JP4370485B2 - Hollow fiber membrane module and manufacturing method thereof - Google Patents
Hollow fiber membrane module and manufacturing method thereof Download PDFInfo
- Publication number
- JP4370485B2 JP4370485B2 JP23579199A JP23579199A JP4370485B2 JP 4370485 B2 JP4370485 B2 JP 4370485B2 JP 23579199 A JP23579199 A JP 23579199A JP 23579199 A JP23579199 A JP 23579199A JP 4370485 B2 JP4370485 B2 JP 4370485B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- group
- cross
- membrane bundle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は河川水や地下水などの自然水の浄水処理、あるいは水道水の高度浄水処理に使用される中空糸膜モジュールおよびその製造方法に関する。本発明によって得られる中空糸膜モジュールは、特に高回収率運転や長期連続運転が必要とされ、物理洗浄等によりモジュール性能の回復が必要とされる水処理分野に使用することができる。
【0002】
【従来の技術】
水道水の高度浄水処理方法として、また河川水や地下水等の自然水の凝集沈殿に代わる浄水処理方法として膜分離技術を適用する処理方法が注目され、転換が進められてきている。特に中空糸膜を利用した膜分離モジュールは、容器の形状にこだわらずに容器に装着でき、物理洗浄し易いことから浄水処理用として多く採用されている。
【0003】
浄水処理に使用されるモジュールは、浄水処理量を確保のためにある程度の大きさのモジュールサイズが必要となる。特にモジュール設置スペースに対する浄水処理量をみた設置容積効率を考えると、モジュールに付属する容器、接続部品等の容積は少ない方が良く、モジュール1 本当りの浄水処理量を上げるためにはモジュールサイズを大きくする方法が一つの手段となっている。
【0004】
また、浄水処理に使用されるモジュールにおいては、供給水を最大限に有効利用するために、高回収率(回収率は透過水と供給水の流量比率)のモジュール設計が要求される。高回収率の運転がなされるとモジュール内の膜の一次側が高濃度に濃縮されるのみならず、モジュール内の膜の一次側の流量が非常に少なく、膜表面での線速度が非常に低い状態となる。この状態のとき、中空糸膜表面の全域に偏流を生じさせずに供給水を均一に分配供給させることは、外圧型のモジュールの場合非常に困難である。また、モジュール内で偏流が生じると分離に寄与する膜が減少し有効に膜が利用出来ないばかりか、さらに偏流により膜表面の濃度分極が助長され、膜表面濃度が極度に高濃度となり分離効率が著しく低下し好ましくない。また、逆浸透膜やナノ濾過膜の場合はモジュール内の膜の1次側に非常に低速で高濃度の液体が流れると、膜表面にスケール成分が濃縮されたり、ファウラントが付着沈降し易くなり、分離に寄与する膜表面を被覆・劣化させ著しく分離能力が低下する。
【0005】
従来のモジュールでは、偏流を抑制するために極端に高い充填率で中空糸膜を束ねることにより中空糸膜の均一配置をはかり、モジュールに均一分配流を生じさせたモジュール設計がなされている。また、片端を樹脂で容器に固定し反対の中空糸膜端部をループ状にし抵抗体として均一分配流を生じさせたモジュール設計がなされている。
【0006】
また、偏流を抑制するために中空糸膜を交差配列で捲上げて中空糸膜束とし、中空糸膜束中に筒状物を設け中空糸膜束の断面方向の中央部への流れを生じさせたり、軸方向の流れを持たせたモジュール構造を有する中空糸膜モジュールが特開昭52ー49987号公報、特開昭52ー63179号公報、特公昭54ー5796号公報、特開昭63ー1404号公報に開示されている。
【0007】
また、容器内に中空糸膜束を数束配列し中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールが、特開昭61ー103503号公報、特開平9ー206563号公報に開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、一様な分布で極端に高い充填率で中空糸膜を束ねたモジュールでは、モジュールサイズが大きくなるとそれに伴いモジュール径大きくなるため、中空糸膜束の軸方向に垂直な断面の半径方向の流動抵抗が大きくなり、被処理水が径方向に分配されにくくなる。よって、中空糸膜束群からなる捲上体の外周面への局部的な液流が生じ易くなり、その結果、偏流を助長し膜が有効に使用されず分離効率が悪くなる。また、中空糸膜束群からなる捲上体の外周面への局部的な液流を抑制するために、容器と中空糸膜束群からなる捲上体のクリアランスを極小にし高充填率で中空糸膜を装着した場合、中空糸膜束群からなる捲上体を容器に挿入する時に中空糸膜を損傷しやすくモジュール製造が非常に困難になる。さらに、高回収率を要求される浄水処理では、膜の一次側が高濃度に濃縮されるため高充填率では、中空糸膜表面のみならず中空糸膜の間隙もファウリングが生じやすくなり、透水量の低下が生じ易くなるため長期連続運転が困難となる。また、ファウラントを物理洗浄する場合、中空糸膜の高充填率化が逆に洗浄の妨げとなり洗浄効率を低下させる。
【0009】
片端を樹脂で容器に固定し反対側の中空糸膜端部をループ状にし抵抗体として均一分配流を生じさせる試みをしたモジュールでは、ループ状部の曲率のため容器に高充填できず、高回収率時に膜表面での線速度が低くなり偏流を助長しモジュール性能が低下する。また、平行になった中空糸膜部分では充填率が低く完全な均一分配流は生じさせることは困難である。ループ状中空糸膜端部分では、高濃度に濃縮された濃縮水のためファウリングが生じやすくなる。さらに、ファウラントを物理洗浄する場合、片端にループを持った中空糸膜束群の形状が損なわれやすくループの再現が難しい。
【0010】
多孔芯材に中空糸膜束を交差配置して巻き上げた円筒状のモジュールにおいても、モジュール円筒断面の中心の芯材部より液を供給した場合、供給部から濃縮水排出部間の液流路すべてにおいて均一分配流を生じさせることは困難である。特に液供給部付近の中空糸膜束群はデッドスペースとなり液流れが生じにくく、液が高濃度となり性能低下やファウリングの発生場所となる可能性が非常に高い。また、芯材の一部のみに孔を設けて中空糸膜束を交差配置で巻き上げ、軸方向の流れを持たせたモジュールにおいても、液供給部付近の中空糸膜束群はデッドスペースとなり液流れが生じにくく、液が高濃度となり性能低下やファウリングの発生場所となる。また、軸方向流れのみでの送液では流れ方向に中空糸膜が交差する部位があるため高濃度に濃縮された濃縮水によりファウリングの沈着堆積やスケールが生じやすくなる。その結果、透水量の低下が生じ、長期連続運転が困難となる。さらに、ファウラントを物理洗浄する場合は、均一分配流が生じないため、十分なファウラント洗浄・排除ができず洗浄効率が低下する。
【0011】
容器内に中空糸膜束を数束配列し一定の間隔をもたせて中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールでは、中空糸膜束内部の中空糸膜まで有効に膜分離に寄与させることは困難で、結果的にモジュール性能が低下する。また、低い膜面線速度のため中空糸膜束の中空糸膜間隙にファウラントを蓄積し易くさせることとなり、透水量の低下を招き、長期連続運転が困難となる。さらに、ファウラントを物理洗浄する場合は洗浄液流れが主に中空糸膜束間の空間に流れ、中空糸膜束内のファウラントの洗浄除去性が低下する。
【0012】
高回収率を要求される浄水処理において、特にモジュールサイズが大型化される場合、膜を高充填して膜面線速度上昇させることによる偏流の解決策は、高充填によるラジアル方向の抵抗増大で液流が抑制されるといった二律背反的な要素を有し、双方を同時に解消することは非常に困難である。
【0013】
本発明は上記課題にに鑑み鋭意研究の結果、提案されたもので高回収率を要求される浄水処理において、特にモジュールサイズが大型化される場合においても、ラジアル方向の流れを確保し、モジュール内のデッドスペースを無くし、偏流を起こさせることなく均一分配流れを生じさせることを可能にし、極端に高充填率に中空糸膜を充填することなく、中空糸膜を損傷させることなく容器に挿入することができ、また、モジュール洗浄性にも優れた中空糸膜モジュールおよびその製造方法を提供する。
【0014】
【課題を解決するための手段】
本発明は、容器に装着された中空糸膜束群からなる捲上体の片端もしくは両端部を樹脂で固定したモジュールであって、該中空糸膜束群からなる捲上体が、多孔質の芯材の上に中空糸膜束が、中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列を持つ中空糸膜束群である中空糸膜モジュールにおいて、中空糸膜が交差する充填密度の低いクロスポイント群をデッドスペース部分に集中配置させ、中空糸膜束群の捲上軸線と垂直な断面の中心から外周部の方向に連続的に整列させた中空糸膜配列となる中空糸膜束群をもつことを特徴とする中空糸膜モジュールおよび製造方法である。
充填密度=(中空糸膜外径2 ×中空糸膜本数×中空糸膜長さ)
/(中空糸膜束群径2 ×中空糸膜束群長さ)
【0015】
本発明は、具体的には下記のものである。
(1)中空糸膜束群からなる捲上体を容器に装着し、片端もしくは両端部を樹脂で固定した中空糸膜モジュールであって、中空糸膜束の中空糸膜の配列が、中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列を持つ中空糸膜モジュールにおいて、中空糸膜束が交差するクロスポイント群を濃縮水排出部と反対側に集中配置させ、中空糸膜束群の捲上軸線と垂直な断面の中心から外周部の方向に連続的に整列させた中空糸膜配列となる中空糸膜束群をもつことを特徴とする中空糸膜モジュール。
(2)クロスポイント群を濃縮水排出部と反対側にある供給部付近に集中配置させた上記(1)に記載の中空糸膜モジュール。
(3)中空糸膜束群からなる捲上体が芯材の回りに配置されている上記(1)または(2)に記載の中空糸膜モジュール。
(4)中空糸膜束が交差するクロスポイント群が供給部付近の1ヶ所に配置された上記(1)ないし(3)のいずれかに記載の中空糸膜モジュール
(5)中空糸膜の充填率が40%〜80%である上記(1)ないし(4)のいずれかに記載の中空糸膜モジュール。
(6)交差配列された中空糸膜束の角度が中空糸膜束の捲上軸線に対して5〜75度の傾きを持つ上記(1)ないし(5)のいずれかに記載の中空糸膜モジュール。
(7)中空糸膜がポリアミド系もしくはポリスルホン系の素材からなる複合膜である上記(1)ないし(6)のいずれかに記載の中空糸膜モジュール。
(8)中空糸膜束群からなる捲上体を容器に装着し、片端もしくは両端部を樹脂で固定する中空糸膜モジュールの製造方法であって、中空糸膜束の中空糸膜の配列を、中空糸膜束群の捲上軸線と角度をもって配置し、中空糸膜束ごとに交互にクロスする交差配列を有する中空糸膜モジュールの製造方法において、中空糸膜束が交差するクロスポイント群を濃縮水排出部と反対側に集中配置させ、中空糸膜束群の捲上軸線と垂直な断面の中心から外周部の方向に連続的に整列させた中空糸膜配列となる中空糸膜束群を形成させることを特徴とする中空糸膜モジュールの製造方法。
(9)クロスポイント群を濃縮水排出部と反対側にある供給部付近に集中配置させた上記(8)に記載の中空糸膜モジュールの製造方法。
(10)多孔質芯材の回りに中空糸膜束群からなる捲上体を形成した上記(8)または(9)に記載の中空糸膜モジュールの製造方法。
(11)中空糸膜束が交差するクロスポイント群を供給部付近の1ヶ所に配置した上記(8)ないし(10)のいずれかに記載の中空糸膜モジュールの製造方法。
(12)交差配列された中空糸膜束の角度が中空糸膜束の捲上軸線に対して5〜75度の傾きを持たせた上記(8)ないし(11)のいずれかに記載の中空糸膜モジュールの製造方法。
【0016】
このような構造(図4)にすることにより、特に多孔芯材より液を供給するセンターフィード型の場合は、図5 に示すようなモジュールの液供給部付近に生じ易いデッドスペースを解消し、モジュール径が増大する場合においてもラジアル方向の流路抵抗を減少させ、積極的にラジアル方向の流れを生じさせて、供給部より濃縮水排出部にわたって均一分配流とし偏流を抑制することができる。
【0017】
本発明における中空糸膜とは、中空糸状の分離膜であって、その膜素材、膜構造および膜ディメンジョンは特に限定されない。たとえば酢酸セルロース系、ポリアミド系の非対称膜やポリアミド系、ポリスルホン系などの複合膜が挙げられる。
【0018】
本発明における中空糸膜束とは、複数の中空糸膜が同方向に束ねられたものであれば良く、好ましくは数十〜数百本の中空糸膜が束ねられたもの、より好ましくは30〜200本の中空糸膜が束ねられたものである。
【0019】
本発明における中空糸膜束群とは、中空糸膜束を複数本集合させた中空糸膜束の捲上集合体であって、中空糸膜束および中空糸膜の配列が中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列をもった構造を有する構造体である。
【0020】
本発明における中空糸膜束の充填率は次式で定義される。該充填率は高すぎるとファウラントの沈着堆積、モジュール洗浄が困難となり、また低すぎると膜面の線速度が低下し高回収率において性能低下するため、40〜80%が適用され、より好ましくは50〜75%が適用される。
充填率(% )=(中空糸膜外径2 ×π/4×中空糸膜本数×中空糸膜長さ)/(容器空塔の中空糸膜束群部の容積)×100
【0021】
交差配列された中空糸膜束の角度は、膜面積を大きくすべく充填率を高くするためには小さい角度が適するが、ファウラントの沈着堆積、モジュール洗浄を考慮すると大きい角度が適する。この双方を満足するため交差配列された中空糸膜束の角度は、中空糸膜束の捲上軸線に対して5〜75度の傾き、より好ましくは20〜60度の傾きを持つ。
【0022】
本発明における樹脂とは、中空糸膜を液密にシールできれば特に限定されない。例えば、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂などの熱硬化性樹脂が使用できるが、必要により熱可塑性樹脂を用いることもできる。
【0023】
本発明における中空糸膜モジュールの製造方法における端部封止剤に使用される樹脂、例えばエポキシ樹脂の硬化条件は、エポキシ樹脂および硬化剤、硬化促進剤や中空糸膜束と容器およびその他部材の種類により任意に決定できる。たとえば常温から130 ℃の範囲内で、一段もしくは多段階に温度ステージを変更させて硬化させる。雰囲気条件は、湿度3%〜90% の空気もしくは窒素雰囲気下などが挙げられる。さらに温水下もしくは高温雰囲気下などでのポストキュアなどを施しても良い。
【0024】
本発明における中空糸膜モジュール接着時の端部封止剤の充填方法は特に限定されないが、中空糸膜束を充填したケース内に端部封止剤の位置エネルギーによる充填方法、空気などの媒体を使用した加圧充填方法、遠心力を利用した充填方法などが挙げられる。また充填に長時間を要すると特にポットライフが短い場合、充填中に端部封止剤の粘度が上昇し、中空糸膜間の間隙に充填できなくなる。これらのことより、短時間に中空糸膜間の間隙に充填できる方法が好ましい。
【0025】
本発明における容器とは、中空糸膜束を収納するものであって、その材質や形状は特に限定されない。たとえば中空糸膜束を効率よく充填可能とするような円筒状容器、小ユニットより組合せを容易にするような箱状容器などが挙げられる。容器の材質はポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは端部封止樹脂と熱膨張係数の近い材質が良い。
【0026】
本発明における芯材とは、中空糸膜または中空糸膜束を巻き取る軸芯であって管の内外に貫通の孔を持ち液体分配機能を兼ねるものであれば形状、材質等は特に限定されないが、形状は芯材の軸方向に均一に流れを分散させるために、円筒状の管に円孔が千鳥配列になったものが好ましい。材質は、たとえばポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは容器と同一材質および/または端部封止樹脂と熱膨張係数の近い材質が良い。
【0027】
本発明における中空糸膜モジュールとは、河川水や地下水など自然水の浄水処理あるいは水道水の高度浄水処理に使用される中空糸膜モジュールであって、ナノろ過、逆浸透、限外ろ過、精密ろ過などに分類される中空糸膜等を具備する。流れの形態は特に限定されないが、カウンターフローやクロスフロー、コカレントフローが好ましい。図1 および図3に本発明の中空糸膜モジュールの一例を示すが、これに限定されるものではない。図1により中空糸膜モジュールの水処理の概要を説明すると、供給部31より処理水を加圧供給し、芯材3より中空糸膜モジュール軸方向に処理水を分配しラジアル方向に流れを発生させる。中空糸膜に対してクロスフローを生じさせ濃縮水を濃縮部32より排出させ、中空糸膜を透過し端部封止部5’で開口した中空部より流出した透過液を透過部33より排出させ回収するものである。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図面に基づき中空糸膜モジュールの詳細およびその製造方法について説明するが、特に該製造方法に限定されるものではない。図1に本発明の中空糸膜モジュールの模式図、図2に中空糸膜束群の製造方法の説明図、図3 に中空糸膜モジュールのフローの説明図を示す。
【0029】
本発明の中空糸膜モジュールは、図1に示すように供給水が入る供給部31をもつ容器1と容器1内に装着された中空糸膜束群からなる捲上体2および処理された透過水と濃縮水を排出する透過水排出部33、濃縮水排出部32を有する。そして、この中空糸膜束群からなる捲上体2は図1から3に示すように、捲上軸10にポリカーボネイト製の芯材( 外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列) を2本、クロスポイントが芯材端部に位置するようにスペーサーを挟みセットする。9 本〜12本の中空糸を4束に合わせて中空糸膜束とし、巻取り回転4回に対してトラバースガイド1往復となる比率で中空糸膜束を約1200mmトラバースしながら巻き取る。クロスポントを3ヶ所、トラバースの往路と復路で形成されるクロスポイントが数mmズレを発生するように数%巻取り回転とトラバースの位相差を生じさせ、外径φ74mmまで巻取り、再外層の中空糸膜束の角度が捲上軸線に対して約22度、中空糸膜の充填率は69.7% となるように交差配列を持つ中空糸膜束群を作製する。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を巻き付け、クロスポイント群を供給部付近のマニホールド部に配置させるように中空糸膜束群からなる捲上体をカットし、ポリカーボネイト製容器に挿入する。さらにクロスポイント群側の端部に膨らみを持たせるように整形し、ラジアル方向への液流の抵抗を低下させる(図1参照)。そして、容器に装着した中空糸膜束群からなる捲上体を遠心脱液、次いで、加熱した除湿空気で通風し絶乾近くまで乾燥さる。そして、端部封止として中空糸膜開口端部を閉口するために端部封止剤を遠心力により充填し硬化させる。2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力にて充填し硬化させる。そして、中空糸膜の中空部を開口させるために、端部封止部を75℃のホットプレート上に1 時間接触させ、倍力装置( 倍力率2〜3) を使い人力(約4kg)によるスライスカッターで中空糸膜束を固定した容器の端部封止部の切削する。そして、液供給部および透過水排出部にOリングでシールされるキャップを取り付ける。
【0030】
以上の製造工程により、原水供給部より濃縮水排出部間の液流路すべてにおいて、均一分配流を生じさせることができる中空糸膜モジュールが得られる。
【0031】
【実施例】
以下、本発明を実施例により具体的に説明するが本発明はこれらに限定されるものではない。
【0032】
実施例
ポリアミド系ナノ濾過複合中空糸膜(中空糸膜外径350μm 、中空糸膜内径200μm 、ポリスルホンベース膜外表面上にポリピペラジンアミド架橋薄膜を形成したもの)を、ポリカーボネイト製の芯材( 外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列) に、巻取り回転2回に対して1トラバースの比率で9 本〜12本の中空糸膜を4束に合わせて中空糸膜束とし、数%巻取り回転とトラバースの位相差を生じさせ、トラバース幅を1200mmで外径φ74mmまで巻取り、交差配列を持つ中空糸膜束群からなる捲上体を作製した。中空糸膜の本数は24840本とした。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を巻き付け、クロスポイント群を供給部付近のマニホールド部に配置させるように中空糸膜束群からなる捲上体を400mmの長さにカットし、ポリカーボネイト製容器(最狭内径φ74mm)に挿入し、さらにクロスポイント群側の端部に膨らみを持たせるように整形した。中空糸膜の充填率は69.7% であった。そして、容器に装着した中空糸膜束群からなる捲上体を室温にて600rpm で3 分間、遠心脱液を実施し中空糸膜外表面および中空部内の水分を除去した。次いで、露点5℃に調整した除湿空気を50℃に加熱し、風量0.13m 3 /minで12時間、容器に装着した中空糸膜束に通風し絶乾近くまで乾燥させた。そして、端部封止として中空糸膜開口端部を閉口するために端部封止剤を遠心力(回転数400rpm)により充填、硬化させ、2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力(回転数600rpm)にて充填、硬化させた。この時の端部封止剤として水添ビスフェノールA 型エポキシ樹脂を使用した。そして、中空糸膜の中空部を開口させるために、端部封止部を75℃のホットプレート上に1 時間接触させ、倍力装置( 倍力率2〜3) を使い人力(約4kg)により、刃幅300mmの刃物を使いスライスカッターにて中空糸膜束を固定した容器の端部封止部(直径φ100mm)を切削した。
【0033】
この中空糸膜モジュールを用いて、濃度1000mg/Lのシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%、線速度0.5m/min での透水量は1.77m 3 /D、溶質の除去率は93.9%、回収率20%、線速度3.3m/min での透水量は1.96m 3 /D、溶質の除去率は96.5%であった。回収率20%と80%の除去率の比率は0.97であった。
回収率=(透過水量/供給水量)×100(% )
除去率=(1−(透過水濃度/供給水濃度)) ×100(% )
線速度=
(供給水流量+濃縮水流量)/2/(容器の軸方向に垂直な断面の空隙面積)
【0034】
比較例1
実施例の中空糸膜束群からなる捲上体をカットし容器に挿入する方法においてクロスポイント群を排除するように中空糸膜束群からなる捲上体を400mmの長さにカットし、特別な整形はせずに容器に挿入した他は、実施例と同様の方法で中空糸膜モジュールを製造した。このモジュールを用いて濃度1000mg/Lのシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%、線速度0.4m/min での透水量は1.55m 3 /D、溶質の除去率は82.0%、回収率20%、線速度3.3m/min での透水量は1.95m 3 /D、溶質の除去率は96.7%であった。回収率20%と80%の除去率の比率は0.85であった。
【0035】
比較例2
実施例の中空糸膜束群からなる捲上体をカットし容器に挿入する方法においてクロスポイント群を濃縮液排出部付近に配置させるように中空糸膜束群からなる捲上体を400mmの長さにカットし、特別な整形はせずに容器に挿入した他は、実施例と同様の方法で中空糸膜モジュールを製造した。このモジュールを用いて濃度1000mg/Lのシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%、線速度0.4m/min での透水量は1.47m 3 /D、溶質の除去率は78.7%、回収率20%、線速度3.3m/min での透水量は1.92m 3 /D、溶質の除去率は96.7%であった。回収率20%と80%の除去率の比率は0.81であった。
【0036】
実施例および比較例1、2の結果の一覧を表1および図6に示す。
【0037】
【表1】
【0038】
【発明の効果】
本発明の中空糸膜モジュールは、河川水や地下水などの自然水の浄水処理あるいは水道水の高度浄水処理に、特に高回収率が要求される水処理分野において、モジュール内が低い線速度になった場合においても、特にモジュールサイズが大型化される場合においても、ラジアル方向の流れを確保し、モジュール内のデッドスペースを無くし均一分配流れを供給部から濃縮排水出口に渡って実現し、偏流を起こさずに膜を有効利用し分離効率を高めることができ、連続安定運転、洗浄性向上することが可能である。
【図面の簡単な説明】
【図1】本発明に係る中空糸膜モジュールの一例を示した模式図
【図2】中空糸膜束群の製造方法の説明図
【図3】中空糸膜モジュールのフローの説明図
【図4】モジュール内流れの模式図ー1(本発明の場合)
【図5】モジュール内流れの模式図ー2(従来の場合)
【図6】除去率の線速度依存性図
【符号の説明】
1 容器
2 中空糸膜束群からなる捲上体
3 芯材
4 保護布
5、5’ 端部封止部
6 Oリング
7 マニホールド部
8 クロスポイント群
9 中空糸膜束
10 捲上軸
11 トラバースガイド
31 供給部
32 濃縮水排出部
33 透過水排出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hollow fiber membrane module used for natural water purification treatment such as river water and groundwater, or advanced water purification treatment for tap water, and a method for producing the same. The hollow fiber membrane module obtained by the present invention can be used in the water treatment field where high recovery rate operation and long-term continuous operation are required and recovery of module performance is required by physical cleaning or the like.
[0002]
[Prior art]
A processing method using membrane separation technology has attracted attention as an advanced water purification method for tap water, and as a water purification method for replacing natural water such as river water and groundwater, and conversion is being promoted. In particular, a membrane separation module using a hollow fiber membrane is often used for water purification treatment because it can be attached to a container regardless of the shape of the container and is easy to physically wash.
[0003]
The module used for the water purification treatment needs a module size of a certain size in order to secure the amount of water purification treatment. Considering the installation volume efficiency considering the amount of water purification for the module installation space, it is better that the volume of containers and connection parts attached to the module is small. To increase the amount of water treatment per module, the module size must be increased. One way is to make it larger.
[0004]
Moreover, in the module used for water purification, in order to make the most effective use of the supplied water, a module design with a high recovery rate (recovery rate is the flow rate ratio of the permeated water and the supplied water) is required. When operating at a high recovery rate, not only is the primary side of the membrane in the module concentrated to a high concentration, but the flow rate on the primary side of the membrane in the module is very low and the linear velocity at the membrane surface is very low. It becomes a state. In this state, it is very difficult for the external pressure type module to distribute and supply the supply water uniformly without causing a drift in the entire surface of the hollow fiber membrane surface. In addition, if drift occurs in the module, the membrane contributing to the separation is reduced and the membrane cannot be used effectively, and the drift of the membrane promotes concentration polarization on the membrane surface, resulting in an extremely high membrane surface concentration and separation efficiency. Is undesirably lowered. Also, in the case of reverse osmosis membranes and nanofiltration membranes, if a highly concentrated liquid flows at a very low speed on the primary side of the membrane in the module, scale components are concentrated on the membrane surface and foulants tend to adhere and settle. The membrane surface that contributes to the separation is coated and deteriorated, and the separation ability is remarkably lowered.
[0005]
In the conventional module, a module design has been made in which the hollow fiber membranes are uniformly arranged by bundling the hollow fiber membranes at an extremely high filling rate in order to suppress uneven flow, and a uniform distribution flow is generated in the module. Further, a module design has been made in which one end is fixed to a container with a resin, and the opposite end portion of the hollow fiber membrane is formed in a loop shape to generate a uniform distribution flow as a resistor.
[0006]
In addition, in order to suppress the drift, the hollow fiber membranes are raised in a cross arrangement to form a hollow fiber membrane bundle, and a cylindrical material is provided in the hollow fiber membrane bundle to cause a flow to the center in the cross-sectional direction of the hollow fiber membrane bundle. A hollow fiber membrane module having a module structure that has a flow in the axial direction is disclosed in JP-A-52-49987, JP-A-52-63179, JP-B-54-5796, JP-A-63. -1404.
[0007]
Further, hollow fiber membrane modules in which several bundles of hollow fiber membrane bundles are arranged in a container to form a hollow fiber membrane bundle group and both ends are fixed with resin are disclosed in JP-A-61-103503 and JP-A-9-206563. It is disclosed.
[0008]
[Problems to be solved by the invention]
However, in a module in which hollow fiber membranes are bundled at an extremely high filling rate with a uniform distribution, the module diameter increases as the module size increases, so that the radial direction of the cross section perpendicular to the axial direction of the hollow fiber membrane bundles increases. The flow resistance increases, and the water to be treated becomes difficult to be distributed in the radial direction. Therefore, a local liquid flow tends to occur on the outer peripheral surface of the upper body of the hollow fiber membrane bundle group, and as a result, uneven flow is promoted and the membrane is not used effectively, resulting in poor separation efficiency. In addition, in order to suppress local liquid flow to the outer peripheral surface of the upper body composed of the hollow fiber membrane bundle group, the clearance between the container and the upper body composed of the hollow fiber membrane bundle group is minimized and the hollow body is hollow at a high filling rate. When the thread membrane is attached, the hollow fiber membrane is easily damaged when the upper body composed of the bundles of hollow fiber membranes is inserted into the container, and module manufacture becomes very difficult. Furthermore, in the water purification process that requires a high recovery rate, the primary side of the membrane is concentrated to a high concentration, so that at a high filling rate, not only the surface of the hollow fiber membrane but also the gap between the hollow fiber membranes is liable to occur. Since the amount tends to decrease, long-term continuous operation becomes difficult. In addition, when the foulant is physically washed, the high filling rate of the hollow fiber membrane conversely hinders washing and lowers washing efficiency.
[0009]
In a module where one end is fixed to the container with resin and the end of the opposite hollow fiber membrane is looped to create a uniform distribution flow as a resistor, the container cannot be filled with high due to the curvature of the loop. At the time of recovery, the linear velocity on the membrane surface becomes low, which promotes drift and module performance deteriorates. Moreover, in the hollow fiber membrane part which became parallel, a filling rate is low and it is difficult to produce a perfect uniform distribution flow. In the end portion of the loop-shaped hollow fiber membrane, fouling is likely to occur due to the concentrated water concentrated at a high concentration. Further, when the foulant is physically washed, the shape of the hollow fiber membrane bundle group having a loop at one end is liable to be damaged, and it is difficult to reproduce the loop.
[0010]
Even in a cylindrical module in which hollow fiber membrane bundles are rolled up on a porous core material, when the liquid is supplied from the core material part at the center of the module cylindrical cross section, the liquid flow path between the supply part and the concentrated water discharge part It is difficult to produce a uniform distribution flow in all. In particular, the hollow fiber membrane bundle group in the vicinity of the liquid supply portion becomes a dead space, and it is difficult for the liquid flow to occur, and the liquid is highly concentrated and is highly likely to become a place where performance degradation or fouling occurs. Also, in a module in which a hole is provided in only a part of the core material and the hollow fiber membrane bundles are wound in a cross arrangement so as to have an axial flow, the hollow fiber membrane bundle group in the vicinity of the liquid supply portion becomes a dead space and becomes a liquid. It is difficult for flow to occur, and the concentration of liquid becomes high, resulting in performance degradation and fouling. In addition, when the liquid is fed only in the axial direction, there is a portion where the hollow fiber membranes intersect in the flow direction, so that fouling deposits and scales are likely to occur due to concentrated water concentrated at a high concentration. As a result, the amount of water permeation decreases and long-term continuous operation becomes difficult. Further, when the foulant is physically washed, a uniform distribution flow is not generated, so that sufficient foulant washing / exclusion cannot be performed and the washing efficiency is lowered.
[0011]
In a hollow fiber membrane module in which several bundles of hollow fiber membrane bundles are arranged in a container to form a group of hollow fiber membrane bundles with fixed intervals and both ends are fixed with a resin, the membranes are effectively made up to the hollow fiber membranes inside the hollow fiber membrane bundle. It is difficult to contribute to the separation, resulting in a decrease in module performance. Further, the low membrane surface linear velocity makes it easy to accumulate foulants in the hollow fiber membrane gaps of the hollow fiber membrane bundle, leading to a decrease in the amount of water permeation and making long-term continuous operation difficult. Furthermore, when the foulant is physically washed, the cleaning liquid flow mainly flows into the space between the hollow fiber membrane bundles, and the cleaning and removing performance of the foulant in the hollow fiber membrane bundle is deteriorated.
[0012]
In water purification processes that require a high recovery rate, especially when the module size is increased, the solution to drift by increasing the membrane surface speed by increasing the membrane filling is the increase in radial resistance due to the high filling. It has a contradictory element that the liquid flow is suppressed, and it is very difficult to eliminate both of them simultaneously.
[0013]
The present invention has been proposed as a result of diligent research in view of the above problems, and in the water purification treatment that is required to have a high recovery rate, particularly in the case where the module size is increased, the flow in the radial direction is secured, and the module It eliminates the dead space in the inside and enables uniform distribution flow without causing drift, and it can be inserted into the container without damaging the hollow fiber membrane without filling the hollow fiber membrane at an extremely high filling rate. The present invention also provides a hollow fiber membrane module excellent in module detergency and a method for producing the same.
[0014]
[Means for Solving the Problems]
The present invention relates to a module in which one end or both ends of a braided upper body composed of a group of hollow fiber membrane bundles attached to a container is fixed with a resin, and the upper body composed of the hollow fiber membrane bundle group is porous. The hollow fiber membrane bundle is a hollow fiber membrane bundle group in which a hollow fiber membrane bundle is disposed at an angle with the vertical axis of the hollow fiber membrane bundle group on the core material, and has a cross arrangement in which the hollow fiber membrane bundles alternately cross each other. In the module, cross points with low packing density where the hollow fiber membranes intersect are concentrated in the dead space, and are continuously aligned in the direction from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundles to the outer periphery. A hollow fiber membrane module having a hollow fiber membrane bundle group having a hollow fiber membrane arrangement and a manufacturing method.
Packing density = (hollow fiber membrane outer diameter 2 x number of hollow fiber membranes x hollow fiber membrane length)
/ (Hollow fiber membrane bundle group diameter 2 x Hollow fiber membrane bundle group length)
[0015]
Specifically, the present invention is as follows.
(1) A hollow fiber membrane module in which an upper body composed of a group of hollow fiber membrane bundles is mounted on a container and one end or both ends thereof are fixed with a resin, and the arrangement of the hollow fiber membranes in the hollow fiber membrane bundle is a hollow fiber In a hollow fiber membrane module that is arranged at an angle with the vertical axis of the membrane bundle group and has a cross arrangement in which each hollow fiber membrane bundle crosses alternately, the cross point group where the hollow fiber membrane bundle intersects is opposite to the concentrated water discharge part It is characterized by having a hollow fiber membrane bundle group that is a hollow fiber membrane array that is arranged in a concentrated manner on the side and is continuously aligned in the direction of the outer periphery from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundle group. Hollow fiber membrane module.
(2) The hollow fiber membrane module according to the above (1), wherein the cross point group is concentratedly arranged in the vicinity of the supply unit on the side opposite to the concentrated water discharge unit.
(3) The hollow fiber membrane module according to the above (1) or (2), wherein the upper body comprising the hollow fiber membrane bundle group is disposed around the core material.
(4) The hollow fiber membrane module according to any one of the above (1) to (3), in which a cross point group where the hollow fiber membrane bundles intersect is arranged at one place near the supply section (5) Filling of the hollow fiber membrane The hollow fiber membrane module according to any one of (1) to (4), wherein the rate is 40% to 80%.
(6) The hollow fiber membrane according to any one of (1) to (5), wherein the angle of the cross-arranged hollow fiber membrane bundle has an inclination of 5 to 75 degrees with respect to the vertical axis of the hollow fiber membrane bundle module.
(7) The hollow fiber membrane module according to any one of (1) to (6), wherein the hollow fiber membrane is a composite membrane made of a polyamide-based or polysulfone-based material.
(8) A method for manufacturing a hollow fiber membrane module, in which a gutter body comprising a group of hollow fiber membrane bundles is attached to a container, and one end or both ends thereof are fixed with resin, In the method for manufacturing a hollow fiber membrane module, the cross-point group at which the hollow fiber membrane bundles intersect each other is arranged with an angle with the vertical axis of the hollow fiber membrane bundle group and having an intersecting arrangement in which the hollow fiber membrane bundles are alternately crossed. A group of hollow fiber membrane bundles that are arranged in a concentrated manner on the side opposite to the concentrated water discharge part and are continuously aligned in the direction from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundle group to the outer peripheral part. A method for producing a hollow fiber membrane module, comprising: forming a hollow fiber membrane module.
(9) The method for producing a hollow fiber membrane module according to (8), wherein the cross-point group is concentratedly arranged in the vicinity of the supply unit on the side opposite to the concentrated water discharge unit.
(10) The method for producing a hollow fiber membrane module according to the above (8) or (9), wherein an eaves body comprising a group of hollow fiber membrane bundles is formed around the porous core material.
(11) The method for producing a hollow fiber membrane module according to any one of the above (8) to (10), wherein a cross point group where the hollow fiber membrane bundles intersect is disposed at one place near the supply unit.
(12) The hollow according to any one of the above (8) to (11), wherein the angle of the cross-arranged hollow fiber membrane bundle has an inclination of 5 to 75 degrees with respect to the vertical axis of the hollow fiber membrane bundle A method for manufacturing a yarn membrane module.
[0016]
By adopting such a structure (FIG. 4), especially in the case of a center feed type that supplies liquid from a porous core material, the dead space that tends to occur near the liquid supply part of the module as shown in FIG. Even when the module diameter increases, the flow resistance in the radial direction can be reduced, and the flow in the radial direction can be positively generated, so that the uneven flow can be suppressed as a uniform distribution flow from the supply unit to the concentrated water discharge unit.
[0017]
The hollow fiber membrane in the present invention is a hollow fiber-like separation membrane, and the membrane material, membrane structure and membrane dimension are not particularly limited. Examples thereof include cellulose acetate-based and polyamide-based asymmetric membranes, polyamide-based and polysulfone-based composite membranes.
[0018]
The hollow fiber membrane bundle in the present invention may be any bundle in which a plurality of hollow fiber membranes are bundled in the same direction, preferably a bundle of several tens to several hundreds of hollow fiber membranes, more preferably 30. Up to 200 hollow fiber membranes are bundled.
[0019]
The hollow fiber membrane bundle group in the present invention is an aggregate of hollow fiber membrane bundles obtained by assembling a plurality of hollow fiber membrane bundles, and the hollow fiber membrane bundle and the arrangement of the hollow fiber membranes are the hollow fiber membrane bundle group. It is a structure which has the structure which has a cross arrangement which is arranged with an angle with the above-mentioned upper axis, and crosses every hollow fiber membrane bundle alternately.
[0020]
The filling rate of the hollow fiber membrane bundle in the present invention is defined by the following equation. If the filling rate is too high, it becomes difficult to deposit foulants and clean the module. If the filling rate is too low, the linear velocity of the film surface decreases and the performance decreases at a high recovery rate, so 40 to 80% is applied, more preferably. 50-75% applies.
Filling rate (%) = (hollow fiber membrane outer diameter 2 × π / 4 × number of hollow fiber membranes × hollow fiber membrane length) / (volume of hollow fiber membrane bundle group of container empty column) × 100
[0021]
In order to increase the filling rate in order to increase the membrane area, a small angle is suitable for the angle of the cross-arranged hollow fiber membrane bundles, but a large angle is suitable in consideration of foulant deposition and module cleaning. In order to satisfy both of these conditions, the angle of the hollow fiber membrane bundles arranged in an intersecting manner has an inclination of 5 to 75 degrees, more preferably 20 to 60 degrees with respect to the vertical axis of the hollow fiber membrane bundle.
[0022]
The resin in the present invention is not particularly limited as long as the hollow fiber membrane can be sealed in a liquid-tight manner. For example, a thermosetting resin such as a polyurethane resin, an epoxy resin, or a silicon resin can be used, but a thermoplastic resin can also be used if necessary.
[0023]
The curing conditions for the resin used for the end sealant in the manufacturing method of the hollow fiber membrane module in the present invention, for example, epoxy resin, are epoxy resin and curing agent, curing accelerator, hollow fiber membrane bundle, container and other members. It can be arbitrarily determined depending on the type. For example, curing is carried out by changing the temperature stage in one or more stages within a range from room temperature to 130 ° C. The atmospheric conditions include air in a humidity of 3% to 90% or in a nitrogen atmosphere. Further, post-cure under hot water or high-temperature atmosphere may be performed.
[0024]
The method for filling the end sealant at the time of bonding the hollow fiber membrane module in the present invention is not particularly limited, but the filling method by the potential energy of the end sealant in the case filled with the hollow fiber membrane bundle, medium such as air And the like, and a filling method using centrifugal force. If a long time is required for filling, especially when the pot life is short, the viscosity of the end sealant increases during filling, and the gap between the hollow fiber membranes cannot be filled. From these things, the method which can be filled in the gap | interval between hollow fiber membranes for a short time is preferable.
[0025]
The container in the present invention stores a hollow fiber membrane bundle, and the material and shape thereof are not particularly limited. For example, a cylindrical container that can be efficiently filled with a hollow fiber membrane bundle, a box-shaped container that facilitates the combination from a small unit, and the like. Examples of the material of the container include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like, and a material having a thermal expansion coefficient close to that of the end sealing resin is more preferable.
[0026]
The core material in the present invention is not particularly limited in shape, material, etc. as long as it is an axial core for winding a hollow fiber membrane or a bundle of hollow fiber membranes and has a through hole inside and outside the tube and also functions as a liquid distribution function. However, in order to disperse the flow uniformly in the axial direction of the core material, a shape in which circular holes are arranged in a staggered manner in a cylindrical tube is preferable. Examples of the material include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like. More preferably, the same material as the container and / or a material having a thermal expansion coefficient close to that of the end sealing resin is preferable.
[0027]
The hollow fiber membrane module in the present invention is a hollow fiber membrane module used for natural water purification treatment such as river water and groundwater or advanced water purification treatment of tap water, and is equipped with nanofiltration, reverse osmosis, ultrafiltration, precision It has a hollow fiber membrane or the like classified as filtration. The form of flow is not particularly limited, but counter flow, cross flow, and cocurrent flow are preferable. An example of the hollow fiber membrane module of the present invention is shown in FIGS. 1 and 3, but is not limited thereto. The outline of the water treatment of the hollow fiber membrane module will be described with reference to FIG. 1. The treated water is pressurized and supplied from the supply unit 31, and the treated water is distributed from the
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the hollow fiber membrane module and the method for manufacturing the hollow fiber membrane module will be described with reference to the drawings, but the present invention is not particularly limited to the method. FIG. 1 is a schematic diagram of a hollow fiber membrane module of the present invention, FIG. 2 is an explanatory diagram of a method for producing a hollow fiber membrane bundle group, and FIG. 3 is an explanatory diagram of a flow of the hollow fiber membrane module.
[0029]
As shown in FIG. 1, the hollow fiber membrane module of the present invention includes a
[0030]
Through the above manufacturing process, a hollow fiber membrane module capable of generating a uniform distribution flow in all the liquid flow paths between the raw water supply section and the concentrated water discharge section is obtained.
[0031]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0032]
Example A polyamide-based nanofiltration composite hollow fiber membrane (hollow fiber membrane outer diameter 350 μm, hollow fiber membrane inner diameter 200 μm, polypiperazine amide cross-linked thin film formed on the outer surface of a polysulfone base membrane) is made from a polycarbonate core material (outer 9 to 12 hollow fiber membranes in a bundle of 4 bundles at a ratio of 1 traverse with respect to 2 winding rotations (diameter 22 mm,
[0033]
This hollow fiber membrane module was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 6 using a sucrose aqueous solution having a concentration of 1000 mg / L. water permeability in min is 1.77 m 3 / D, the removal rate of solute 93.9%,
Recovery rate = (Amount of permeated water / Amount of supplied water) × 100 (%)
Removal rate = (1− (permeate concentration / feed water concentration)) × 100 (%)
Linear velocity =
(Supply water flow rate + Concentrated water flow rate) / 2 / (Cavity area of the cross section perpendicular to the axial direction of the container)
[0034]
Comparative Example 1
In the method of cutting the upper body comprising the hollow fiber membrane bundle group of the embodiment and inserting it into the container, the upper body comprising the hollow fiber membrane bundle group is cut to a length of 400 mm so as to eliminate the cross point group. A hollow fiber membrane module was produced in the same manner as in the example except that it was inserted into the container without any shaping. Using this module, a sucrose aqueous solution with a concentration of 1000 mg / L was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C. and a pH of 6. As a result, the water permeability was 80% and the linear velocity was 0.4 m / min. The amount is 1.55 m 3 / D, the solute removal rate is 82.0%, the recovery rate is 20%, the water permeability at a linear velocity of 3.3 m / min is 1.95 m 3 / D, and the solute removal rate is 96. 7%. The ratio between the 20% recovery rate and the 80% removal rate was 0.85.
[0035]
Comparative Example 2
In the method of cutting the upper body composed of the hollow fiber membrane bundle group of the embodiment and inserting it into the container, the upper body composed of the hollow fiber membrane bundle group is 400 mm long so that the cross point group is arranged in the vicinity of the concentrated liquid discharge part. A hollow fiber membrane module was produced in the same manner as in Example, except that it was cut and then inserted into a container without any special shaping. Using this module, a sucrose aqueous solution with a concentration of 1000 mg / L was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C. and a pH of 6. As a result, the water permeability was 80% and the linear velocity was 0.4 m / min. The amount is 1.47 m 3 / D, the solute removal rate is 78.7%, the recovery rate is 20%, the water permeability at a linear velocity of 3.3 m / min is 1.92 m 3 / D, and the solute removal rate is 96. 7%. The ratio between the 20% recovery rate and the 80% removal rate was 0.81.
[0036]
A list of the results of Examples and Comparative Examples 1 and 2 is shown in Table 1 and FIG.
[0037]
[Table 1]
[0038]
【The invention's effect】
The hollow fiber membrane module of the present invention has a low linear velocity inside the module especially in the water treatment field where high recovery is required for the purification of natural water such as river water and groundwater or the advanced purification of tap water. Even in the case where the module size is increased, the radial flow is ensured, the dead space in the module is eliminated, the uniform distribution flow is realized from the supply section to the concentrated drainage outlet, and the drift is generated. Separation efficiency can be increased by effectively using the membrane without causing it, and it is possible to improve the continuous stable operation and the cleaning property.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a hollow fiber membrane module according to the present invention. FIG. 2 is an explanatory diagram of a manufacturing method of a hollow fiber membrane bundle group. FIG. 3 is an explanatory diagram of a flow of a hollow fiber membrane module. Schematic diagram of the flow in the module-1 (in the case of the present invention)
FIG. 5 is a schematic diagram of the flow in the module-2 (conventional case).
[Fig. 6] Dependence of removal rate on linear velocity [Explanation of symbols]
DESCRIPTION OF
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23579199A JP4370485B2 (en) | 1999-07-19 | 1999-08-23 | Hollow fiber membrane module and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20523899 | 1999-07-19 | ||
JP11-205238 | 1999-07-19 | ||
JP23579199A JP4370485B2 (en) | 1999-07-19 | 1999-08-23 | Hollow fiber membrane module and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001087630A JP2001087630A (en) | 2001-04-03 |
JP4370485B2 true JP4370485B2 (en) | 2009-11-25 |
Family
ID=26514941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23579199A Expired - Lifetime JP4370485B2 (en) | 1999-07-19 | 1999-08-23 | Hollow fiber membrane module and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4370485B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10220916A1 (en) * | 2002-05-10 | 2003-11-27 | Sfc Umwelttechnik Gmbh Salzbur | Hollow fiber membrane filtration device and its use in wastewater treatment and membrane bioreactor |
DE102009040049A1 (en) * | 2009-09-03 | 2011-03-10 | Krones Ag | Method for controlling a separation plant with a reverse osmosis element and reverse osmosis system |
JP6726044B2 (en) * | 2015-08-17 | 2020-07-22 | 旭化成株式会社 | Hollow fiber membrane module |
-
1999
- 1999-08-23 JP JP23579199A patent/JP4370485B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001087630A (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wan et al. | Design and fabrication of hollow fiber membrane modules | |
JP4412486B2 (en) | Hollow fiber membrane module and module arrangement group thereof | |
JP5171942B2 (en) | Membrane bag having seamless membrane material, use thereof and filtration apparatus using the same | |
KR102370290B1 (en) | Membrane assembly for supporting a biofilm | |
JPS631404A (en) | Hollow yarn type membrane separation device | |
JP2013544642A (en) | Membrane separation module | |
JPH11333265A (en) | Membrane module | |
JP2002306931A (en) | Specified hollow fiber membrane module used in process receiving serious damage due to fouling and producing method therefor | |
US7635428B2 (en) | Hollow fiber membrane submodule and module including the same | |
JP4277147B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP7197260B2 (en) | Hollow fiber membrane module, seawater desalination system, method for desalinating seawater, method for producing freshwater from seawater, method for operating hollow fiber membrane module, method for filtration, and method for manufacturing hollow fiber membrane module | |
JP4370485B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP6565898B2 (en) | Hollow fiber membrane element and hollow fiber membrane module | |
JP6264938B2 (en) | Hollow fiber membrane module | |
JP4501039B2 (en) | Membrane module | |
JP2003326140A (en) | Hollow-fiber membrane module | |
JP3994294B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP2943224B2 (en) | Hollow fiber membrane element and hollow fiber membrane device for fluid separation | |
JP5145685B2 (en) | Fluid separation membrane element | |
JP3841475B2 (en) | Hollow fiber membrane module | |
JPWO2020184661A1 (en) | Filtration methods, methods for desalinating seawater, methods for producing freshwater, hollow fiber membrane modules, and seawater desalination systems. | |
JPH11188245A (en) | Spiral membrane element | |
JP3070998B2 (en) | Method for manufacturing hollow fiber membrane separation module and hollow fiber membrane separation module | |
JP2000262867A (en) | Reverse osmosis membrane separator and method for separating water | |
JPH04247223A (en) | Hollow-fiber membrane module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090806 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090819 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4370485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |