JP2001334993A - Power transmission mechanism of ship - Google Patents

Power transmission mechanism of ship

Info

Publication number
JP2001334993A
JP2001334993A JP2000153061A JP2000153061A JP2001334993A JP 2001334993 A JP2001334993 A JP 2001334993A JP 2000153061 A JP2000153061 A JP 2000153061A JP 2000153061 A JP2000153061 A JP 2000153061A JP 2001334993 A JP2001334993 A JP 2001334993A
Authority
JP
Japan
Prior art keywords
shaft
spring constant
torsion
joint
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000153061A
Other languages
Japanese (ja)
Other versions
JP4499874B2 (en
Inventor
Hisanori Mori
久則 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP2000153061A priority Critical patent/JP4499874B2/en
Publication of JP2001334993A publication Critical patent/JP2001334993A/en
Application granted granted Critical
Publication of JP4499874B2 publication Critical patent/JP4499874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively reduce the gear noise generated in a propulsion system caused by the fluctuation in rotation of an engine, in particular, the gear noise easy to generate in a neutral condition. SOLUTION: In a power transmission mechanism of a ship for transmitting the power from the engine 2 to an input pinion shaft 7 of the propulsion system 5 via a connection shaft 10, a two-staged torsional joint 21 having the two-stage torsional spring constant characteristic on at least one of both ends of the connection shaft 10 is interposed. Damper rubbers 13 and 14 having the high torsional spring constant characteristic are provided on front and back ends of the connection shaft 10. A structure in which these front and back damper rubbers 13 and 14 are jointly used with the two-staged torsional joint 21, or a structure in which the two-staged torsional joint 21 is provided in place of either or each of the damper rubbers 13 and 14 may be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、機関から推進装
置の入力ピニオン軸へ、連結軸を介して動力伝達する船
舶の動力伝達機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission mechanism for a ship that transmits power from an engine to an input pinion shaft of a propulsion device via a connecting shaft.

【0002】[0002]

【従来の技術】図13は従来の船舶の動力伝達機構を示
しており、船体1内にディーゼル機関等の内燃機関2を
搭載し、船尾3に舶用の推進装置5を装着し、内燃機関
2の出力部(フライホイール等)6と推進装置5の入力
ピニオン軸7との間を連動連結するために、前側から順
に、連結軸10、継手軸11及びユニバーサル継手12
を配置している。そして上記連結軸10の前端と出力部
6との間並びに連結軸10の後端と継手軸11の間に、
それぞれ高ねじりばね定数特性を有するダンパーゴム1
3,14を介在させている。その他先行技術文献として
は、特公平1−150770号公報等がある。
2. Description of the Related Art FIG. 13 shows a conventional power transmission mechanism of a ship, in which an internal combustion engine 2 such as a diesel engine is mounted in a hull 1 and a marine vessel propulsion device 5 is mounted on a stern 3. In order to interlock and connect between an output unit (flywheel or the like) 6 of the vehicle and an input pinion shaft 7 of the propulsion device 5, a connecting shaft 10, a joint shaft 11, and a universal joint 12
Has been arranged. And between the front end of the connection shaft 10 and the output portion 6 and between the rear end of the connection shaft 10 and the joint shaft 11,
Damper rubbers 1 each having high torsion spring constant characteristics
3, 14 are interposed. Other prior art documents include Japanese Patent Publication No. 1-150770.

【0003】[0003]

【発明が解決しようとする課題】周知のように内燃機関
2は、爆発を利用して回転していることにより、運転中
は回転変動が生じており、この回転変動は連結軸10、
継手軸11及びユニバーサル継手12を介して入力ピニ
オン軸7に伝わり、推進装置5内の入力ピニオン16と
前進用ギヤ18との間又は入力ピニオン16と後進用ギ
ヤ19との間等で発生する歯打音の原因となっている。
As is well known, the internal combustion engine 2 rotates during operation due to its rotation by means of an explosion.
Teeth transmitted to the input pinion shaft 7 via the joint shaft 11 and the universal joint 12 and generated between the input pinion 16 and the forward gear 18 or between the input pinion 16 and the reverse gear 19 in the propulsion device 5. It is the cause of hammering.

【0004】図13のように、連結軸10の両端に高ね
じりばね定数特性のダンパーゴム13,14のみを設け
ていると、負荷が小さい時又はニュートラル運転時に
は、ダンパーゴム13,14部分で機関側の回転変動が
増幅することもあり、一方、ユニバーサル継手12での
減衰は少なく、また、入力ピニオン16及び前進用ある
いは後進用ギヤ18,19の抵抗も少ないため、上記歯
打音、いわゆる「カタカタ音」の発生が顕著になる。
When only damper rubbers 13 and 14 having high torsion spring constant characteristics are provided at both ends of the connecting shaft 10 as shown in FIG. The rotational fluctuation on the side may be amplified, while the attenuation at the universal joint 12 is small, and the resistance of the input pinion 16 and the forward or reverse gears 18, 19 is also small. The occurrence of "rattling" becomes remarkable.

【0005】[0005]

【発明の目的】本願発明の目的は、内燃機関と舶用の推
進装置の間の動力伝達機構において、機関側の回転変動
を低減し、推進装置内でのギヤ間の歯打音を減少させる
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a power transmission mechanism between an internal combustion engine and a marine propulsion device which reduces engine-side rotation fluctuations and reduces gear rattle in the propulsion device. It is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本願請求項1記載の発明は、機関から推進装置の入
力ピニオン軸へ、連結軸を介して動力伝達する船舶の動
力伝達機構において、連結軸の両端部の少なくとも一方
に2段ねじりばね定数特性を有する2段型ねじり継手を
介在させていることを特徴としている。
In order to achieve the above object, an invention according to claim 1 of the present application is directed to a power transmission mechanism for a ship that transmits power from an engine to an input pinion shaft of a propulsion device via a connecting shaft. A two-stage torsion joint having a two-stage torsion spring constant characteristic is interposed in at least one of both ends of the connection shaft.

【0007】請求項2記載の発明は、機関から推進装置
の入力ピニオン軸へ、連結軸を介して動力伝達する船舶
の動力伝達機構において、連結軸の両端部に高ねじりば
ね定数特性を有するダンパーゴムを備え、連結軸と入力
ピニオン軸との間の継手軸部分に、低ねじりばね定数特
性を有するダンパーゴムを配置していることを特徴とし
ている。
According to a second aspect of the present invention, there is provided a power transmission mechanism for a marine vessel for transmitting power from an engine to an input pinion shaft of a propulsion device via a connecting shaft, wherein a damper having a high torsion spring constant characteristic at both ends of the connecting shaft. A damper rubber having rubber and having a low torsion spring constant characteristic is disposed at a joint shaft portion between the connection shaft and the input pinion shaft.

【0008】[0008]

【発明の実施の形態1】図1は、本願請求項1記載の発
明を適用した船舶の動力伝達機構の一例を示しており、
前後両端部に高ねじりばね定数特性のダンパーゴム1
3,14を有する連結軸10と、2段ねじりばね定数特
性を有する2段型ねじり継手21を併用した構造であ
り、前記図13と同じ部品又は部分には同じ符号を付し
ている。図1において、船体1内にディーゼル機関又は
ガソリン機関等の内燃機関2を搭載し、船尾3に舶用の
推進装置5を装着しており、内燃機関2の出力部(フラ
イホイール等)6と推進装置5の入力ピニオン軸7との
間を連動連結する動力伝達機構として、前から順に、上
記2段ねじりばね定数特性を有する2段型ねじり継手2
1、連結軸10、継手軸11及びユニバーサル継手12
を配置してある。連結軸10は前述のように前後両端部
に高ねじりばね定数特性のダンパーゴム13,14を有
しており、前側のダンパーゴム13と機関出力部6との
間に、上記2段型ねじり継手21を介在させてある。
FIG. 1 shows an example of a power transmission mechanism for a ship to which the invention of claim 1 of the present application is applied.
Damper rubber 1 with high torsion spring constant characteristics at both front and rear ends
This is a structure in which a connecting shaft 10 having 3, 14 and a two-stage torsion joint 21 having a two-stage torsion spring constant characteristic are used together, and the same parts or portions as those in FIG. 13 are denoted by the same reference numerals. In FIG. 1, an internal combustion engine 2 such as a diesel engine or a gasoline engine is mounted in a hull 1, and a marine propulsion device 5 is mounted on a stern 3, and an output unit (such as a flywheel) 6 of the internal combustion engine 2 is propelled. The two-stage torsion joint 2 having the two-stage torsion spring constant characteristic as a power transmission mechanism for interlocking the input pinion shaft 7 of the device 5 in an interlocking manner.
1, connecting shaft 10, joint shaft 11, and universal joint 12
Is arranged. As described above, the connecting shaft 10 has damper rubbers 13 and 14 having high torsion spring constant characteristics at both front and rear ends, and the two-stage torsion joint is provided between the front damper rubber 13 and the engine output unit 6. 21 is interposed.

【0009】推進装置5内には、入力ピニオン16に噛
み合う前,後進用ギヤ18,19と、該前,後進用ギヤ
18,19に前後進切換クラッチ24を介して切換自在
に連結される伝動軸23と、プロペラ28を備えた出力
軸25が配置されており、伝動軸23と出力軸25はギ
ヤ26,27により連結されている。
In the propulsion device 5, there are transmission gears 18 and 19 for meshing with the input pinion 16, and a transmission which is switchably connected to the front and rear gears 18 and 19 via a forward / reverse switching clutch 24. An output shaft 25 having a shaft 23 and a propeller 28 is arranged, and the transmission shaft 23 and the output shaft 25 are connected by gears 26 and 27.

【0010】2段型ねじり継手21は、軟硬2種類の弾
性部材を利用した構造であり、図4に実線の折れ線X2
で示すような2段ねじりばね定数特性(2段ねじり特
性)を有している。すなわち、ねじれ角θが0°から所
定ねじれ角θ1までは、ばね定数が小さい(軟らかい)
第1段用の弾性部材が弾性変形し、それによりグラフ上
で傾きの小さい低ねじりばね定数特性となり、一方、ね
じれ角が所定ねじれ角θ1より大きくなると、ばね定数
が大きい(硬い)弾性部材が弾性変形し、それにより傾
きの大きい高ねじりばね定数特性となるように構成され
ている。
The two-stage torsion joint 21 has a structure utilizing two types of soft and hard elastic members.
Has a two-step torsion spring constant characteristic (two-step torsion characteristic) as shown by. That is, when the torsion angle θ is from 0 ° to the predetermined torsion angle θ1, the spring constant is small (soft).
The elastic member for the first stage is elastically deformed, thereby having a low torsion spring constant characteristic having a small inclination on the graph. On the other hand, when the torsion angle is larger than the predetermined torsion angle θ1, the elastic member having a large (hard) spring constant is obtained. It is configured to be elastically deformed and thereby to have a high torsion spring constant characteristic with a large inclination.

【0011】図2及び図3は、2段型ねじり継手21の
一具体化例を示しており、第1,第2段用の各弾性部材
としていずれもゴムを利用した構造である。縱断面図を
示す図2において、ピン33により互いに結合された1
対の入力側サイドプレート31,31と、該サイドプレ
ート31,31間にこれらと相対回転可能に配置された
出力側フランジ35とを備えており、サイドプレート3
1,31は機関2の出力部6に結合し、フランジ35は
軸部35aを介して連結軸10の前側ダンパーゴム13
に結合している。
FIGS. 2 and 3 show one embodiment of the two-stage torsion joint 21. Each of the elastic members for the first and second stages has a structure using rubber. In FIG. 2 showing a longitudinal sectional view, 1
A pair of input side side plates 31, 31, and an output side flange 35 disposed between the side plates 31, 31 so as to be rotatable relative thereto, are provided.
1, 31 are connected to the output portion 6 of the engine 2, and the flange 35 is connected to the front damper rubber 13 of the connecting shaft 10 via the shaft portion 35a.
Is bound to.

【0012】上記ピン33には硬くてばね定数の高い第
2段用の筒形ダンパーゴム42が嵌着され、フランジ3
5に形成された長孔37内に円周方向移動可能に配置さ
れている。フランジ35とサイドプレート31の間に
は、軟らかくてばね定数の低い第1段用のダンパーゴム
41が配置され、第1段用のダンパーゴム41の軸方向
の両端面は、フランジ35とサイドプレート31にそれ
ぞれ接着あるいは焼付により固着されている。
A cylindrical damper rubber 42 for the second stage, which is hard and has a high spring constant, is fitted to the pin 33,
5 is arranged so as to be able to move in the circumferential direction in a long hole 37 formed. A first-stage damper rubber 41 having a soft and low spring constant is disposed between the flange 35 and the side plate 31, and both end surfaces of the first-stage damper rubber 41 in the axial direction are formed by the flange 35 and the side plate 31. 31 are fixed to each other by bonding or baking.

【0013】図2のIII-III断面図を示す図3におい
て、第2段用のダンパーゴム42は、機関停止時、すな
わちサイドプレート31とフランジ35の間のねじりト
ルクが0の時に、長孔37の周方向の中央部に位置して
おり、長孔37の回転方向の各端縁と第2段用ダンパー
ゴム42との間隔は、前記所定ねじれ角度θ1に設定さ
れている。
In FIG. 3, which shows a cross-sectional view taken along the line III-III of FIG. 2, when the engine is stopped, that is, when the torsional torque between the side plate 31 and the flange 35 is zero, the long hole is used. The gap between each end of the elongated hole 37 in the rotation direction and the second-stage damper rubber 42 is set to the predetermined twist angle θ1.

【0014】[0014]

【作用】図3において、機関の回転変動により、機関側
のサイドプレート31がフランジ35に対して、たとえ
ば矢印R方向に相対的にねじれる場合、ねじれ角θが0
〜θ1の範囲では、軟らかい第1段用のダンパーゴム4
1が弾性変形し(ねじれ)、ねじれ角θがθ1に達する
と第2段用のダンパーゴム42が長孔37の端縁に当接
し、それ以上のねじれ角θの範囲では、硬い第2段用の
筒形ダンパーゴム42が弾性変形する。
In FIG. 3, when the side plate 31 on the engine side is relatively twisted with respect to the flange 35, for example, in the direction of arrow R due to rotation fluctuation of the engine, the torsion angle θ becomes zero.
In the range of ~ θ1, a soft first-stage damper rubber 4
1 is elastically deformed (twisted), and when the torsion angle θ reaches θ1, the second-stage damper rubber 42 abuts against the edge of the elongated hole 37. The cylindrical damper rubber 42 is elastically deformed.

【0015】すなわち、図4の折れ線X2のように、ね
じれ角θが0〜θ1の範囲では、小さなねじりトルクに
よりばね定数の低い第1のダンパーゴム41が弾性変形
し、低回転トルク時の回転変動を効率良く吸収し、ねじ
れ角θが所定ねじれ角θ1以上では、ばね定数の高い第
2のダンパーゴム42が弾性変形し、高回転トルク時の
回転変動を効率良く吸収する。なお、破線の直線X1は
連結軸10の高いねじりばね定数のダンパーゴム13,
14のねじり特性線であり、ばね定数(傾き)は、前記
折れ線X2の第1段目よりも大きく、第2段目よりも小
さくなっている。
That is, as shown by the broken line X2 in FIG. 4, when the torsion angle θ is in the range of 0 to θ1, the first damper rubber 41 having a low spring constant is elastically deformed by a small torsion torque, and the rotation at the time of the low rotation torque is performed. When the torsion angle θ is equal to or larger than the predetermined torsion angle θ1, the second damper rubber 42 having a high spring constant is elastically deformed and efficiently absorbs the rotational fluctuation at the time of high rotational torque. Note that the broken line X1 is a damper rubber 13 having a high torsional spring constant of the connecting shaft 10,
14 is a torsion characteristic line, in which the spring constant (inclination) is larger than the first step of the broken line X2 and smaller than the second step.

【0016】図5は、図13に示す従来例による騒音
と、図1に示す本願発明による騒音を比較した図であ
り、従来に比べて騒音が低下していることを示してお
り、特に、700rpm以下の低速回転域において、従来
例よりも大幅に騒音が低下していることを示している。
FIG. 5 is a diagram comparing the noise according to the conventional example shown in FIG. 13 with the noise according to the present invention shown in FIG. 1, and shows that the noise is lower than the conventional one. This shows that the noise is significantly reduced in the low-speed rotation range of 700 rpm or less as compared with the conventional example.

【0017】[0017]

【発明の実施の形態2】図6は、請求項1記載の発明を
適用した別の実施の形態であり、連結軸10の後端に
は、図1と同様に高いねじりばね定数のダンパーゴム1
4を設け、連結軸10の前端には、図1のようなダンパ
ーゴム13は設けずに、2段ねじりばね定数特性を有す
る2段型ねじり継手21のみを介在させてある。
Embodiment 2 FIG. 6 shows another embodiment to which the invention of claim 1 is applied. A damper rubber having a high torsion spring constant is provided at the rear end of the connecting shaft 10 similarly to FIG. 1
1, a two-stage torsion joint 21 having a two-stage torsion spring constant characteristic is interposed at the front end of the connecting shaft 10 without the damper rubber 13 as shown in FIG.

【0018】ねじり特性を示す図7において、折れ線X
2は、前記図4の折れ線X2と同様に2段型ねじり継手
21のねじり特性を示し、直線X3は後端ダンパーゴム
14のねじり特性を示している。
In FIG. 7 showing the torsional characteristics, a broken line X
2 indicates the torsion characteristics of the two-stage torsion joint 21 as in the case of the broken line X2 in FIG. 4, and the straight line X3 indicates the torsion characteristics of the rear end damper rubber 14.

【0019】[0019]

【発明の実施の形態3】図8は請求項2記載の発明を適
用した船舶の動力伝達機構であり、前後両端に高ねじり
ばね定数特性のダンパーゴム13,14を有する連結軸
10を備えると共に、継手軸11に低ねじりばね定数特
性を有するダンパー機構を備えている。
[Embodiment 3] FIG. 8 shows a power transmission mechanism for a ship to which the invention of claim 2 is applied, comprising a connecting shaft 10 having damper rubbers 13 and 14 having high torsion spring constant characteristics at both front and rear ends. The joint shaft 11 is provided with a damper mechanism having a low torsion spring constant characteristic.

【0020】図9は低ねじりばね定数特性のダンパー機
構を備えた継手軸11の一具体化例を示しており、継手
軸11は、後側ダンパーゴム14にフランジ51を介し
て結合された前側の筒軸50と、ユニバーサル継手12
に結合された後側軸52と、低ねじりばね定数のダンパ
ーゴム56を内面に嵌着(固着)した第1の中間筒軸5
3と、第2の中間筒軸54から構成されている。前側の
筒軸50の後端部と、第2の中間筒軸54の前端部と、
後側軸52の前半部の外周にはそれぞれ外向きのスプラ
イン歯50a,54a,52aが形成され、第1の中間
筒軸53及び第2の中間筒軸54の内周には、それぞれ
内向きのスプライン歯53b,54bが形成されてい
る。上記低ねじりばね定数のダンパーゴム56の内径
は、第2の中間筒軸54の外周径よりも小さく設定され
ており、第2の中間筒軸54が圧入されるようになって
いる。
FIG. 9 shows an embodiment of a joint shaft 11 having a damper mechanism having a low torsion spring constant characteristic. The joint shaft 11 is connected to a rear damper rubber 14 via a flange 51 by a front side. Cylindrical shaft 50 and universal joint 12
The first intermediate cylinder shaft 5 in which a rear shaft 52 connected to the first shaft member and a damper rubber 56 having a low torsion spring constant are fitted (fixed) to the inner surface.
3 and a second intermediate cylinder shaft 54. A rear end of the front cylinder shaft 50, a front end of the second intermediate cylinder shaft 54,
Outwardly facing spline teeth 50a, 54a, 52a are formed on the outer periphery of the front half of the rear shaft 52, respectively, and the inner periphery of the first intermediate cylinder shaft 53 and the second intermediate cylinder shaft 54 are respectively formed on the inner periphery. Are formed. The inner diameter of the low torsion spring constant damper rubber 56 is set smaller than the outer diameter of the second intermediate cylinder shaft 54, so that the second intermediate cylinder shaft 54 is press-fitted.

【0021】組立後の状態を示す図10において、第1
の中間筒軸53の内向きスプライン歯53bの前半部分
に、前から挿入される筒軸50のスプライン歯50aが
スプライン嵌合し、第1の中間筒軸53のスプライン歯
53bの後半部分に、後から挿入される第2の中間筒軸
54のスプライン歯54aがスプライン嵌合し、第2の
中間筒軸54の内向きスプライン歯54bに、後から挿
入される後側軸52のスプライン歯52aがスプライン
嵌合している。
In FIG. 10 showing the state after assembly, the first
The spline teeth 50a of the cylinder shaft 50 inserted from the front are spline-fitted to the front half of the inward spline teeth 53b of the intermediate cylinder shaft 53, and the second half of the spline teeth 53b of the first intermediate cylinder shaft 53, The spline teeth 54a of the second intermediate cylinder shaft 54 inserted later are spline-fitted, and the spline teeth 52a of the rear shaft 52 inserted later on the inward spline teeth 54b of the second intermediate cylinder shaft 54. Are spline-fitted.

【0022】第1の中間筒軸53の内向きスプライン歯
53bと前側筒軸50のスプライン歯50aとの嵌合状
態は、周方向に「がた」が生じないように一定の圧力で
両スプライン歯50a,53bが噛み合っており、バッ
クラッシュが0となっている。すなわち、前側筒軸50
と第1の中間筒軸53とは周方向に剛直に結合されてい
る。一方、第1の中間筒軸53のスプライン歯53bと
第2の中間筒軸54のスプライン歯54aとの嵌合状態
は、周方向に大きな「がた」を有するように両スプライ
ン歯53b,54aが噛み合っている。上記周方向の
「がた」の大きさは、たとえば0.5〜1.0°程度で
ある。
The fitting state of the inward spline teeth 53b of the first intermediate cylinder shaft 53 and the spline teeth 50a of the front cylinder shaft 50 is such that both splines are maintained at a constant pressure so as to prevent the rattling in the circumferential direction. The teeth 50a and 53b are engaged, and the backlash is zero. That is, the front cylinder shaft 50
And the first intermediate cylinder shaft 53 are rigidly connected in the circumferential direction. On the other hand, the fitting state between the spline teeth 53b of the first intermediate cylinder shaft 53 and the spline teeth 54a of the second intermediate cylinder shaft 54 is such that both spline teeth 53b, 54a have a large "play" in the circumferential direction. Are engaged. The size of the “gap” in the circumferential direction is, for example, about 0.5 to 1.0 °.

【0023】ダンパーゴム56の内周面は第2の中間筒
軸54の外周面に圧接しており、上記「がた」によるね
じれ角の範囲で、弾性変形する(ねじれる)。
The inner peripheral surface of the damper rubber 56 is in pressure contact with the outer peripheral surface of the second intermediate cylinder shaft 54, and is elastically deformed (twisted) within the range of the torsion angle due to the aforementioned "lash".

【0024】図11は図9の継手軸11を備えた場合の
ねじり特性を示しており、折れ線X5は継手軸11のね
じり特性であり、前記「がた」に対応するねじれ角θ2
の範囲でダンパーゴム56が弾性変形し、ねじれ角がθ
2より大きくなると、スプライン歯53b,54a同士
が直結し、ねじりトルクは略垂直に立ち上がる。直線X
1は、図4の直線X1と同様、連結軸10の前後端のダ
ンパーゴム13,14のねじり特性である。
FIG. 11 shows the torsion characteristics when the joint shaft 11 shown in FIG. 9 is provided. The broken line X5 indicates the torsion characteristics of the joint shaft 11, and the torsion angle θ2 corresponding to the “gap”.
The elastic deformation of the damper rubber 56 results in a twist angle θ
When it is larger than 2, the spline teeth 53b and 54a are directly connected to each other, and the torsional torque rises substantially vertically. Straight line X
Reference numeral 1 denotes the torsion characteristics of the damper rubbers 13 and 14 at the front and rear ends of the connecting shaft 10 as in the case of the straight line X1 in FIG.

【0025】したがって、ねじれ角θが0〜θ2の範囲
では、小さなねじりトルクによりばね定数の低い継手軸
11のダンパーゴム56が弾性変形し、低回転トルク時
の回転変動を効率良く吸収し、ねじれ角θが角θ2以上
では、ばね定数の高い連結軸10のダンパーゴム13,
14が弾性変形し、高回転トルク時の回転変動を効率良
く吸収する。
Therefore, when the torsion angle θ is in the range of 0 to θ2, the damper rubber 56 of the joint shaft 11 having a low spring constant is elastically deformed by a small torsion torque, and the rotation fluctuation at the time of low rotation torque is efficiently absorbed, and the torsion angle is reduced. When the angle θ is equal to or larger than the angle θ2, the damper rubber 13 of the connection shaft 10 having a high spring constant,
14 is elastically deformed, and efficiently absorbs rotation fluctuation at the time of high rotation torque.

【0026】[0026]

【発明の実施の形態4】図12は請求項2記載の発明の
別の実施の形態を示しており、継手軸11は、後側ダン
パーゴム14にフランジ51を介して結合された前側の
筒軸60と、ユニバーサル継手12に結合された後側軸
61に分かれており、前側筒軸60の内周面に内向きの
スプライン歯60bを形成すると共に後端部に低ねじり
ばね定数のダンパーゴム63を嵌着し、後側軸61の外
周面に外向きのスプライン歯61aを形成している。
Fourth Embodiment FIG. 12 shows another embodiment of the second aspect of the present invention, wherein a joint shaft 11 is connected to a rear damper rubber 14 via a flange 51 by a front cylinder. The shaft 60 is divided into a rear shaft 61 coupled to the universal joint 12. The front cylindrical shaft 60 has inwardly directed spline teeth 60 b on the inner peripheral surface thereof, and has a low torsion spring constant damper rubber at the rear end. 63 is fitted, and outward spline teeth 61 a are formed on the outer peripheral surface of the rear shaft 61.

【0027】低ねじりばね定数のダンパーゴム63の内
径は、後側軸61の外周面に所定の圧力で圧接する大き
さに設定されている。
The inner diameter of the damper rubber 63 having a low torsion spring constant is set to a size that makes contact with the outer peripheral surface of the rear shaft 61 with a predetermined pressure.

【0028】前側筒軸60のスプライン歯60bに対す
る後側軸61のスプライン歯61aの嵌合は、周方向に
大きな「がた」を有するように両スプライン歯60b,
61aが噛み合っており、上記「がた」による両軸6
0,61の相対的なねじれ範囲において、ダンパーゴム
63が弾性変形するようになっている。
The fitting of the spline teeth 61a of the rear shaft 61 to the spline teeth 60b of the front cylindrical shaft 60 is performed so that the spline teeth 60b,
61a are engaged with each other, and the two shafts 6
In the relative twist range of 0,61, the damper rubber 63 is elastically deformed.

【0029】[0029]

【その他の発明の実施の形態】(1)請求項1記載の発
明において、図1の実施の形態では、連結軸10の前側
のダンパーゴム13と機関2の出力部6との間に2段型
ねじり継手21を設けているが、連結軸10の後側のダ
ンパーゴム14と継手軸11との間に2段型ねじり継手
21を設ける構造とすることもできる。
Other Embodiments (1) In the first embodiment of the present invention, in the embodiment of FIG. 1, two stages are provided between a damper rubber 13 on the front side of a connecting shaft 10 and an output portion 6 of the engine 2. Although the torsion joint 21 is provided, a two-stage torsion joint 21 may be provided between the damper rubber 14 on the rear side of the connection shaft 10 and the joint shaft 11.

【0030】(2)請求項1記載の発明において、図6
の実施の形態では、連結軸10の前端に、前側の高ねじ
りばね定数特性のダンパーゴム13の代わりに2段型ね
じり継手21を設け、連結軸10の後端に後側の高ねじ
り定数特性のダンパーゴム14を設けているが、連結軸
10の後端に2段型ねじり継手21を設け、前端に前側
ダンパーゴム13を設ける構造とすることもでき、ま
た、前後両端共に2段型ねじり継手21を設ける構造と
することもできる。
(2) In the invention according to claim 1, FIG.
In this embodiment, a two-stage torsion joint 21 is provided at the front end of the connecting shaft 10 instead of the damper rubber 13 having the high torsion spring constant characteristic on the front side, and the rear high torsion constant characteristic is provided at the rear end of the connecting shaft 10. The two-stage torsion joint 21 is provided at the rear end of the connection shaft 10 and the front-side damper rubber 13 is provided at the front end. The joint 21 may be provided.

【0031】(3)2段型ねじり継手21の1具体化例
として、図2及び図3には、第1段の低ねじりトルク用
の弾性部材及び第2段の高ねじりトルク用弾性部材とし
て、いずれもダンパーゴムを利用しているが、第1段用
としてばね定数の小さいコイルばねを備え、第2段用と
してばね定数の大きいコイルばねを備えた構造のものを
採用することもできる。また、第1段と第2段の一方を
コイルばねとし、他方をゴムとした構造のものを採用す
ることも可能である。要するに、ねじり角が小さい範囲
では、ばね定数の小さい弾性部材が作用し、ねじり角が
大きい範囲では、ばね定数の大きい弾性部材が作用する
2段型ねじり継手であればよい。
(3) As an embodiment of the two-stage torsion joint 21, FIGS. 2 and 3 show a first-stage elastic member for low torsion torque and a second-stage elastic member for high torsion torque. Although both use damper rubber, a structure having a coil spring with a small spring constant for the first stage and a coil spring with a large spring constant for the second stage can also be adopted. It is also possible to adopt a structure in which one of the first stage and the second stage is a coil spring and the other is a rubber. In short, a two-stage torsion joint may be used in which the elastic member having a small spring constant acts in a range where the torsion angle is small, and the elastic member having a large spring constant acts in a range where the torsion angle is large.

【0032】[0032]

【発明の効果】以上説明したように本願発明によると、 (1)機関2から推進装置5の入力ピニオン軸7へ、連
結軸10を介して動力伝達する船舶の動力伝達機構にお
いて、連結軸10の両端部の少なくとも一方に2段ねじ
りばね定数特性を有する2段型ねじり継手21を介在さ
せているので、低回転トルク時は軟らかい軸系となり、
高回転トルク時は硬い軸系となり、低回転トルク及び高
回転トルク時のいずれにおいても、機関の回転変動が推
進装置5内のギヤ等に伝達されるのを効率良く阻止し、
推進装置内でのギヤ間の歯打音を効果的に低減させるこ
とができる。
As described above, according to the present invention, (1) a power transmission mechanism of a marine vessel that transmits power from the engine 2 to the input pinion shaft 7 of the propulsion device 5 via the connection shaft 10; A two-stage torsion joint 21 having a two-stage torsion spring constant characteristic is interposed in at least one of both ends of the shaft, so that the shaft becomes soft at the time of low rotation torque,
At the time of high rotation torque, it becomes a hard shaft system, and at any time of low rotation torque and high rotation torque, efficiently prevents the rotation fluctuation of the engine from being transmitted to the gears and the like in the propulsion device 5,
Toothing noise between gears in the propulsion device can be effectively reduced.

【0033】(2)特に、機関回転速度が600〜85
0rpm程度のニュートラル回転時あるいは低負荷回転時
において発生し易い推進装置内の歯打音を効果的に低減
させることができる。
(2) In particular, when the engine speed is 600 to 85
It is possible to effectively reduce the rattle noise in the propulsion device, which is likely to be generated at the time of neutral rotation of about 0 rpm or at the time of low load rotation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願請求項1記載の発明を適用した船舶の動
力伝達機構を示す断面略図である。
FIG. 1 is a schematic sectional view showing a power transmission mechanism of a ship to which the invention described in claim 1 of the present application is applied.

【図2】 2段型ねじり継手の1具体化例を示す縦断面
図(図3のII-II断面図)である。
FIG. 2 is a longitudinal sectional view (II-II sectional view of FIG. 3) showing one embodiment of the two-stage torsion joint.

【図3】 図2のIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III of FIG. 2;

【図4】 図2及び図3の2段型ねじり継手を備えた場
合のねじり特性線図である。
FIG. 4 is a torsional characteristic diagram when the two-stage torsion joint shown in FIGS. 2 and 3 is provided.

【図5】 図13の従来例と図1の本願発明との歯打音
による騒音の比較図である。
FIG. 5 is a comparison diagram of noise due to rattle between the conventional example of FIG. 13 and the present invention of FIG. 1;

【図6】 本願請求項1記載の発明の第2の実施の形態
を示す断面略図である。
FIG. 6 is a schematic sectional view showing a second embodiment of the invention described in claim 1 of the present application.

【図7】 図6の2段型ねじり継手を備えた場合のねじ
り特性線図である。
FIG. 7 is a torsion characteristic diagram when the two-stage torsion joint of FIG. 6 is provided.

【図8】 請求項2記載の発明を適用した船舶の動力伝
達機構を示す断面略図である。
FIG. 8 is a schematic sectional view showing a power transmission mechanism of a ship to which the invention described in claim 2 is applied.

【図9】 図8の低ねじりばね定数特性を有する継手軸
の分解縦断面図である。
9 is an exploded vertical sectional view of a joint shaft having a low torsion spring constant characteristic of FIG. 8;

【図10】 図9の継手軸の組立状態を示す縱断面図で
ある。
FIG. 10 is a longitudinal sectional view showing an assembled state of the joint shaft of FIG. 9;

【図11】 図9の継手軸を備えた場合のねじり特性線
図である。
11 is a torsional characteristic diagram when the joint shaft of FIG. 9 is provided.

【図12】 低ねじりばね定数特性を有する継手軸の変
形例を示す縦断面図である。
FIG. 12 is a longitudinal sectional view showing a modified example of a joint shaft having a low torsion spring constant characteristic.

【図13】 従来例の断面略図である。FIG. 13 is a schematic sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 船体 2 内燃機関 5 舶用の推進装置 6 機関の出力部 7 推進装置の入力ピニオン軸 10 連結軸 11 継手軸 13,14 高ねじりばね定数特性のダンパーゴム 16 入力ピニオン 18,19 前、後進用ギヤ 21 2段型ねじり継手 DESCRIPTION OF SYMBOLS 1 Hull 2 Internal combustion engine 5 Marine propulsion device 6 Engine output part 7 Propulsion device input pinion shaft 10 Connecting shaft 11 Joint shaft 13,14 Damper rubber with high torsion spring constant characteristic 16 Input pinion 18,19 Forward, reverse gear 21 Two-stage torsion joint

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関から推進装置の入力ピニオン軸へ、
連結軸を介して動力伝達する船舶の動力伝達機構におい
て、連結軸の両端部の少なくとも一方に2段ねじりばね
定数特性を有する2段型ねじり継手を介在させているこ
とを特徴とする船舶の動力伝達機構。
1. An engine to an input pinion shaft of a propulsion device,
A power transmission mechanism for a ship that transmits power via a connection shaft, wherein a two-stage torsion joint having a two-stage torsion spring constant characteristic is interposed in at least one of both ends of the connection shaft. Transmission mechanism.
【請求項2】 機関から推進装置の入力ピニオン軸へ、
連結軸を介して動力伝達する船舶の動力伝達機構におい
て、連結軸の両端部に高ねじりばね定数特性を有するダ
ンパーゴムを備え、連結軸と入力ピニオン軸との間の継
手軸部分に、低ねじりばね定数特性を有するダンパーゴ
ムを配置していることを特徴とする船舶の動力伝達機
構。
2. From the engine to the input pinion shaft of the propulsion device,
In a power transmission mechanism for a ship that transmits power via a connection shaft, damper rubber having a high torsion spring constant characteristic is provided at both ends of the connection shaft, and a low torsion is provided at a joint shaft portion between the connection shaft and the input pinion shaft. A power transmission mechanism for a ship, wherein a damper rubber having a spring constant characteristic is arranged.
JP2000153061A 2000-05-24 2000-05-24 Ship power transmission mechanism Expired - Fee Related JP4499874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153061A JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153061A JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Publications (2)

Publication Number Publication Date
JP2001334993A true JP2001334993A (en) 2001-12-04
JP4499874B2 JP4499874B2 (en) 2010-07-07

Family

ID=18658392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153061A Expired - Fee Related JP4499874B2 (en) 2000-05-24 2000-05-24 Ship power transmission mechanism

Country Status (1)

Country Link
JP (1) JP4499874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015818A (en) * 2004-06-30 2006-01-19 Yamaha Marine Co Ltd Outboard motor
JP2006090355A (en) * 2004-09-21 2006-04-06 Kanzaki Kokyukoki Mfg Co Ltd Method for assembling drive system for ship and propulsion device for ship

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163995A (en) * 1980-05-19 1981-12-16 Yamaha Motor Co Ltd Power transmission apparatus for onboard and outboard machinery
JPS6397489A (en) * 1986-10-09 1988-04-28 Yanmar Diesel Engine Co Ltd Outboard propulsive engine
JPH02310196A (en) * 1989-05-12 1990-12-25 Hurth Verwalt Gmbh Torsion damper for power transmission of boat
JPH03163222A (en) * 1989-11-20 1991-07-15 Yanmar Diesel Engine Co Ltd Power transmission device
JPH0727142A (en) * 1993-03-26 1995-01-27 Centa Antriebe Kirschey Gmbh Shaft coupling
JPH1089374A (en) * 1996-09-17 1998-04-07 Miki Puurii Kk Elastic coupling having two steps of twisting spring constants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163995A (en) * 1980-05-19 1981-12-16 Yamaha Motor Co Ltd Power transmission apparatus for onboard and outboard machinery
JPS6397489A (en) * 1986-10-09 1988-04-28 Yanmar Diesel Engine Co Ltd Outboard propulsive engine
JPH02310196A (en) * 1989-05-12 1990-12-25 Hurth Verwalt Gmbh Torsion damper for power transmission of boat
JPH03163222A (en) * 1989-11-20 1991-07-15 Yanmar Diesel Engine Co Ltd Power transmission device
JPH0727142A (en) * 1993-03-26 1995-01-27 Centa Antriebe Kirschey Gmbh Shaft coupling
JPH1089374A (en) * 1996-09-17 1998-04-07 Miki Puurii Kk Elastic coupling having two steps of twisting spring constants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015818A (en) * 2004-06-30 2006-01-19 Yamaha Marine Co Ltd Outboard motor
JP2006090355A (en) * 2004-09-21 2006-04-06 Kanzaki Kokyukoki Mfg Co Ltd Method for assembling drive system for ship and propulsion device for ship
US7794296B2 (en) 2004-09-21 2010-09-14 Kanzaki Kokyukoki Mfg. Co., Ltd. Method to assemble marine drive system, and marine propulsion apparatus
JP4569922B2 (en) * 2004-09-21 2010-10-27 ヤンマー株式会社 Marine drive system assembly method and marine propulsion device

Also Published As

Publication number Publication date
JP4499874B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US6478543B1 (en) Torque transmitting device for mounting a propeller to a propeller shaft of a marine propulsion system
US7662060B2 (en) Resiliently loaded side gears in a differential mechanism
EP2032867B1 (en) Multi-rate torsional coupling
JPH0418598B2 (en)
US10220702B2 (en) Motive force transmission device and production method therefor
US6095923A (en) Propeller shaft
JP2010036821A (en) Vehicular power transmission member
JP4499874B2 (en) Ship power transmission mechanism
EP1862684B1 (en) Spline connector
JP2000280983A (en) Vessel propelling device
JP2008215445A (en) Double tube damper
JP5181747B2 (en) Electric power steering device
JP2002337562A (en) Power transmission for vehicle
JP2008260471A (en) Electric power steering device
JPH09123774A (en) Propeller shaft structure of automobile
JP2010270808A (en) Spline shaft coupling
CA2970241C (en) Scissor gear assembly with integral isolation mechanism
JP4515200B2 (en) Gear rattle noise reduction structure for manual transmission for four-wheel drive vehicles
JPH09169221A (en) Joint part structure of propeller shaft
JP7456243B2 (en) power transmission device
JP2560554Y2 (en) Propeller shaft
JPS6117738A (en) Damper with split hubs
JP2007120544A (en) Drive shaft
JP3884691B2 (en) Elastic joint
JP2022150665A (en) Outboard motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees