner 1B. The volume average particle diameter was 5.9 μm, and the coating layer thickness was 0.89 μm.

(トナー8Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを用い、凝集温度を30℃とし、テルペン変性ノボラック樹脂微粒子分散液2Bの代わりにテルペン変性ノボラック樹脂微粒子分散液1Bを用い、付着工程での加熱温度を35℃とし、それ以外はトナー1Bの製造と同様にしてトナー8Bを得た。体積平均粒径は5.3μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 8B)
The resin fine particle dispersion 2B is used in place of the resin fine particle dispersion 1B, the aggregation temperature is 30 ° C., and the terpene modified novolak resin fine particle dispersion 1B is used in place of the terpene modified novolak resin fine particle dispersion 2B. The temperature was set to 35 ° C., and otherwise, toner 8B was obtained in the same manner as in the production of toner 1B. The volume average particle diameter was 5.3 μm, and the coating layer thickness was 0.4 μm.

(トナー9Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液2Bを用い、凝集温度を30℃とし、テルペン変性ノボラック樹脂微粒子分散液2Bの代わりにテルペン変性ノボラック樹脂微粒子分散液3Bを用い、付着工程での加熱温度を35℃とし、それ以外はトナー1Bの製造と同様にしてトナー9Bを得た。体積平均粒径は5.5μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 9B)
The resin fine particle dispersion 2B is used instead of the resin fine particle dispersion 1B, the aggregation temperature is set to 30 ° C., and the terpene modified novolak resin fine particle dispersion 2B is used instead of the terpene modified novolak resin fine particle dispersion 2B. A toner 9B was obtained in the same manner as in the production of the toner 1B except that the temperature was 35 ° C. The volume average particle diameter was 5.5 μm, and the coating layer thickness was 0.4 μm.

(トナー10Bの製造)
凝集工程にてテルペン変性ノボラック樹脂微粒子分散液及び無機微粒子分散液1Aは添加せず、それ以外は、トナー1Bの製造と同様にしてトナー10Bを得た。体積平均粒径は5.9μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 10B)
The toner 10B was obtained in the same manner as in the production of the toner 1B except that the terpene-modified novolak resin fine particle dispersion and the inorganic fine particle dispersion 1A were not added in the aggregation step. The volume average particle diameter was 5.9 μm, and the coating layer thickness was 0.4 μm.

(トナー11Bの製造)
凝集工程にてテルペン変性ノボラック樹脂微粒子分散液2Bの代わりにテルペン変性ノボラック樹脂微粒子分散液5Bを用い、無機微粒子分散液1Aを添加しない以外は、トナー1Bの製造と同様にしてトナー11Bを得た。体積平均粒径は5.8μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 11B)
A toner 11B was obtained in the same manner as in the production of the toner 1B except that the terpene-modified novolak resin fine particle dispersion 5B was used instead of the terpene-modified novolak resin fine particle dispersion 2B in the aggregation step, and the inorganic fine particle dispersion 1A was not added. . The volume average particle diameter was 5.8 μm, and the coating layer thickness was 0.4 μm.

(トナー12Bの製造)
凝集工程にてテルペン変性ノボラック樹脂微粒子分散液2Bの代わりにテルペン変性ノボラック樹脂微粒子分散液4Bを用い、無機微粒子分散液1Aを添加しない以外は、トナー1Bの製造と同様にしてトナー12Bを得た。体積平均粒径は6.0μm、被覆層厚みは0.89μmであった。
(Manufacture of toner 12B)
A toner 12B was obtained in the same manner as in the production of the toner 1B, except that the terpene-modified novolak resin fine particle dispersion 4B was used instead of the terpene-modified novolak resin fine particle dispersion 2B in the aggregation step, and the inorganic fine particle dispersion 1A was not added. . The volume average particle diameter was 6.0 μm, and the coating layer thickness was 0.89 μm.

(トナー13Bの製造)
樹脂微粒子分散液1Bの代わりに樹脂微粒子分散液4Bを用い、50℃で凝集させ、付着工程にて樹脂微粒子分散液5Bの代わりに樹脂微粒子分散液6Bを25質量部添加し加熱温度を55℃とし、無機微粒子分散液1Aを添加しない以外はトナー1Bの製造と同様にしてトナー13Bを得た。体積平均粒径は6.3μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 13B)
The resin fine particle dispersion 4B is used in place of the resin fine particle dispersion 1B and is aggregated at 50 ° C., and 25 parts by mass of the resin fine particle dispersion 6B is added instead of the resin fine particle dispersion 5B in the adhesion step, and the heating temperature is 55 ° C. A toner 13B was obtained in the same manner as in the production of the toner 1B except that the inorganic fine particle dispersion 1A was not added. The volume average particle diameter was 6.3 μm, and the coating layer thickness was 0.4 μm.

(トナー14Bの製造)
付着工程にて樹脂微粒子分散液5Bの代わりに樹脂微粒子分散液3Bを25質量部添加し加熱温度を40℃とし、無機微粒子分散液1Aを添加しない以外はトナー1Bの製造と同様にしてトナー14Bを得た。体積平均粒径は6.2μm、被覆層厚みは0.4μmであった。
(Manufacture of toner 14B)
Toner 14B is manufactured in the same manner as in the production of toner 1B except that 25 parts by mass of resin fine particle dispersion 3B is added instead of resin fine particle dispersion 5B in the attaching step, the heating temperature is 40 ° C., and no inorganic fine particle dispersion 1A is added. Got. The volume average particle diameter was 6.2 μm, and the coating layer thickness was 0.4 μm.

(外添トナーの作製)
トナー1B〜14Bのそれぞれのトナー100質量部に対し、疎水性シリカ(キャボット製、TS720)を0.70質量部添加し、サンプルミルで混合して外添トナー1B〜14Bを得た。
(Preparation of external toner)
0.70 parts by mass of hydrophobic silica (manufactured by Cabot, TS720) was added to 100 parts by mass of each of toners 1B to 14B, and mixed with a sample mill to obtain externally added toners 1B to 14B.

(画像出力)
外添トナー1B〜14Bを8質量部とキャリア100質量部とをボールミルで5分間攪拌、混合して現像剤1B〜14Bを調整し、以下の手順で定着性能等の評価のための画像出力を行った。キャリアは参考例1Aで用いたものをそのまま用いた。調整された現像剤を、定着器を取り外した富士ゼロックス社製カラー複写機Docucolor1250の現像器にセットし未定着画像を出力した。出力画像は40x40mmの大きさのハーフトーン画像で、画像トナー量は0.20mg/cm2となるよう調整した。用紙は富士ゼロックスオフィスサプライ社製の商品名「Jコート紙」を用いた。
(Image output)
8 parts by mass of externally added toners 1B to 14B and 100 parts by mass of carrier are stirred and mixed in a ball mill for 5 minutes to adjust developers 1B to 14B, and image output for evaluation of fixing performance and the like is performed by the following procedure. went. The carrier used in Reference Example 1A was used as it was. The adjusted developer was set in a developing unit of a color copying machine Doccolor 1250 manufactured by Fuji Xerox Co., Ltd., from which the fixing unit was removed, and an unfixed image was output. The output image was a halftone image having a size of 40 × 40 mm, and the image toner amount was adjusted to 0.20 mg / cm 2 . The paper used was a trade name “J Coated Paper” manufactured by Fuji Xerox Office Supply.

(定着方法)
定着はDocucolor1250複写機から取り出した定着器を、定着器のロール温度を変更できるように改造し、定着ロールにはその表面材料をテフロン(登録商標)チューブに替えたものを使用した。定着器の用紙搬送速度は毎秒160mmとした。トナー1B〜14Bの未定着画像を定着器の温度を90℃から180℃まで適宜変えて定着し定着画像を得た。
(Fixing method)
For fixing, the fixing device taken out from the Doccolor 1250 copier was remodeled so that the roll temperature of the fixing device could be changed, and the fixing roll was replaced with a Teflon (registered trademark) tube. The sheet conveying speed of the fixing device was 160 mm per second. Unfixed images of toners 1B to 14B were fixed by appropriately changing the temperature of the fixing device from 90 ° C. to 180 ° C. to obtain a fixed image.

(最低定着温度評価方法)
トナー1B〜14Bの最低定着温度は、低温オフセットを起こさずに定着を開始する温度とした。
(Minimum fixing temperature evaluation method)
The minimum fixing temperature of the toners 1B to 14B is set to a temperature at which fixing is started without causing a low temperature offset.

(ドキュメントオフセット評価方法)
参考例1Aと同様の方法で現像剤1Bから14Bの評価を行った。
(Document offset evaluation method)
Developers 1B to 14B were evaluated in the same manner as in Reference Example 1A.

(実施例1B〜9B、比較例1B〜5B)
実施例1B〜9B、比較例1B〜5Bのトナーに対する性能評価を、コア粒子及び被覆層のガラス転移温度、テルペン変性ノボラック樹脂微粒子の体積平均粒子径並びに被覆層の厚みとともに表2に示した。
(Examples 1B-9B, Comparative Examples 1B-5B)
The performance evaluation for the toners of Examples 1B to 9B and Comparative Examples 1B to 5B are shown in Table 2 together with the glass transition temperatures of the core particles and the coating layer, the volume average particle diameter of the terpene-modified novolak resin fine particles, and the thickness of the coating layer.

実施例1B〜9Bのトナーに関しては、いずれも最低定着温度が120℃以下であり、なおかつ、ドキュメントオフセットの発生も起こらなかった。
比較例1Bは、所望のテルペン変性ノボラック樹脂微粒子を添加しないと、所望のコアーシェル構造のガラス転移温度制御により、低温定着は獲得できるが、ドキュメントオフセット性が悪い。
比較例2Bにおいて、添加するテルペン変性ノボラック樹脂微粒子の粒子径が小さいと、所望のコアーシェル構造のガラス転移温度制御により低温定着は獲得できても、ドキュメントオフセット性が悪い。
比較例3Bにおいて、添加するテルペン変性ノボラック樹脂微粒子の粒子径が大きいと、ドキュメントオフセット性はより良好となるが、所望のコアーシェル構造のガラス転移温度制御によりコア部に低ガラス転移温度成分を有していても、低温定着に悪影響が発生してしまう。
比較例4B〜5Bは、コア粒子、被覆層のガラス転移温度が共に高いとドキュメントオフセット性は良好であるが低温定着性が悪い。反対に、コア粒子、被覆層のガラス転移温度が共に低いと、本発明所望のテルペン変性ノボラック樹脂粒子を含有していても、低温定着性は良好でもドキュメントオフセット性との両立ができない。
For the toners of Examples 1B to 9B, the minimum fixing temperature was 120 ° C. or less, and no document offset occurred.
In Comparative Example 1B, if the desired terpene-modified novolak resin fine particles are not added, low-temperature fixing can be obtained by controlling the glass transition temperature of the desired core-shell structure, but the document offset property is poor.
In Comparative Example 2B, if the particle size of the terpene-modified novolak resin fine particles to be added is small, the low-temperature fixing can be obtained by controlling the glass transition temperature of the desired core-shell structure, but the document offset property is poor.
In Comparative Example 3B, when the particle size of the terpene-modified novolak resin fine particles to be added is large, the document offset property becomes better, but the core portion has a low glass transition temperature component by controlling the glass transition temperature of the desired core-shell structure. Even if it is, it will adversely affect the low-temperature fixing.
In Comparative Examples 4B to 5B, when both the core particles and the glass transition temperature of the coating layer are high, the document offset property is good but the low-temperature fixability is bad. On the contrary, if the glass transition temperature of the core particle and the coating layer is low, even if the desired terpene-modified novolak resin particles of the present invention are contained, the low-temperature fixing property is good but the document offset property cannot be achieved.

(樹脂微粒子分散液1Cの調製)
スチレン(和光純薬製) 160質量部
nブチルアクリレート(和光純薬製) 240質量部
βカルボキシエチルアクリレート(ローディア日華製) 9質量部
1、10デカンジオールジアクリレート(新中村化学製) 1.5質量部
ドデカンチオール(和光純薬製) 2.7質量部
以上を混合溶解し、これをアニオン性界面活性剤ダウファックス(ローディア社製)4質量部を含有するイオン交換水550質量部に溶解し、さらにフラスコ中で分散、乳化し10分間ゆっくりと攪拌・混合しながら、過硫酸アンモニウム6質量部を溶解したイオン交換水50質量部を投入した。次いで系内の窒素置換を十分に行った後、フラスコ内を攪拌しながらオイルバスで系内が70℃になるまで加熱し、5時間そのまま乳化重合を継続した。これにより体積平均粒径198nm、ガラス転移温度18.5℃、重量平均分子量(Mw)32300、酸価12.0mgKOH/gのアニオン性の樹脂微粒子分散液1Cを得た。
(Preparation of resin fine particle dispersion 1C)
Styrene (manufactured by Wako Pure Chemical Industries) 160 parts by mass n-butyl acrylate (manufactured by Wako Pure Chemical Industries) 240 parts by mass β-carboxyethyl acrylate (manufactured by Rhodia Nikka) 9 parts by mass 1, 10 decanediol diacrylate (manufactured by Shin-Nakamura Chemical) 5 parts by mass Dodecanethiol (manufactured by Wako Pure Chemical Industries, Ltd.) 2.7 parts by mass The above is mixed and dissolved, and this is dissolved in 550 parts by mass of ion-exchanged water containing 4 parts by mass of the anionic surfactant Daupax (manufactured by Rhodia). Further, 50 parts by mass of ion-exchanged water in which 6 parts by mass of ammonium persulfate was dissolved was added while being dispersed and emulsified in the flask and slowly stirred and mixed for 10 minutes. Next, after sufficiently replacing the nitrogen in the system, the system was heated in an oil bath while stirring the flask until it reached 70 ° C., and emulsion polymerization was continued for 5 hours. Thus, an anionic resin fine particle dispersion 1C having a volume average particle size of 198 nm, a glass transition temperature of 18.5 ° C., a weight average molecular weight (Mw) of 32300, and an acid value of 12.0 mgKOH / g was obtained.

(樹脂微粒子分散液2Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン180質量部、nブチルアクリレート220質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液2Cを得た。体積平均粒径190nm、ガラス転移温度21.3℃、Mw31200、酸価12.4mgKOH/gであった。
(Preparation of resin fine particle dispersion 2C)
A resin fine particle dispersion 2C was obtained in the same manner as the resin fine particle dispersion 1C except that 180 parts by mass of styrene and 220 parts by mass of n-butyl acrylate were used in the adjustment of the resin fine particle dispersion 1C. The volume average particle size was 190 nm, the glass transition temperature was 21.3 ° C., the Mw was 31200, and the acid value was 12.4 mgKOH / g.

(樹脂微粒子分散液3Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン200質量部、nブチルアクリレート200質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液3Cを得た。体積平均粒径196nm、ガラス転移温度30.6℃、Mw31000、酸価12.2mgKOH/gであった。
(Preparation of resin fine particle dispersion 3C)
In the adjustment of the resin fine particle dispersion 1C, a resin fine particle dispersion 3C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C, except that 200 parts by mass of styrene and 200 parts by mass of n-butyl acrylate were used. The volume average particle size was 196 nm, the glass transition temperature was 30.6 ° C., the Mw was 31000, and the acid value was 12.2 mg KOH / g.

(樹脂微粒子分散液4Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン250質量部、nブチルアクリレート150質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液4Cを得た。体積平均粒径200nm、ガラス転移温度38.9℃、Mw32000、酸価11.8mgKOH/gであった。
(Preparation of resin fine particle dispersion 4C)
A resin fine particle dispersion 4C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C except that the resin fine particle dispersion 1C was adjusted to 250 parts by mass of styrene and 150 parts by mass of n-butyl acrylate. The volume average particle size was 200 nm, the glass transition temperature was 38.9 ° C., the Mw was 32000, and the acid value was 11.8 mgKOH / g.

(樹脂微粒子分散液5Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン270質量部、nブチルアクリレート130質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液5Cを得た。体積平均粒径198nm、ガラス転移温度45.2℃、Mw31800、酸価12.4mgKOH/gであった。
(Preparation of resin fine particle dispersion 5C)
A resin fine particle dispersion 5C was obtained in the same manner as in the preparation of the resin fine particle dispersion 1C except that the adjustment of the resin fine particle dispersion 1C was changed to 270 parts by mass of styrene and 130 parts by mass of n-butyl acrylate. The volume average particle size was 198 nm, the glass transition temperature was 45.2 ° C., the Mw was 31800, and the acid value was 12.4 mgKOH / g.

(樹脂微粒子分散液6Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン280質量部、nブチルアクリレート120質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液6Cを得た。体積平均粒径201nm、ガラス転移温度48.3℃、Mw32000、酸価11.9mgKOH/gであった。
(Preparation of resin fine particle dispersion 6C)
Resin fine particle dispersion 6C was obtained in the same manner as the adjustment of resin fine particle dispersion 1C except that 280 parts by mass of styrene and 120 parts by mass of n-butyl acrylate were used in the adjustment of resin fine particle dispersion 1C. The volume average particle size was 201 nm, the glass transition temperature was 48.3 ° C., the Mw was 32000, and the acid value was 11.9 mgKOH / g.

(樹脂微粒子分散液7Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン300質量部、nブチルアクリレート100質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液7Cを得た。体積平均粒径197nm、ガラス転移温度51.0℃、Mw33200、酸価12.5mgKOH/gであった。
(Preparation of resin fine particle dispersion 7C)
A resin fine particle dispersion 7C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C except that 300 parts by mass of styrene and 100 parts by mass of n-butyl acrylate were used in the adjustment of the resin fine particle dispersion 1C. The volume average particle diameter was 197 nm, the glass transition temperature was 51.0 ° C., the Mw was 33200, and the acid value was 12.5 mgKOH / g.

(樹脂微粒子分散液8Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン315質量部、nブチルアクリレート75質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液8Cを得た。体積平均粒径201nm、ガラス転移温度54.2℃、Mw34100、酸価12.4mgKOH/gであった。
(Preparation of resin fine particle dispersion 8C)
A resin fine particle dispersion 8C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C, except that the adjustment of the resin fine particle dispersion 1C was changed to 315 parts by mass of styrene and 75 parts by mass of n-butyl acrylate. The volume average particle size was 201 nm, the glass transition temperature was 54.2 ° C., the Mw was 34100, and the acid value was 12.4 mgKOH / g.

(樹脂微粒子分散液9Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン330質量部、nブチルアクリレート70質量部、βカルボキシエチルアクリレート9.5質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液9Cを得た。体積平均粒径198nm、ガラス転移温度58.7℃、Mw32100、酸価13.6mgKOH/gであった。
(Preparation of resin fine particle dispersion 9C)
Resin fine particle dispersion 1C was prepared in the same manner as in the fine resin particle dispersion 1C except that 330 parts by mass of styrene, 70 parts by mass of n-butyl acrylate, and 9.5 parts by mass of β-carboxyethyl acrylate were used. 9C was obtained. The volume average particle size was 198 nm, the glass transition temperature was 58.7 ° C., the Mw was 32100, and the acid value was 13.6 mgKOH / g.

(樹脂微粒子分散液10Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン360質量部、nブチルアクリレート40質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液10Cを得た。体積平均粒径202nm、ガラス転移温度62.4℃、Mw31300、酸価12.2mgKOH/gであった。
(Preparation of resin fine particle dispersion 10C)
A resin fine particle dispersion 10C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C except that in the adjustment of the resin fine particle dispersion 1C, 360 parts by mass of styrene and 40 parts by mass of n-butyl acrylate were used. The volume average particle size was 202 nm, the glass transition temperature was 62.4 ° C., the Mw was 31300, and the acid value was 12.2 mgKOH / g.

(樹脂微粒子分散液11Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン375質量部、nブチルアクリレート25質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液11Cを得た。体積平均粒径199nm、ガラス転移温度68.2℃、Mw33600、酸価12.5mgKOH/gであった。
(Preparation of resin fine particle dispersion 11C)
In the adjustment of the resin fine particle dispersion 1C, a resin fine particle dispersion 11C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C except that 375 parts by mass of styrene and 25 parts by mass of n-butyl acrylate were used. The volume average particle diameter was 199 nm, the glass transition temperature was 68.2 ° C., the Mw was 33600, and the acid value was 12.5 mgKOH / g.

(樹脂微粒子分散液12Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン390質量部、nブチルアクリレート10質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液12Cを得た。体積平均粒径197nm、ガラス転移温度75.8℃、Mw32500、酸価12.8mgKOH/gであった。
(Preparation of resin fine particle dispersion 12C)
A resin fine particle dispersion 12C was obtained in the same manner as in the preparation of the resin fine particle dispersion 1C except that 390 parts by mass of styrene and 10 parts by mass of n-butyl acrylate were used in the adjustment of the resin fine particle dispersion 1C. The volume average particle diameter was 197 nm, the glass transition temperature was 75.8 ° C., the Mw was 32500, and the acid value was 12.8 mgKOH / g.

(樹脂微粒子分散液13Cの調製)
樹脂微粒子分散液1Cの調整において、スチレン395質量部、nブチルアクリレート5質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液13Cを得た。体積平均粒径193nm、ガラス転移温度80.3℃、Mw34500、酸価12.5mgKOH/gであった。
(Preparation of resin fine particle dispersion 13C)
A resin fine particle dispersion 13C was obtained in the same manner as the adjustment of the resin fine particle dispersion 1C, except that the resin fine particle dispersion 1C was adjusted to 395 parts by mass of styrene and 5 parts by mass of n-butyl acrylate. The volume average particle size was 193 nm, the glass transition temperature was 80.3 ° C., the Mw was 34500, and the acid value was 12.5 mgKOH / g.

(樹脂微粒子分散液14Cの調製)
樹脂微粒子分散液1Cの調整において、βカルボキシエチルアクリレート12質量部としたこと以外は樹脂微粒子分散液1Cの調整と同様にして樹脂微粒子分散液14Cを得た。体積平均粒径195nm、ガラス転移温度51.2℃、Mw34000、酸価16.8mgKOH/gであった。
(Preparation of resin fine particle dispersion 14C)
A resin fine particle dispersion 14C was obtained in the same manner as in the preparation of the resin fine particle dispersion 1C except that the resin fine particle dispersion 1C was adjusted to 12 parts by mass of β-carboxyethyl acrylate. The volume average particle diameter was 195 nm, the glass transition temperature was 51.2 ° C., the Mw was 34,000, and the acid value was 16.8 mgKOH / g.

(着色剤分散液1Cの調製)
フタロシアニン顔料(大日精化社製、PVFASTBLUE) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、ホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて10分間分散した後、循環式超音波分散機(日本精機製作所製、RUS−600TCVP)にかけて着色剤分散液1Cを調製した。着色剤分散液1Cにおける着色剤の数平均粒径は150nmで、粒径0.03μm以下の粒子は4.0個数%、0.5μm以上の粒子は0.5個数%であった。
(Preparation of colorant dispersion 1C)
Phthalocyanine pigment (manufactured by Dainichi Seika Co., Ltd., PVFASTBLUE) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more, and homogenizer (manufactured by IKA, After dispersing for 10 minutes using an ultra turrax T50), a colorant dispersion 1C was prepared by applying to a circulating ultrasonic disperser (manufactured by Nippon Seiki Seisakusho, RUS-600TCVP). The number average particle diameter of the colorant in the colorant dispersion 1C was 150 nm, particles having a particle diameter of 0.03 μm or less were 4.0% by number, and particles having a particle diameter of 0.5 μm or more were 0.5% by number.

(着色剤分散液2Cの調製)
カーボンブラック(CABOT社製、R330) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Cと同様の条件にて着色剤分散液2Cを調製した。着色剤分散液2Cにおける着色剤の数平均粒径は155nmで、粒径が0.03μm以下の粒子は5.0個数%、0.5μm以上の粒子は0.5個数%であった。
(Preparation of colorant dispersion 2C)
Carbon black (manufactured by CABOT, R330) 90 parts by weight anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by weight ion-exchanged water 240 parts by weight The above is mixed and the same as colorant dispersion 1C Colorant dispersion 2C was prepared under the conditions. In the colorant dispersion 2C, the number average particle diameter of the colorant was 155 nm, particles having a particle diameter of 0.03 μm or less were 5.0 number%, and particles having a particle diameter of 0.5 μm or more were 0.5 number%.

(着色剤分散液3Cの調製)
C.Iピグメント・レッド122(大日製化社製、ECR−185)90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Cと同様の条件にて着色剤分散液3Cを調製した。着色剤分散液3Cにおける着色剤の数平均粒径は165nmで、粒径が0.03μm以下の粒子は6.0個数%、0.5μm以上の粒子は0.5個数%であった。
(Preparation of colorant dispersion 3C)
C. I Pigment Red 122 (manufactured by Dainichi Chemical Co., Ltd., ECR-185) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass A colorant dispersion 3C was prepared under the same conditions as the colorant dispersion 1C. In the colorant dispersion 3C, the number average particle diameter of the colorant was 165 nm, particles having a particle diameter of 0.03 μm or less were 6.0 number%, and particles having a particle diameter of 0.5 μm or more were 0.5 number%.

(着色剤分散液4Cの調製)
C.Iピグメント・レッド185(クラリアント社製) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Cと同様の条件にて着色剤分散液4Cを調製した。着色剤分散液4Cにおける着色剤の数平均粒径は170nmで、粒径が0.03μm以下の粒子は7個数%、0.5μm以上の粒子は0.5個数%であった。
(Preparation of colorant dispersion 4C)
C. I Pigment Red 185 (manufactured by Clariant) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more A colorant dispersion 4C was prepared under the following conditions. The number average particle diameter of the colorant in the colorant dispersion 4C was 170 nm, particles having a particle diameter of 0.03 μm or less were 7% by number, and particles having a particle diameter of 0.5 μm or more were 0.5% by number.

(着色剤分散液5Cの調製)
C.Iピグメントイエロー74(クラリアント社製) 90質量部
アニオン性界面活性剤(第一工業製薬社製:ネオゲンSC) 10質量部
イオン交換水 240質量部
以上を混合し、着色剤分散液1Cと同様の条件にて着色剤分散液5Cを調製した。着色剤分散液5Cにおける着色剤の数平均粒径は175nmで、粒径が0.03μm以下の粒子は6個数%、0.5μm以上の粒子は0.3個数%であった。
(Preparation of colorant dispersion 5C)
C. I Pigment Yellow 74 (manufactured by Clariant) 90 parts by mass anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) 10 parts by mass ion-exchanged water 240 parts by mass or more A colorant dispersion 5C was prepared under the conditions. The number average particle diameter of the colorant in the colorant dispersion 5C was 175 nm, the number of particles having a particle size of 0.03 μm or less was 6% by number, and the number of particles having a particle size of 0.5 μm or more was 0.3% by number.

(離型剤分散液1Cの調製)
パラフィンワックス(日本精蝋社製、HNP0190、融点85℃)50質量部
カチオン性界面活性剤(花王社製、サニゾールB50) 5質量部
イオン交換水 200質量部
前記成分を95℃に加熱して、ホモジナイザー(IKA 社製、ウルトラタラックスT50)で十分に分散した後、圧力吐出型ホモジナイザーで分散処理し、体積平均粒径200nmの離型剤粒子を含有する離型剤分散液1Cを得た。
(Preparation of mold release agent dispersion 1C)
Paraffin wax (manufactured by Nippon Seiwa Co., Ltd., HNP0190, melting point 85 ° C.) 50 parts by mass Cationic surfactant (manufactured by Kao Corporation, SANISOL B50) 5 parts by mass Ion-exchanged water 200 parts by mass After sufficiently dispersing with a homogenizer (manufactured by IKA, Ultra Turrax T50), it was dispersed with a pressure discharge type homogenizer to obtain a release agent dispersion 1C containing release agent particles having a volume average particle diameter of 200 nm.

(トナー1Cの製造)
(凝集工程)
イオン交換水 500質量部
樹脂微粒子分散液3C 175質量部
着色剤分散液1C 36質量部
離型剤分散液1C 35質量部
無機微粒子分散液1A 10質量部
凝集剤〔浅田化学社製、ポリ塩化アルミニウム〕 0.5質量部
以上の混合成分を丸型ステンレス製フラスコ中で、ホモジナイザー(ウルトラタラックスT50、IKA社製)で混合分散した。その後、加熱用オイルバスでフラスコを撹拌しながら凝集温度を30℃まで加熱した。その後30℃で1.5時間保持した。
(付着工程)
上記調製した凝集粒子を含む分散液に、樹脂微粒子分散液9Cを25質量部緩やかに添加し、加熱用オイルバスの温度を上げて56℃で1時間保持し、さらに樹脂微粒子分散液10Cを25質量部添加し、加熱用オイルバスの温度を上げて60℃で1時間保持し、樹脂微粒子分散液12Cを25質量部添加し、加熱用オイルバスの温度を上げて73℃で1時間保持した。
(融合工程)
次に、1mol/Lの水酸化ナトリウム水溶液をpHが6.0になるように添加した後、ステンレス製フラスコを密閉し、磁力シールを用いて撹拌を継続しながら85℃まで緩やかに加熱し、その後96℃まで加熱し1mol/Lの硝酸水溶液をpH5.0になるまで加え、5時間保持した。その後、冷却、ろ過し、イオン交換水で十分に洗浄した後、真空乾燥機を用いて乾燥させることにより3層からなる被覆層を有するトナー粒子1Cを作製した。体積平均粒径は5.2μm、被膜層厚みの合計は0.61μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度75℃であった。
(Manufacture of toner 1C)
(Aggregation process)
Ion-exchanged water 500 parts by weight Resin fine particle dispersion 3C 175 parts by weight Colorant dispersion 1C 36 parts by weight Release agent dispersion 1C 35 parts by weight Inorganic fine particle dispersion 1A 10 parts by weight flocculant [manufactured by Asada Chemical Co., polyaluminum chloride 0.5 parts by mass The above mixed components were mixed and dispersed in a round stainless steel flask using a homogenizer (Ultra Turrax T50, manufactured by IKA). Thereafter, the agglomeration temperature was heated to 30 ° C. while stirring the flask in a heating oil bath. Thereafter, it was kept at 30 ° C. for 1.5 hours.
(Adhesion process)
25 parts by mass of resin fine particle dispersion 9C is slowly added to the prepared dispersion containing aggregated particles, and the temperature of the heating oil bath is raised and maintained at 56 ° C. for 1 hour. Add part by weight, raise the temperature of the heating oil bath and hold at 60 ° C. for 1 hour, add 25 parts by weight of resin fine particle dispersion 12C, raise the temperature of the heating oil bath and hold at 73 ° C. for 1 hour. .
(Fusion process)
Next, after adding a 1 mol / L sodium hydroxide aqueous solution so that the pH becomes 6.0, the stainless steel flask was sealed, and gently heated to 85 ° C. while continuing stirring using a magnetic seal, Thereafter, the mixture was heated to 96 ° C., a 1 mol / L aqueous nitric acid solution was added until pH 5.0, and the mixture was held for 5 hours. Thereafter, the mixture was cooled, filtered, sufficiently washed with ion-exchanged water, and then dried using a vacuum dryer, thereby producing toner particles 1C having a three-layer coating layer. The volume average particle diameter was 5.2 μm, the total coating layer thickness was 0.61 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 75 ° C.

(トナー2Cの製造)
樹脂微粒子分散液3Cの代わりに樹脂微粒子分散液2Cを用い20℃で凝集させ、付着工程にて樹脂微粒子分散液8C、樹脂微粒子分散液10C、樹脂微粒子分散液12Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に52℃、60℃、72℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー2Cを得た。体積平均粒径は5.5μm、被膜層厚みの合計は0.68μm、コア粒子のガラス転移温度21℃、最外層の樹脂層のガラス転移温度75℃であった。
(Manufacture of toner 2C)
The resin fine particle dispersion 2C was used in place of the resin fine particle dispersion 3C to be agglomerated at 20 ° C., and 25 parts by mass of the resin fine particle dispersion 8C, the resin fine particle dispersion 10C, and the resin fine particle dispersion 12C were added in the attaching step. A toner 2C having a three-layer coating layer is obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion is added in the adhesion step is changed to 52 ° C., 60 ° C., and 72 ° C. in the order of addition. It was. The volume average particle size was 5.5 μm, the total coating layer thickness was 0.68 μm, the glass transition temperature of the core particles was 21 ° C., and the glass transition temperature of the outermost resin layer was 75 ° C.

(トナー3Cの製造)
樹脂微粒子分散液3Cの代わりに樹脂微粒子分散液4Cを用い36℃で凝集させ、付着工程にて樹脂微粒子分散液9C、樹脂微粒子分散液11C、樹脂微粒子分散液12Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に56℃、65℃、72℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー3Cを得た。体積平均粒径は5.6μm、被膜層厚みの合計は0.64μm、コア粒子のガラス転移温度39℃、最外層の樹脂層のガラス転移温度76℃であった。
(Manufacture of toner 3C)
The resin fine particle dispersion 4C was used instead of the resin fine particle dispersion 3C to be aggregated at 36 ° C., and 25 parts by mass of each of the resin fine particle dispersion 9C, the resin fine particle dispersion 11C, and the resin fine particle dispersion 12C were added in the attaching step. A toner 3C having a three-layer coating layer is obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion is added in the attaching step is changed to 56 ° C., 65 ° C., and 72 ° C. in the order of addition. It was. The volume average particle size was 5.6 μm, the total coating layer thickness was 0.64 μm, the glass transition temperature of the core particles was 39 ° C., and the glass transition temperature of the outermost resin layer was 76 ° C.

(トナー4Cの製造)
付着工程にて樹脂微粒子分散液7C、樹脂微粒子分散液8C、樹脂微粒子分散液10Cを各25質量部添加し、樹脂微粒子分散液を添加した際の加熱温度を添加順に、50℃、52℃、60℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー4Cを得た。体積平均粒径は5.7μm、被膜層厚みの合計は0.65μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度62℃であった。
(Manufacture of toner 4C)
25 mass parts of resin fine particle dispersion 7C, resin fine particle dispersion 8C, and resin fine particle dispersion 10C are added in the adhesion step, and the heating temperature when the resin fine particle dispersion is added is 50 ° C., 52 ° C. in the order of addition. A toner 4C having a three-layer coating layer was obtained in the same manner as in the production of the toner 1C except that the temperature was changed to 60 ° C. The volume average particle diameter was 5.7 μm, the total coating layer thickness was 0.65 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 62 ° C.

(トナー5Cの製造)
付着工程にて樹脂微粒子分散液11C、樹脂微粒子分散液12C、樹脂微粒子分散液13Cを各25質量部添加し、樹脂微粒子分散液を添加した際の加熱温度を添加順に、65℃、72℃、78℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー5Cを得た。体積平均粒径は5.0μm、被膜層厚みの合計は0.63μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度80℃であった。
(Manufacture of toner 5C)
25 parts by mass of each of the resin fine particle dispersion 11C, the resin fine particle dispersion 12C, and the resin fine particle dispersion 13C are added in the attaching step, and the heating temperature when the resin fine particle dispersion is added is 65 ° C., 72 ° C. in order of addition. A toner 5C having a three-layer coating layer was obtained in the same manner as in the production of the toner 1C except that the temperature was changed to 78 ° C. The volume average particle size was 5.0 μm, the total coating layer thickness was 0.63 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 80 ° C.

(トナー6Cの製造)
樹脂微粒子分散液3Cを200質量部用い、付着工程にて樹脂微粒子分散液8C、樹脂微粒子分散液10Cを各25質量部添加し、樹脂微粒子分散液を添加した際の加熱温度を添加順に、52℃、65℃と変更した以外はトナー1Cの製造と同様にして2層からなる被覆層を有するトナー6Cを得た。体積平均粒径は5.4μm、被膜層厚みの合計は0.41μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度62℃であった。
(Manufacture of toner 6C)
Using 200 parts by mass of resin fine particle dispersion 3C, 25 parts by mass of resin fine particle dispersion 8C and resin fine particle dispersion 10C were added in the adhering step, and the heating temperature when adding the resin fine particle dispersion was 52 in the order of addition. A toner 6C having a coating layer consisting of two layers was obtained in the same manner as in the production of the toner 1C except that the temperature was changed to ° C and 65 ° C. The volume average particle size was 5.4 μm, the total coating layer thickness was 0.41 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 62 ° C.

(トナー7Cの製造)
樹脂微粒子分散液3Cを150質量部用い、付着工程にて樹脂微粒子分散液7C、樹脂微粒子分散液9C、樹脂微粒子分散液10C、樹脂微粒子分散液12Cを各25質量部添加し、樹脂微粒子分散液を添加した際の加熱温度を添加順に、50℃、56℃、60℃、72℃と変更した以外はトナー1Cの製造と同様にして4層からなる被覆層を有するトナー7Cを得た。体積平均粒径は5.5μm、被膜層厚みの合計は0.84μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度76℃であった。
(Manufacture of toner 7C)
Using 150 parts by mass of resin fine particle dispersion 3C, 25 parts by mass of resin fine particle dispersion 7C, resin fine particle dispersion 9C, resin fine particle dispersion 10C, and resin fine particle dispersion 12C were added in the adhering step. A toner 7C having a coating layer consisting of four layers was obtained in the same manner as in the production of the toner 1C except that the heating temperature at the time of adding was changed to 50 ° C., 56 ° C., 60 ° C., and 72 ° C. in the order of addition. The volume average particle size was 5.5 μm, the total coating layer thickness was 0.84 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 76 ° C.

(トナー8Cの製造)
樹脂微粒子分散液3Cの代わりに樹脂微粒子分散液1Cを200質量部用い、無機微粒子分散液1Aを添加せず、付着工程にて樹脂微粒子分散液7C、樹脂微粒子分散液9Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に50℃、56℃と変更した以外はトナー1Cの製造と同様にして2層からなる被覆層を有するトナー8Cを得た。体積平均粒径は5.8μm、被膜層厚みの合計は0.48μm、コア粒子のガラス転移温度18℃、最外層の樹脂層のガラス転移温度59℃であった。
(Manufacture of toner 8C)
200 parts by mass of resin fine particle dispersion 1C is used instead of resin fine particle dispersion 3C, and 25 parts by mass of resin fine particle dispersion 7C and resin fine particle dispersion 9C are added in the adhering step without adding inorganic fine particle dispersion 1A. did. A toner 8C having a coating layer consisting of two layers was obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion was added in the adhesion step was changed to 50 ° C. and 56 ° C. in the order of addition. The volume average particle size was 5.8 μm, the total coating layer thickness was 0.48 μm, the glass transition temperature of the core particles was 18 ° C., and the glass transition temperature of the outermost resin layer was 59 ° C.

(トナー9Cの製造)
樹脂微粒子分散液3Cの代わりに樹脂微粒子分散液5Cを200質量部用い、無機微粒子分散液1Aを添加せず、付着工程にて樹脂微粒子分散液8C、樹脂微粒子分散液10Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に52℃、60℃と変更した以外はトナー1Cの製造と同様にして2層からなる被覆層を有するトナー9Cを得た。体積平均粒径は5.6μm、被膜層厚みの合計は0.43μm、コア粒子のガラス転移温度45℃、最外層の樹脂層のガラス転移温度62℃であった。
(Manufacture of toner 9C)
200 parts by mass of resin fine particle dispersion 5C is used instead of resin fine particle dispersion 3C, and 25 parts by mass of resin fine particle dispersion 8C and resin fine particle dispersion 10C are added in the adhering step without adding inorganic fine particle dispersion 1A. did. A toner 9C having a two-layer coating layer was obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion was added in the attaching step was changed to 52 ° C. and 60 ° C. in the order of addition. The volume average particle size was 5.6 μm, the total coating layer thickness was 0.43 μm, the glass transition temperature of the core particles was 45 ° C., and the glass transition temperature of the outermost resin layer was 62 ° C.

(トナー10Cの製造)
無機微粒子分散液1Aを添加せず、付着工程にて樹脂微粒子分散液6C、樹脂微粒子分散液8Cを各25質量部添加し、樹脂微粒子分散液を添加した際の加熱温度を添加順に45℃、52℃と変更した以外はトナー1Cの製造と同様にして2層からなる被覆層を有するトナー10Cを得た。体積平均粒径は5.4μm、被膜層厚みの合計は0.45μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度54℃であった。
(Manufacture of toner 10C)
Without adding the inorganic fine particle dispersion 1A, 25 parts by mass of the resin fine particle dispersion 6C and the resin fine particle dispersion 8C were added in the adhering step, and the heating temperature when the resin fine particle dispersion was added was 45 ° C. in the order of addition, A toner 10C having a two-layer coating layer was obtained in the same manner as in the production of the toner 1C except that the temperature was changed to 52 ° C. The volume average particle size was 5.4 μm, the total coating layer thickness was 0.45 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 54 ° C.

(トナー11Cの製造)
樹脂微粒子分散液3Cを200質量部用い、無機微粒子分散液1Aを添加せず、付着工程にて樹脂微粒子分散液9Cを50質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を56℃と変更した以外はトナー1Cの製造と同様にして1層からなる被覆層を有するトナー11Cを得た。体積平均粒径は5.7μm、被膜層厚みは0.42μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度59℃であった。
(Manufacture of toner 11C)
200 parts by mass of the resin fine particle dispersion 3C was used, and 50 parts by mass of the resin fine particle dispersion 9C was added in the adhering step without adding the inorganic fine particle dispersion 1A. A toner 11C having a single coating layer was obtained in the same manner as in the production of the toner 1C, except that the heating temperature when the resin fine particle dispersion was added in the adhesion step was changed to 56 ° C. The volume average particle size was 5.7 μm, the coating layer thickness was 0.42 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 59 ° C.

(トナー12Cの製造)
樹脂微粒子分散液3Cの代わりに樹脂微粒子分散液4Cを用い無機微粒子分散液1Aを添加せず、35℃で凝集させ、付着工程にて樹脂微粒子分散液8C、樹脂微粒子分散液9C、樹脂微粒子分散液10Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に52℃、56℃、60℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー13Cを得た。体積平均粒径は5.4μm、被膜層厚みの合計は0.63μm、コア粒子のガラス転移温度39℃、最外層の樹脂層のガラス転移温度62℃であった。
(Manufacture of toner 12C)
The resin fine particle dispersion 4C is used in place of the resin fine particle dispersion 3C, the inorganic fine particle dispersion 1A is not added, and aggregated at 35 ° C., and the resin fine particle dispersion 8C, the resin fine particle dispersion 9C, and the resin fine particle dispersion are adhered in the attaching step 25 parts by mass of each 10C of liquid 10C was added. A toner 13C having a three-layer coating layer is obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion is added in the adhesion step is changed to 52 ° C., 56 ° C., and 60 ° C. in the order of addition. It was. The volume average particle size was 5.4 μm, the total coating layer thickness was 0.63 μm, the glass transition temperature of the core particles was 39 ° C., and the glass transition temperature of the outermost resin layer was 62 ° C.

(トナー13Cの製造)
無機微粒子分散液1Aを添加せず、付着工程にて樹脂微粒子分散液14C、樹脂微粒子分散液10C、樹脂微粒子分散液12Cを各25質量部添加した。付着工程で樹脂微粒子分散液を添加した際の加熱温度を添加順に50℃、60℃、72℃と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー14Cを得た。体積平均粒径は5.5μm、被膜層厚みの合計は0.68μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度76℃であった。
(Manufacture of toner 13C)
Without adding the inorganic fine particle dispersion 1A, 25 parts by mass of the resin fine particle dispersion 14C, the resin fine particle dispersion 10C, and the resin fine particle dispersion 12C were added in the attaching step. A toner 14C having a three-layer coating layer is obtained in the same manner as in the production of the toner 1C except that the heating temperature when the resin fine particle dispersion is added in the adhesion step is changed to 50 ° C., 60 ° C., and 72 ° C. in the order of addition. It was. The volume average particle size was 5.5 μm, the total coating layer thickness was 0.68 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 76 ° C.

(トナー14Cの製造)
樹脂微粒子分散液3Cを220質量部用い、無機微粒子分散液1Aを添加せず、付着工程にて各樹脂微粒子分散液を各10質量部と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー15Cを得た。体積平均粒径は5.7μm、被膜層厚みの合計は0.28μm、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度75℃であった。
(Manufacture of toner 14C)
Three layers as in the production of the toner 1C except that 220 parts by mass of the resin fine particle dispersion 3C is used, the inorganic fine particle dispersion 1A is not added, and each resin fine particle dispersion is changed to 10 parts by mass in the attaching step. Toner 15C having a coating layer made of The volume average particle size was 5.7 μm, the total coating layer thickness was 0.28 μm, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 75 ° C.

(トナー15Cの製造)
樹脂微粒子分散液3Cを100質量部用い、無機微粒子分散液1Aを添加せず、付着工程にて各樹脂微粒子分散液を各50質量部と変更した以外はトナー1Cの製造と同様にして3層からなる被覆層を有するトナー16Cを得た。体積平均粒径は5.8μm、被膜層厚みの合計は1.06m、コア粒子のガラス転移温度31℃、最外層の樹脂層のガラス転移温度75℃であった。
(Manufacture of toner 15C)
Three layers as in the production of the toner 1C, except that 100 parts by mass of the resin fine particle dispersion 3C is used, the inorganic fine particle dispersion 1A is not added, and each resin fine particle dispersion is changed to 50 parts by mass in the attaching step. Toner 16C having a coating layer made of The volume average particle size was 5.8 μm, the total coating layer thickness was 1.06 m, the glass transition temperature of the core particles was 31 ° C., and the glass transition temperature of the outermost resin layer was 75 ° C.

(外添トナーの作製)
トナー1C〜15Cのそれぞれのトナー100質量部に対し、疎水性シリカ(キャボット製、TS720)を0.70質量部添加し、サンプルミルで混合して外添トナー1C〜15Cを得た。
(Preparation of external toner)
0.70 parts by mass of hydrophobic silica (manufactured by Cabot, TS720) was added to 100 parts by mass of each of toners 1C to 15C, and mixed with a sample mill to obtain externally added toners 1C to 15C.

(画像出力)
外添トナー1C〜15Cを8質量部とキャリア100質量部とをボールミルで5分間攪拌、混合して現像剤1C〜15Cを調整し、以下の手順で定着性能等の評価のための画像出力を行った。キャリアは樹脂被覆型のキャリアであり、メタアクリレート(総研化学社製)を1質量%コートした体積平均粒径が50μmのフェライトキャリアを用いた。調整された現像剤を、定着器を取り外した富士ゼロックス社製カラー複写機Docucolor1250の現像器にセットし未定着画像を出力した。出力画像は40x40mmの大きさのベタ画像で、画像トナー量は0.50mg/cm2となるよう調整した。用紙は富士ゼロックスオフィスサプライ社製の商品名「J紙」を用いた。
(Image output)
8 parts by mass of externally added toners 1C to 15C and 100 parts by mass of carrier are stirred and mixed for 5 minutes by a ball mill to adjust developers 1C to 15C, and image output for evaluation of fixing performance and the like is performed by the following procedure. went. The carrier was a resin-coated carrier, and a ferrite carrier having a volume average particle diameter of 50 μm coated with 1% by mass of methacrylate (manufactured by Soken Chemical Co., Ltd.) was used. The adjusted developer was set in a developing unit of a color copying machine Doccolor 1250 manufactured by Fuji Xerox Co., Ltd., from which the fixing unit was removed, and an unfixed image was output. The output image was a solid image having a size of 40 × 40 mm, and the amount of image toner was adjusted to 0.50 mg / cm 2 . As the paper, the product name “J paper” manufactured by Fuji Xerox Office Supply Co., Ltd. was used.

(定着方法)
定着はDocucolor1250複写機から取り出した定着器を、定着器のロール温度を変更できるように改造し、定着ロールにはその表面材料をテフロン(登録商標)チューブに替えたものを使用した。定着器の用紙搬送速度は毎秒160mmとした。トナー1C〜15Cの未定着画像を定着器の温度を90℃から180℃まで適宜変えて定着し定着画像を得た。
(Fixing method)
For fixing, the fixing device taken out from the Doccolor 1250 copier was remodeled so that the roll temperature of the fixing device could be changed, and the fixing roll was replaced with a Teflon (registered trademark) tube. The sheet conveying speed of the fixing device was 160 mm per second. Unfixed images of toners 1C to 15C were fixed by appropriately changing the temperature of the fixing device from 90 ° C. to 180 ° C. to obtain a fixed image.

(最低定着温度評価方法)
トナー1C〜15Cの最低定着温度は、低温オフセットを起こさずに定着を開始する温度とした。評価基準は、定着温度110℃でも低温オフセットを起こさないものを○、最低定着温度120℃以下で△、120℃よりも高い場合を×とした。
(Minimum fixing temperature evaluation method)
The minimum fixing temperature of toners 1C to 15C was set to a temperature at which fixing is started without causing a low temperature offset. The evaluation criteria were ◯ for those that did not cause a low temperature offset even at a fixing temperature of 110 ° C., Δ at a minimum fixing temperature of 120 ° C. or lower, and × when higher than 120 ° C.

(ドキュメントオフセットの評価方法)
参考例1Aと同様の方法で現像剤1Cから15Cの評価を行った。
(Document offset evaluation method)
Developers 1C to 15C were evaluated in the same manner as in Reference Example 1A.

参考例1C〜7C、比較例1C〜8C)
参考例1C〜7C、比較例1C〜8Cのトナーに対する性能評価を、被覆層厚みの合計及びトナーの体積平均粒径とともに表3に示した。
( Reference Examples 1C-7C, Comparative Examples 1C-8C)
The performance evaluation of the toners of Reference Examples 1C to 7C and Comparative Examples 1C to 8C is shown in Table 3 together with the total coating layer thickness and the volume average particle diameter of the toner.

参考例1C〜7Cのトナーに関しては、いずれも最低定着温度が110℃以下であり、なおかつ、ドキュメントオフセットの発生も起こらなかった。
比較例1C〜3Cにおいて、コア粒子または被覆層のガラス転移温度が低すぎると低温定着性はとれるがドキュメントオフセットが発生した。コア樹脂のガラス転移温度が高すぎるとドキュメントオフセットは発生しないが低温定着性がとれない。比較例4Cは多層構造になっていないため樹脂間の相溶が均一ではなく、低ガラス転移温度であるコア樹脂がトナー表面に出やすい。そのため部分的に著しい画像劣化が見られた。最低定着温度は115℃であった。比較例5Cは、コア粒子と被覆層とのガラス転移温度差が十分ではないため、低温定着と耐ドキュメントオフセットの両立が困難となる。最低定着温度は120℃、軽微な画像劣化が見られた。比較例6Cにおいては、樹脂層間の酸価の差が大きいため樹脂間の電気的反発が大きくなり、コア粒子と被覆層とが均一に相溶せず軽微な画像劣化が生じた。最低定着温度は115℃であった。比較例7Cにおいては被覆層の膜厚が十分ではなく、低ガラス転移温度であるコア粒子中の結着樹脂が表面に出てしまい、ドキュメントオフセットが発生した。比較例8Cは、被覆層の膜厚が厚すぎて低ガラス転移温度であるコア粒子中の結着樹脂が機能せず、低温定着性がとれなかった。
For the toners of Reference Examples 1C to 7C, the minimum fixing temperature was 110 ° C. or lower, and no document offset occurred.
In Comparative Examples 1C to 3C, when the glass transition temperature of the core particle or the coating layer was too low, the low temperature fixability was obtained but the document offset occurred. If the glass transition temperature of the core resin is too high, document offset does not occur but low temperature fixability cannot be achieved. Since Comparative Example 4C does not have a multilayer structure, the compatibility between the resins is not uniform, and the core resin having a low glass transition temperature is likely to appear on the toner surface. As a result, significant image degradation was observed partially. The minimum fixing temperature was 115 ° C. In Comparative Example 5C, since the glass transition temperature difference between the core particles and the coating layer is not sufficient, it is difficult to achieve both low-temperature fixing and document offset resistance. The minimum fixing temperature was 120 ° C. and slight image deterioration was observed. In Comparative Example 6C, since the difference in acid value between the resin layers was large, the electrical repulsion between the resins was large, and the core particles and the coating layer were not uniformly mixed, resulting in slight image deterioration. The minimum fixing temperature was 115 ° C. In Comparative Example 7C, the coating layer was not sufficiently thick, and the binder resin in the core particles having a low glass transition temperature appeared on the surface, resulting in document offset. In Comparative Example 8C, the coating resin in the core particles having a low glass transition temperature did not function because the coating layer was too thick, and the low-temperature fixability could not be obtained.

Claims (4)

結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナー。 Binder resin, colorant, inorganic fine particles having a volume average particle size of 0.1 to 0.5 μm and specific gravity of 1.0 to 2.0, and terpene modification having a volume average particle size of 0.1 to 1.0 μm A toner for developing an electrostatic charge image, wherein the surface of core particles having a glass transition temperature of 20 to 40 ° C. containing novolac resin fine particles is coated with a coating layer having a glass transition temperature of 50 to 100 ° C. 結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーの製造方法であって、
体積平均粒径が1.0μm以下の結着樹脂微粒子を分散した結着樹脂微粒子分散液、着色剤分散液体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子を分散した無機微粒子分散液及び体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子を分散したテルペン変性ノボラック樹脂微粒子分散液を混合して凝集粒子を形成する凝集工程と、前記凝集粒子の表面に被覆樹脂微粒子を付着させる付着工程と、前記被覆樹脂微粒子が付着した凝集粒子を加熱して融合させる融合工程と、を少なくとも有する静電荷像現像用トナーの製造方法。
Binder resin, colorant, inorganic fine particles having a volume average particle size of 0.1 to 0.5 μm and specific gravity of 1.0 to 2.0, and terpene modification having a volume average particle size of 0.1 to 1.0 μm A method for producing a toner for developing an electrostatic charge image, comprising coating the surfaces of core particles having a glass transition temperature of 20 to 40 ° C. containing novolac resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C. ,
Binder resin fine particle dispersion in which binder resin fine particles having a volume average particle size of 1.0 μm or less are dispersed, a colorant dispersion , a volume average particle size of 0.1 to 0.5 μm and a specific gravity of 1.0 to 2 Aggregate particles are formed by mixing an inorganic fine particle dispersion in which inorganic fine particles of 0.0 are dispersed and a terpene-modified novolac resin fine particle dispersion in which a terpene-modified novolak resin fine particle having a volume average particle size of 0.1 to 1.0 μm is dispersed. An electrostatic charge image developing toner having at least a coagulation step, an adhesion step of attaching coated resin fine particles to the surface of the aggregated particles, and a fusion step of heating and coalescing the aggregated particles to which the coated resin fine particles adhere Production method.
結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーを少なくとも含有する静電荷像現像剤。 Binder resin, colorant, inorganic fine particles having a volume average particle size of 0.1 to 0.5 μm and specific gravity of 1.0 to 2.0, and terpene modification having a volume average particle size of 0.1 to 1.0 μm An electrostatic charge containing at least an electrostatic charge image developing toner obtained by coating the surface of core particles having a glass transition temperature of 20 to 40 ° C. containing novolac resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C. Image developer. 潜像保持体表面に静電荷像を形成する潜像形成工程と、現像剤担持体に担持された現像剤を用いて前記潜像保持体表面に形成された静電荷像を現像してトナー画像を形成する現像工程と、前記潜像保持体表面に形成されたトナー画像を被転写体表面に転写する転写工程と、前記被転写体表面に転写されたトナー画像を熱定着する定着工程と、を少なくとも有する画像形成方法であって、
前記現像剤が、結着樹脂と着色剤と体積平均粒径が0.1〜0.5μmであり比重が1.0〜2.0である無機微粒子と体積平均粒径が0.1〜1.0μmのテルペン変性ノボラック樹脂微粒子とを含有するガラス転移温度が20〜40℃のコア粒子の表面を、ガラス転移温度が50〜100℃の被覆層で被覆してなる静電荷像現像用トナーを少なくとも含有する、画像形成方法。
A latent image forming step for forming an electrostatic charge image on the surface of the latent image holding member, and a toner image obtained by developing the electrostatic charge image formed on the surface of the latent image holding member using a developer carried on the developer carrying member. A developing step for forming the toner image, a transfer step for transferring the toner image formed on the surface of the latent image holding member to the surface of the transfer target, and a fixing step for thermally fixing the toner image transferred to the surface of the transfer target; An image forming method having at least
The developer is a binder resin, a colorant, an inorganic fine particle having a volume average particle size of 0.1 to 0.5 μm and a specific gravity of 1.0 to 2.0, and a volume average particle size of 0.1 to 1. A toner for developing an electrostatic charge image obtained by coating the surface of a core particle having a glass transition temperature of 20 to 40 ° C. containing 0.0 μm terpene-modified novolak resin fine particles with a coating layer having a glass transition temperature of 50 to 100 ° C. An image forming method containing at least.
JP2005082814A 2005-03-22 2005-03-22 Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method Expired - Fee Related JP4501742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082814A JP4501742B2 (en) 2005-03-22 2005-03-22 Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082814A JP4501742B2 (en) 2005-03-22 2005-03-22 Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method

Publications (2)

Publication Number Publication Date
JP2006267301A JP2006267301A (en) 2006-10-05
JP4501742B2 true JP4501742B2 (en) 2010-07-14

Family

ID=37203388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082814A Expired - Fee Related JP4501742B2 (en) 2005-03-22 2005-03-22 Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method

Country Status (1)

Country Link
JP (1) JP4501742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858167B2 (en) 2002-02-13 2010-12-28 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056519A1 (en) * 2006-11-07 2008-05-15 Panasonic Corporation Toner and process for producing toner
US7553601B2 (en) * 2006-12-08 2009-06-30 Xerox Corporation Toner compositions
JP5306217B2 (en) * 2007-10-01 2013-10-02 キヤノン株式会社 toner
JP2013130834A (en) * 2011-12-22 2013-07-04 Fuji Xerox Co Ltd Magenta toner for electrophotography, developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US9811017B2 (en) * 2016-02-26 2017-11-07 Xerox Corporation Hyperpigmented low melt toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301947A (en) * 1994-03-09 1995-11-14 Kao Corp Capsule toner for thermal pressure fixing
JPH10123748A (en) * 1996-10-18 1998-05-15 Nippon Carbide Ind Co Inc Toner for developing electrostatic charge image
JP2002082473A (en) * 2000-09-08 2002-03-22 Fuji Xerox Co Ltd Electrostatic charge image developing toner, method for manufacturing the same, electrostatic charge image developer, image forming method and image forming device
JP2004109909A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Dry toner composition for electrostatic charge image, developer for electrostatic latent image development, and image forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301947A (en) * 1994-03-09 1995-11-14 Kao Corp Capsule toner for thermal pressure fixing
JPH10123748A (en) * 1996-10-18 1998-05-15 Nippon Carbide Ind Co Inc Toner for developing electrostatic charge image
JP2002082473A (en) * 2000-09-08 2002-03-22 Fuji Xerox Co Ltd Electrostatic charge image developing toner, method for manufacturing the same, electrostatic charge image developer, image forming method and image forming device
JP2004109909A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Dry toner composition for electrostatic charge image, developer for electrostatic latent image development, and image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858167B2 (en) 2002-02-13 2010-12-28 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method

Also Published As

Publication number Publication date
JP2006267301A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP3241003B2 (en) Toner for electrostatic charge development, method for producing the same, developer, and image forming method
JP3661544B2 (en) Toner for developing electrostatic image, method for producing the same, developer, and image forming method
US8298741B2 (en) Image forming apparatus and image forming method
JP5677331B2 (en) Toner for electrostatic latent image development
JP4715658B2 (en) Toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP2003215847A (en) Electrophotographic magenta toner and method for forming full-color image
JP2008040270A (en) Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP4501742B2 (en) Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method
JP2004163854A (en) Toner for developing electrostatic image, process for preparing toner for developing electrostatic image, developer for developing electrostatic image and image forming method
JP2006038961A (en) Electrostatic charge image developing carrier, electrostatic charge image developer, method for manufacturing electrostatic charge image developing carrier, and image forming apparatus
JP4026373B2 (en) Method for producing toner for developing electrostatic latent image
JP5530990B2 (en) Toner for electrostatic latent image development
JP3067761B1 (en) Toner for developing electrostatic image, method of manufacturing the same, developer for developing electrostatic image, and image forming method
JP3752877B2 (en) Toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP2001083730A (en) Electrostatic charge image developing toner, its manufacturing method, developer, and image forming method
JP4016841B2 (en) Image forming method, replenishment developer, replenishment developer cartridge
JP2000242032A (en) Electrostatic charge image developing toner, its production, electrostatic charge image developer, and image forming method
US11188004B2 (en) Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US11126099B2 (en) Electrostatic-image developing toner, electrostatic-image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20210216026A1 (en) Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP3104883B2 (en) Toner for developing electrostatic images
JP2005031222A (en) Electrostatic charge image developing toner, method for manufacturing the same and image forming method
JP3997670B2 (en) Image forming method
JP3849371B2 (en) Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, and image forming method
JP2005249848A (en) Release agent for manufacture of toner, colorant for manufacture of toner, and electrostatic charge image developing toner obtained by using them and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees