JP4499874B2 - Ship power transmission mechanism - Google Patents

Ship power transmission mechanism Download PDF

Info

Publication number
JP4499874B2
JP4499874B2 JP2000153061A JP2000153061A JP4499874B2 JP 4499874 B2 JP4499874 B2 JP 4499874B2 JP 2000153061 A JP2000153061 A JP 2000153061A JP 2000153061 A JP2000153061 A JP 2000153061A JP 4499874 B2 JP4499874 B2 JP 4499874B2
Authority
JP
Japan
Prior art keywords
shaft
spring constant
joint
power transmission
transmission mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000153061A
Other languages
Japanese (ja)
Other versions
JP2001334993A (en
Inventor
久則 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2000153061A priority Critical patent/JP4499874B2/en
Publication of JP2001334993A publication Critical patent/JP2001334993A/en
Application granted granted Critical
Publication of JP4499874B2 publication Critical patent/JP4499874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、機関から推進装置の入力ピニオン軸へ、連結軸を介して動力伝達する船舶の動力伝達機構に関する。
【0002】
【従来の技術】
図13は従来の船舶の動力伝達機構を示しており、船体1内にディーゼル機関等の内燃機関2を搭載し、船尾3に舶用の推進装置5を装着し、内燃機関2の出力部(フライホイール等)6と推進装置5の入力ピニオン軸7との間を連動連結するために、前側から順に、連結軸10、継手軸11及びユニバーサル継手12を配置している。そして上記連結軸10の前端と出力部6との間並びに連結軸10の後端と継手軸11の間に、それぞれ高ねじりばね定数特性を有するダンパーゴム13,14を介在させている。その他先行技術文献としては、特公平1−150770号公報等がある。
【0003】
【発明が解決しようとする課題】
周知のように内燃機関2は、爆発を利用して回転していることにより、運転中は回転変動が生じており、この回転変動は連結軸10、継手軸11及びユニバーサル継手12を介して入力ピニオン軸7に伝わり、推進装置5内の入力ピニオン16と前進用ギヤ18との間又は入力ピニオン16と後進用ギヤ19との間等で発生する歯打音の原因となっている。
【0004】
図13のように、連結軸10の両端に高ねじりばね定数特性のダンパーゴム13,14のみを設けていると、負荷が小さい時又はニュートラル運転時には、ダンパーゴム13,14部分で機関側の回転変動が増幅することもあり、一方、ユニバーサル継手12での減衰は少なく、また、入力ピニオン16及び前進用あるいは後進用ギヤ18,19の抵抗も少ないため、上記歯打音、いわゆる「カタカタ音」の発生が顕著になる。
【0005】
【発明の目的】
本願発明の目的は、内燃機関と舶用の推進装置の間の動力伝達機構において、機関側の回転変動を低減し、推進装置内でのギヤ間の歯打音を減少させることである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本願請求項1記載の発明は、機関から推進装置の入力ピニオン軸へ、連結軸を介して動力伝達する船舶の動力伝達機構において、連結軸の両端部に高ねじりばね定数特性を有するダンパーゴムを備え、連結軸と入力ピニオン軸との間の継手軸部分に、低ねじりばね定数特性を有するダンパーゴムを配置していることを特徴としている。
【0007】
【発明の実施の形態】
[参考例1]
図1は、船舶の動力伝達機構の参考例1であり、前後両端部に高ねじりばね定数特性のダンパーゴム13,14を有する連結軸10と、2段ねじりばね定数特性を有する2段型ねじり継手21を併用した構造であり、前記図13と同じ部品又は部分には同じ符号を付している。図1において、船体1内にディーゼル機関又はガソリン機関等の内燃機関2を搭載し、船尾3に舶用の推進装置5を装着しており、内燃機関2の出力部(フライホイール等)6と推進装置5の入力ピニオン軸7との間を連動連結する動力伝達機構として、前から順に、上記2段ねじりばね定数特性を有する2段型ねじり継手21、連結軸10、継手軸11及びユニバーサル継手12を配置してある。連結軸10は前述のように前後両端部に高ねじりばね定数特性のダンパーゴム13,14を有しており、前側のダンパーゴム13と機関出力部6との間に、上記2段型ねじり継手21を介在させてある。
【0008】
推進装置5内には、入力ピニオン16に噛み合う前,後進用ギヤ18,19と、該前,後進用ギヤ18,19に前後進切換クラッチ24を介して切換自在に連結される伝動軸23と、プロペラ28を備えた出力軸25が配置されており、伝動軸23と出力軸25はギヤ26,27により連結されている。
【0009】
2段型ねじり継手21は、軟硬2種類の弾性部材を利用した構造であり、図4に実線の折れ線X2で示すような2段ねじりばね定数特性(2段ねじり特性)を有している。すなわち、ねじれ角θが0°から所定ねじれ角θ1までは、ばね定数が小さい(軟らかい)第1段用の弾性部材が弾性変形し、それによりグラフ上で傾きの小さい低ねじりばね定数特性となり、一方、ねじれ角が所定ねじれ角θ1より大きくなると、ばね定数が大きい(硬い)弾性部材が弾性変形し、それにより傾きの大きい高ねじりばね定数特性となるように構成されている。
【0010】
図2及び図3は、2段型ねじり継手21の一具体化例を示しており、第1,第2段用の各弾性部材としていずれもゴムを利用した構造である。縱断面図を示す図2において、ピン33により互いに結合された1対の入力側サイドプレート31,31と、該サイドプレート31,31間にこれらと相対回転可能に配置された出力側フランジ35とを備えており、サイドプレート31,31は機関2の出力部6に結合し、フランジ35は軸部35aを介して連結軸10の前側ダンパーゴム13に結合している。
【0011】
上記ピン33には硬くてばね定数の高い第2段用の筒形ダンパーゴム42が嵌着され、フランジ35に形成された長孔37内に円周方向移動可能に配置されている。フランジ35とサイドプレート31の間には、軟らかくてばね定数の低い第1段用のダンパーゴム41が配置され、第1段用のダンパーゴム41の軸方向の両端面は、フランジ35とサイドプレート31にそれぞれ接着あるいは焼付により固着されている。
【0012】
図2のIII-III断面図を示す図3において、第2段用のダンパーゴム42は、機関停止時、すなわちサイドプレート31とフランジ35の間のねじりトルクが0の時に、長孔37の周方向の中央部に位置しており、長孔37の回転方向の各端縁と第2段用ダンパーゴム42との間隔は、前記所定ねじれ角度θ1に設定されている。
【0013】
[作用]
図3において、機関の回転変動により、機関側のサイドプレート31がフランジ35に対して、たとえば矢印R方向に相対的にねじれる場合、ねじれ角θが0〜θ1の範囲では、軟らかい第1段用のダンパーゴム41が弾性変形し(ねじれ)、ねじれ角θがθ1に達すると第2段用のダンパーゴム42が長孔37の端縁に当接し、それ以上のねじれ角θの範囲では、硬い第2段用の筒形ダンパーゴム42が弾性変形する。
【0014】
すなわち、図4の折れ線X2のように、ねじれ角θが0〜θ1の範囲では、小さなねじりトルクによりばね定数の低い第1のダンパーゴム41が弾性変形し、低回転トルク時の回転変動を効率良く吸収し、ねじれ角θが所定ねじれ角θ1以上では、ばね定数の高い第2のダンパーゴム42が弾性変形し、高回転トルク時の回転変動を効率良く吸収する。なお、破線の直線X1は連結軸10の高いねじりばね定数のダンパーゴム13,14のねじり特性線であり、ばね定数(傾き)は、前記折れ線X2の第1段目よりも大きく、第2段目よりも小さくなっている。
【0015】
図5は、図13に示す従来例による騒音と、図1に示す本願発明による騒音を比較した図であり、従来に比べて騒音が低下していることを示しており、特に、700rpm以下の低速回転域において、従来例よりも大幅に騒音が低下していることを示している。
【0016】
[参考例2]
図6は、船舶の動力伝達機構の参考例2であり、連結軸10の後端には、図1と同様に高いねじりばね定数のダンパーゴム14を設け、連結軸10の前端には、図1のようなダンパーゴム13は設けずに、2段ねじりばね定数特性を有する2段型ねじり継手21のみを介在させてある。
【0017】
ねじり特性を示す図7において、折れ線X2は、前記図4の折れ線X2と同様に2段型ねじり継手21のねじり特性を示し、直線X3は後端ダンパーゴム14のねじり特性を示している。
【0018】
[発明の実施の形態1]
図8は、請求項1記載の発明を適用した船舶の動力伝達機構であり、前後両端に高ねじりばね定数特性のダンパーゴム13,14を有する連結軸10を備えると共に、継手軸11に低ねじりばね定数特性を有するダンパー機構を備えている。
【0019】
図9は低ねじりばね定数特性のダンパー機構を備えた継手軸11の一具体化例を示しており、継手軸11は、後側ダンパーゴム14にフランジ51を介して結合された前側の筒軸50と、ユニバーサル継手12に結合された後側軸52と、低ねじりばね定数のダンパーゴム56を内面に嵌着(固着)した第1の中間筒軸53と、第2の中間筒軸54から構成されている。前側の筒軸50の後端部と、第2の中間筒軸54の前端部と、後側軸52の前半部の外周にはそれぞれ外向きのスプライン歯50a,54a,52aが形成され、第1の中間筒軸53及び第2の中間筒軸54の内周には、それぞれ内向きのスプライン歯53b,54bが形成されている。上記低ねじりばね定数のダンパーゴム56の内径は、第2の中間筒軸54の外周径よりも小さく設定されており、第2の中間筒軸54が圧入されるようになっている。
【0020】
組立後の状態を示す図10において、第1の中間筒軸53の内向きスプライン歯53bの前半部分に、前から挿入される筒軸50のスプライン歯50aがスプライン嵌合し、第1の中間筒軸53のスプライン歯53bの後半部分に、後から挿入される第2の中間筒軸54のスプライン歯54aがスプライン嵌合し、第2の中間筒軸54の内向きスプライン歯54bに、後から挿入される後側軸52のスプライン歯52aがスプライン嵌合している。
【0021】
第1の中間筒軸53の内向きスプライン歯53bと前側筒軸50のスプライン歯50aとの嵌合状態は、周方向に「がた」が生じないように一定の圧力で両スプライン歯50a,53bが噛み合っており、バックラッシュが0となっている。すなわち、前側筒軸50と第1の中間筒軸53とは周方向に剛直に結合されている。一方、第1の中間筒軸53のスプライン歯53bと第2の中間筒軸54のスプライン歯54aとの嵌合状態は、周方向に大きな「がた」を有するように両スプライン歯53b,54aが噛み合っている。上記周方向の「がた」の大きさは、たとえば0.5〜1.0°程度である。
【0022】
ダンパーゴム56の内周面は第2の中間筒軸54の外周面に圧接しており、上記「がた」によるねじれ角の範囲で、弾性変形する(ねじれる)。
【0023】
図11は図9の継手軸11を備えた場合のねじり特性を示しており、折れ線X5は継手軸11のねじり特性であり、前記「がた」に対応するねじれ角θ2の範囲でダンパーゴム56が弾性変形し、ねじれ角がθ2より大きくなると、スプライン歯53b,54a同士が直結し、ねじりトルクは略垂直に立ち上がる。直線X1は、図4の直線X1と同様、連結軸10の前後端のダンパーゴム13,14のねじり特性である。
【0024】
したがって、ねじれ角θが0〜θ2の範囲では、小さなねじりトルクによりばね定数の低い継手軸11のダンパーゴム56が弾性変形し、低回転トルク時の回転変動を効率良く吸収し、ねじれ角θが角θ2以上では、ばね定数の高い連結軸10のダンパーゴム13,14が弾性変形し、高回転トルク時の回転変動を効率良く吸収する。
【0025】
[発明の実施の形態2]
図12は請求項1記載の発明の別の実施の形態を示しており、継手軸11は、後側ダンパーゴム14にフランジ51を介して結合された前側の筒軸60と、ユニバーサル継手12に結合された後側軸61に分かれており、前側筒軸60の内周面に内向きのスプライン歯60bを形成すると共に後端部に低ねじりばね定数のダンパーゴム63を嵌着し、後側軸61の外周面に外向きのスプライン歯61aを形成している。
【0026】
低ねじりばね定数のダンパーゴム63の内径は、後側軸61の外周面に所定の圧力で圧接する大きさに設定されている。
【0027】
前側筒軸60のスプライン歯60bに対する後側軸61のスプライン歯61aの嵌合は、周方向に大きな「がた」を有するように両スプライン歯60b,61aが噛み合っており、上記「がた」による両軸60,61の相対的なねじれ範囲において、ダンパーゴム63が弾性変形するようになっている。
【0028】
【発明の効果】
以上説明したように本願発明によると、
(1)機関2から推進装置5の入力ピニオン軸7へ、連結軸10を介して動力伝達する船舶の動力伝達機構において、低回転トルク時は軟らかい軸系となり、高回転トルク時は硬い軸系となり、低回転トルク及び高回転トルク時のいずれにおいても、機関の回転変動が推進装置5内のギヤ等に伝達されるのを効率良く阻止し、推進装置内でのギヤ間の歯打音を効果的に低減させることができる。
【0029】
(2)特に、機関回転速度が600〜850rpm程度のニュートラル回転時あるいは低負荷回転時において発生し易い推進装置内の歯打音を効果的に低減させることができる。
【図面の簡単な説明】
【図1】 船舶の動力伝達機構の参考例1を示す断面略図である。
【図2】 2段型ねじり継手の1具体化例を示す縦断面図(図3のII-II断面図)である。
【図3】 図2のIII-III断面図である。
【図4】 図2及び図3の2段型ねじり継手を備えた場合のねじり特性線図である。
【図5】 図13の従来例と図1の本願発明との歯打音による騒音の比較図である。
【図6】 船舶の動力伝達機構の参考例2を示す断面略図である。
【図7】 図6の2段型ねじり継手を備えた場合のねじり特性線図である。
【図8】 本願請求項1記載の発明の実施の形態1を適用した船舶の動力伝達機構を示す断面略図である。
【図9】 図8の低ねじりばね定数特性を有する継手軸の分解縦断面図である。
【図10】 図9の継手軸の組立状態を示す縱断面図である。
【図11】 図9の継手軸を備えた場合のねじり特性線図である。
【図12】 本願請求項1記載の発明の実施の形態2を適用した継手軸を示す縦断面図である。
【図13】 従来例の断面略図である。
【符号の説明】
1 船体
2 内燃機関
5 舶用の推進装置
6 機関の出力部
7 推進装置の入力ピニオン軸
10 連結軸
11 継手軸
13,14 高ねじりばね定数特性のダンパーゴム
16 入力ピニオン
18,19 前、後進用ギヤ
21 2段型ねじり継手
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission mechanism for a ship that transmits power from an engine to an input pinion shaft of a propulsion device via a connecting shaft.
[0002]
[Prior art]
FIG. 13 shows a conventional power transmission mechanism of a ship, in which an internal combustion engine 2 such as a diesel engine is mounted in a hull 1, a marine propulsion device 5 is mounted on a stern 3, and an output portion (flyer) of the internal combustion engine 2 is mounted. In order to interlock and connect between the wheel 6) and the input pinion shaft 7 of the propulsion device 5, a connecting shaft 10, a joint shaft 11, and a universal joint 12 are arranged in this order from the front side. Damper rubbers 13 and 14 having high torsion spring constant characteristics are respectively interposed between the front end of the connecting shaft 10 and the output portion 6 and between the rear end of the connecting shaft 10 and the joint shaft 11. Other prior art documents include Japanese Patent Publication No. 1-150770.
[0003]
[Problems to be solved by the invention]
As is well known, the internal combustion engine 2 is rotated by utilizing an explosion, so that rotational fluctuation occurs during operation. This rotational fluctuation is input via the connecting shaft 10, the joint shaft 11, and the universal joint 12. This is transmitted to the pinion shaft 7 and causes a rattling sound generated between the input pinion 16 and the forward gear 18 in the propulsion device 5 or between the input pinion 16 and the reverse gear 19.
[0004]
As shown in FIG. 13, if only the damper rubbers 13 and 14 having a high torsion spring constant characteristic are provided at both ends of the connecting shaft 10, the rotation on the engine side is performed at the damper rubbers 13 and 14 when the load is small or during neutral operation. On the other hand, the attenuation at the universal joint 12 is small, and the resistance of the input pinion 16 and the forward or reverse gears 18 and 19 is also small. The occurrence of is remarkable.
[0005]
OBJECT OF THE INVENTION
The object of the present invention is to reduce rotational fluctuation on the engine side in a power transmission mechanism between an internal combustion engine and a marine propulsion device, and reduce gear rattling noise in the propulsion device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is a power transmission mechanism for a ship that transmits power from an engine to an input pinion shaft of a propulsion device via a connecting shaft, and a high torsion spring at both ends of the connecting shaft. A damper rubber having a constant characteristic is provided, and a damper rubber having a low torsion spring constant characteristic is arranged in a joint shaft portion between the connecting shaft and the input pinion shaft .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[Reference Example 1]
FIG. 1 is a reference example 1 of a power transmission mechanism of a ship, a connecting shaft 10 having damper rubbers 13 and 14 having high torsion spring constant characteristics at both front and rear ends , and a two-stage torsion having two-stage torsion spring constant characteristics. The joint 21 is used in combination, and the same parts or portions as those in FIG. In FIG. 1, an internal combustion engine 2 such as a diesel engine or a gasoline engine is mounted in a hull 1, a marine propulsion device 5 is mounted on a stern 3, and an output portion (flywheel or the like) 6 of the internal combustion engine 2 and propulsion are propelled. As a power transmission mechanism for interlockingly connecting the input pinion shaft 7 of the device 5, the two-stage torsion joint 21 having the above-mentioned two-stage torsion spring constant characteristic, the connecting shaft 10, the joint shaft 11, and the universal joint 12 in order from the front. Is arranged. As described above, the connecting shaft 10 has damper rubbers 13 and 14 having high torsion spring constant characteristics at both front and rear ends, and the two-stage torsion joint is interposed between the front damper rubber 13 and the engine output unit 6. 21 is interposed.
[0008]
In the propulsion device 5, front and reverse gears 18, 19 that mesh with the input pinion 16, and a transmission shaft 23 that is switchably connected to the front and reverse gears 18, 19 via a forward / reverse switching clutch 24. An output shaft 25 having a propeller 28 is disposed, and the transmission shaft 23 and the output shaft 25 are connected by gears 26 and 27.
[0009]
The two-stage torsion joint 21 has a structure using two kinds of soft and hard elastic members and has a two-stage torsion spring constant characteristic (two-stage torsion characteristic) as shown by a solid broken line X2 in FIG. . That is, when the torsion angle θ is from 0 ° to a predetermined torsion angle θ1, the elastic member for the first stage having a small spring constant (soft) is elastically deformed, thereby resulting in a low torsion spring constant characteristic having a small inclination on the graph. On the other hand, when the torsion angle is larger than the predetermined torsion angle θ1, the elastic member having a large spring constant (hard) is elastically deformed, and thereby has a high torsion spring constant characteristic having a large inclination.
[0010]
2 and 3 show a specific example of the two-stage torsion joint 21, and each has a structure using rubber as each elastic member for the first and second stages. In FIG. 2 showing a cross-sectional view, a pair of input side plates 31, 31 coupled to each other by pins 33, and an output side flange 35 disposed between the side plates 31, 31 so as to be relatively rotatable therewith. The side plates 31, 31 are coupled to the output portion 6 of the engine 2, and the flange 35 is coupled to the front damper rubber 13 of the connecting shaft 10 via the shaft portion 35a.
[0011]
The pin 33 is fitted with a second-stage cylindrical damper rubber 42 which is hard and has a high spring constant, and is disposed in a long hole 37 formed in the flange 35 so as to be movable in the circumferential direction. A first-stage damper rubber 41 that is soft and has a low spring constant is disposed between the flange 35 and the side plate 31, and both axial end surfaces of the first-stage damper rubber 41 are connected to the flange 35 and the side plate. Each is fixed to 31 by adhesion or baking.
[0012]
In FIG. 3 showing a cross-sectional view taken along the line III-III in FIG. 2, the damper rubber 42 for the second stage is formed by The distance between each end edge in the rotation direction of the long hole 37 and the second-stage damper rubber 42 is set to the predetermined twist angle θ1.
[0013]
[Action]
In FIG. 3, when the engine side plate 31 is twisted relative to the flange 35, for example, in the direction of the arrow R due to fluctuations in the rotation of the engine, the first stage is soft when the torsion angle θ is in the range of 0 to θ1. The damper rubber 41 is elastically deformed (twisted), and when the twist angle θ reaches θ1, the second-stage damper rubber 42 comes into contact with the edge of the long hole 37 and is hard in the range of the twist angle θ beyond that. The cylindrical damper rubber 42 for the second stage is elastically deformed.
[0014]
That is, as shown by the broken line X2 in FIG. 4, when the twist angle θ is in the range of 0 to θ1, the first damper rubber 41 having a low spring constant is elastically deformed by a small torsional torque, and the rotational fluctuation at the time of the low rotational torque is efficiently performed. When the torsion angle θ is equal to or greater than the predetermined torsion angle θ1, the second damper rubber 42 having a high spring constant is elastically deformed and efficiently absorbs rotational fluctuations at high rotational torque. The broken straight line X1 is a torsion characteristic line of the damper rubbers 13 and 14 having a high torsion spring constant of the connecting shaft 10, and the spring constant (inclination) is larger than the first step of the broken line X2, and the second step. It is smaller than the eyes.
[0015]
FIG. 5 is a diagram comparing the noise according to the conventional example shown in FIG. 13 and the noise according to the present invention shown in FIG. 1, and shows that the noise is reduced as compared with the conventional example. In the low-speed rotation range, it shows that the noise is significantly lower than the conventional example.
[0016]
[Reference Example 2]
FIG. 6 is a reference example 2 of a power transmission mechanism for a ship . A damper rubber 14 having a high torsion spring constant is provided at the rear end of the connecting shaft 10 as in FIG. No damper rubber 13 as shown in FIG. 1 is provided, and only a two-stage torsion joint 21 having a two-stage torsion spring constant characteristic is interposed.
[0017]
In FIG. 7 showing the torsional characteristics, the broken line X2 indicates the torsional characteristics of the two-stage torsion joint 21 as in the bent line X2 of FIG. 4, and the straight line X3 indicates the torsional characteristics of the rear end damper rubber 14.
[0018]
Embodiment 1 of the Invention
FIG. 8 shows a power transmission mechanism for a ship to which the invention according to claim 1 is applied, and includes a connecting shaft 10 having damper rubbers 13 and 14 having high torsion spring constant characteristics at both front and rear ends, and a low torsion on the joint shaft 11. A damper mechanism having a spring constant characteristic is provided.
[0019]
FIG. 9 shows an example of a joint shaft 11 having a damper mechanism having a low torsion spring constant characteristic. The joint shaft 11 is a front cylindrical shaft coupled to a rear damper rubber 14 via a flange 51. 50, a rear shaft 52 coupled to the universal joint 12, a first intermediate cylinder shaft 53 in which a damper rubber 56 having a low torsion spring constant is fitted (fixed) to the inner surface, and a second intermediate cylinder shaft 54 It is configured. Outward spline teeth 50a, 54a, 52a are formed on the outer periphery of the rear end portion of the front cylinder shaft 50, the front end portion of the second intermediate cylinder shaft 54, and the front half portion of the rear shaft 52, respectively. Inward spline teeth 53b and 54b are formed on the inner circumferences of the first intermediate cylinder shaft 53 and the second intermediate cylinder shaft 54, respectively. The inner diameter of the low torsion spring constant damper rubber 56 is set to be smaller than the outer diameter of the second intermediate cylinder shaft 54 so that the second intermediate cylinder shaft 54 is press-fitted.
[0020]
In FIG. 10 showing the state after assembly, the spline teeth 50a of the cylinder shaft 50 inserted from the front are spline-fitted to the front half portion of the inward spline teeth 53b of the first intermediate cylinder shaft 53, and the first intermediate cylinder shaft 53 The spline teeth 54a of the second intermediate cylinder shaft 54 to be inserted later are spline-fitted into the latter half of the spline teeth 53b of the cylinder shaft 53, and the rearward spline teeth 54b of the second intermediate cylinder shaft 54 are The spline teeth 52a of the rear shaft 52 that is inserted from above are spline-fitted.
[0021]
The fitting state between the inward spline teeth 53b of the first intermediate cylinder shaft 53 and the spline teeth 50a of the front cylinder shaft 50 is such that both spline teeth 50a, 53b is engaged, and the backlash is zero. That is, the front side cylinder shaft 50 and the first intermediate cylinder shaft 53 are rigidly coupled in the circumferential direction. On the other hand, both the spline teeth 53b, 54a have a large "back" in the circumferential direction when the spline teeth 53b of the first intermediate cylinder shaft 53 and the spline teeth 54a of the second intermediate cylinder shaft 54 are in the circumferential direction. Are engaged. The size of the “back” in the circumferential direction is, for example, about 0.5 to 1.0 °.
[0022]
The inner peripheral surface of the damper rubber 56 is in pressure contact with the outer peripheral surface of the second intermediate cylindrical shaft 54, and is elastically deformed (twisted) within the range of the torsional angle due to the above-mentioned “back”.
[0023]
FIG. 11 shows the torsional characteristics when the joint shaft 11 of FIG. 9 is provided, and the broken line X5 is the torsional characteristics of the joint shaft 11, and the damper rubber 56 is within the range of the torsion angle θ2 corresponding to the above-mentioned “back”. Are elastically deformed and the torsion angle becomes larger than θ2, the spline teeth 53b and 54a are directly connected to each other, and the torsional torque rises substantially vertically. The straight line X1 is the torsional characteristic of the damper rubbers 13 and 14 at the front and rear ends of the connecting shaft 10 as with the straight line X1 in FIG.
[0024]
Therefore, when the torsion angle θ is in the range of 0 to θ2, the damper rubber 56 of the joint shaft 11 having a low spring constant is elastically deformed by a small torsional torque, efficiently absorbing the rotational fluctuation at the time of the low rotation torque, and the torsion angle θ is Above the angle θ2, the damper rubbers 13 and 14 of the connecting shaft 10 having a high spring constant are elastically deformed and efficiently absorb rotational fluctuations at high rotational torque.
[0025]
[Embodiment 2 of the Invention]
FIG. 12 shows another embodiment of the invention described in claim 1. The joint shaft 11 includes a front cylindrical shaft 60 coupled to the rear damper rubber 14 via a flange 51, and a universal joint 12. The rear shaft 61 is joined, and inward spline teeth 60b are formed on the inner peripheral surface of the front cylindrical shaft 60, and a damper rubber 63 having a low torsion spring constant is fitted to the rear end portion. Outward spline teeth 61 a are formed on the outer peripheral surface of the shaft 61.
[0026]
The inner diameter of the damper rubber 63 having a low torsion spring constant is set to a size that presses the outer peripheral surface of the rear shaft 61 with a predetermined pressure.
[0027]
When the spline teeth 61a of the rear shaft 61 are engaged with the spline teeth 60b of the front cylindrical shaft 60, both the spline teeth 60b and 61a mesh with each other so as to have a large “back” in the circumferential direction. The damper rubber 63 is elastically deformed in the relative torsional range of the two shafts 60 and 61.
[0028]
【The invention's effect】
As explained above, according to the present invention,
(1) from the engine 2 to the input pinion shaft 7 of the propulsion device 5, Te power transmission mechanism smell vessels power transmission through the connecting shaft 10, at a low rotational torque becomes soft shafting, at high rotational torque is harder shaft This system effectively prevents the engine speed fluctuations from being transmitted to the gears in the propulsion device 5 at both low and high rotational torques. Can be effectively reduced.
[0029]
(2) In particular, it is possible to effectively reduce the rattling noise in the propulsion device that is likely to occur during neutral rotation or low load rotation with an engine rotation speed of about 600 to 850 rpm.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a reference example 1 of a power transmission mechanism of a ship .
FIG. 2 is a longitudinal sectional view (II-II sectional view of FIG. 3) showing a specific example of a two-stage torsion joint.
3 is a cross-sectional view taken along the line III-III in FIG.
FIG. 4 is a torsional characteristic diagram when the two-stage torsion joint of FIGS. 2 and 3 is provided.
5 is a comparison diagram of noise due to rattling noise between the conventional example of FIG. 13 and the present invention of FIG. 1;
FIG. 6 is a schematic cross-sectional view showing a reference example 2 of a power transmission mechanism for a ship .
7 is a torsional characteristic diagram when the two-stage torsion joint of FIG. 6 is provided.
FIG. 8 is a schematic cross-sectional view showing a power transmission mechanism for a ship to which a first embodiment of the first aspect of the present invention is applied.
FIG. 9 is an exploded longitudinal sectional view of a joint shaft having the low torsion spring constant characteristic shown in FIG.
10 is a cross-sectional view showing a state where the joint shaft of FIG. 9 is assembled. FIG.
FIG. 11 is a torsional characteristic diagram when the joint shaft of FIG. 9 is provided.
FIG. 12 is a longitudinal sectional view showing a joint shaft to which a second embodiment of the invention described in claim 1 of the present application is applied .
FIG. 13 is a schematic cross-sectional view of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hull 2 Internal combustion engine 5 Marine propulsion device 6 Engine output part 7 Propulsion device input pinion shaft 10 Connection shaft 11 Joint shaft 13, 14 Damper rubber 16 having high torsion spring constant characteristics Input pinion 18, 19 Forward and reverse gears 21 Two-stage torsion joint

Claims (1)

機関から推進装置の入力ピニオン軸へ、連結軸を介して動力伝達する船舶の動力伝達機構において、連結軸の両端部に高ねじりばね定数特性を有するダンパーゴムを備え、連結軸と入力ピニオン軸との間の継手軸部分に、低ねじりばね定数特性を有するダンパーゴムを配置していることを特徴とする船舶の動力伝達機構。 In a power transmission mechanism of a ship that transmits power from an engine to an input pinion shaft of a propulsion device via a connecting shaft, damper rubbers having high torsion spring constant characteristics are provided at both ends of the connecting shaft, and the connecting shaft and the input pinion shaft A power transmission mechanism for a ship, wherein a damper rubber having a low torsion spring constant characteristic is disposed in a joint shaft portion between the two .
JP2000153061A 2000-05-24 2000-05-24 Ship power transmission mechanism Expired - Fee Related JP4499874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153061A JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153061A JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Publications (2)

Publication Number Publication Date
JP2001334993A JP2001334993A (en) 2001-12-04
JP4499874B2 true JP4499874B2 (en) 2010-07-07

Family

ID=18658392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153061A Expired - Fee Related JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Country Status (1)

Country Link
JP (1) JP4499874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015818A (en) * 2004-06-30 2006-01-19 Yamaha Marine Co Ltd Outboard motor
JP4569922B2 (en) 2004-09-21 2010-10-27 ヤンマー株式会社 Marine drive system assembly method and marine propulsion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163222A (en) * 1989-11-20 1991-07-15 Yanmar Diesel Engine Co Ltd Power transmission device
JPH0727142A (en) * 1993-03-26 1995-01-27 Centa Antriebe Kirschey Gmbh Shaft coupling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163995A (en) * 1980-05-19 1981-12-16 Yamaha Motor Co Ltd Power transmission apparatus for onboard and outboard machinery
JPS6397489A (en) * 1986-10-09 1988-04-28 Yanmar Diesel Engine Co Ltd Outboard propulsive engine
DE8905960U1 (en) * 1989-05-12 1989-08-31 Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München Torsion damper for boat gearboxes
JPH1089374A (en) * 1996-09-17 1998-04-07 Miki Puurii Kk Elastic coupling having two steps of twisting spring constants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163222A (en) * 1989-11-20 1991-07-15 Yanmar Diesel Engine Co Ltd Power transmission device
JPH0727142A (en) * 1993-03-26 1995-01-27 Centa Antriebe Kirschey Gmbh Shaft coupling

Also Published As

Publication number Publication date
JP2001334993A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US6478543B1 (en) Torque transmitting device for mounting a propeller to a propeller shaft of a marine propulsion system
US4747796A (en) Smoothing device for rotation of propeller of boat propulsion machine
US20070287569A1 (en) Resiliently loaded side gears in a differential mechanism
CN106103173B (en) Power transmission and its manufacturing method
KR20060050708A (en) Driveshaft assembly with torque ring coupling
US10336419B1 (en) Shock absorbing hub assemblies and methods of making shock absorbing hub assemblies for marine propulsion devices
US7086836B1 (en) Dual rate torque transmitting device for a marine propeller
JP2010031929A (en) Elastic shaft coupling and electric power steering device
US6095923A (en) Propeller shaft
US4795403A (en) Torsional sleeve coupling
JP4499874B2 (en) Ship power transmission mechanism
US20070259721A1 (en) Vehicle steering assembly having an axially compliant intermediate shaft
JP2010036821A (en) Vehicular power transmission member
EP1862684B1 (en) Spline connector
JP5181747B2 (en) Electric power steering device
JP2002337562A (en) Power transmission for vehicle
JP2008215445A (en) Double tube damper
JP2008260471A (en) Electric power steering device
JP4515200B2 (en) Gear rattle noise reduction structure for manual transmission for four-wheel drive vehicles
JP5034788B2 (en) Electric power steering device
JP3056641B2 (en) Apparatus and method for reducing torsional vibration
JP3884691B2 (en) Elastic joint
JPS6117738A (en) Damper with split hubs
JP7456243B2 (en) power transmission device
JPH0633220Y2 (en) Vehicle driving force transmission structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees