JP4277147B2 - Hollow fiber membrane module and manufacturing method thereof - Google Patents
Hollow fiber membrane module and manufacturing method thereof Download PDFInfo
- Publication number
- JP4277147B2 JP4277147B2 JP29416099A JP29416099A JP4277147B2 JP 4277147 B2 JP4277147 B2 JP 4277147B2 JP 29416099 A JP29416099 A JP 29416099A JP 29416099 A JP29416099 A JP 29416099A JP 4277147 B2 JP4277147 B2 JP 4277147B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- bundle
- membrane module
- membrane bundle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は河川水や地下水などの自然水の浄水処理、あるいは水道水の高度浄水処理に使用される中空糸膜モジュールおよびその製造方法に関する。本発明によって得られる中空糸膜モジュールは、特に高回収率運転や長期連続運転が要求され、物理洗浄等によりモジュール性能の回復を要求される水処理分野に使用することができる。
【0002】
【従来の技術】
水道水の高度浄水処理方法として、また河川水や地下水等の自然水の凝集沈殿に代わる浄水処理方法として膜分離技術を適用する処理方法が注目され、転換が進められてきている。特に中空糸膜を利用した膜分離モジュールは、容器の形状にこだわらずに容器に装着でき、物理洗浄し易いことから浄水処理用として多く採用されてきている。
【0003】
浄水処理に使用するモジュールは、供給液を最大限に回収処理し有効利用するために、高回収率(回収率=透過液と供給液の流量比率)のモジュール設計が要求される。高回収率の運転ではモジュール内の膜の一次側が高濃度なるのみならず、逆浸透膜やナノ濾過膜の場合は膜モジュール内の一次側の流量が非常に少なく、膜表面での液体速度が非常に低い状態となる。特に、中空糸膜および中空糸膜束が液供給部から非透過液排出部間で流路距離をもって分布している場合、液供給部付近での膜表面の液体速度と非透過液排出部付近での膜表面の液体速度は大きく異なる。この状態では、中空糸膜面の全域に偏流を生じさせずに供給液を均一に分配供給させる事は外圧型のモジュールの場合非常に困難である。また、モジュール内で偏流が生じると分離に寄与する膜が減少し有効に膜が利用出来ない。さらに偏流により膜面の濃度分極が助長され、膜面濃度が非常に高濃度となり分離効率が著しく低下する。また、モジュール内の膜の1次側に非常に低速で高濃度の液体が流れると、膜表面にスケール成分が濃縮し、ファウラントが付着沈降し易くなり、分離に寄与する膜表面を被覆・劣化させ著しく分離能力が低下する。
【0004】
従来のモジュールでは、偏流を抑制するために極端に高い充填率で中空糸膜を束ねることで中空糸膜の均一配置をはかり、モジュールに均一分配流を生じさせたモジュール設計がなされている。また、片端を樹脂で容器に固定し反対の中空糸膜端部をループ状にし抵抗体として均一分配流を生じさせたモジュール設計がなされている。
【0005】
また、偏流を抑制するために中空糸膜を交差配列で捲き上げて中空糸膜束とし、中空糸膜束中に筒状物を設け中空糸膜束の断面方向の中央部への流れを生じさせたり、軸方向の流れを持たせたモジュール構造を有する中空糸膜モジュールが特開昭52ー49987号公報、特開昭52ー63179号公報、特公昭54ー5796号公報、特開昭63ー1404号公報に開示されている。
【0006】
また、容器内に中空糸膜束を数束配列し中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールが、特開昭61ー103503号公報、特開平9ー206563号公報に開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、液供給部付近での膜表面の液体速度と非透過液排出部付近での膜表面の液体速度は異なるため、この状態では中空糸膜面の全域に偏流を生じさせずに供給液を均一に分配供給させることは外圧型のモジュールでは非常に困難である。特に、流れ方向に対して中空糸膜が液供給部から非透過液排出部間で距離をもって分布している場合、液供給部付近での膜表面の液体速度と非透過液排出部付近での膜表面の液体速度は大きく異なる。特に、多孔芯材に中空糸膜束を交差配置して捲き上げた円筒状のモジュールでは、モジュール円筒断面の中心、芯材部より液を供給(センターフィード)した場合、液供給部から非透過液排出部間の液流路すべてにおいて均一分配流を生じさせることは困難である。また、非透過液排出部付近は膜表面の液体速度が非常に小さくなり膜表面の液体が高濃度となって性能低下、ファウリングの発生場所となる可能性が非常に高い。さらに非透過液排出部付近はセンターフィードの場合、中空糸膜束群の外周部が該当するため有効に活用されない中空糸膜の比率は増加し性能に影響する。また、芯材の一部に孔を設けて中空糸膜束を交差配置で捲き上げ、軸方向の流れを持たせたモジュールにおいても、非透過液排出部付近の膜表面の液体速度が非常に小さくなり膜表面の液体が高濃度となり性能低下、ファウリングの発生場所となる。また、軸方向流れのみでの送液では流れ方向に中空糸膜の交差する部位があることにより高濃度に濃縮された非透過液によりファウリングの沈着堆積、スケールが生じやすくなる。その結果、透過液量の低下、長期連続運転が困難となる。さらに、ファウラントを物理洗浄する場合は、均一分配流が生じないため、十分なファウラント洗浄や排除ができず洗浄効率を低下させる。
【0008】
片端を樹脂で容器に固定し反対の中空糸膜端部をループ状にしたモジュールでは、均一分配流を生じさせる抵抗体としてループ端部を装備させる場合が多い。その場合、非透過液排出部の中空糸膜の充填密度は低くなり、膜表面の液体速度をかえって低くさせてしまうことになる。また、高回収率時にはさらに膜表面での液体速度が低くなり膜表面の液体濃度が高くなりモジュール性能が低下する。また、中空糸膜束が平行になった部分では充填率が低く完全な均一分配流を生じさせることは困難である。ループ状中空糸膜端部分では、高濃度に濃縮された非透過液のためファウリングが生じやすくなる。さらに、ファウラントを物理洗浄する場合、片端にループを持った中空糸膜束群の形状が損なわれやすく再現できない。
【0009】
一様な分布で極端に高い充填率で中空糸膜を束ねたモジュールにおいても、液供給部から非透過液排出部にかけての中空糸膜の充填密度は一定のため、非透過液排出部付近は膜表面の液体速度が非常に小さくなり、その結果、中空糸膜が有効に活用されず分離効率が悪くなる。特に、高回収率を要求される浄水処理では、高濃度に濃縮された膜の一次側が、非透過液排出部付近でさらに高濃度となるため高充填率では、中空糸膜表面のみならず中空糸膜の間隙もファウリングが生じやすくなり、透過液量の低下で長期連続運転が困難となる。
【0010】
容器内に中空糸膜束を数束配列し一定の間隔をもたせて中空糸膜束群とし、両端を樹脂で固定した中空糸膜モジュールでは、中空糸膜束の内層部で有効に中空糸膜が活用されず、中空糸膜束群全体を有効に膜分離に寄与させることは困難である。結果的にモジュール性能の低下、また、膜面の液体速度が低いため中空糸膜束の中空糸膜間隙にファウラントを蓄積し易くさせることとなり、透過液量の低下で長期連続運転が困難となる。さらに、ファウラントを物理洗浄する場合は洗浄液流れが主に中空糸膜束間の空間に流れ、中空糸膜束中のファウラントの洗浄除去性が低下する。
【0011】
高回収率を要求される浄水処理において、液の供給部付近から非透過液排出部付近にわたって膜表面の液体速度が極端に変化する場合、有効に膜を分離に寄与させ、モジュール性能を最大限に引き出すことは非常に重要である。
【0012】
本発明は上記に鑑み提案されたもので、高回収率を要求される浄水処理において、モジュール内の中空糸膜の充填密度を非透過液体の流れ方向に対して変化させ、膜面の液流量が液体出口になるにしたがい減少しても流れ抵抗および膜表面の液体速度の分布を小さくし、極端に高充填率に中空糸膜を充填することなく、中空糸膜を損傷させることなく容器に挿入することができ、また、モジュール洗浄性にも優れた中空糸膜モジュールおよびその製造方法を提供する。
【0013】
【課題を解決するための手段】
本発明は、上記目的に鑑み、鋭意研究の結果、芯材より中空糸膜束外周に流れるラジアルフロー構造において、膜モジュールの液供給部から非透過液排出の間の液流量変化に対応し、膜表面の液体速度の分布が小さくなるように中空糸膜束の径が増加するにしたがい中空糸膜の充填密度を増加させ、高回収率運転時にも分離性能を発現できる膜モジュールおよび製造方法である。
【0014】
具体的には下記のものである。
(1)芯材の回りに配置された中空糸膜束群からなる捲上体を容器に装着し、片端もしくは両端部を樹脂で固定した中空糸膜モジュールであって、中空糸膜束の中空糸膜の配列が、中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列を持つ中空糸膜モジュールにおいて、芯材から中空糸膜束群外周に向かって流れる非透過液体の流れ方向に対して中空糸膜の充填密度を増加することによって中空糸膜表面の液体速度の分布を小さくした中空糸膜束構造をもつことを特徴とする中空糸膜モジュール。
(2)中空糸膜が交差するクロスポイント部の数が、捲き径が増加するにしたがい増加する中空糸膜束配列をもつ上記(1)に記載の中空糸膜モジュール。
(3)中空糸膜束間のピッチが、捲き径が増加するにしたがい減少する中空糸膜束配列をもつ上記(1)または(2)に記載の中空糸膜モジュール。
(4)中空糸膜の充填率が40%〜80%である上記(1)ないし(3)のいずれかに記載の中空糸膜モジュール。
(5)交差配列された中空糸膜束の角度が中空糸膜束の捲上軸線に対して5〜75度の傾きを持つ上記(1)ないし(4)のいずれかに記載の中空糸膜モジュール。
(6)芯材の回りに配置された中空糸膜束群からなる捲上体を容器に装着し、片端もしくは両端部を樹脂で固定した中空糸膜モジュールの製造方法であって、中空糸膜束の中空糸膜の配列を、中空糸膜束群の捲上軸線と角度をもって配置し、中空糸膜束ごとに交互にクロスする交差配列を有する中空糸膜モジュールの製造方法において、芯材から中空糸膜束群外周に向かって流れる非透過液体の流れ方向に対して中空糸膜の充填密度を増加させることによって中空糸膜表面の液体速度の分布を小さくしたことを特徴とする中空糸膜モジュールの製造方法。
(7)中空糸膜が交差するクロスポイント部の数を捲き径が増加するにしたがい増加させて中空糸膜束配列を形成させる上記(6)に記載の中空糸膜モジュールの製造方法。
(8)中空糸膜束間のピッチを捲き径が増加するにしたがい減少させて中空糸膜束配列を形成させる上記(6)または(7)に記載の中空糸膜モジュールの製造方法。
(9)中空糸膜の充填率を40%〜80%にした上記(6)ないし(8)のいずれかに記載の中空糸膜モジュールの製造方法。
(10)交差配列された中空糸膜束の角度が中空糸膜束の捲上軸線に対して5〜75度の傾きを持たせる上記(6)ないし(9)のいずれかに記載の中空糸膜モジュールの製造方法。
【0015】
本発明における中空糸膜とは、中空糸状の分離膜であって、その膜素材、膜構造および膜ディメンジョンは特に限定されない。たとえば酢酸セルロース系、ポリアミド系の非対称膜やポリアミド系、ポリスルホン系などの複合膜が挙げられる。
【0016】
本発明における中空糸膜束とは、複数の中空糸膜が同方向に束ねられたものであれば良く、好ましくは数十〜数百本の中空糸膜が束ねられたもの、より好ましくは30〜200本の中空糸膜が束ねられたものである。
【0017】
本発明における中空糸膜束群とは、中空糸膜を複数本集合させた中空糸膜束の捲上集合体であって、中空糸膜束群からなる捲上体とは、中空糸膜束および中空糸膜の配列が中空糸膜束群の捲上軸線と角度をもって配置され、中空糸膜束ごとに交互にクロスする交差配列をもった構造を有す構造体である。
【0018】
中空糸膜束間のピッチとは、芯材に捲き上げられる中空糸膜束の同じ方向に捲き上げられる中空糸膜束センターの円周方向のズレ距離であり、中空糸膜束間のピッチが大きすぎた場合や中空糸膜束が重なるマイナスピッチが大きすぎた場合は中空糸膜の充填率が低くなりモジュール容積当たりの膜面積が低下する。また、中空糸膜束間のピッチが小さすぎた場合は、中空糸膜束中のファウラントの洗浄除去性が低下する。このため、中空糸膜束間のピッチは−10mmから30mm、より好ましくは−5mmから20mmがとられる。
【0019】
本発明における中空糸膜束の充填率は次式で定義される。該充填率は高すぎるとファウラントが沈着堆積しモジュール洗浄が困難となり、また低すぎると膜面の液体速度が低下し高回収率において性能低下するため、40〜80%が適用され、より好ましくは50〜75%が適用される。
充填率(% )=(中空糸膜外径2 ×π/4×中空糸膜本数×中空糸膜長さ)
/(容器空塔の中空糸膜束群部の容積)×100
【0020】
交差配列された中空糸膜束の角度は、膜面積を大きくすべく充填率を高くするためには小さい角度が適するが、ファウラントの沈着堆積やモジュール洗浄を考慮すると大きい角度が適する。この双方を満足するため交差配列された中空糸膜束の角度は、中空糸膜束の捲上軸線に対して5〜75度の傾き、より好ましくは20〜60度の傾きを持つ。
【0021】
本発明における樹脂とは、中空糸膜を液密にシールできれば特に限定されない。例えば、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂などの熱硬化性樹脂が使用できるが、必要により熱可塑性樹脂を用いることもできる。
【0022】
本発明における中空糸膜モジュールの製造方法における端部封止剤に使用される樹脂、例えばエポキシ樹脂の硬化条件は、エポキシ樹脂および硬化剤、硬化促進剤や中空糸膜束と容器およびその他部材の種類により任意に決定できる。たとえば常温から130 ℃の範囲内で、一段もしくは多段階に温度ステージを変更させて硬化させる。雰囲気条件は、湿度3%〜90% の空気もしくは窒素雰囲気下などが挙げられる。さらに温水下もしくは高温雰囲気下などでのポストキュアを施しても良い。
【0023】
本発明における中空糸膜モジュール接着時の端部封止剤の充填方法は特に限定されないが、中空糸膜束を充填したケース内に端部封止剤の位置エネルギーによる充填方法、空気などの媒体を使用した加圧充填方法、遠心力を利用した充填した接着方法などが挙げられ、また充填に長時間を要すると特にポットライフが短い場合充填中に端部封止剤の粘度が上昇し、中空糸膜間の間隙に充填できなくなる。これらのことより、短時間に中空糸膜間の間隙に充填できる方法が好ましい。
【0024】
本発明における容器とは、中空糸膜束を収納するものであって、その材質や形状は特に限定されない。たとえば中空糸膜束を効率よく充填可能とするような円筒状容器、小ユニットより組合せを容易にするような箱状容器などが挙げられる。容器の材質はポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは端部封止樹脂と熱膨張係数の近い材質が良い。
【0025】
本発明における芯材とは、中空糸膜または中空糸膜束を捲き取る軸芯であって管の内外に貫通の孔を持ち液体分配機能を兼ねるものであれば形状、材質等は特に限定されないが、形状は芯材の軸方向に均一に流れを分散させるために、円筒状の管に円孔が千鳥配列になったものが好ましい。材質は、たとえばポリカーボネイト、塩化ビニル、ポリスルホン、ポリプロピレン、ポリエチレン、ABS樹脂、アクリル樹脂などが挙げられ、より好ましくは容器と同一材質および/または端部封止樹脂と熱膨張係数の近い材質が良い。
【0026】
本発明における中空糸膜モジュールとは、河川水や地下水など自然水の浄水処理あるいは水道水の高度浄水処理に使用される中空糸膜モジュールであって、ナノろ過、逆浸透、限外ろ過、精密ろ過などに分類される中空糸膜を具備する。流れの形態は特に限定されないが、カウンターフローやクロスフロー、コカレントフローが好ましい。図1に本発明の中空糸膜モジュールの一例を示すが、これに限定されるものではない。図1により中空糸膜モジュールの水処理の概要を説明すると、供給部31より処理水を加圧供給し、芯材3より中空糸膜モジュール軸方向に処理水を分配しラジアル方向に流れを発生させる。中空糸膜に対してクロスフローを生じさせ非透過液を非透過液排出部32より排出させ、中空糸膜を透過し端部封止部5’で開口した中空部より流出した透過液を透過液排出部33より排出させ回収するものである。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図面に基づき中空糸膜モジュールの詳細およびその製造方法について説明するが、特に該製造方法に限定されるものではない。図1に本発明の中空糸膜モジュールの模式図、図2に中空糸膜束群からなる捲上体の製造方法の説明図を示す。
【0028】
本発明の中空糸膜モジュールは、図1に示すように供給液が入る供給部31をもつ容器1と容器1内に装着された中空糸膜束群からなる捲上体2および処理された透過液と非透過液を排出する透過液排出部33、非透過液排出部32を有する。そして、この中空糸膜束群からなる捲上体2は図1から2に示すように、捲上軸線10にポリカーボネイト製の芯材( 外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列) を2本、クロスポイントが芯材端部に位置するようにスペーサーを挟みセットする。9 本〜12本の中空糸膜を4束合わせて中空糸膜束として、捲き始めから捲き上げ完了まで段階的に捲取り回転に対してトラバースの比率を変化させる。たとえば、捲き始めから1層目までを1トラバースに対して捲取り回転2回の比率で、2層目までを1トラバースに対して捲取り回転5.8回の比率で、3層目までを1トラバースに対して捲取り回転7.2回の比率で、4層目までを1トラバースに対して捲取り回転7.7回の比率で、最外層までを1トラバースに対して捲取り回転7.8回の比率で捲き上げるなどを行う。また、同時に捲取り回転とトラバースの位相差を調整し、捲き上げ径が大きくなるにしたがい中空糸膜束間のピッチを大きくさせる。たとえば、−5mmから20mmに連続的に変化させる。トラバース幅1200mmで外径φ74mmまで捲取り、再外層の中空糸膜束の角度が捲上軸線に対して約22度、中空糸膜の充填率は69.7% となるように交差配列を持つ中空糸膜束群からなる捲上体を作製する。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を捲き付ける。そして、容器に装着した中空糸膜束群からなる捲上体を遠心脱液、次いで、加熱した除湿空気で通風し絶乾近くまで乾燥する。そして、端部封止として中空糸膜開口端部を閉口するために端部封止剤を遠心力により充填し硬化させる。2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力にて充填し硬化させる。そして、中空糸膜の中空部を開口させるために、端部封止部を75℃のホットプレート上に1 時間接触させ、倍力装置( 倍力率2〜3) を使い人力(約4kg)によるスライスカッターにて中空糸膜束を固定した容器の端部封止部を切削する。そして、液供給部および非透過液排出部にOリングでシールするキャップを取り付ける。
【0029】
以上の製造工程により、膜モジュールの液供給部から非透過液排出部の間の液流量変化に対応し、膜表面の液体速度の分布を小さくし、高回収率運転時にも分離性能を発現できる、均一分配流を生じさせることができる中空糸膜モジュールが得られる。
【0030】
【実施例】
以下、本発明を実施例により具体的に説明するが本発明はこれらに限定されるものではない。
【0031】
実施例
ポリアミド系ナノ濾過複合中空糸膜(中空糸膜外径350μm 、中空糸膜内径200μm 、ポリスルホンベース膜外表面上にポリピペラジンアミド架橋薄膜を形成したもの)を、ポリカーボネイト製の芯材(外径φ22mm、内径φ20mm、孔φ8×2個/22.5mmピッチ、千鳥配列)に、9 本〜12本の中空糸膜を4束に合わせて中空糸膜束として、捲き始めから1層目までを1トラバースに対して捲取り回転2回の比率で、2層目までを1トラバースに対して捲取り回転5.8回の比率で、3層目までを1トラバースに対して捲取り回転7.2回の比率で、4層目までを1トラバースに対して捲取り回転7.7回の比率で、最外層までを1トラバースに対して捲取り回転7.8回の比率で捲き上げた。また、同時に捲取り回転とトラバースの位相差を調整し、捲き上げ径が大きくなるにしたがい中空糸膜束間のピッチが−5mmから20mmに連続的に変化するようにした。トラバース幅1200mmで外径φ74mmまで捲取り、交差配列を持つ中空糸膜束群からなる捲上体を作製した。中空糸膜の本数は24840本とした。中空糸膜束群からなる捲上体の外周に目開き1.2mmのポリエステル製保護織布を捲き付け、中空糸膜束群からなる捲上体を400mmの長さにカットし、ポリカーボネイト製容器(最狭内径φ74mm)に挿入した。そして、容器に装着した中空糸膜束群からなる捲上体を室温にて600rpm で3 分間、遠心脱液を実施し中空糸膜外表面および中空部内の水分を除去した。次いで、露点5℃に調整した除湿空気を50℃に加熱し、風量0.13m 3 /minで12時間、容器に装着した中空糸膜束に通風し絶乾近くまで乾燥させた。そして、端部封止として中空糸膜開口端部を閉口するために端部封止剤を遠心力(回転数400rpm)により充填、硬化させ、2段目端部封止剤として中空糸膜束を容器に接着、端部封止するために同じ端部封止剤を遠心力(回転数600rpm)にて充填、硬化させた。この時の端部封止剤として水添ビスフェノールA 型エポキシ樹脂を使用した。そして、中空糸膜の中空部を開口させるために、端部封止部を75℃のホットプレート上に1 時間接触させ、倍力装置( 倍力率2〜3) を使い人力(約4kg)により、刃幅300mmの刃物を使いスライスカッターにて中空糸膜束を固定した容器の端部封止部(直径φ100mm)の切削した。液供給方向は図1と同様とした。この中空糸膜モジュールの膜面積は13m2で、層毎の充填密度は芯材部より中空糸膜束外周にわたって0.88から0.96であった。また、供給圧力0.3MPa 、回収率50%、温度25℃の条件で膜面の液体速度を計算したところ芯材部より中空糸膜束外周にわたって1.7から1.8cm/sの間となり、最大値と最小値の偏差は0.09であった。(表1、図3参照)
偏差=(膜面液体速度最大値―膜面液体速度最小値)/第1層の膜面液体速度
充填密度=中空糸膜束の容積/中空糸膜束が占有している空塔容積
膜面液体速度=膜面流量/流路断面積
充填密度比=各層の充填密度/第1層の充填密度
膜面液体速度比=各層の膜面液体速度/第1層の膜面液体速度
【0032】
実施例で作製した中空糸膜モジュールを用いて、濃度1000mg/Lのシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%での透過液量は1.77m 3 /D、溶質の除去率は91.9%、回収率20%、膜面液体速度3.3m/min での透過液量は2.8m 3 /D、溶質の除去率は96.5%であった。回収率20%と80%の除去率の比率は0.97であった。
回収率=(透過液量/供給液量)×100(% )
除去率=(1−(透過液濃度/供給液濃度))×100(% )
【0033】
比較例
実施例の中空糸膜束群からなる捲上体の製造方法において、中空糸膜束間ピッチを等間隔としクロスポイント数を3 箇所に固定した他は、実施例と同様の方法で中空糸膜モジュールを製造した。この中空糸膜モジュールの膜面積は9m2で、層毎の充填密度は芯材部より中空糸膜束外周にわたって0.88から0.53であった。また、供給圧力0.3MPa 、回収率50%、温度25℃の条件で膜面液体速度を計算したところ芯材部より中空糸膜束外周にわたって1.23から0.09cm/sで、最大値と最小値の偏差は0.93であった。(表1、図3参照)
【0034】
比較例で作製したモジュールを用いて濃度1000mg/Lのシュクロース水溶液を使用し供給圧力0.3MPa 、温度25℃、pH6の条件で性能評価したところ、回収率80%、膜面液体速度0.4m/min での透過液量は1.6m 3/D 、溶質の除去率は80.0%、回収率20%での透過液量は1.95m 3/D 、溶質の除去率は96.7%であった。回収率20%と80%の除去率の比率は0.85であった。
【0035】
実施例および比較例1、2の結果の一覧を表1、2に示す。
【0036】
【表1】
【0037】
【表2】
【0038】
【発明の効果】
本発明の中空糸膜モジュールは、河川水や地下水などの自然水の浄水処理あるいは水道水の高度浄水処理に、特に高回収率が要求される水処理分野において、膜面の液流量が液体出口になるにしたがい減少し、特に高回収率条件運転でモジュール内の膜面液体速度が低くなった場合においても、均一分配流れを供給部から濃縮排水出口に渡って実現し、偏流を起こさずに膜を有効利用し分離効率を高めることができ、連続安定運転、洗浄性向上することが可能である。
【図面の簡単な説明】
【図1】本発明に係る中空糸膜モジュールの一例を示した模式図である。
【図2】中空糸膜束群からなる捲上体の製造方法の説明図である。
【図3】モジュール内充填密度比および膜面液体速度比を示すグラフである。
【図4】除去率の回収率依存性グラフである。
【符号の説明】
1 容器
2 中空糸膜束群からなる捲上体
3 芯材
4 保護布
5、5’ 端部封止部
6、6’ Oリング
7 マニホールド部
8 クロスポイント
9 中空糸膜束
10 捲上軸
11 トラバーズガイド
31 供給部
32 非透過液排出部
33 透過液排出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hollow fiber membrane module used for natural water purification treatment such as river water and groundwater, or advanced water purification treatment for tap water, and a method for producing the same. The hollow fiber membrane module obtained by the present invention is particularly required for high recovery rate operation and long-term continuous operation, and can be used in the water treatment field where recovery of module performance is required by physical cleaning or the like.
[0002]
[Prior art]
A processing method using membrane separation technology has attracted attention as an advanced water purification method for tap water, and as a water purification method for replacing natural water such as river water and groundwater, and conversion is being promoted. In particular, a membrane separation module using a hollow fiber membrane has been widely used for water purification treatment because it can be attached to a container regardless of the shape of the container and is easy to physically wash.
[0003]
The module used for the water purification process is required to have a high recovery rate (recovery rate = flow rate ratio between the permeated liquid and the supply liquid) in order to recover and effectively use the supplied liquid. In high recovery operation, not only the primary side of the membrane in the module becomes high concentration, but in the case of reverse osmosis membranes and nanofiltration membranes, the flow rate on the primary side in the membrane module is very low, and the liquid velocity on the membrane surface is low. It becomes very low. Especially when the hollow fiber membrane and the hollow fiber membrane bundle are distributed with a flow path distance from the liquid supply part to the non-permeate discharge part, the liquid velocity on the membrane surface near the liquid supply part and the vicinity of the non-permeate discharge part The liquid velocity on the membrane surface is very different. In this state, it is very difficult for the external pressure type module to distribute and supply the supply liquid uniformly without causing drift in the entire area of the hollow fiber membrane surface. Also, if drift occurs in the module, the membrane contributing to the separation is reduced and the membrane cannot be used effectively. Furthermore, the concentration polarization on the membrane surface is promoted by the drift, the membrane surface concentration becomes very high, and the separation efficiency is significantly reduced. In addition, when a very high concentration liquid flows at a low speed on the primary side of the membrane in the module, the scale components concentrate on the membrane surface, and foulants tend to adhere and settle, covering and degrading the membrane surface that contributes to separation. The separation ability is significantly reduced.
[0004]
In the conventional module, a module design has been made in which the hollow fiber membranes are uniformly arranged by bundling the hollow fiber membranes at an extremely high filling rate in order to suppress uneven flow, and a uniform distribution flow is generated in the module. Further, a module design has been made in which one end is fixed to a container with a resin, and the opposite end portion of the hollow fiber membrane is formed in a loop shape to generate a uniform distribution flow as a resistor.
[0005]
In addition, in order to suppress the drift, the hollow fiber membranes are rolled up in a cross arrangement to form a hollow fiber membrane bundle, and a cylindrical material is provided in the hollow fiber membrane bundle to cause a flow to the center in the cross-sectional direction of the hollow fiber membrane bundle. A hollow fiber membrane module having a module structure that has a flow in the axial direction is disclosed in JP-A-52-49987, JP-A-52-63179, JP-B-54-5796, JP-A-63. -1404.
[0006]
Further, hollow fiber membrane modules in which several bundles of hollow fiber membrane bundles are arranged in a container to form a hollow fiber membrane bundle group and both ends are fixed with resin are disclosed in JP-A-61-103503 and JP-A-9-206563. It is disclosed.
[0007]
[Problems to be solved by the invention]
However, since the liquid velocity on the membrane surface near the liquid supply portion is different from the liquid velocity on the membrane surface near the non-permeated liquid discharge portion, in this state, the supply liquid is not generated in the entire area of the hollow fiber membrane surface. It is very difficult to uniformly distribute and supply an external pressure module. In particular, when the hollow fiber membrane is distributed with a distance between the liquid supply part and the non-permeate discharge part with respect to the flow direction, the liquid velocity on the membrane surface near the liquid supply part and the non-permeate discharge part near The liquid velocity on the membrane surface varies greatly. In particular, in the case of a cylindrical module in which hollow fiber membrane bundles are crossed and arranged on a porous core material, when liquid is supplied from the center of the module cylinder cross section and from the core material (center feed), it does not transmit through the liquid supply unit. It is difficult to generate a uniform distribution flow in all the liquid flow paths between the liquid discharge portions. Further, in the vicinity of the non-permeated liquid discharge portion, the liquid velocity on the membrane surface becomes very small, and the liquid on the membrane surface has a high concentration. Further, in the case of the center feed in the vicinity of the non-permeated liquid discharge part, since the outer peripheral part of the hollow fiber membrane bundle group corresponds, the ratio of the hollow fiber membranes that are not effectively used increases and affects the performance. In addition, even in a module in which a hole is formed in a part of the core material and the hollow fiber membrane bundles are rolled up in a cross arrangement so as to have an axial flow, the liquid velocity on the membrane surface in the vicinity of the non-permeate discharge portion is very high. As the film becomes smaller, the liquid on the surface of the film becomes high in concentration, resulting in performance degradation and fouling. In addition, when the liquid is fed only in the axial direction, fouling deposits and scales are likely to occur due to the non-permeated liquid concentrated at a high concentration because the hollow fiber membranes intersect in the flow direction. As a result, the amount of permeate decreases and long-term continuous operation becomes difficult. Further, when the foulant is physically washed, since a uniform distribution flow is not generated, sufficient foulant washing and elimination cannot be performed, and the washing efficiency is lowered.
[0008]
In a module in which one end is fixed to a container with a resin and the opposite end portion of the hollow fiber membrane is formed in a loop shape, the loop end portion is often provided as a resistor that generates a uniform distribution flow. In that case, the filling density of the hollow fiber membrane in the non-permeate discharge portion becomes low, and the liquid velocity on the membrane surface is lowered. Further, when the recovery rate is high, the liquid velocity on the membrane surface is further lowered, the liquid concentration on the membrane surface is increased, and the module performance is lowered. Moreover, it is difficult to produce a completely uniform distribution flow at a portion where the hollow fiber membrane bundles are parallel, with a low filling rate. At the end portion of the loop-shaped hollow fiber membrane, fouling is likely to occur due to the non-permeated liquid concentrated at a high concentration. Furthermore, when the foulant is physically washed, the shape of the hollow fiber membrane bundle group having a loop at one end is easily damaged and cannot be reproduced.
[0009]
Even in a module in which hollow fiber membranes are bundled at an extremely high filling rate with a uniform distribution, the filling density of the hollow fiber membrane from the liquid supply part to the non-permeate discharge part is constant, so the vicinity of the non-permeate discharge part is The liquid velocity on the surface of the membrane becomes very small. As a result, the hollow fiber membrane is not effectively used and the separation efficiency is deteriorated. In particular, in the water purification process that requires a high recovery rate, the primary side of the highly concentrated membrane is further concentrated in the vicinity of the non-permeate discharge part, so that not only the surface of the hollow fiber membrane but also the hollow is high. A fouling is also likely to occur in the gap between the yarn membranes, and long-term continuous operation becomes difficult due to a decrease in the amount of permeate.
[0010]
In a hollow fiber membrane module in which several bundles of hollow fiber membrane bundles are arranged in a container to form a group of hollow fiber membrane bundles with a fixed interval and both ends are fixed with resin, the hollow fiber membranes are effectively used in the inner layer portion of the hollow fiber membrane bundle. It is difficult to effectively utilize the entire hollow fiber membrane bundle group for membrane separation. As a result, the module performance is lowered and the liquid velocity on the membrane surface is low, which makes it easy to accumulate foulant in the hollow fiber membrane gap of the bundle of hollow fiber membranes. . Further, when the foulant is physically washed, the cleaning liquid flow mainly flows into the space between the hollow fiber membrane bundles, and the cleaning and removing properties of the foulant in the hollow fiber membrane bundles are deteriorated.
[0011]
In water purification processes that require a high recovery rate, when the liquid velocity on the membrane surface changes extremely from the vicinity of the liquid supply section to the vicinity of the non-permeated liquid discharge section, the membrane performance is effectively contributed to the separation and the module performance is maximized. It is very important to pull out.
[0012]
The present invention has been proposed in view of the above, and in a water purification process that requires a high recovery rate, the packing density of the hollow fiber membrane in the module is changed with respect to the flow direction of the non-permeable liquid, and the liquid flow rate on the membrane surface The flow resistance and the liquid velocity distribution on the membrane surface are reduced even if the flow rate decreases as it becomes the liquid outlet, so that the hollow fiber membrane can be filled at an extremely high filling rate without damaging the hollow fiber membrane. Provided are a hollow fiber membrane module that can be inserted and excellent in module cleanability, and a method for producing the same.
[0013]
[Means for Solving the Problems]
In the radial flow structure that flows from the core material to the outer periphery of the hollow fiber membrane bundle as a result of earnest research in view of the above object, the present invention responds to a change in the liquid flow rate during discharge of the non-permeate from the liquid supply part of the membrane module A membrane module and manufacturing method that can increase the packing density of the hollow fiber membrane bundle as the diameter of the hollow fiber membrane bundle increases so that the liquid velocity distribution on the membrane surface decreases, and can exhibit separation performance even during high recovery rate operation. is there.
[0014]
Specifically:
(1) A hollow fiber membrane module in which a gutter upper body composed of a group of hollow fiber membrane bundles arranged around a core member is attached to a container and one or both ends thereof are fixed with a resin, and the hollow fiber membrane bundle is hollow In the hollow fiber membrane module in which the arrangement of the yarn membranes is arranged at an angle with the vertical axis of the hollow fiber membrane bundle group and crosses alternately for each hollow fiber membrane bundle, from the core material to the outer periphery of the hollow fiber membrane bundle group Density of hollow fiber membrane with respect to flow direction of non-permeating liquid flowing toward The liquid velocity distribution on the surface of the hollow fiber membrane was reduced by increasing the A hollow fiber membrane module having a hollow fiber membrane bundle structure.
(2) The hollow fiber membrane module according to the above (1) having a hollow fiber membrane bundle arrangement in which the number of cross-point portions where the hollow fiber membranes intersect increases with an increase in the winding diameter.
(3) The hollow fiber membrane module according to (1) or (2), wherein the pitch between the hollow fiber membrane bundles has a hollow fiber membrane bundle arrangement in which the pitch decreases as the winding diameter increases.
(4) The hollow fiber membrane module according to any one of (1) to (3), wherein a filling rate of the hollow fiber membrane is 40% to 80%.
(5) The hollow fiber membrane according to any one of the above (1) to (4), wherein the angle of the cross-arranged hollow fiber membrane bundle has an inclination of 5 to 75 degrees with respect to the vertical axis of the hollow fiber membrane bundle module.
(6) A method for producing a hollow fiber membrane module in which a saddle member comprising a group of hollow fiber membrane bundles arranged around a core member is attached to a container, and one or both ends thereof are fixed with a resin. In the manufacturing method of the hollow fiber membrane module, the arrangement of the hollow fiber membranes of the bundle is arranged at an angle with the vertical axis of the hollow fiber membrane bundle group and has an intersecting arrangement alternately crossing every hollow fiber membrane bundle. Increasing the packing density of the hollow fiber membrane with respect to the flow direction of the non-permeating liquid flowing toward the outer periphery of the hollow fiber membrane bundle group By reducing the liquid velocity distribution on the surface of the hollow fiber membrane A method for producing a hollow fiber membrane module.
(7) The method for producing a hollow fiber membrane module according to (6), wherein the hollow fiber membrane bundle array is formed by increasing the number of cross-point portions where the hollow fiber membranes intersect as the diameter increases.
(8) The method for producing a hollow fiber membrane module according to (6) or (7), wherein the pitch between the hollow fiber membrane bundles is decreased as the diameter is increased to form a hollow fiber membrane bundle array.
(9) The method for producing a hollow fiber membrane module according to any one of (6) to (8), wherein a filling rate of the hollow fiber membrane is 40% to 80%.
(10) The hollow fiber according to any one of the above (6) to (9), wherein the angle of the cross-arranged hollow fiber membrane bundle has an inclination of 5 to 75 degrees with respect to the vertical axis of the hollow fiber membrane bundle Membrane module manufacturing method.
[0015]
The hollow fiber membrane in the present invention is a hollow fiber-like separation membrane, and the membrane material, membrane structure and membrane dimension are not particularly limited. Examples thereof include cellulose acetate-based and polyamide-based asymmetric membranes, polyamide-based and polysulfone-based composite membranes.
[0016]
The hollow fiber membrane bundle in the present invention may be any bundle in which a plurality of hollow fiber membranes are bundled in the same direction, preferably a bundle of several tens to several hundreds of hollow fiber membranes, more preferably 30. Up to 200 hollow fiber membranes are bundled.
[0017]
The hollow fiber membrane bundle group in the present invention refers to an aggregate of hollow fiber membrane bundles in which a plurality of hollow fiber membranes are aggregated. The hollow fiber membrane bundles are arranged with an angle with the vertical axis of the hollow fiber membrane bundle group, and the hollow fiber membrane bundles have a structure with a cross arrangement that crosses each hollow fiber membrane bundle alternately.
[0018]
The pitch between the hollow fiber membrane bundles is the circumferential displacement distance of the hollow fiber membrane bundle center wound up in the same direction of the hollow fiber membrane bundles wound up on the core material, and the pitch between the hollow fiber membrane bundles is If it is too large or if the minus pitch at which the hollow fiber membrane bundles overlap is too large, the filling rate of the hollow fiber membrane will be low and the membrane area per module volume will be reduced. In addition, when the pitch between the hollow fiber membrane bundles is too small, the cleaning removal property of the foulant in the hollow fiber membrane bundles is deteriorated. For this reason, the pitch between the hollow fiber membrane bundles is -10 mm to 30 mm, more preferably -5 mm to 20 mm.
[0019]
The filling rate of the hollow fiber membrane bundle in the present invention is defined by the following equation. If the filling rate is too high, the foulant is deposited and it becomes difficult to clean the module. If the filling rate is too low, the liquid speed on the membrane surface decreases and the performance decreases at a high recovery rate, so 40-80% is applied, more preferably 50-75% applies.
Filling rate (%) = (hollow fiber membrane outer diameter 2 X π / 4 x number of hollow fiber membranes x hollow fiber membrane length)
/ (Volume of hollow fiber membrane bundle group of empty container) × 100
[0020]
The angle of the cross-arranged hollow fiber membrane bundles is preferably a small angle in order to increase the filling rate in order to increase the membrane area, but a large angle is suitable in consideration of foulant deposition and module cleaning. In order to satisfy both of these conditions, the angle of the hollow fiber membrane bundles arranged in an intersecting manner has an inclination of 5 to 75 degrees, more preferably 20 to 60 degrees with respect to the vertical axis of the hollow fiber membrane bundle.
[0021]
The resin in the present invention is not particularly limited as long as the hollow fiber membrane can be sealed in a liquid-tight manner. For example, a thermosetting resin such as a polyurethane resin, an epoxy resin, or a silicon resin can be used, but a thermoplastic resin can also be used if necessary.
[0022]
The curing conditions for the resin used for the end sealant in the manufacturing method of the hollow fiber membrane module in the present invention, for example, epoxy resin, are epoxy resin and curing agent, curing accelerator, hollow fiber membrane bundle, container and other members. It can be arbitrarily determined depending on the type. For example, curing is carried out by changing the temperature stage in one or more stages within a range from room temperature to 130 ° C. The atmospheric conditions include air in a humidity of 3% to 90% or in a nitrogen atmosphere. Furthermore, post-cure may be performed in warm water or in a high-temperature atmosphere.
[0023]
The method for filling the end sealant at the time of bonding the hollow fiber membrane module in the present invention is not particularly limited, but the filling method by the potential energy of the end sealant in the case filled with the hollow fiber membrane bundle, medium such as air The pressure filling method using, the adhesion method filled using centrifugal force, etc. are mentioned, and when the pot life is short, especially when the pot life is short, the viscosity of the end sealant increases during filling, The gap between the hollow fiber membranes cannot be filled. From these things, the method which can be filled in the gap | interval between hollow fiber membranes for a short time is preferable.
[0024]
The container in the present invention stores a hollow fiber membrane bundle, and the material and shape thereof are not particularly limited. For example, a cylindrical container that can be efficiently filled with a hollow fiber membrane bundle, a box-shaped container that facilitates the combination from a small unit, and the like. Examples of the material of the container include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like, and a material having a thermal expansion coefficient close to that of the end sealing resin is more preferable.
[0025]
The core material in the present invention is not particularly limited in shape, material, etc., as long as it is an axial core that scrapes a hollow fiber membrane or a bundle of hollow fiber membranes and has a through hole inside and outside the tube and also has a liquid distribution function. However, in order to disperse the flow uniformly in the axial direction of the core material, a shape in which circular holes are arranged in a staggered manner in a cylindrical tube is preferable. Examples of the material include polycarbonate, vinyl chloride, polysulfone, polypropylene, polyethylene, ABS resin, acrylic resin, and the like. More preferably, the same material as the container and / or a material having a thermal expansion coefficient close to that of the end sealing resin is preferable.
[0026]
The hollow fiber membrane module in the present invention is a hollow fiber membrane module used for natural water purification treatment such as river water and groundwater or advanced water purification treatment of tap water, and is equipped with nanofiltration, reverse osmosis, ultrafiltration, precision It has a hollow fiber membrane classified as filtration. The form of flow is not particularly limited, but counter flow, cross flow, and cocurrent flow are preferable. Although an example of the hollow fiber membrane module of this invention is shown in FIG. 1, it is not limited to this. The outline of the water treatment of the hollow fiber membrane module will be described with reference to FIG. 1. The treated water is pressurized and supplied from the supply unit 31, and the treated water is distributed from the
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the hollow fiber membrane module and the method for manufacturing the hollow fiber membrane module will be described with reference to the drawings, but the present invention is not particularly limited to the method. FIG. 1 is a schematic view of a hollow fiber membrane module of the present invention, and FIG. 2 is an explanatory view of a method for producing a saddle-like body comprising a group of hollow fiber membrane bundles.
[0028]
As shown in FIG. 1, the hollow fiber membrane module of the present invention comprises a
[0029]
With the above manufacturing process, it is possible to respond to changes in the liquid flow rate between the liquid supply part of the membrane module and the non-permeate discharge part, reduce the liquid velocity distribution on the membrane surface, and exhibit separation performance even during high recovery rate operation. Thus, a hollow fiber membrane module capable of producing a uniform distribution flow is obtained.
[0030]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0031]
Example
Polyamide-based nanofiltration composite hollow fiber membrane (hollow fiber membrane outer diameter 350 μm, hollow fiber membrane inner diameter 200 μm, polypiperazine amide cross-linked thin film formed on the outer surface of polysulfone base membrane), polycarbonate core material (outer diameter φ22 mm) , Inner diameter φ20mm, hole φ8 × 2 / 22.5mm pitch, staggered arrangement), 9 to 12 hollow fiber membranes are combined into 4 bundles to form a hollow fiber membrane bundle. The traversing rotation is twice for the traverse, the second layer up to the second traverse is 5.8 scooping rotation for the traverse, and the third layer is traversing the traverse for one traverse 7.2. In the ratio of rotation, up to the 4th layer was rolled up at a ratio of 7.7 rotations for one traverse and up to the outermost layer at a ratio of 7.8 rotations for one traverse. At the same time, the phase difference between the take-up rotation and the traverse was adjusted so that the pitch between the hollow fiber membrane bundles was continuously changed from -5 mm to 20 mm as the wound diameter increased. A trawl width of 1200 mm and an outer diameter of φ74 mm were taken up to produce a saddle-like body comprising a group of hollow fiber membrane bundles having a cross arrangement. The number of hollow fiber membranes was 24840. A polyester protective woven fabric with a mesh opening size of 1.2 mm is applied to the outer periphery of the upper body of hollow fiber membrane bundles, and the upper body of hollow fiber membrane bundles is cut to a length of 400 mm to make a polycarbonate container (The narrowest inner diameter φ74 mm) was inserted. Then, the upper body composed of a group of bundles of hollow fiber membranes attached to the container was subjected to centrifugal drainage at 600 rpm for 3 minutes at room temperature to remove moisture on the outer surface of the hollow fiber membrane and in the hollow part. Next, the dehumidified air adjusted to a dew point of 5 ° C. is heated to 50 ° C., and the air volume is 0.13 m. Three At 12 min / min, the hollow fiber membrane bundle attached to the container was ventilated and dried to near dryness. Then, in order to close the open end of the hollow fiber membrane as an end seal, the end sealant is filled and cured by centrifugal force (rotation speed 400 rpm), and the hollow fiber membrane bundle is used as the second-stage end sealant The same end sealant was filled with a centrifugal force (rotation speed: 600 rpm) to cure and adhere to the container. Hydrogenated bisphenol A type epoxy resin was used as an end sealant at this time. Then, in order to open the hollow part of the hollow fiber membrane, the end sealing part is brought into contact with a hot plate at 75 ° C. for 1 hour, and a human power (about 4 kg) is used using a booster (boost factor 2-3). Thus, the end sealing part (diameter: φ100 mm) of the container in which the hollow fiber membrane bundle was fixed with a slice cutter using a blade having a blade width of 300 mm was cut. The liquid supply direction was the same as in FIG. The membrane area of this hollow fiber membrane module is 13m 2 The packing density for each layer was 0.88 to 0.96 from the core material portion to the outer periphery of the hollow fiber membrane bundle. Further, when the liquid velocity on the membrane surface was calculated under the conditions of supply pressure of 0.3 MPa, recovery rate of 50% and temperature of 25 ° C., it was between 1.7 and 1.8 cm / s from the core material portion to the outer periphery of the hollow fiber membrane bundle. The deviation between the maximum value and the minimum value was 0.09. (See Table 1 and Fig. 3)
Deviation = (Membrane surface liquid velocity maximum value−Membrane surface liquid velocity minimum value) / Membrane surface liquid velocity of the first layer
Packing density = hollow fiber membrane bundle volume / empty volume occupied by the hollow fiber membrane bundle
Membrane surface liquid velocity = Membrane surface flow rate / channel cross-sectional area
Packing density ratio = packing density of each layer / filling density of the first layer
Film surface liquid velocity ratio = film surface liquid velocity of each layer / film surface liquid velocity of the first layer
[0032]
The hollow fiber membrane module produced in the example was used to evaluate the performance under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 6 using a 1000 mg / L sucrose aqueous solution. The liquid volume is 1.77m Three / D, solute removal rate is 91.9%, recovery rate is 20%, membrane surface liquid speed is 3.3m / min, permeate volume is 2.8m Three The removal rate of / D and solute was 96.5%. The ratio of 20% recovery rate and 80% removal rate was 0.97.
Recovery rate = (Amount of permeated liquid / Amount of supplied liquid) x 100 (%)
Removal rate = (1− (permeate concentration / feed solution concentration)) × 100 (%)
[0033]
Comparative example
In the manufacturing method of the upper body comprising the hollow fiber membrane bundle group of the example, the hollow fiber membranes were prepared in the same manner as in the example except that the pitch between the hollow fiber membrane bundles was equal and the number of cross points was fixed at three places. A module was manufactured. The membrane area of this hollow fiber membrane module is 9m 2 The packing density for each layer was 0.88 to 0.53 from the core material portion to the outer periphery of the hollow fiber membrane bundle. Further, when the membrane surface liquid velocity was calculated under the conditions of a supply pressure of 0.3 MPa, a recovery rate of 50%, and a temperature of 25 ° C., the maximum value was 1.23 to 0.09 cm / s from the core material portion to the outer periphery of the hollow fiber membrane bundle. The minimum deviation was 0.93. (See Table 1 and Fig. 3)
[0034]
Using the module prepared in the comparative example and using a sucrose aqueous solution having a concentration of 1000 mg / L, performance evaluation was performed under the conditions of a supply pressure of 0.3 MPa, a temperature of 25 ° C., and a pH of 6. Permeate volume at 4m / min is 1.6m Three / D, solute removal rate is 80.0%, recovery rate is 20%, permeate volume is 1.95m Three The removal rate of / D and solute was 96.7%. The ratio between the 20% recovery rate and the 80% removal rate was 0.85.
[0035]
Tables 1 and 2 list the results of Examples and Comparative Examples 1 and 2.
[0036]
[Table 1]
[0037]
[Table 2]
[0038]
【The invention's effect】
The hollow fiber membrane module of the present invention has a liquid flow rate on the membrane surface in the water treatment field where high recovery rate is required especially for the purification of natural water such as river water and groundwater or the advanced purification of tap water. Therefore, even when the membrane surface liquid velocity in the module is low due to the high recovery rate operation, a uniform distribution flow is realized from the supply section to the concentrated drainage outlet, and no drift occurs. Separation efficiency can be increased by effectively using a membrane, and continuous stable operation and cleaning properties can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a hollow fiber membrane module according to the present invention.
FIG. 2 is an explanatory view of a method for producing a saddle member comprising a group of hollow fiber membrane bundles.
FIG. 3 is a graph showing a module packing density ratio and a membrane surface liquid velocity ratio.
FIG. 4 is a graph showing a recovery rate dependency of a removal rate.
[Explanation of symbols]
1 container
2 Saddle upper body consisting of bundles of hollow fiber membranes
3 Core material
4 Protective cloth
5, 5 'end seal
6, 6 'O-ring
7 Manifold part
8 Crosspoint
9 Hollow fiber membrane bundle
10 捲 Upper shaft
11 Travers Guide
31 Supply section
32 Non-permeate discharge section
33 Permeate outlet
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29416099A JP4277147B2 (en) | 1999-10-15 | 1999-10-15 | Hollow fiber membrane module and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29416099A JP4277147B2 (en) | 1999-10-15 | 1999-10-15 | Hollow fiber membrane module and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001113139A JP2001113139A (en) | 2001-04-24 |
JP4277147B2 true JP4277147B2 (en) | 2009-06-10 |
Family
ID=17804102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29416099A Expired - Lifetime JP4277147B2 (en) | 1999-10-15 | 1999-10-15 | Hollow fiber membrane module and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4277147B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026373A1 (en) | 2010-08-27 | 2012-03-01 | 東洋紡績株式会社 | Hollow fiber type reverse osmosis membrane and process for production thereof |
WO2013118859A1 (en) | 2012-02-09 | 2013-08-15 | 東洋紡株式会社 | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method |
WO2013125681A1 (en) | 2012-02-24 | 2013-08-29 | 東洋紡株式会社 | Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process |
KR20150031066A (en) * | 2013-09-13 | 2015-03-23 | 엘지전자 주식회사 | Hollow membrane filter and manufacturing method for the same |
WO2015060286A1 (en) | 2013-10-21 | 2015-04-30 | 東洋紡株式会社 | Hollow-fiber membrane element and membrane module for forward osmosis |
WO2019021701A1 (en) | 2017-07-28 | 2019-01-31 | 東洋紡株式会社 | Hollow fiber membrane module |
US10814289B2 (en) | 2014-10-07 | 2020-10-27 | Toyobo Co., Ltd. | Separation membrane, separation membrane element and separation membrane module |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009017413A1 (en) * | 2009-04-14 | 2010-11-18 | Fresenius Medical Care Deutschland Gmbh | Filter device and method for producing a filter device |
JP5772275B2 (en) * | 2011-06-21 | 2015-09-02 | Nok株式会社 | Method for producing hollow fiber carbon membrane |
-
1999
- 1999-10-15 JP JP29416099A patent/JP4277147B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026373A1 (en) | 2010-08-27 | 2012-03-01 | 東洋紡績株式会社 | Hollow fiber type reverse osmosis membrane and process for production thereof |
WO2013118859A1 (en) | 2012-02-09 | 2013-08-15 | 東洋紡株式会社 | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method |
WO2013125681A1 (en) | 2012-02-24 | 2013-08-29 | 東洋紡株式会社 | Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process |
KR20150031066A (en) * | 2013-09-13 | 2015-03-23 | 엘지전자 주식회사 | Hollow membrane filter and manufacturing method for the same |
KR102140266B1 (en) * | 2013-09-13 | 2020-07-31 | 주식회사 엘지화학 | Hollow membrane filter and manufacturing method for the same |
WO2015060286A1 (en) | 2013-10-21 | 2015-04-30 | 東洋紡株式会社 | Hollow-fiber membrane element and membrane module for forward osmosis |
US10814289B2 (en) | 2014-10-07 | 2020-10-27 | Toyobo Co., Ltd. | Separation membrane, separation membrane element and separation membrane module |
WO2019021701A1 (en) | 2017-07-28 | 2019-01-31 | 東洋紡株式会社 | Hollow fiber membrane module |
Also Published As
Publication number | Publication date |
---|---|
JP2001113139A (en) | 2001-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wan et al. | Design and fabrication of hollow fiber membrane modules | |
JP4412486B2 (en) | Hollow fiber membrane module and module arrangement group thereof | |
JPS631404A (en) | Hollow yarn type membrane separation device | |
JP2013544642A (en) | Membrane separation module | |
US20070095756A1 (en) | System and method for removal of contaminants from feed solution | |
JPH11333265A (en) | Membrane module | |
JP4277147B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP2002306931A (en) | Specified hollow fiber membrane module used in process receiving serious damage due to fouling and producing method therefor | |
JP2017530001A (en) | A spiral filtration assembly including an integral bioreactor | |
JP6365542B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
EP3107643B1 (en) | Filtration element | |
JP6222237B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
JP2009028714A (en) | Spiral separating membrane element | |
JP6565898B2 (en) | Hollow fiber membrane element and hollow fiber membrane module | |
JP4370485B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP3994294B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
JP6264938B2 (en) | Hollow fiber membrane module | |
JP4501039B2 (en) | Membrane module | |
JP2003290632A (en) | Hollow fiber membrane module | |
JP2943224B2 (en) | Hollow fiber membrane element and hollow fiber membrane device for fluid separation | |
JP2003326140A (en) | Hollow-fiber membrane module | |
WO2000027511A1 (en) | High flow high recovery spirally wound filtration element | |
JP2000262867A (en) | Reverse osmosis membrane separator and method for separating water | |
JPH11188245A (en) | Spiral membrane element | |
JPS6231601B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090212 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4277147 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |