JP4501039B2 - Membrane module - Google Patents
Membrane module Download PDFInfo
- Publication number
- JP4501039B2 JP4501039B2 JP22130799A JP22130799A JP4501039B2 JP 4501039 B2 JP4501039 B2 JP 4501039B2 JP 22130799 A JP22130799 A JP 22130799A JP 22130799 A JP22130799 A JP 22130799A JP 4501039 B2 JP4501039 B2 JP 4501039B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- membrane
- fiber membrane
- membrane module
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は河川水や地下水などの自然水の浄水処理、あるいは水道水の高度浄水処理に使用される膜モジュールに関する。本発明による膜モジュールは、高回収率運転においても高い除去性能が必要される水処理分野に特に有効に使用することができる。
【0002】
【従来の技術】
水道水の高度浄水処理方法として、また河川水や地下水等の自然水の凝集沈殿に代わる浄水処理方法として膜分離技術を適用する処理方法が注目され、転換が進められてきている。特に中空糸膜を利用した膜モジュールは、容器の形状にこだわらずに容器に装着でき、物理洗浄し易いことから浄水処理用として多く採用されている。
【0003】
浄水処理に使用される膜モジュールは、浄水処理量を確保のためにある程度の大きさの膜モジュールサイズが必要となる。特に膜モジュール設置スペースに対する浄水処理量をみた設置容積効率を考えると、膜モジュールに付属する容器、接続部品等の容積は少ない方が良く、膜モジュール1 本当りの浄水処理量を上げるためには膜モジュールサイズを大きくする方法が一つの手段となっている。
【0004】
また、浄水処理に使用される膜モジュールにおいては、供給水を最大限に有効利用するために、高回収率(回収率は透過水と供給水の流量比率)の膜モジュール設計が要求される。高回収率の運転がなされると膜モジュール内の一次側の膜表面で供給水が高濃度に濃縮されるのみならず、膜モジュール内の一次側の流量が少なくなり、膜表面での線速度が小さい状態となる。この状態のとき、膜面の全域に偏流を生じさせずに供給水を均一に分配供給させることは、一般に困難である。また、膜モジュール内で偏流が生じると分離に寄与する有効な膜面積が減少するばかりか、さらに偏流により膜表面の濃度分極が促進され、膜表面濃度が極度に高くなり、結果として分離効率が著しく低下し、好ましくない。また、逆浸透膜やナノ濾過膜の場合は膜モジュール内の膜の一次側に非常に低速で高濃度の液体が流れると、膜表面にスケール成分が濃縮、析出したり、ファウラントが付着し易くなり、分離に寄与する膜表面を減少させ著しく分離能力が低下する場合がある。
【0005】
従来の膜モジュールでは、偏流を抑制するために、例えば中空糸膜モジュールの場合、極端に高い充填率で中空糸膜を束ねることにより中空糸膜の均一配置をはかり、膜モジュールに均一分配流を生じさせた膜モジュール設計がなされている。また、片端を樹脂で容器に固定し反対の中空糸膜端部をループ状にし抵抗体として均一分配流を生じさせた膜モジュール設計がなされている。
【0006】
また、偏流を抑制するために中空糸膜を交差配列で捲上げて中空糸膜束とし、中空糸膜束中に筒状物を設け中空糸膜束の断面方向の中央部への流れを生じさせたり、軸方向の流れを持たせた膜モジュール構造を有する中空糸膜モジュールが特開昭52ー49987号公報、特開昭52ー63179号公報、特公昭54ー5796号公報、特開昭63ー1404号公報に開示されている。
【0007】
また、容器内に中空糸膜束を数束配列し中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールが、特開昭61ー103503号公報、特開平9ー206563号公報に開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、一様な分布で極端に高い充填率で中空糸膜を束ねた膜モジュールでは、膜モジュールサイズが大きくなるとそれに伴い膜モジュール径大きくなるため、中空糸膜束の軸方向に垂直な断面の半径方向の流動抵抗が大きくなり、被処理水が径方向に分配されにくくなる。よって、中空糸膜束群からなる捲上体の外周面への局部的な流れが生じ易くなり、その結果、偏流が発生し膜が有効に使用されず分離効率が低下する。また、中空糸膜束群からなる捲上体の外周面への局部的な流れを抑制するために、容器と中空糸膜束群からなる捲上体のクリアランスを極小にし、高充填率で中空糸膜を装着した場合、中空糸膜束群からなる捲上体を容器に挿入する時に中空糸膜を損傷しやすく膜モジュール製造が非常に困難になる。さらに、高回収率を要求される浄水処理では、膜の一次側が高濃度に濃縮されるため、中空糸膜表面のみならず中空糸膜の間隙もファウリングや、透水量の低下が生じ易くなるため長期連続運転が困難となる。また、ファウラントを物理洗浄する場合、中空糸膜が高充填率で配置されていると逆に洗浄の妨げとなり洗浄効率を低下させ好ましくない。
【0009】
片端を樹脂で容器に固定し反対側の中空糸膜端部をループ状にし抵抗体として均一分配流を生じさせる目的の膜モジュールでは、ループ状部の曲率に制限があるため容器内に中空糸膜を高充填に配置できず、高回収率時に膜表面での線速度が低くなり偏流を促進させ膜モジュール性能が低下する。また、平行になった中空糸膜部分では充填率が低く完全な均一分配流は生じさせることは困難である。
【0010】
多孔芯材に中空糸膜束を交差配置して巻き上げ、供給部と反対側に濃縮水排出部を有する円筒状の膜モジュールにおいても、膜モジュール円筒断面の中心の芯材部より液を供給した場合、供給部から濃縮水排出部間の液流路すべてにおいて均一分配流を生じさせることは困難である。特に液供給部付近の中空糸膜束群はデッドスペースとなり液流れが生じにくく、液が高濃度となり性能低下やファウリングの発生場所となる可能性が非常に高い。また、芯材の一部のみに孔を設けて中空糸膜束を交差配置で巻き上げ、軸方向の流れを持たせた膜モジュールにおいても、液供給部付近の中空糸膜束群はデッドスペースとなり液流れが生じにくく、液が高濃度となり性能低下やファウリングの発生場所となる。
【0011】
容器内に中空糸膜束を数束配列し一定の間隔をもたせて中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールでは、中空糸膜束内部の中空糸膜まで有効に膜分離に寄与させることは困難で、結果的に膜モジュール性能が低下する。また、低い膜面線速度のため中空糸膜束の中空糸膜間隙にファウラントを蓄積し易くさせることとなり、透水量の低下を招き、長期連続運転が困難となる。さらに、ファウラントを物理洗浄する場合は洗浄液流れが主に中空糸膜束間の空間に流れ、中空糸膜束内のファウラントの洗浄除去性が低下する。
【0012】
高回収率での使用が要求される浄水処理において、特に膜モジュールサイズが大型化される場合、膜を高充填して膜面線速度上昇させることによる偏流の解決策は、高充填によるラジアル方向の抵抗増大で液流が抑制されるといった二律背反的な要素を有し、双方を同時に解消することは非常に困難である。
【0013】
本発明は上記課題に鑑み鋭意研究の結果、提案されたもので高回収率を要求される浄水処理において、特に膜モジュールサイズが大型化される場合においても、ラジアル方向の流れを確保し、液供給部付近のデッドスペースを無くし、偏流を起こさせることなく均一分配流れを生じさせ、性能の低下を抑制することを可能にしたものである。さらに、極端に高い充填率で中空糸膜を充填しないため、中空糸膜を損傷させることなく容器に挿入することができ、また、膜モジュール洗浄性にも優れた中空糸膜モジュールを提供するものである。
【0014】
【課題を解決するための手段】
本発明は、回収率80%での溶質透過率と回収率20%での溶質透過率の比が1.0以上、3.0以下となる膜モジュールであり、特に、容器に装着された中空糸膜束群からなる捲上体の片端もしくは両端部を樹脂で固定した膜モジュールであって、該中空糸膜束群からなる捲上体が、多孔質の芯材の上に中空糸膜束が、中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列を持つ中空糸膜束群である中空糸膜モジュールにおいて、中空糸膜が交差する充填密度の低いクロスポイント群を濃縮水排出部と反対側の供給部付近に集中配置させ、中空糸膜束群の捲上軸線と垂直な断面の中心から外周部の方向に連続的に整列させた中空糸膜配列となる中空糸膜束群を有することを特徴とする中空糸膜モジュールである。なお、充填密度は下記(1)式で定義される。
充填密度=(中空糸膜外径2 ×中空糸膜本数×中空糸膜長さ)
/(中空糸膜束群外径2 ×中空糸膜束群長さ) (1)
【0015】
具体的には下記のものである。
(1)中空糸膜の9〜12本を1束とし、これを4束あわせたものを芯材の周りに交差配列になるように巻き付けて得られる捲上体を、供給部、透過液排出部、濃縮水排出部を有する容器に装着して得られる膜モジュールであって、
(a)前記中空糸膜が、酢酸セルロース系非対称膜またはポリスルホンからなる多孔質支持体の外表面にポリアミド薄膜を形成した複合膜であり、
(b)前記芯材が前記中空糸膜の束を巻き取る軸芯であって、芯材の内外に貫通の孔を有し、
(c)前記中空糸膜の束を芯材の周りに巻き付ける際の軸芯と中空糸膜束の角度が20〜60度であり、
(d)前記中空糸膜の束が交差するクロスポイント群が供給部のマニホールド部に配置されており、
(e)前記中空糸膜の充填率が50〜75%
であることを特徴とする浄水処理用の膜モジュール。
(2)前記クロスポイント群側の端部が膨らみを持つように整形されていることを特徴とする(1)に記載の浄水処理用の膜モジュール。
(3)前記複合膜が、ポリスルホン、トリエチレングリコール、N,N−ジメチルアセトアミド、ラウリルベンゼンスルホン酸からなる製膜原液とN,N−ジメチルアセトアミドおよび水からなる芯液を用いて製造されたポリスルホン多孔質支持膜をアミン水溶液中に浸漬した後、トリメシン酸クロリドを含むヘキサン溶液、フッ素系溶剤、酢酸水溶液に順次接触させることで前記ポリスルホン多孔質支持体の外表面にポリアミド薄膜を形成させた複合中空糸膜であることを特徴とする(1)または(2)に記載の浄水処理用の膜モジュール。
(4)0.1重量%シュクロース水溶液を用いて25℃、0.3MPaで測定した前記中空糸膜のシュクロース除去率が92%以上、かつ透水量が0.1m3/m2/日以上であることを特徴とする(3)に記載の浄水処理用の膜モジュール。
(5)前記膜モジュールを用いて、0.1重量%のシュクロース水溶液を使用し供給圧力0.3MPa、温度25℃、pH6の条件で性能評価した際に、回収率20%でのシュクロースの透過率(SP20)が10%以下であり、かつ、回収率80%でのシュクロースの透過率(SP80)と前記SP20との比(SP80/SP20)が1.0以上、2.0以下であることを特徴とする(1)〜(4)のいずれかに記載の浄水処理用の膜モジュール。
【0016】
本発明における溶質透過率とは、膜モジュールの透過水の溶質濃度と膜モジュールの供給水の溶質濃度の比で、下記の(2)式で定義される。この溶質透過率が小さいほど、溶質の除去性能が高いことを意味し、好ましい。例えば、高度浄水処理で用いられる場合などで、回収率が20%程度では10%以下が好ましい。この溶質透過率は膜モジュールの回収率に依存し、一般的には回収率が大きくなるほど、大きくなる。高回収率で使用する場合はできるだけ溶質透過率は小さい方が好ましいので、高回収率での値と低回収率での値の比が小さくなる膜モジュールが好ましい。例えば、回収率80%での溶質透過率SP80と回収率20%での溶質透過率SP20との比(SP80/SP20)でみると、1.0以上3.0以下が好ましく、より好ましくは1.0以上2.0以下であり、最も好ましくは1.0以上1.7以下である。このSP80/SP20が3より大きいと、膜モジュール内で偏流が生じている可能性が高く、膜性能が十分膜モジュール性能に反映されていないばかりか、膜モジュール内のファウリングが生じ易い場合が多く、好ましくない。
溶質透過率(%)= (CP/CF) × 100 (2)
ここで CP:膜モジュールの透過水の溶質濃度
CF:膜モジュールの供給水の溶質濃度
【0017】
本発明における膜の形状は平膜、中空糸膜など特に限定されないが、膜モジュール当たりの膜面積を大きくできる中空糸膜が好ましい。中空糸膜とは、中空糸状の分離膜であって、その膜素材、膜構造および膜ディメンジョンは特に限定されない。たとえば酢酸セルロース系、ポリアミド系の非対称膜やポリアミド系、ポリスルホン系などの複合膜が挙げられる。性能の点から複合膜が好ましく、複合中空糸膜が特に好ましい。複合中空糸膜とは、多孔質中空糸支持膜の外表面及び/または内表面に多孔質中空糸支持膜とは異なる素材からなる分離活性層を設けたものである。外表面、内表面いずれの表面に分離活性層を設けたものでもかまわないが、有効膜面積が大きくなる外表面に設けたものが好ましい。
【0018】
膜の素材は特に限定されない。例えば、複合膜の場合、支持層としてポリスルホン系樹脂が好ましく、分離活性層はポリアミド系重合体が好ましい。ポリアミド系重合体は多官能性アミンと多官能性酸ハロゲン化物の界面重縮合反応により得られた架橋ポリアミド重合体が特に好ましく、架橋ポリピペラジンアミド、全芳香族架橋ポリアミドなどがあげられ、架橋ポリピペラジンアミドが好適である。
【0019】
膜の分画領域は、特に限定されないが、例えば、高度浄水処理に適用する場合は低分子有機物が除去できることが好ましく、逆浸透膜やナノ濾過膜などが好ましい。特に、透水性能の面で、ナノ濾過膜がより好ましい。例えば、シュクロース0.1重量%水溶液、圧力0.3MPa、温度25℃での膜面積当たりの透水量は0.1m3 /m2 /日以上が好ましく、0.2m3 /m2 /日以上がより好ましい、さらに好ましくは、0.3m3 /m2 /日以上である。
回収率が0に近い条件での膜性能としては92%以上が好ましい。
【0020】
本発明における中空糸膜束とは、複数の中空糸膜が同方向に束ねられたものであれば良く、好ましくは数十〜数百本の中空糸膜が束ねられたもの、より好ましくは30〜200本の中空糸膜が束ねられたものである。
【0021】
本発明における中空糸膜束群とは、中空糸膜束を複数本集合させた中空糸膜束の捲上集合体であって、中空糸膜束および中空糸膜の配列が中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列をもった構造を有する構造体である。
【0022】
本発明におけるクロスポイント群は、中空糸膜の充填密度が局所的に小さくなるため、膜モジュールへの供給水が流れ易くなる。このクロスポイント群は濃縮水排出部と反対側にあることが好ましい。供給部が、濃縮水排出部と反対の位置にある場合は、供給部付近にクロスポイント群を配置することにより、供給水が中空糸膜束群の捲き上げ体の内部まで分配されつつ、濃縮水排出部へ流れることが可能となる。
【0023】
本発明における中空糸膜束の充填率は次式で定義される。該充填率は高すぎるとファウラントの沈着堆積、膜モジュール洗浄が困難となり、また低すぎると膜面の線速度が低下し高回収率において性能低下するため、40〜80%が適用され、より好ましくは50〜75%が適用される。
充填率は下記の(3)式で定義される。
充填率(% )=(中空糸膜外径2 ×π/4×中空糸膜本数×中空糸膜長さ)
/(容器空塔の中空糸膜束群部の容積)×100 (3)
【0024】
交差配列された中空糸膜束の角度は、膜面積を大きくすべく充填率を高くするためには小さい角度が適するが、ファウラントの沈着堆積、膜モジュール洗浄を考慮すると大きい角度が適する。この双方を満足するため交差配列された中空糸膜束の角度は、中空糸膜束の捲上軸線に対して5〜75度の傾き、より好ましくは20〜60度の傾きを持つ。
【0025】
本発明における樹脂とは、中空糸膜を液密にシールできれば特に限定されない。例えば、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂などの熱硬化性樹脂が使用できるが、必要により熱可塑性樹脂を用いることもできる。
【0026】
本発明における容器とは、中空糸膜束を収納するものであって、その材質や形状は特に限定されない。たとえば中空糸膜束を効率よく充填可能とするような円筒状容器、小ユニットより組合せを容易にするような箱状容器などが挙げられる。容器の材質はポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは端部封止樹脂と熱膨張係数の近い材質が良い。
【0027】
本発明における芯材とは、中空糸膜または中空糸膜束を巻き取る軸芯であって管の内外に貫通の孔を持ち液体分配機能を兼ねるものであれば形状、材質等は特に限定されないが、形状は芯材の軸方向に均一に流れを分散させるために、円筒状の管に円孔が千鳥配列になったものが好ましい。材質は、たとえばポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは容器と同一材質および/または端部封止樹脂と熱膨張係数の近い材質が良い。
【0028】
本発明における中空糸膜モジュールは、河川水や地下水など自然水の浄水処理あるいは水道水の高度浄水処理に使用できる中空糸膜からなる膜モジュールであり、全量ろ過ではなく、非透過水である、濃縮水の一部を膜モジュール外へ排出する濃縮水排出部を有する。膜モジュール内の流れの形態は特に限定されないが、カウンターフローやクロスフロー、コカレントフローが好ましい。図1 に本発明の中空糸膜モジュールの一例を示すが、これに限定されるものではない。図1により中空糸膜モジュールの水処理の概要を説明すると、供給部31より処理水を加圧供給し、芯材3より中空糸膜モジュール軸方向に処理水を分配しラジアル方向に流れを発生させる。中空糸膜に対してクロスフローを生じさせ濃縮水を濃縮部32より排出させ、中空糸膜を透過し端部封止部5’で開口した中空部より流出した透過液を透過部33より排出させ回収するものである。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図面に基づき中空糸膜モジュールの場合について詳細について説明するが、特にこれらに限定されるものではない。図1に本発明の中空糸膜モジュールの模式図を示す。
【0030】
本発明の中空糸膜モジュールは、図1に示すように供給水が入る供給部31をもつ容器1と容器1内に装着された中空糸膜束群からなる捲上体2および処理された透過水と濃縮水を排出する透過水排出部33、濃縮水排出部32を有する。そして、この中空糸膜束群からなる捲上体2は、捲上軸線にポリカーボネイト製の芯材( 外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列) を2本、クロスポイントが芯材端部に位置するようにスペーサーを挟みセットする。9 本〜12本の中空糸膜を4束に合わせて中空糸膜束とし、巻取り回転4回に対してトラバースガイド1往復となる比率で中空糸膜束を約1200mmトラバースしながら巻き取る。クロスポントを3ヶ所、トラバースの往路と復路でクロスポイントが数mmズレが発生するように数%巻取り回転とトラバースの位相差を生じさせ、外径φ74mmまで巻取り、再外層の中空糸膜束の角度が捲上軸線に対して約22度、中空糸膜の充填率は69.7% となるように交差配列を持つ中空糸膜束群を作製する。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を巻き付け、クロスポイント群を供給部付近のマニホールド部に配置させるように中空糸膜束群からなる捲上体をカットし、ポリカーボネイト製容器に挿入する。さらにクロスポイント群側の端部に膨らみを持たせるように整形し、ラジアル方向への液流の抵抗を低下させる(図1)。続いて、容器に装着した中空糸膜束群からなる捲上体を遠心脱液、次いで、加熱した除湿空気で通風し絶乾近くまで乾燥させる。そして、端部の中空糸膜開口端部を閉口するために端部封止剤を遠心力により充填し硬化させる。2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力にて充填し硬化させる。その後、中空糸膜の中空部を開口させ、供給部および透過水排出部にOリングでシールされるキャップを取り付ける。
【0031】
【実施例】
以下、本発明を実施例により具体的に説明するが本発明はこれらに限定されるものではない。
【0032】
実施例
ポリスルホン20重量部、トリエチレングリコ- ル4重量部、N,N−ジメチルアセトアミド(DMAc)75.5重量部、ラウリルベンゼンスルホン酸ナトリウム0.5重量部からなる製膜原液を、チュ−ブインオリフィス型紡糸ノズルを用いて外周部から、DMAc30重量部、水70重量部からなる芯液を内周部から、それぞれ同時に押し出し、6cmの空気中を走行した後、DMAc5重量部、水95重量部からなる凝固液中に15m/minの速度で引き取り、水洗工程を経て、中空糸型多孔質支持体(外径350μm/内径200μm)を得た。該多孔質支持体を、ピペラジン2重量部、トリエチレンジアミン1重量部、ラウリルベンゼンスルホン酸ナトリウム0.07重量部からなるアミン水溶液中に1 分間接触させ、該多孔質支持体を引き上げた後、過剰なアミン水溶液を液切りし、トリメシン酸クロリド1 重量部を含むヘキサン溶液、フッ素系溶媒(フロリナ−ト FC−70、住友3M社製)、1 重量部酢酸水溶液に順次接触させることで、該多孔質支持体の外表面にポリアミド薄膜を形成させた複合中空糸膜を得た。この複合中空糸膜の性能、すなわち、0.1重量%シュクロース水溶液を25℃で0.3MPaの加圧下でのシュクロースの除去率および、膜面積当たりの透水量はそれぞれ、97.2%、0.3m3 /m2 /日であった。
【0033】
この複合中空糸膜を、ポリカーボネイト製の芯材( 外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列) に、巻取り回転2回に対して1トラバースの比率で9 本〜12本の中空糸膜を4束に合わせて中空糸膜束とし、数%巻取り回転とトラバースの位相差を生じさせ、トラバース幅を1200mmで外径φ74mmまで巻取り、交差配列を持つ中空糸膜束群からなる捲上体を作製した。中空糸膜の本数は24840本とした。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を巻き付け、クロスポイント群を供給部付近のマニホールド部に配置させるように中空糸膜束群からなる捲上体を400mmの長さにカットし、ポリカーボネイト製容器(最狭内径φ74mm)に挿入し、さらにクロスポイント群側の端部に膨らみを持たせるように整形した。中空糸膜の充填率は69.7% であった。そして、容器に装着した中空糸膜束群からなる捲上体を室温にて600rpm で3 分間、遠心脱液を実施し中空糸膜外表面および中空部内の水分を除去した。次いで、露点5℃に調整した除湿空気を50℃に加熱し、風量0.13m 3 /minで12時間、容器に装着した中空糸膜束に通風し絶乾近くまで乾燥させた。そして1端部封止として中空糸膜開口端部を閉口するために端部封止剤を遠心力(回転数400rpm)により充填、硬化させ、2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力(回転数600rpm)にて充填、硬化させた。この時の端部封止剤として水添ビスフェノールA 型エポキシ樹脂を使用した。そして、中空糸膜の中空部を開口させるために、端部封止部を75℃のホットプレート上に1 時間接触させ、倍力装置( 倍力率2〜3) を使い人力(約4kg)により、刃幅300mmの刃物を使いスライスカッターにて中空糸膜束を固定した容器の端部封止部(直径φ100mm)を切削した。
【0034】
この中空糸膜モジュールを用いて、0.1重量%のシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%、線速度0.5m /minでの透水量は1.77m 3 /日、溶質透過率は6.1%、回収率20%、線速度3.3m/minでの透水量は1.96m 3 /日、溶質透過率は3.5%であった。回収率80%と20%の溶質透過率の比は1.74であった。ここで、線速度は下記、(4)式で定義される。
線速度=
((供給水流量+濃縮水流量)/2)/(容器の軸方向に垂直な断面の空隙面積) (4)
【0035】
比較例1
実施例の中空糸膜束群からなる捲上体をカットし容器に挿入する際、中空糸膜束群からなる捲上体にクロスポイント群が含まないように400mmの長さにカットし、特別な整形はせずに容器に挿入した以外は、実施例と同様の方法で中空糸膜モジュールを作製した。この膜モジュールの性能を実施例と同様の方法で測定した結果、回収率80%、線速度0.4m/minでの透水量は1.55m 3 /日、溶質透過率は18.0%、回収率20%、線速度3.3m/minでの透水量は1.95m 3 /日、溶質透過率は3.3%であった。回収率80%と20%の溶質透過率の比は5.45であった。
【0036】
比較例2
実施例の中空糸膜束群からなる捲上体をカットし容器に挿入する際、捲上体を400mmの長さにカットし、特別な整形はせずに容器に挿入し、クロスポイント群を濃縮液排出部付近に配置させるような中空糸膜束群からなる捲上体にした以外は、実施例と同様の方法で中空糸膜モジュールを作製した。この膜モジュールの性能を実施例と同様の方法で測定した結果、回収率80%、線速度0.4m/minでの透水量は1.47m 3 /日、溶質透過率は21.3%、回収率20%、線速度3.3m/minでの透水量は1.92m 3 /日、溶質透過率は3.3%であった。回収率80%と20%の溶質透過率の比は6.45であった。
【0037】
実施例および比較例1、2の結果の一覧を表1に示す。
【0038】
【表1】
【0039】
【発明の効果】
本発明の膜モジュールは、例えば河川水や地下水などの自然水の浄水処理あるいは水道水の高度浄水処理などの、特に高回収率が要求される水処理分野において、高回収率条件においても、供給部付近のデッドスペースを無くし均一分配流れを供給部から濃縮排水出口に渡って実現し、偏流を起こさずに膜を有効利用し膜自体が有する高い除去性能を発現することができ、連続安定運転、洗浄性向上することが可能である。
【図面の簡単な説明】
【図1】本発明に係る中空糸膜モジュールの一例を示した模式図
【符号の説明】
1 容器
2 中空糸膜束群からなる捲上体
3 芯材
5、5’ 端部封止部
6、6’ Oリング
7 マニホールド部
8 クロスポイント群
31 供給部
32 濃縮水排出部
33 透過水排出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane module used for natural water purification such as river water and groundwater, or advanced water purification for tap water. The membrane module according to the present invention can be used particularly effectively in the water treatment field where high removal performance is required even in high recovery rate operation.
[0002]
[Prior art]
A processing method using membrane separation technology has attracted attention as an advanced water purification method for tap water, and as a water purification method for replacing natural water such as river water and groundwater, and conversion is being promoted. In particular, membrane modules using hollow fiber membranes are often used for water purification treatment because they can be attached to a container regardless of the shape of the container and are easy to physically wash.
[0003]
The membrane module used for the water purification process needs a certain size of membrane module to secure the amount of water purification. In particular, considering the volumetric efficiency of the water treatment capacity for the membrane module installation space, it is better that the volume of the container, connection parts, etc. attached to the membrane module is small, and in order to increase the water treatment capacity per membrane module One method is to increase the membrane module size.
[0004]
In addition, in the membrane module used for water purification treatment, a membrane module design with a high recovery rate (recovery rate is a flow rate ratio of permeated water and supply water) is required in order to make maximum use of the supplied water. When operation at a high recovery rate is performed, not only the supply water is concentrated at a high concentration on the membrane surface on the primary side in the membrane module, but also the flow rate on the primary side in the membrane module is reduced, and the linear velocity on the membrane surface is reduced. Becomes small. In this state, it is generally difficult to uniformly distribute and supply the supply water without causing a drift in the entire membrane surface. In addition, when drift occurs in the membrane module, not only the effective membrane area contributing to the separation is reduced, but also the concentration polarization on the membrane surface is promoted by the drift, and the membrane surface concentration becomes extremely high, resulting in separation efficiency. It is remarkably lowered and is not preferable. Also, in the case of reverse osmosis membranes and nanofiltration membranes, if a highly concentrated liquid flows at a very low speed on the primary side of the membrane in the membrane module, scale components concentrate and precipitate on the membrane surface, and foulants tend to adhere. Thus, the membrane surface contributing to the separation may be reduced, and the separation ability may be significantly reduced.
[0005]
In the conventional membrane module, for example, in the case of a hollow fiber membrane module, the hollow fiber membranes are bundled at an extremely high filling rate so that the hollow fiber membranes are uniformly arranged so as to suppress the uneven flow. The resulting membrane module design has been made. Further, a membrane module design has been made in which one end is fixed to a container with a resin, and the opposite end portion of the hollow fiber membrane is formed in a loop shape to generate a uniform distribution flow as a resistor.
[0006]
In addition, in order to suppress the drift, the hollow fiber membranes are raised in a cross arrangement to form a hollow fiber membrane bundle, and a cylindrical material is provided in the hollow fiber membrane bundle to cause a flow to the center in the cross-sectional direction of the hollow fiber membrane bundle. A hollow fiber membrane module having a membrane module structure that has a flow in the axial direction is disclosed in JP-A-52-49987, JP-A-52-63179, JP-B-54-5796, No. 63-1404.
[0007]
Further, hollow fiber membrane modules in which several bundles of hollow fiber membrane bundles are arranged in a container to form a hollow fiber membrane bundle group and both ends are fixed with resin are disclosed in JP-A-61-103503 and JP-A-9-206563. It is disclosed.
[0008]
[Problems to be solved by the invention]
However, in a membrane module in which hollow fiber membranes are bundled at an extremely high filling rate with a uniform distribution, the membrane module diameter increases as the membrane module size increases. The flow resistance in the radial direction is increased, and the water to be treated is hardly distributed in the radial direction. Therefore, a local flow toward the outer peripheral surface of the upper body of the hollow fiber membrane bundle group is likely to occur, and as a result, a drift occurs, the membrane is not used effectively, and the separation efficiency is lowered. In addition, in order to suppress the local flow to the outer peripheral surface of the upper body composed of the hollow fiber membrane bundle group, the clearance between the container and the upper body composed of the hollow fiber membrane bundle group is minimized, and the hollow body is hollow with a high filling rate. When the thread membrane is attached, the hollow fiber membrane is easily damaged when the upper body made up of the hollow fiber membrane bundle group is inserted into the container, and it becomes very difficult to manufacture the membrane module. Furthermore, in the water purification process that requires a high recovery rate, the primary side of the membrane is concentrated to a high concentration, so that not only the surface of the hollow fiber membrane but also the gap between the hollow fiber membranes is likely to cause fouling and a decrease in water permeability. Therefore, long-term continuous operation becomes difficult. Further, when the foulant is physically washed, it is not preferable that the hollow fiber membrane is disposed at a high filling rate, which hinders washing and lowers washing efficiency.
[0009]
In the membrane module for the purpose of fixing one end to a container with resin and looping the opposite end of the hollow fiber membrane to form a uniform distribution flow as a resistor, the curvature of the loop is limited, so the hollow fiber is contained in the container. The membrane cannot be arranged in a high packing, and the linear velocity on the membrane surface is lowered at the time of high recovery rate, and the drift is promoted to lower the membrane module performance. Moreover, in the hollow fiber membrane part which became parallel, a filling rate is low and it is difficult to produce a perfect uniform distribution flow.
[0010]
The hollow fiber membrane bundle is crossed and wound up on the porous core material, and the liquid is supplied from the core material portion at the center of the cross section of the membrane module cylinder even in the cylindrical membrane module having the concentrated water discharge portion on the opposite side to the supply portion. In this case, it is difficult to generate a uniform distribution flow in all the liquid flow paths between the supply unit and the concentrated water discharge unit. In particular, the hollow fiber membrane bundle group in the vicinity of the liquid supply portion becomes a dead space, and it is difficult for the liquid flow to occur, and the liquid is highly concentrated and is highly likely to become a place where performance degradation or fouling occurs. In addition, even in a membrane module in which a hole is formed in only a part of the core material and the hollow fiber membrane bundles are wound up in an intersecting arrangement so as to have an axial flow, the hollow fiber membrane bundle group near the liquid supply section becomes a dead space. The liquid flow is difficult to occur, and the liquid becomes a high concentration, which is a place where performance degradation and fouling occur.
[0011]
In a hollow fiber membrane module in which several bundles of hollow fiber membrane bundles are arranged in a container to form a group of hollow fiber membrane bundles with fixed intervals and both ends are fixed with a resin, the membranes are effectively made up to the hollow fiber membranes inside the hollow fiber membrane bundle. It is difficult to contribute to the separation, and as a result, the performance of the membrane module is lowered. Further, the low membrane surface linear velocity makes it easy to accumulate foulants in the hollow fiber membrane gaps of the hollow fiber membrane bundle, leading to a decrease in the amount of water permeation and making long-term continuous operation difficult. Furthermore, when the foulant is physically washed, the cleaning liquid flow mainly flows into the space between the hollow fiber membrane bundles, and the cleaning and removing performance of the foulant in the hollow fiber membrane bundle is deteriorated.
[0012]
In water purification processes that require use at high recovery rates, especially when the membrane module size is increased, the solution to drift caused by increasing the membrane surface velocity by increasing the membrane filling rate is the radial direction due to high filling. However, it is very difficult to eliminate both of them at the same time.
[0013]
The present invention has been proposed as a result of diligent research in view of the above problems, and in a water purification process that requires a high recovery rate, especially in the case where the membrane module size is increased, the flow in the radial direction is secured, This eliminates the dead space in the vicinity of the supply unit, generates a uniform distribution flow without causing a drift, and suppresses a decrease in performance. Further, since the hollow fiber membrane is not filled at an extremely high filling rate, it can be inserted into a container without damaging the hollow fiber membrane, and a hollow fiber membrane module excellent in membrane module detergency is provided. It is.
[0014]
[Means for Solving the Problems]
The present invention is a membrane module in which the ratio of the solute permeability at a recovery rate of 80% and the solute permeability at a recovery rate of 20% is 1.0 or more and 3.0 or less. A membrane module in which one end or both ends of a braided body consisting of a thread membrane bundle group is fixed with a resin, wherein the curled body consisting of the hollow fiber membrane bundle group is placed on a porous core material on a hollow fiber membrane bundle However, in the hollow fiber membrane module, which is a hollow fiber membrane bundle group that is arranged at an angle with the vertical axis of the hollow fiber membrane bundle group and has an intersecting arrangement that alternately crosses every hollow fiber membrane bundle, the hollow fiber membranes intersect The cross-point group with low packing density is concentrated near the supply part on the opposite side of the concentrated water discharge part, and is continuously aligned from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundle group to the outer peripheral part. Hollow fiber membrane module having a group of hollow fiber membrane bundles having a hollow fiber membrane arrangement Is Lumpur. The packing density is defined by the following formula (1).
Packing density = (hollow fiber membrane outer diameter2× number of hollow fiber membranes × length of hollow fiber membranes)
/ (Outer diameter of hollow fiber membrane bundle group2X Hollow fiber membrane bundle group length) (1)
[0015]
Specifically:
(1)9 to 12 hollow fiber membranes are bundled into one bundle, and the bundle obtained by wrapping four bundles in a cross arrangement around the core material is supplied to a supply unit, a permeate discharge unit, and a concentration unit. A membrane module obtained by mounting on a container having a water discharge part,
(A) The hollow fiber membrane is a composite membrane in which a polyamide thin film is formed on the outer surface of a porous support made of cellulose acetate asymmetric membrane or polysulfone,
(B) The core material is a shaft core that winds up the bundle of hollow fiber membranes, and has a through hole inside and outside the core material,
(C) The angle between the shaft core and the hollow fiber membrane bundle when the hollow fiber membrane bundle is wound around the core material is 20 to 60 degrees,
(D) a cross point group where the bundle of hollow fiber membranes intersects is arranged in the manifold part of the supply part,
(E) The filling rate of the hollow fiber membrane is 50 to 75%.
A membrane module for water purification treatment, characterized in that
(2) The membrane module for water purification treatment according to (1), wherein the end on the cross point group side is shaped so as to have a bulge.
(3) Polysulfone produced by using a composite membrane comprising a membrane solution comprising polysulfone, triethylene glycol, N, N-dimethylacetamide, laurylbenzenesulfonic acid and a core solution comprising N, N-dimethylacetamide and water. A composite in which a polyamide thin film is formed on the outer surface of the polysulfone porous support by immersing the porous support membrane in an aqueous amine solution and then sequentially contacting with a hexane solution containing trimesic acid chloride, a fluorine-based solvent, and an acetic acid aqueous solution. The membrane module for water purification treatment according to (1) or (2), wherein the membrane module is a hollow fiber membrane.
(4)0.1 weight%Ucrose aqueous solutionmake use of25 ° C,0.3 MPaOf the hollow fiber membrane measured inSucrose removal rate is over 92%,AndWater permeability is 0.1m3/ M2/ Day or moreIt is characterized by (3)Described inFor water purificationMembrane module.
(5) When the membrane module was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 6 using a 0.1% by weight sucrose aqueous solution, the sucrose at a recovery rate of 20%. And the ratio of the sucrose transmittance (SP80) to the SP20 (SP80 / SP20) at a recovery rate of 80% (SP80 / SP20) is 1.0 or more and 2.0 or less. The membrane module for water purification treatment according to any one of (1) to (4), wherein
[0016]
The solute permeability in the present invention is a ratio of the solute concentration of the permeated water of the membrane module and the solute concentration of the supplied water of the membrane module, and is defined by the following equation (2). A smaller solute permeability means higher solute removal performance, which is preferable. For example, when it is used in advanced water purification treatment, 10% or less is preferable when the recovery rate is about 20%. This solute permeability depends on the recovery rate of the membrane module, and generally increases as the recovery rate increases. When used at a high recovery rate, it is preferable that the solute permeability is as small as possible. Therefore, a membrane module having a small ratio between a value at a high recovery rate and a value at a low recovery rate is preferable. For example, the ratio of the solute permeability SP80 at a recovery rate of 80% to the solute permeability SP20 at a recovery rate of 20% (SP80 / SP20) is preferably 1.0 or more and 3.0 or less, more preferably 1 It is 0.0 or more and 2.0 or less, and most preferably 1.0 or more and 1.7 or less. If the SP80 / SP20 is greater than 3, there is a high possibility that a drift has occurred in the membrane module, and the membrane performance is not sufficiently reflected in the membrane module performance, and fouling in the membrane module is likely to occur. Many are undesirable.
Solute permeability (%) = (CP / CF) × 100 (2)
CP: Solute concentration of permeated water of membrane module
CF: Membrane module feed water solute concentration
[0017]
The shape of the membrane in the present invention is not particularly limited, such as a flat membrane or a hollow fiber membrane, but a hollow fiber membrane capable of increasing the membrane area per membrane module is preferable. The hollow fiber membrane is a hollow fiber-like separation membrane, and the membrane material, membrane structure and membrane dimension are not particularly limited. Examples thereof include cellulose acetate-based and polyamide-based asymmetric membranes, polyamide-based and polysulfone-based composite membranes. A composite membrane is preferable from the viewpoint of performance, and a composite hollow fiber membrane is particularly preferable. The composite hollow fiber membrane is obtained by providing a separation active layer made of a material different from the porous hollow fiber support membrane on the outer surface and / or inner surface of the porous hollow fiber support membrane. The separation active layer may be provided on either the outer surface or the inner surface, but those provided on the outer surface that increase the effective membrane area are preferred.
[0018]
The material of the film is not particularly limited. For example, in the case of a composite membrane, a polysulfone resin is preferable as the support layer, and a polyamide polymer is preferable as the separation active layer. The polyamide polymer is particularly preferably a crosslinked polyamide polymer obtained by interfacial polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide, and examples thereof include crosslinked polypiperazine amide and wholly aromatic crosslinked polyamide. Piperazine amide is preferred.
[0019]
The fractionation region of the membrane is not particularly limited. For example, when applied to advanced water purification treatment, it is preferable that low molecular organic substances can be removed, and reverse osmosis membranes, nanofiltration membranes, and the like are preferred. In particular, a nanofiltration membrane is more preferable in terms of water permeability. For example, the amount of water per membrane area is 0.1 m at a sucrose 0.1 wt% aqueous solution, pressure 0.3 MPa, temperature 25 ° C.Three/ M2/ Day or more is preferable, 0.2 mThree/ M2/ Day or more is more preferable, more preferably 0.3 mThree/ M2/ Day or more.
The film performance under a condition where the recovery rate is close to 0 is preferably 92% or more.
[0020]
The hollow fiber membrane bundle in the present invention may be any bundle in which a plurality of hollow fiber membranes are bundled in the same direction, preferably a bundle of several tens to several hundreds of hollow fiber membranes, more preferably 30. Up to 200 hollow fiber membranes are bundled.
[0021]
The hollow fiber membrane bundle group in the present invention is an aggregate of hollow fiber membrane bundles obtained by assembling a plurality of hollow fiber membrane bundles, and the hollow fiber membrane bundle and the arrangement of the hollow fiber membranes are the hollow fiber membrane bundle group. It is a structure which has the structure which has a cross arrangement which is arranged with an angle with the above-mentioned upper axis, and crosses every hollow fiber membrane bundle alternately.
[0022]
In the cross point group in the present invention, the filling density of the hollow fiber membrane is locally reduced, so that the water supplied to the membrane module easily flows. This cross point group is preferably on the side opposite to the concentrated water discharge portion. When the supply unit is at a position opposite to the concentrated water discharge unit, by arranging a cross point group near the supply unit, the supply water is distributed to the inside of the rolled-up body of the hollow fiber membrane bundle group and concentrated. It becomes possible to flow to the water discharge part.
[0023]
The filling rate of the hollow fiber membrane bundle in the present invention is defined by the following equation. If the filling rate is too high, it becomes difficult to deposit foulants and clean the membrane module. If the filling rate is too low, the linear velocity of the membrane surface decreases and the performance decreases at a high recovery rate. 50-75% is applied.
The filling rate is defined by the following equation (3).
Filling rate (%) = (hollow fiber membrane outer diameter2X π / 4 x number of hollow fiber membranes x hollow fiber membrane length)
/ (Volume of hollow fiber membrane bundle group of container empty tower) × 100 (3)
[0024]
A small angle is suitable for the cross-arranged hollow fiber membrane bundle in order to increase the filling rate in order to increase the membrane area, but a large angle is suitable in consideration of foulant deposition and membrane module cleaning. In order to satisfy both of these conditions, the angle of the hollow fiber membrane bundles arranged in an intersecting manner has an inclination of 5 to 75 degrees, more preferably 20 to 60 degrees with respect to the vertical axis of the hollow fiber membrane bundle.
[0025]
The resin in the present invention is not particularly limited as long as the hollow fiber membrane can be sealed in a liquid-tight manner. For example, a thermosetting resin such as a polyurethane resin, an epoxy resin, or a silicon resin can be used, but a thermoplastic resin can also be used if necessary.
[0026]
The container in the present invention stores a hollow fiber membrane bundle, and the material and shape thereof are not particularly limited. For example, a cylindrical container that can be efficiently filled with a hollow fiber membrane bundle, a box-shaped container that facilitates the combination from a small unit, and the like. Examples of the material of the container include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like, and a material having a thermal expansion coefficient close to that of the end sealing resin is more preferable.
[0027]
The core material in the present invention is not particularly limited in shape, material, etc. as long as it is an axial core for winding a hollow fiber membrane or a bundle of hollow fiber membranes and has a through hole inside and outside the tube and also functions as a liquid distribution function. However, in order to disperse the flow uniformly in the axial direction of the core material, a shape in which circular holes are arranged in a staggered manner in a cylindrical tube is preferable. Examples of the material include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like. More preferably, the same material as the container and / or a material having a thermal expansion coefficient close to that of the end sealing resin is preferable.
[0028]
The hollow fiber membrane module in the present invention is a membrane module made of a hollow fiber membrane that can be used for natural water purification treatment such as river water and ground water or advanced water purification treatment of tap water, and is not permeated but is non-permeate water. A concentrated water discharge unit for discharging a part of the concentrated water out of the membrane module. Although the form of the flow in the membrane module is not particularly limited, a counter flow, a cross flow, or a cocurrent flow is preferable. FIG. 1 shows an example of the hollow fiber membrane module of the present invention, but the present invention is not limited to this. The outline of the water treatment of the hollow fiber membrane module will be described with reference to FIG. 1. The treated water is pressurized and supplied from the
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an example of embodiment of this invention is demonstrated in detail about the case of a hollow fiber membrane module based on drawing, it is not specifically limited to these. FIG. 1 shows a schematic diagram of a hollow fiber membrane module of the present invention.
[0030]
As shown in FIG. 1, the hollow fiber membrane module of the present invention includes a container 1 having a
[0031]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0032]
Example
A membrane-forming stock solution comprising 20 parts by weight of polysulfone, 4 parts by weight of triethylene glycol, 75.5 parts by weight of N, N-dimethylacetamide (DMAc), and 0.5 parts by weight of sodium laurylbenzenesulfonate was added to a tube-in orifice. A core solution consisting of 30 parts by weight of DMAc and 70 parts by weight of water was simultaneously extruded from the inner periphery by using a mold spinning nozzle, and after running in 6 cm of air, from 5 parts by weight of DMAc and 95 parts by weight of water The hollow coagulating liquid was taken up at a speed of 15 m / min and subjected to a water washing step to obtain a hollow fiber type porous support (outer diameter 350 μm / inner diameter 200 μm). The porous support was brought into contact with an amine aqueous solution consisting of 2 parts by weight of piperazine, 1 part by weight of triethylenediamine and 0.07 part by weight of sodium laurylbenzenesulfonate for 1 minute. The aqueous amine solution was drained and contacted sequentially with a hexane solution containing 1 part by weight of trimesic acid chloride, a fluorinated solvent (Fluorinato FC-70, manufactured by Sumitomo 3M), and 1 part by weight of an acetic acid aqueous solution. A composite hollow fiber membrane having a polyamide thin film formed on the outer surface of the porous support was obtained. The performance of this composite hollow fiber membrane, that is, the removal rate of sucrose when a 0.1% by weight sucrose aqueous solution was pressurized at 0.3 MPa at 25 ° C., and the water permeability per membrane area were 97.2%, respectively. , 0.3mThree/ M2/ Day.
[0033]
This composite hollow fiber membrane is placed on a polycarbonate core material (outer diameter φ22 mm, inner diameter φ20 mm, hole φ8 × 2 / 22.5 mm pitch, staggered arrangement) at a rate of 1 traverse for every two winding rotations. Four to twelve hollow fiber membranes are combined into four bundles to form a hollow fiber membrane bundle, causing a phase difference between winding rotation and traverse of several percent, winding the traverse width to 1200 mm to an outer diameter of φ74 mm, and having a cross arrangement An upper body comprising a group of hollow fiber membrane bundles was produced. The number of hollow fiber membranes was 24840. A polyester protective woven fabric having a mesh opening of 1.2 mm is wrapped around the outer periphery of the upper body of the hollow fiber membrane bundle group, and the hollow fiber membrane bundle group is arranged so that the cross point group is arranged in the manifold portion near the supply section. The upper body was cut to a length of 400 mm, inserted into a polycarbonate container (narrowest inner diameter φ74 mm), and further shaped so that the end on the crosspoint group side had a bulge. The filling rate of the hollow fiber membrane was 69.7%. Then, the upper body composed of a group of bundles of hollow fiber membranes attached to the container was subjected to centrifugal drainage at 600 rpm for 3 minutes at room temperature to remove moisture on the outer surface of the hollow fiber membrane and in the hollow part. Next, the dehumidified air adjusted to a dew point of 5 ° C. is heated to 50 ° C., and the air volume is 0.13 m.ThreeAt 12 min / min, the hollow fiber membrane bundle attached to the container was ventilated and dried to near dryness. Then, in order to close the open end of the hollow fiber membrane as one end seal, the end sealant is filled and cured by centrifugal force (rotation speed 400 rpm), and the hollow fiber membrane bundle is used as the second end sealant The same end sealant was filled with a centrifugal force (rotation speed: 600 rpm) to cure and adhere to the container. Hydrogenated bisphenol A type epoxy resin was used as an end sealant at this time. In order to open the hollow part of the hollow fiber membrane, the end sealing part is brought into contact with a hot plate at 75 ° C. for 1 hour, and a human power (about 4 kg) is used by using a booster (a boost factor of 2 to 3). Thus, the end sealing portion (diameter: φ100 mm) of the container in which the hollow fiber membrane bundle was fixed with a slice cutter using a blade having a blade width of 300 mm was cut.
[0034]
This hollow fiber membrane module was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 6 using a 0.1% by weight sucrose aqueous solution. The recovery rate was 80% and the linear velocity was 0.5 m. The water permeability at / min is 1.77mThree/ Day, the solute permeability is 6.1%, the recovery rate is 20%, and the water permeability is 1.96 m at a linear velocity of 3.3 m / min.Three/ Day, the solute permeability was 3.5%. The ratio of the solute permeability between 80% recovery and 20% recovery was 1.74. Here, the linear velocity is defined by the following equation (4).
Linear velocity =
((Supply water flow rate + Concentrated water flow rate) / 2) / (Cavity area of the cross section perpendicular to the axial direction of the container) (4)
[0035]
Comparative Example 1
When the upper body comprising the hollow fiber membrane bundle group of the embodiment is cut and inserted into the container, the upper body comprising the hollow fiber membrane bundle group is cut to a length of 400 mm so as not to include the cross point group. A hollow fiber membrane module was produced in the same manner as in Example except that it was inserted into the container without any shaping. As a result of measuring the performance of this membrane module in the same manner as in the example, the water permeability at a recovery rate of 80% and a linear velocity of 0.4 m / min was 1.55 m.Three/ Day, the solute permeability is 18.0%, the recovery rate is 20%, and the water permeability at a linear velocity of 3.3 m / min is 1.95 m.Three/ Day, the solute permeability was 3.3%. The ratio of the solute transmittance between 80% recovery and 20% recovery was 5.45.
[0036]
Comparative Example 2
When the upper body composed of the hollow fiber membrane bundle group of the embodiment is cut and inserted into the container, the upper body is cut into a length of 400 mm, inserted into the container without special shaping, and the crosspoint group is A hollow fiber membrane module was produced in the same manner as in the example except that the upper body was made of a hollow fiber membrane bundle group arranged in the vicinity of the concentrate discharge part. As a result of measuring the performance of the membrane module by the same method as in the example, the water permeability at a recovery rate of 80% and a linear velocity of 0.4 m / min was 1.47 m.Three/ Day, the solute permeability is 21.3%, the recovery rate is 20%, and the water permeability is 1.92 m at a linear velocity of 3.3 m / min.Three/ Day, the solute permeability was 3.3%. The ratio of the solute permeability between 80% recovery and 20% recovery was 6.45.
[0037]
A list of the results of Examples and Comparative Examples 1 and 2 is shown in Table 1.
[0038]
[Table 1]
[0039]
【The invention's effect】
The membrane module of the present invention can be supplied even under high recovery conditions, particularly in water treatment fields where high recovery is required, such as purification of natural water such as river water and groundwater or advanced water purification of tap water. Eliminates dead space in the vicinity of the unit and realizes a uniform distribution flow from the supply unit to the outlet of the concentrated drainage, makes it possible to effectively use the membrane without causing drift, and to exhibit the high removal performance of the membrane itself, continuous stable operation It is possible to improve cleaning properties.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a hollow fiber membrane module according to the present invention.
[Explanation of symbols]
1 container
2 Saddle upper body consisting of bundles of hollow fiber membranes
3 Core material
5, 5 'end seal
6, 6 'O-ring
7 Manifold part
8 Cross points
31 Supply section
32 Concentrated water discharge section
33 Permeate drain
Claims (5)
(a)前記中空糸膜が、酢酸セルロース系非対称膜またはポリスルホンからなる多孔質支持体の外表面にポリアミド薄膜を形成した複合膜であり、(A) The hollow fiber membrane is a composite membrane in which a polyamide thin film is formed on the outer surface of a porous support comprising a cellulose acetate asymmetric membrane or polysulfone,
(b)前記芯材が前記中空糸膜の束を巻き取る軸芯であって、芯材の内外に貫通の孔を有し、(B) The core material is an axial core that winds up the bundle of hollow fiber membranes, and has a through hole inside and outside the core material,
(c)前記中空糸膜の束を芯材の周りに巻き付ける際の軸芯と中空糸膜束の角度が20〜60度であり、(C) The angle of the shaft core and the hollow fiber membrane bundle when the bundle of hollow fiber membranes is wound around the core material is 20 to 60 degrees,
(d)前記中空糸膜の束が交差するクロスポイント群が供給部のマニホールド部に配置されており、(D) a cross point group where the bundle of hollow fiber membranes intersects is arranged in the manifold part of the supply part;
(e)前記中空糸膜の充填率が50〜75%(E) The filling rate of the hollow fiber membrane is 50 to 75%.
であることを特徴とする浄水処理用の膜モジュール。A membrane module for water purification treatment, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22130799A JP4501039B2 (en) | 1999-08-04 | 1999-08-04 | Membrane module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22130799A JP4501039B2 (en) | 1999-08-04 | 1999-08-04 | Membrane module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001038162A JP2001038162A (en) | 2001-02-13 |
JP4501039B2 true JP4501039B2 (en) | 2010-07-14 |
Family
ID=16764754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22130799A Expired - Fee Related JP4501039B2 (en) | 1999-08-04 | 1999-08-04 | Membrane module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501039B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102281519B1 (en) * | 2016-05-31 | 2021-07-26 | 도레이 카부시키가이샤 | hollow fiber membrane module |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013722B2 (en) * | 1976-05-26 | 1985-04-09 | 東洋紡績株式会社 | membrane separation equipment |
CN1004400B (en) * | 1987-01-27 | 1989-06-07 | 东北电力学院 | Filtration method by mediums and equipment thereof |
JPH0252026A (en) * | 1989-06-05 | 1990-02-21 | Toyobo Co Ltd | Manufacturing method for hollow yarn type reverse permeable module |
JPH0796152A (en) * | 1993-06-24 | 1995-04-11 | Toray Ind Inc | Gradient hollow-fiber membrane and its production |
JP3250644B2 (en) * | 1995-04-12 | 2002-01-28 | 東洋紡績株式会社 | Composite hollow fiber membrane and method for producing the same |
-
1999
- 1999-08-04 JP JP22130799A patent/JP4501039B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001038162A (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202179933U (en) | Composite porous hollow fiber membrane, membrane component and membrane filtration apparatus | |
JP4951860B2 (en) | Method for producing permselective membrane module and permselective membrane module | |
JP4412486B2 (en) | Hollow fiber membrane module and module arrangement group thereof | |
JPS631404A (en) | Hollow yarn type membrane separation device | |
JP2002306931A (en) | Specified hollow fiber membrane module used in process receiving serious damage due to fouling and producing method therefor | |
JP6365542B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
EP3107643B1 (en) | Filtration element | |
JP4277147B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JPWO2015060286A1 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
JP6565898B2 (en) | Hollow fiber membrane element and hollow fiber membrane module | |
JP4501039B2 (en) | Membrane module | |
JP2009028714A (en) | Spiral separating membrane element | |
JP4370485B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JPH10337448A (en) | Hollow fiber type separation membrane element | |
JP6264938B2 (en) | Hollow fiber membrane module | |
JP2003326140A (en) | Hollow-fiber membrane module | |
JP3994294B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP4437527B2 (en) | Membrane filtration module | |
JP7379835B2 (en) | Hollow fiber membrane module | |
JPH05228345A (en) | Preparation of membrane separation element | |
JP2015226864A (en) | Forward osmosis hollow fiber membrane module | |
JPH11188245A (en) | Spiral membrane element | |
JP6565688B2 (en) | Hollow fiber type reverse osmosis membrane element and module | |
JP2000262867A (en) | Reverse osmosis membrane separator and method for separating water | |
JP2019205954A (en) | Separation membrane element and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100325 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100407 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4501039 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |