JP4498550B2 - Airflow classifier - Google Patents

Airflow classifier Download PDF

Info

Publication number
JP4498550B2
JP4498550B2 JP2000185248A JP2000185248A JP4498550B2 JP 4498550 B2 JP4498550 B2 JP 4498550B2 JP 2000185248 A JP2000185248 A JP 2000185248A JP 2000185248 A JP2000185248 A JP 2000185248A JP 4498550 B2 JP4498550 B2 JP 4498550B2
Authority
JP
Japan
Prior art keywords
classification
edge
airflow classifier
raw material
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185248A
Other languages
Japanese (ja)
Other versions
JP2002001225A (en
Inventor
強 天池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000185248A priority Critical patent/JP4498550B2/en
Publication of JP2002001225A publication Critical patent/JP2002001225A/en
Application granted granted Critical
Publication of JP4498550B2 publication Critical patent/JP4498550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、静電荷像現像用のトナーのような粉体原料を各粒子の粉子径に応じた慣性力及び遠心力の差に基づいて所定の粒径の粉子に分級する分級装置に係り、特に、分級エッジのエッジ部を許容範囲に常時自動調整して分級精度を向上するようにした気流式分級装置に関する。
【0002】
【従来の技術】
電子写真法による画像形成に用いられるトナー又は着色樹脂粉体は、現在、主に、結着樹脂と着色剤とを少なくとも含有する混合物を溶融混練し、該溶融混練物を冷却し冷却物とし、得られた冷却物を粉砕し、更に粉砕物を分級することによって製造される。一方、粉体の分級については、各種の気流式分級機及び気流式分級方法が提案されているが、この中で回転翼を用いる分級機と可動部分を有しない分級機がある。このうち、可動部分のない分級機として、固定壁遠心式分級機と慣性力分級式の分級機がある。本発明は、慣性力分級式の分級装置であるが、この型式の気流式分級装置として図5に示すものが従来より使用されている。例えば、日鉄鉱業製のエルボジェット分級機等が挙げられる。
【0003】
図5は、従来の慣性力を利用した気流式分級装置200の主要部の内部構造を示す断面図である。側板101の表面上には上方右側壁122と上方左側壁124と下方右側壁123と下方左側壁125が夫々突出して形成されると共に上方右側壁122と下方右側壁123との間にはコアンダブロック126が凸出して配設される。また、上方右側壁122と上方左側壁124との間には入気エッジ119で分岐された入気路131が形成される。なお、入気エッジ119は上方右側板122と上方左側板124の中間に設けられた上部カバー127に基端部を枢支される。また、下方右側壁123や下方左側壁125にはその基端部をこれ等に枢支される分級エッジ117や118が設けられる。また、コアンダブロック126の上面と上方右側壁122との間には粉体原料を導入するための粉体原料供給管116が挿入される。また、2つの入気路131には気体導入調節手段120,121を有する入気管114,115が連通して配置される。また、入気管114,115には気流の圧力を検出する静圧計128,129が設けられている。
【0004】
分級室130は、コアンダブロック126の尖端の弧状部と、分級エッジ117,118の尖端のエッジ部と入気エッジ119の尖端のエッジ部とが互いに近接して集合する位置に形成される。また、分級室130には入気路131や原料供給管116の尖端が連通する。また、分級室130は第1の分級路111と第2の分級路112と第3の分級路113に連通している。なお、これ等の分級路111,112,113は上方左側板124と分級エッジ118との間、分級エッジ118と分級エッジ117との間及び分級エッジ117とコアンダブロック126の下面との間に夫々形成される。以上の構造により、入気路131からの気流と粉体原料供給管116からの粉体原料が分級室130で混合され、粉体原料の粒子の大きさに基づく慣性力やコアンダ効果による湾曲気流の遠心力により粉体原料は前記の第1乃至第3の分級路111,112,113に分級される。
【0005】
【発明が解決しようとする課題】
粉体原料は、粒子の大きさ毎に高精度に分級されることが望ましいが、この分級精度に大きな影響を与えるものとして分級エッジ117や118の前記エッジ部の尖端位置の位置決め精度が挙げられる。また、コアンダブロック126の尖端の前記弧状部の位置や形状及び入気エッジ119の尖端の前記エッジ部の位置精度や入気気流の流量,圧力等が挙げられる。この内、特に影響度の高いものとして分級エッジ117,118の前記エッジ部の位置決め精度が挙げられる。然し乍ら、気流式分級装置200の各駆動伝達機構の微小あそびや強度不足等の原因により、分級エッジ117や118の前記エッジ部が所定の許容範囲に入らない問題点がある。このエッジ部の位置は、そのズレ量が微小であってもこのエッジ部によって分断される気流の流線に大きな影響を与え、流線が乱れ、分級された産物の粒度分布が変化する問題点がある。
【0006】
本発明は、以上の問題点を解決するもので、分級された産物の粒度分布のバラ付きを小さくすることができると共に、粒度分布の精度を向上させることができる気流式分級装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、以上の目的を達成するために、請求項1の気流式分級装置は、前面側板及び該前面側板と適宜間隔を介して相対向して配設される後面側板との前記間隔内の密閉空間に気流を導入するための入気路と、粉体原料供給路と、粉体原料を分級する分級路とを形成し、前記粉体原料を粒径の相異する複数種類の分級原料に分級する気流式分級装置であって、分級点となる前記密閉空間の中心部の分級室は、該分級室に向かって弧状尖端を形成して突出するコアンダブロックと、前記分級室に向かってエッジ部を突出せしめその基端側を前記前後面側板に回動可能に支持される複数の分級エッジと、前記分級室に向かってエッジ部を突出せしめ前記入気路を分割する入気エッジの集合する部分に形成され、前記分級路は、前記分級室が面する側壁と、前記複数の分級エッジと、前記コアンダブロックのそれぞれの間に複数形成され、前記分級エッジのエッジ部を予め決められた許容範囲に位置決めすべく前記分級エッジの基端部の回転軸には、駆動手段を設けると共に前記回転軸の回転角度を検出して前記エッジ部を所定の許容範囲にセットするための位置検出手段を係合せしめ、前記粉体原料の分級作業中においても前記分級エッジの位置コントロールをすることを特徴とする。これにより、分級エッジの尖端が常時に許容範囲にセットされ高精度の分級が可能になり、高精度の粒度分布を有する分級粉体を効率よく、且つ安定して生成することができる。従来技術では分級エッジのエッジ部の調整のため分級作業を中断し、前方側板等を取り外して行う必要があったが、本発明では取り外しが不要であり、分級中でもエッジ部の調整が可能になる。これにより、効率向上が図れる。
【0010】
また、請求項の気流式分級装置は、前記入気路に気体導入調節手段が配設され、前記駆動手段が、ステッピングモータであることを特徴とする。ステッピングモータを用いることにより分級エッジの駆動が高精度に、且つ円滑に行われると共に比較的安価に実施できる。
【0011】
また、請求項の気流式分級装置は、前記位置検出手段が、ポテンショメータであることを特徴とする。ポテンショメータを用いることにより分級エッジのエッジ部の位置決め検出精度の向上が図れ、高精度の分級ができると共に比較的安価に実施できる。
【0012】
【発明の実施の形態】
以下、本発明の気流式分級装置の実施の形態を図面を参照して詳述する。図1は本実施の形態の気流式分級装置100の主要部(装置本体)の構造を示す断面図、図2は気流式分級装置100の構成要素のほぼ全体を示す分解斜視図、図3は図1と同様に主要部の構造を示す斜視図である。
【0013】
気流式分級装置100は、図2に示す後方側板2と、後方側板2とほぼ同一形状で相対向して配置される図3に示す前方側板1とによって挟持されて分級室30等を形成する気流式分級装置本体100と、この気流式分級装置本体100aの分級エッジ5,6の回転軸36a,36bと、この回転軸36a,36bに連結される駆動手段の1つであるステッピングモータ31a,31bと、同じく回転軸36a,36bに連結係合されるポテンショメータ43a,43b等とからなる。
【0014】
まず、図1乃至図3により気流式分級装置本体100aを説明する。後方側壁2の表面上には上方右側壁19と上方左側壁10と下方右側壁8と下方左側壁9及びコアンダブロック4が夫々突出した状態で固定される。上方右側壁19と上方左側壁10との間の後方側壁2の表面には上方カバー23が同じく突出して固定される。
【0015】
上方カバー23には入気エッジ7の基端部が枢支され、入気エッジ7により入気路32は第1の入気路32aと第2の入気路32bに分割される。また、下方右側壁8及び下方左側壁9にはその基端部をこれ等に枢支される分級エッジ5,6が連結される。また、上方右側壁19とコアンダブロック4の上面との間には粉体原料供給管3が挿入される。また、コアンダブロック4の尖端には楕円弧の弧状部4aが形成される。また、分級エッジ5,6の尖端にはエッジ部5a,6aが形成され、入気エッジ7の尖端にもエッジ部7aが形成される。
【0016】
分級室30は、分級エッジ5,6のエッジ部5a,6aとコアンダブロック4の弧状部4aと入気エッジ7のエッジ部7aの集合する部分に形成される。また、分級室30は第1乃至第3の分級路11,12,13に連通している。第1の分級路11は上方左側壁10の下面側と分級エッジ6及び下方左側壁9との間に形成される。また、第2の分級路12は分級エッジ5,6及び下方右側壁8と下方左側壁9との間に形成される。また、第3の分級路13は分級エッジ5と下方右側壁8とコアンダブロック4の下面側との間に形成される。
【0017】
入気路32の第1の入気路32aと第2の入気路32bには入気管14と15が連結される。また、入気管14,15には気体導入調節手段20,21と入気される気体の圧力を検出する静圧計28,29が夫々設けられている。
【0018】
粉体原料供給管3には図4に示すように粉体原料が定量供給機18からの粉体原料が振動フィーダ17を介して導入される。また、粉体原料供給管3には粉体原料を噴出させるためのエアーが供給され、このエアーはバルブ16により供給量がコントロールされる。
【0019】
粉体原料は各種のものがあるが、例えば、電子写真法による画像形成に用いられるトナー又は着色樹脂粉体が挙げられる。このトナー又は着色樹脂粉体は主に結着樹脂と着色剤とを少なくとも混合した混合物を溶融混練し、この溶融混練物を冷却し、この冷却物を粉砕したものからなる。
【0020】
以上の構造の気流式分級装置本体100aの分級室30等は図3に示すように前方側板1により閉止されて密閉される。また、気流式分級装置本体100aの第1乃至第3の分級路11,12,13には第1乃至第3の配管11a,12a,13aを介して捕集サイクロン22a,22b,22cが夫々連結される。
【0021】
前記のように分級室30は複数の分級路11,12,13に分割されるが、この分級精度は分級エッジ5,6のエッジ部5a,6aの位置やコアンダブロックの弧状部4aの形状,位置及び入気エッジ7のエッジ部7aの位置等により決められると共に、分級気流の流量や粉体原料の原料供給管3からの噴出速度によって決まる。
【0022】
図2に示すように分級エッジ5,6の基端部には前方側板1や後方側板2により枢支される回転軸36a,36bが連結される。この回転軸36a,36bは図2に示す各種の連結手段(詳細説明を省略する)を介してステッピングモータ31a,31bに連結される。また、回転軸36a,36bはプーリ35a,35b,ベルト51a,51b及びプーリ49a,49bを介してポテンショメータ43a,43bに連結される。なお、ステッピングモータ31a,31bは回転軸36a,36bを駆動して所望角度に回動するものであり、ポテンショメータ43a,43bは分級エッジ5,6のエッジ部5a,6aの位置検出を行うものである。
【0023】
本発明は、特に、分級エッジ5,6のエッジ部5a,6aの位置を常時許容範囲に入るようにするものである。この許容範囲は予め粉体原料の性状等に対応して決められ、この位置はポテンショメータ43a,43bにより検出される。従って、分級エッジ5,6のエッジ部5a,6aの位置が分級作業中の各要素の変位等により狂った場合には正常位置からのズレがポテンショメータ43a,43bにより自動的に検出される。この検出情報はステッピングモータ31a,31b側に伝達されるため、ステッピングモータ31a,31bを駆動することにより分級エッジ5,6のエッジ部5a,6aを常時許容範囲の位置にセットすることが容易にできる。
【0024】
次に、本発明の気流式分級装置100による粉体原料の分級作用について説明する。なお、前記のように粉体原料としては任意のものでよいが、特に電子写真法による画像形成に用いられるトナー又は着色樹脂粉体の分級に有効である。この様なトナー製造用の粉体原料を従来の分級装置にて分級する場合、中間粒子である製品の粒度分布を得るためには分級の各諸条件を精度良く限定させ、且つ安定させる必要がある。また、分級室内の状況が微細に変化することによって分級点が適切な範囲から外れる傾向にあり、この場合、要求される粉体の粒度分布は得られにくく、分級効率が大幅に低下することが生じる。品質が一定の製品を得るために、安定的に稼動させることが必要であり、本発明の気流式分級装置100はこの目的に対して効果的なものである。
【0025】
図4に示すように、定量供給機18から粉体原料が導入され、振動フィーダ17を介し粉体原料供給管3内に粉体原料が加圧された状態で送られ、分級室30に到る。一方、空気等の気流が気体導入調節手段20,21と静圧計28,29により供給量と圧力が調整された状態で入気管14,15から入気路32a,32bに導入され分級室30に到る。分級室30の近傍にはエッジ部5a,6aやエッジ部7aが位置調整された状態で配置され分級点を形成する。分級エッジ5,6のエッジ部5a,6aが正常な位置から±0.3mm程度のズレ量の場合には分級点から粉体原料が高精度に分級され第1乃至第3の分級路11,12,13に夫々粒径に対応した粒子が分級されて送出される。この分級された粒子は図4に示すように第1の配管11a,第2の配管12a,第3の配管13aを介し捕集サイクロン22a,22b,22cに導入され微粉体として回収される。
【0026】
1.本発明の請求項1に気流式分級装置によれば、分級エッジのエッジ部の位置を自動的にセットすることができ、分級点の変動を抑止できるため、様々な粉体原料の比重や分級気体条件に対応して正確な分級点が得られ、高精度(シャープ)な粒度分布の粒子が高分級精度で得られ、且つ連続して分級粒子を作ることができる。また、分級エッジのエッジ部の調整が分級作業中にもできるため、作業効率の向上を図ることができる。2.本発明の請求項の気流式分級装置によれば、ステッピングモータを駆動手段として採用するため、エッジ部の調整が高精度にでき、比較的容易に入手でき装置コストの低減が図れる。3.本発明の請求項の気流式分級装置によれば、ポテンショメータを採用するためエッジ部の位置決め精度を高精度に検出できると共に装置コストの低減が図れる。
【図面の簡単な説明】
【図1】本発明の気流式分級装置の主要部の構造を示す断面図。
【図2】本発明の気流式分級装置の構成要素のほぼ全体構造を示す分解斜視図。
【図3】本発明の気流式分級装置の主要部の構造を示す斜視図。
【図4】本発明の気流式分級装置による分級作用を説明するための構成図。
【図5】従来の気流式分級装置の主要部の構造を示す断面図。
【符号の説明】
1 前方側板
2 後方側板
3 粉体原料供給管
4 コアンダブロック
4a 弧状部
5 分級エッジ
5a エッジ部
6 分級エッジ
6a エッジ部
7 入気エッジ
7a エッジ部
8 下方右側壁
9 下方左側壁
10 上方左側壁
11 第1の分級路
11a 第1の配管
12 第2の分級路
12a 第2の配管
13 第3の分級路
13a 第3の配管
14 入気管
15 入気管
16 バルブ
17 振動フィーダ
18 定量供給機
19 上方右側壁
20 気体導入調節手段
21 気体導入調節手段
22a 捕集サイクロン
22b 捕集サイクロン
22c 捕集サイクロン
23 上方カバー
28 静圧計
29 静圧計
30 分級室
31a ステッピングモータ
31b ステッピングモータ
32 入気路
32a 入気路
32b 入気路
35a プーリ
35b プーリ
36a 回転軸
36b 回転軸
43a ポテンショメータ
43b ポテンショメータ
49a プーリ
49b プーリ
51a ベルト
51b ベルト
100 気流式分級装置
100a 気流式分級装置本体
[0001]
BACKGROUND OF THE INVENTION
The present invention classifies, for example, a powder raw material such as a toner for developing an electrostatic image into a powder having a predetermined particle diameter based on a difference between an inertial force and a centrifugal force corresponding to the powder diameter of each particle. The present invention relates to an apparatus, and more particularly to an airflow classifier that automatically adjusts an edge portion of a classification edge to an allowable range to improve classification accuracy.
[0002]
[Prior art]
The toner or colored resin powder used for image formation by electrophotography is currently mainly melt-kneaded a mixture containing at least a binder resin and a colorant, and the melt-kneaded product is cooled to be a cooled product. It is manufactured by pulverizing the obtained cooling product and further classifying the pulverized product. On the other hand, various airflow classifiers and airflow classification methods have been proposed for powder classification. Among them, there are classifiers using rotating blades and classifiers having no moving parts. Among these, there are a fixed-wall centrifugal classifier and an inertial force classifier as classifiers having no moving parts. The present invention is an inertial force classifier, and the type shown in FIG. 5 is conventionally used as this type of airflow classifier. For example, an elbow jet classifier manufactured by Nippon Steel Mining Co., Ltd. can be used.
[0003]
FIG. 5 is a cross-sectional view showing an internal structure of a main part of a conventional airflow classifier 200 using an inertial force. On the surface of the side plate 101, an upper right wall 122, an upper left wall 124, a lower right wall 123, and a lower left wall 125 are formed to protrude, and between the upper right wall 122 and the lower right wall 123, a Coanda block is formed. 126 protrudes and is arrange | positioned. An intake path 131 branched by an intake edge 119 is formed between the upper right wall 122 and the upper left wall 124. The inlet edge 119 is pivotally supported at the base end portion by an upper cover 127 provided between the upper right side plate 122 and the upper left side plate 124. Further, the lower right wall 123 and the lower left wall 125 are provided with classification edges 117 and 118 whose base end portions are pivotally supported by them. A powder material supply pipe 116 for introducing a powder material is inserted between the upper surface of the Coanda block 126 and the upper right wall 122. In addition, inlet pipes 114 and 115 having gas introduction adjusting means 120 and 121 are arranged in communication with the two inlet passages 131. The intake pipes 114 and 115 are provided with static pressure meters 128 and 129 for detecting the pressure of the airflow.
[0004]
The classification chamber 130 is formed at a position where the arcuate portion of the tip of the Coanda block 126, the edge portion of the tip of the classification edges 117 and 118, and the edge portion of the tip of the air inlet edge 119 are gathered close to each other. In addition, the classification chamber 130 communicates with the inlet 131 and the tip of the raw material supply pipe 116. Further, the classification chamber 130 communicates with the first classification path 111, the second classification path 112, and the third classification path 113. These classification paths 111, 112, and 113 are provided between the upper left plate 124 and the classification edge 118, between the classification edge 118 and the classification edge 117, and between the classification edge 117 and the lower surface of the Coanda block 126, respectively. It is formed. With the above structure, the airflow from the inlet passage 131 and the powder raw material from the powder raw material supply pipe 116 are mixed in the classification chamber 130, and the curved airflow is generated by the inertia force based on the particle size of the powder raw material or the Coanda effect. The powder raw material is classified into the first to third classification paths 111, 112, and 113 by the centrifugal force.
[0005]
[Problems to be solved by the invention]
The powder raw material is desirably classified with high accuracy for each particle size. However, the positioning accuracy of the edge portions of the edge portions of the classification edges 117 and 118 is mentioned as one that greatly affects the classification accuracy. . Further, the position and shape of the arcuate portion of the tip of the Coanda block 126, the position accuracy of the edge portion of the tip of the intake air edge 119, the flow rate and pressure of the incoming airflow, and the like can be mentioned. Among these, the positioning accuracy of the edge portions of the classification edges 117 and 118 is particularly high. However, there is a problem that the edge portions of the classification edges 117 and 118 do not fall within a predetermined allowable range due to a slight play of each drive transmission mechanism of the airflow classifier 200 or insufficient strength. The position of this edge part has a large effect on the streamline of the air flow divided by this edge part even if the amount of deviation is small, and the streamline is disturbed, and the particle size distribution of the classified product changes. There is.
[0006]
The present invention solves the above problems, and provides an airflow classifier that can reduce the variation in the particle size distribution of classified products and can improve the accuracy of the particle size distribution. With the goal.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the airflow classifier according to claim 1 includes a front side plate and a rear side plate disposed opposite to the front side plate with an appropriate interval. Forming an air inlet path for introducing an air flow into the sealed space, a powder raw material supply path, and a classification path for classifying the powder raw material, and classifying the powder raw material into a plurality of types having different particle sizes. An airflow classifier for classifying into raw materials, wherein a classification chamber at the center of the sealed space serving as a classification point is a Coanda block projecting with an arc-shaped tip toward the classification chamber, and toward the classification chamber. And a plurality of classification edges whose base ends are rotatably supported by the front and rear side plates, and an inlet edge that divides the inlet passage by protruding the edge portions toward the classification chamber The classification path faces the classification chamber. A side wall, wherein a plurality of classifying edges, a plurality of formed between each of the Coanda block, the rotational axis of the classification proximal end of the classification edge to be positioned in a predetermined allowable range edge portion of the edge Is provided with a driving means, engages a position detecting means for detecting the rotation angle of the rotary shaft and sets the edge portion within a predetermined allowable range, and the classification is also performed during the classification of the powder raw material. It is characterized by edge position control. As a result, the tip of the classification edge is always set within an allowable range, and high-precision classification is possible, and classification powder having a high-precision particle size distribution can be generated efficiently and stably. In the prior art, it was necessary to interrupt the classification work to adjust the edge portion of the classification edge and remove the front side plate, etc., but in the present invention, the removal is unnecessary, and the edge portion can be adjusted even during classification. . Thereby, efficiency can be improved.
[0010]
The airflow classifier according to claim 2 is characterized in that a gas introduction adjusting means is disposed in the inlet passage, and the driving means is a stepping motor. By using a stepping motor, the classification edge can be driven with high accuracy and smoothness and at a relatively low cost.
[0011]
The airflow classifier according to claim 3 is characterized in that the position detecting means is a potentiometer. By using the potentiometer, it is possible to improve the positioning detection accuracy of the edge portion of the classification edge, and it is possible to classify with high accuracy and to implement at a relatively low cost.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an airflow classifier according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing a structure of a main part (apparatus main body) of an airflow classifier 100 according to the present embodiment, FIG. 2 is an exploded perspective view showing almost all components of the airflow classifier 100, and FIG. It is a perspective view which shows the structure of the principal part similarly to FIG.
[0013]
The airflow classifier 100 is sandwiched between the rear side plate 2 shown in FIG. 2 and the front side plate 1 shown in FIG. 3 arranged in opposition to each other and forms the classification chamber 30 and the like. The airflow classifier main body 100, the rotating shafts 36a and 36b of the classifying edges 5 and 6 of the airflow classifier main body 100a, and the stepping motor 31a, which is one of driving means connected to the rotating shafts 36a and 36b, 31b, and potentiometers 43a, 43b and the like that are connected and engaged with the rotary shafts 36a, 36b.
[0014]
First, the airflow classifier body 100a will be described with reference to FIGS. On the surface of the rear side wall 2, an upper right side wall 19, an upper left side wall 10, a lower right side wall 8, a lower left side wall 9 and a Coanda block 4 are fixed in a protruding state. On the surface of the rear side wall 2 between the upper right side wall 19 and the upper left side wall 10, an upper cover 23 is similarly projected and fixed.
[0015]
The upper cover 23 is pivotally supported by the proximal end portion of the inlet edge 7, and the inlet edge 7 divides the inlet path 32 into a first inlet path 32 a and a second inlet path 32 b. The lower right wall 8 and the lower left wall 9 are connected to classifying edges 5 and 6 whose base ends are pivotally supported by these. Further, the powder raw material supply pipe 3 is inserted between the upper right side wall 19 and the upper surface of the Coanda block 4. In addition, an elliptical arcuate portion 4 a is formed at the tip of the Coanda block 4. In addition, edge portions 5 a and 6 a are formed at the tips of the classification edges 5 and 6, and an edge portion 7 a is also formed at the tip of the air inlet edge 7.
[0016]
The classification chamber 30 is formed at a portion where the edge portions 5 a and 6 a of the classification edges 5 and 6, the arc-shaped portion 4 a of the Coanda block 4, and the edge portion 7 a of the inlet edge 7 are gathered. The classification chamber 30 communicates with the first to third classification paths 11, 12, and 13. The first classification path 11 is formed between the lower surface side of the upper left side wall 10 and the classification edge 6 and the lower left side wall 9. The second classifying path 12 is formed between the classifying edges 5 and 6 and the lower right side wall 8 and the lower left side wall 9. The third classification path 13 is formed between the classification edge 5, the lower right side wall 8, and the lower surface side of the Coanda block 4.
[0017]
The inlet pipes 14 and 15 are connected to the first inlet path 32 a and the second inlet path 32 b of the inlet path 32. Further, the inlet pipes 14 and 15 are provided with gas introduction adjusting means 20 and 21 and static pressure meters 28 and 29 for detecting the pressure of the introduced gas, respectively.
[0018]
As shown in FIG. 4, the powder raw material is introduced into the powder raw material supply pipe 3 from the quantitative feeder 18 through the vibration feeder 17. The powder raw material supply pipe 3 is supplied with air for ejecting the powder raw material, and the supply amount of this air is controlled by a valve 16.
[0019]
There are various powder raw materials, and examples thereof include toner or colored resin powder used for image formation by electrophotography. This toner or colored resin powder mainly comprises a mixture obtained by melt-kneading a mixture of at least a binder resin and a colorant, cooling the melt-kneaded product, and pulverizing the cooled product.
[0020]
The classification chamber 30 and the like of the airflow classifier main body 100a having the above structure are closed and sealed by the front side plate 1 as shown in FIG. Further, the collection cyclones 22a, 22b, and 22c are connected to the first to third classification paths 11, 12, and 13 of the airflow classifier main body 100a through the first to third pipes 11a, 12a, and 13a, respectively. Is done.
[0021]
As described above, the classification chamber 30 is divided into a plurality of classification paths 11, 12, and 13. The classification accuracy depends on the positions of the edge portions 5a and 6a of the classification edges 5 and 6, the shape of the arcuate portion 4a of the Coanda block, It is determined by the position, the position of the edge portion 7a of the inlet edge 7, and the like, and also determined by the flow rate of the classification air flow and the ejection speed of the powder raw material from the raw material supply pipe 3.
[0022]
As shown in FIG. 2, rotating shafts 36 a and 36 b pivoted by the front side plate 1 and the rear side plate 2 are connected to the base end portions of the classification edges 5 and 6. The rotary shafts 36a and 36b are connected to the stepping motors 31a and 31b through various connecting means (detailed explanation is omitted) shown in FIG. The rotary shafts 36a and 36b are connected to potentiometers 43a and 43b via pulleys 35a and 35b, belts 51a and 51b, and pulleys 49a and 49b. The stepping motors 31a and 31b rotate the rotation shafts 36a and 36b to a desired angle, and the potentiometers 43a and 43b detect the positions of the edge portions 5a and 6a of the classification edges 5 and 6. is there.
[0023]
In the present invention, in particular, the positions of the edge portions 5a and 6a of the classification edges 5 and 6 are always within the allowable range. This allowable range is determined in advance according to the properties of the powder raw material, and this position is detected by the potentiometers 43a and 43b. Therefore, when the positions of the edge portions 5a and 6a of the classification edges 5 and 6 are deviated due to the displacement of each element during classification work, the deviation from the normal position is automatically detected by the potentiometers 43a and 43b. Since this detection information is transmitted to the stepping motors 31a and 31b, it is easy to always set the edge portions 5a and 6a of the classification edges 5 and 6 to positions within an allowable range by driving the stepping motors 31a and 31b. it can.
[0024]
Next, the classification action of the powder raw material by the airflow classifier 100 of the present invention will be described. Although any powder raw material may be used as described above, it is particularly effective for classification of toner or colored resin powder used for image formation by electrophotography. When such a powder raw material for toner production is classified by a conventional classifier, it is necessary to accurately limit and stabilize the various classification conditions in order to obtain a particle size distribution of the intermediate product. is there. In addition, the classification point tends to deviate from the appropriate range due to minute changes in the classification room. In this case, the required particle size distribution is difficult to obtain, and the classification efficiency may be greatly reduced. Arise. In order to obtain a product with a constant quality, it is necessary to operate stably, and the airflow classifier 100 of the present invention is effective for this purpose.
[0025]
As shown in FIG. 4, the powder raw material is introduced from the quantitative feeder 18, and sent in a state where the powder raw material is pressurized into the powder raw material supply pipe 3 through the vibration feeder 17, and reaches the classification chamber 30. The On the other hand, an air flow such as air is introduced from the inlet pipes 14 and 15 into the inlet passages 32 a and 32 b with the supply amount and pressure adjusted by the gas introduction adjusting means 20 and 21 and the static pressure gauges 28 and 29, and enters the classification chamber 30. It arrives. In the vicinity of the classification chamber 30, the edge portions 5 a and 6 a and the edge portion 7 a are arranged with their positions adjusted to form classification points. When the edge portions 5a and 6a of the classification edges 5 and 6 have a deviation amount of about ± 0.3 mm from the normal position, the powder raw material is classified with high accuracy from the classification point, and the first to third classification paths 11, Particles corresponding to the particle size are classified and sent to 12 and 13, respectively. As shown in FIG. 4, the classified particles are introduced into the collection cyclones 22a, 22b, and 22c through the first pipe 11a, the second pipe 12a, and the third pipe 13a and collected as fine powder.
[0026]
1. According to the airflow classifier of claim 1 of the present invention, the position of the edge portion of the classification edge can be automatically set, and the variation of the classification point can be suppressed, so that the specific gravity and classification of various powder raw materials can be suppressed. Accurate classification points corresponding to gas conditions can be obtained, particles with a high precision (sharp) particle size distribution can be obtained with high classification accuracy, and classified particles can be produced continuously. Further, since the edge portion of the classification edge can be adjusted even during the classification work, the work efficiency can be improved . 2. According to the airflow classifier of claim 2 of the present invention, since the stepping motor is adopted as the driving means, the edge portion can be adjusted with high accuracy, and it can be obtained relatively easily and the cost of the apparatus can be reduced. 3. According to the airflow classifying device of claim 3 of the present invention, since the potentiometer is employed, the positioning accuracy of the edge portion can be detected with high accuracy and the device cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of the main part of an airflow classifier according to the present invention.
FIG. 2 is an exploded perspective view showing almost the entire structure of components of the airflow classifier of the present invention.
FIG. 3 is a perspective view showing the structure of the main part of the airflow classifier of the present invention.
FIG. 4 is a configuration diagram for explaining the classification action by the airflow classifier of the present invention.
FIG. 5 is a sectional view showing a structure of a main part of a conventional airflow classifier.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Front side plate 2 Back side plate 3 Powder raw material supply pipe 4 Coanda block 4a Arc-shaped part 5 Classification edge 5a Edge part 6 Classification edge 6a Edge part 7 Inlet edge 7a Edge part 8 Lower right wall 9 Lower left wall 10 Upper left wall 11 1st classification path 11a 1st piping 12 2nd classification path 12a 2nd piping 13 3rd classification path 13a 3rd piping 14 Intake pipe 15 Intake pipe 16 Valve 17 Vibrating feeder 18 Fixed quantity feeder 19 Upper right Wall 20 Gas introduction adjusting means 21 Gas introduction adjusting means 22a Collection cyclone 22b Collection cyclone 22c Collection cyclone 23 Upper cover 28 Static pressure gauge 29 Static pressure gauge 30 Classification chamber 31a Stepping motor 31b Stepping motor 32 Inlet path 32a Inlet path 32b Inlet passage 35a Pulley 35b Pulley 36a Rotating shaft 36b Rotating shaft 43a Potentiometer Motor 43b potentiometer 49a pulley 49b pulley 51a belt 51b belt 100 air classifier 100a air classifier body

Claims (3)

前面側板及び該前面側板と適宜間隔を介して相対向して配設される後面側板との前記間隔内の密閉空間に気流を導入するための入気路と、粉体原料供給路と、粉体原料を分級する分級路とを形成し、前記粉体原料を粒径の相異する複数種類の分級原料に分級する気流式分級装置であって、
分級点となる前記密閉空間の中心部の分級室は、該分級室に向かって弧状尖端を形成して突出するコアンダブロックと、前記分級室に向かってエッジ部を突出せしめその基端側を前記前後面側板に回動可能に支持される複数の分級エッジと、前記分級室に向かってエッジ部を突出せしめ前記入気路を分割する入気エッジの集合する部分に形成され、
前記分級路は、前記分級室が面する側壁と、前記複数の分級エッジと、前記コアンダブロックのそれぞれの間に複数形成され、
前記分級エッジのエッジ部を予め決められた許容範囲に位置決めすべく前記分級エッジの基端部の回転軸には、駆動手段を設けると共に前記回転軸の回転角度を検出して前記エッジ部を所定の許容範囲にセットするための位置検出手段を係合せしめ、前記粉体原料の分級作業中においても前記分級エッジの位置コントロールをすることを特徴とする気流式分級装置。
An air inlet path for introducing an air flow into a sealed space within the space between the front side plate and the rear side plate disposed opposite to the front side plate with an appropriate gap, a powder raw material supply path, a powder Forming a classification path for classifying body materials, and classifying the powder material into a plurality of types of classification materials having different particle sizes,
The classification chamber at the center of the sealed space that serves as a classification point includes a Coanda block that protrudes by forming an arcuate tip toward the classification chamber, and an edge portion that protrudes toward the classification chamber and the base end side of the classification chamber. A plurality of classification edges that are rotatably supported by the front and rear side plates, and formed at a portion where the inlet edges divide the inlet passage by protruding the edge portion toward the classification chamber ,
A plurality of classification paths are formed between the side wall facing the classification chamber, the plurality of classification edges, and the Coanda block,
In order to position the edge portion of the classification edge within a predetermined allowable range, a drive means is provided on the rotation shaft of the base end portion of the classification edge, and the rotation angle of the rotation shaft is detected and the edge portion is determined in advance. An airflow classifier which engages a position detecting means for setting within the allowable range and controls the position of the classification edge even during the classification operation of the powder raw material.
前記入気路に気体導入調節手段が配設され、前記駆動手段が、ステッピングモータであることを特徴とする請求項1に記載の気流式分級装置。 2. The airflow classifier according to claim 1 , wherein a gas introduction adjusting unit is disposed in the inlet passage, and the driving unit is a stepping motor. 前記位置検出手段が、ポテンショメータであることを特徴とする請求項1に記載の気流式分級装置。  The airflow classifier according to claim 1, wherein the position detection means is a potentiometer.
JP2000185248A 2000-06-20 2000-06-20 Airflow classifier Expired - Fee Related JP4498550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185248A JP4498550B2 (en) 2000-06-20 2000-06-20 Airflow classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185248A JP4498550B2 (en) 2000-06-20 2000-06-20 Airflow classifier

Publications (2)

Publication Number Publication Date
JP2002001225A JP2002001225A (en) 2002-01-08
JP4498550B2 true JP4498550B2 (en) 2010-07-07

Family

ID=18685595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185248A Expired - Fee Related JP4498550B2 (en) 2000-06-20 2000-06-20 Airflow classifier

Country Status (1)

Country Link
JP (1) JP4498550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502301B2 (en) * 2001-03-30 2010-07-14 日鉄鉱業株式会社 Airflow classifier

Also Published As

Publication number Publication date
JP2002001225A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
CA2080796C (en) Apparatus for measuring the mass throughput of a flow of pourable material according to the coriolis principle
US6015648A (en) Gas stream classifier and process for producing toner
JP4498550B2 (en) Airflow classifier
KR0161561B1 (en) Gas current classifier and process for producing toner
JP2727245B2 (en) Airflow classifier and airflow classification method
JPH08238457A (en) Air current classifying method and air current classifying apparatus
JPH08206604A (en) Air classifier
JP3347551B2 (en) Airflow classifier and method for producing toner
JP2715325B2 (en) Airflow classifier and airflow classification method
JPH09314061A (en) Production of electrostatic charge image developing toner
JP2001201890A (en) Manufacturing method of toner
JP3697345B2 (en) Airflow classifier
JPH0780413A (en) Air classifier
JPH0760194A (en) Pneumatic classifier and pneumatic classifying method
JPH08182966A (en) Pneumatic classifier
JPH09299885A (en) Air current classifying device for manufacture of toner
JPH06277631A (en) Method for classification using air separator
JP2513769Y2 (en) Airflow classifier
JPH0938581A (en) Air current type classifier and preparation of toner
JP3606710B2 (en) Airflow type DS classifier
JPH09187734A (en) Air current-utilizing type classifying apparatus and toner manufacture
JP2715338B2 (en) Airflow classifier and airflow classification method
JPH0760195A (en) Pneumatic classifier and pneumatic classifying method
JPH01224082A (en) Particle classifying device
JPH0573476B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070410

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees