JPH0938581A - Air current type classifier and preparation of toner - Google Patents

Air current type classifier and preparation of toner

Info

Publication number
JPH0938581A
JPH0938581A JP7189160A JP18916095A JPH0938581A JP H0938581 A JPH0938581 A JP H0938581A JP 7189160 A JP7189160 A JP 7189160A JP 18916095 A JP18916095 A JP 18916095A JP H0938581 A JPH0938581 A JP H0938581A
Authority
JP
Japan
Prior art keywords
classification
raw material
powder
edge
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7189160A
Other languages
Japanese (ja)
Other versions
JP3278326B2 (en
Inventor
Satoshi Mitsumura
聡 三ッ村
Yoshinori Tsuji
善則 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18916095A priority Critical patent/JP3278326B2/en
Priority to US08/685,963 priority patent/US5934478A/en
Priority to EP96111928A priority patent/EP0755727B1/en
Priority to DE69619904T priority patent/DE69619904T2/en
Priority to CN96110290A priority patent/CN1054554C/en
Priority to KR1019960030243A priority patent/KR100254668B1/en
Publication of JPH0938581A publication Critical patent/JPH0938581A/en
Priority to US09/252,078 priority patent/US6015648A/en
Application granted granted Critical
Publication of JP3278326B2 publication Critical patent/JP3278326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high precision classification by installing a raw material supply nozzle in an upper surface part of an air current type classifier and a Coanda block on the side of the side surface of the raw material supply nozzle in an apparatus for classifying a powder raw material supplied from the raw material supply nozzle into a coarse powder group, an intermediate powder group, and a fine powder group. SOLUTION: In classification, pressure in a classification output 32 is reduced. Particles in powder introduced into a classification chamber 32 through a raw material supply nozzle 16 are classified by a Coanda block 26. In this process, a raw material powder supplied from a raw material supply port 40 is discharged from a powder raw material introduction port 42 to be dispersed by being accelerated by high pressure air ejected from a high pressure air introduction part 41. The powder is introduced from the nozzle 16 into the classification chamber 32 to be dispersed corresponding to the size of the particles to form a particle flow. Accordingly, classification edges 17, 18 are moved along the flow line, and the edge end positions are fixed to be set up at specified classification points.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コアンダ効果を利
用して粉体を分級するための気流式分級装置及びその装
置を利用してトナーを製造する方法に関する。特に、本
発明は、重量平均粒径20μm以下の粒子を50個数%
以上含有する粉体の分級を効率よく行なうために、粉体
を気流に乗せて運ぶと共にコアンダ効果、それらの粉体
中の各粒子の粒径に応じた慣性力、遠心力等の差に基づ
いて所定の粒度を有する粒子を分級するための気流式分
級装置及びその装置を利用してトナーを製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airflow classifier for classifying powders utilizing the Coanda effect and a method for producing a toner using the classifier. In particular, the present invention relates to a method in which particles having a weight average
In order to efficiently classify the powders contained above, the powders are carried in an air stream and based on the Coanda effect, the inertial force according to the particle size of each particle in these powders, the centrifugal force, etc. The present invention relates to an airflow type classification device for classifying particles having a predetermined particle size and a method for producing a toner using the device.

【0002】[0002]

【従来の技術】粉体の分級について様々な方法の気流式
分級装置が提案されている。この中で回転翼を用いる分
級機と可動部分を有しない分級機がある。このうち、可
動部分のない分級機として固定壁遠心式分級機と慣性力
分級機があるが、慣性力を利用する分級機としてLof
fier.F.and K.Maly:Symp on
Powder Techn D2(1981)に記載さ
れ、日鉄鉱業製として商品化されているエルボジェット
分級機や、Okuda.S.and Yasukun
i.J.Proc.lnter.Symposium
on Powder Techn’81、771(19
81)で例示される分級機が微粉域で分級できる慣性力
分級機として提案されている。
2. Description of the Related Art An air flow type classifying apparatus of various methods for classifying powder has been proposed. Among them, there are classifiers that use rotary blades and classifiers that have no moving parts. Among them, there are a fixed wall centrifugal classifier and an inertial force classifier as classifiers having no moving parts, but Lof as a classifier utilizing inertial force.
fier. F. and K. Maly: Symp on
An elbow jet classifier described in Powder Techn D2 (1981) and commercialized by Nippon Steel Mining Co., Ltd., Okuda. S. and Yasukun
i. J. Proc. inter. Symposium
on Powder Techn'81, 771 (19
The classifier exemplified in 81) is proposed as an inertial force classifier capable of classifying in the fine powder region.

【0003】これらの気流式分級装置は、図7及び図8
に示すように、分級室の分級域に開口部を有する供給ノ
ズル16から高速で気流とともに粉体を分級域内へ噴出
し、分級室内にはコアンダブロック26に沿って流れる
湾曲気流の遠心力によって粗粉と、中粉と、微粉とに分
離し、先端の細くなったエッジ117、118により、
粗粉と、中粉と、微粉の分級を行なっている。
These air flow type classifiers are shown in FIGS.
As shown in, the powder is jetted into the classifying area at high speed from the supply nozzle 16 having an opening in the classifying area of the classifying chamber, and is coarsened by the centrifugal force of the curved airflow flowing along the Coanda block 26 in the classifying chamber. Separated into powder, medium powder, and fine powder, and the thinned edges 117 and 118
Coarse powder, medium powder, and fine powder are classified.

【0004】しかしながら、従来の分級装置101で
は、微粉砕原料が原料供給ノズル16から導入され、角
錐筒内部を流動する粉粒体は管壁に平行にまっすぐに推
進力をもって流れる傾向を有する。該原料供給ノズル1
6中では原料を上部から導入するとき、おおまかに上部
流れと下部流れに分れて、上部流れには軽い微粉が多く
含有し、下部流れには重い粗粉が多く含有しやすく、そ
れぞれの粒子が独立して流れるため、分級室内への導入
部位によって、それぞれ異なった軌跡を描くことや、粗
粉が微粉の軌跡を撹乱するために、分級精度の向上に限
界が生じ、かつ、20μm以上の粗粒の多い粉体の分級
では著しく精度が低下する傾向があった。また、一般
に、分級エッジブロック124及び125は分級機本体
に固定され、分級エッジ117及び118の先端位置を
調節し、それに応じて分級のための気流の流量を調節す
ることにより、分級点(すなわち分級の境となる粒子の
大きさ)を所望の値に設定していた。更に、粉体の比重
及び所定分級点に応じた分級エッジの先端位置を検知し
て移動させ、それに応じて所定流量になるように制御し
ていた。このように、分級エッジ117及び118の先
端位置のみを調節するだけでは、角度によってそのエッ
ジ先端付近で気流の乱れが起こりやすく、その結果、精
度の良い分級が得られない場合があり、本来であれば大
きさが均一でなければならない粒子群の中に他の粒子群
に入るべき大きさの粒子が混入してしまうという場合が
あった。また、分級点を変更したい場合でも分級エッシ
の先端位置を変更させ、それに応じて所定流量になるよ
うに制御しても気流方向に沿って分級エッジの位置を制
御することができず、結局、分級点を所定の値に合わせ
るのに時間を要するばかりでなく、分級精度も低下しや
すいなどの改善すべき問題を有していた。特に、複写
機、プリンターなどに用いられる静電荷像現像用トナー
を製造するための分級の際に、かかる問題点が顕在化し
やすかった。
However, in the conventional classifying device 101, the finely pulverized raw material is introduced from the raw material supply nozzle 16 and the powder or granular material flowing inside the pyramidal cylinder tends to flow straight in parallel with the tube wall with a propulsive force. The raw material supply nozzle 1
When the raw material is introduced from above in 6, the raw material is roughly divided into an upper flow and a lower flow, and the upper flow contains a large amount of light fine powder, and the lower flow contains a large amount of heavy coarse powder. Flow independently, so different trajectories are drawn depending on the site of introduction into the classification chamber, and coarse powder disturbs the fine powder trajectories, which limits the improvement of classification accuracy. The accuracy tended to be remarkably reduced in the classification of powders having many coarse particles. Further, generally, the classification edge blocks 124 and 125 are fixed to the main body of the classifier, and by adjusting the tip positions of the classification edges 117 and 118 and adjusting the flow rate of the airflow for classification accordingly, the classification points (ie, The size of the particles used as the boundary of classification) was set to a desired value. Further, the tip position of the classification edge corresponding to the specific gravity of the powder and the predetermined classification point is detected and moved, and the flow rate is controlled to a predetermined flow rate accordingly. As described above, if only the tip positions of the classification edges 117 and 118 are adjusted, the turbulence of the air flow easily occurs near the tip ends of the edges depending on the angle, and as a result, accurate classification may not be obtained. In this case, particles having a size that should be uniform may be mixed with particles having a size that should enter another particle group. Also, even if you want to change the classification point, it is not possible to control the position of the classification edge along the airflow direction even if the tip position of the classification essie is changed and the flow rate is controlled accordingly. There is a problem that not only it takes time to adjust the classification point to a predetermined value, but also the classification accuracy is apt to be reduced. In particular, in the classification for producing the toner for developing an electrostatic charge image used in a copying machine, a printer, etc., such a problem was likely to become apparent.

【0005】一般に、トナーには数多くの異なった性質
が要求されるために、かかる要求を満たすには、使用す
る原材料は勿論のこと、トナーの特性が製造方法によっ
て影響されることも多い。トナーを製造するための分級
工程においては、また、低コストで効率良く安定的に品
質の良いトナーを造り出すことが望まれる。
In general, toners are required to have many different properties, and in order to meet such requirements, the characteristics of the toners are often influenced by the manufacturing method as well as the raw materials used. In the classification process for producing toner, it is also desired to efficiently and stably produce high-quality toner at low cost.

【0006】一般的に、トナーに使用される結着樹脂と
しては、低融点、低軟化点、低ガラス転移点の樹脂が使
用されるが、このような樹脂を含有する粉体を分級機に
導入して分級すると、分級装置内での付着あるいは融着
が発生しやすい。
Generally, as the binder resin used in the toner, a resin having a low melting point, a low softening point and a low glass transition point is used, and a powder containing such a resin is used in a classifier. When introduced and classified, adhesion or fusion is likely to occur in the classifier.

【0007】近年、例えば、複写機の省エネルギー対策
として、圧力により記録材に定着させるために、結着樹
脂としてワックスのような軟質のものを使用したり、加
熱式定着の場合であっても定着スピードを速くしたり、
定着に要する消費電力を少なくかつ低温で定着させるた
めに、低ガラス転移点の、または、低軟化点の結着樹脂
を使用するようになってきている。
In recent years, for example, as a measure for energy saving of a copying machine, a soft resin such as wax is used as a binder resin for fixing to a recording material by pressure, or fixing is performed even in the case of heat fixing. Speed up,
Binder resins having a low glass transition point or a low softening point have come to be used for fixing at low temperature with low power consumption required for fixing.

【0008】さらには、複写機やプリンターにおける画
質向上のために、トナー粒子が徐々に微小化されている
傾向にある。一般に、物質は細かくなるに従い粒子間力
の働きが大きくなってくるが、樹脂粒子やトナー粒子も
同様で、微小サイズになると粒子同士の凝集性が大きく
なってくる。
Further, in order to improve the image quality in copying machines and printers, the toner particles tend to be gradually miniaturized. In general, as the substance becomes finer, the action of interparticle force increases, but the same applies to resin particles and toner particles, and when the size is small, the cohesiveness between particles increases.

【0009】このような凝集体に、衝撃力や摩擦力など
の外力が働くと、図9に示す原料供給方式では粒子が原
料導入口と高圧エアー供給口との付近に融着しやすく、
また、分級装置内においても融着しやすい。特に、原料
導入口のスロート部及び分級エッジ先端への融着が起こ
りやすく、このような現象が発生すると分級精度が低下
し、安定した状態で分級装置が稼働していないため、良
質の分級品を長期にわたり得ることが困難である。
When an external force such as an impact force or a frictional force acts on such an agglomerate, in the raw material supply system shown in FIG. 9, the particles are easily fused near the raw material introduction port and the high pressure air supply port,
Further, it is easy to fuse even in the classifying device. In particular, fusion is likely to occur at the throat portion of the raw material introduction port and the tip of the classification edge, and if such a phenomenon occurs, the classification accuracy will decrease, and the classification device will not operate in a stable state. Is difficult to obtain over the long term.

【0010】このような点に鑑み、特にトナーのごとき
樹脂微粉体を安定かつ効率的に精度良く分級できる気流
式分級装置が望まれている。
In view of the above points, there is a demand for an air flow type classifying apparatus which can classify resin fine powder such as toner in a stable, efficient and accurate manner.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解消した気流式分級装置及びその装置を利用し
てトナーを製造する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an airflow type classification apparatus which solves the above problems and a method for producing a toner using the apparatus.

【0012】本発明の目的は、正確な分級点を設定する
ことにより、より高精度の分級を可能にし精緻な粒度分
布を有する粉体を効率良く生成し得る気流式分級装置及
びその装置を利用してトナーを製造する方法を提供する
ことにある。
An object of the present invention is to use an air flow type classification device and a device therefor, which can perform more accurate classification by setting an accurate classification point and can efficiently generate a powder having a fine particle size distribution. To provide a method for producing a toner.

【0013】また、本発明の他の目的は、融着等が発生
しにくく装置内での分級点の変動が生じにくい、安定な
分級が可能な気流式分級装置及びその装置を利用してト
ナーを製造する方法を提供することにある。
Another object of the present invention is to provide an air classifier capable of stable classification in which fusing and the like are less likely to occur and a classification point in the apparatus is less likely to change, and a toner utilizing the apparatus. It is to provide a method of manufacturing.

【0014】さらに、本発明の目的は、分級点を大幅に
変更し得る気流式分級装置及びその装置を利用してトナ
ーを製造する方法を提供することにある。
It is a further object of the present invention to provide an air flow type classification device which can change the classification point to a large extent and a method for producing toner using the device.

【0015】さらに、本発明の目的は、分級点の変更を
単時間に成しえる気流式分級装置及びその装置を利用し
てトナーを製造する方法を提供することにある。
Another object of the present invention is to provide an airflow type classification device which can change the classification point in a single time and a method for producing a toner using the device.

【0016】[0016]

【課題を解決するための手段】本発明は、少なくともコ
アンダブロック及び複数の分級エッジにより形成される
分級域にて、原料供給ノズルから供給される粉体原料
を、コアンダ効果により少なくとも粗粉体群、中粉体群
及び微粉体群に分級するための気流式分級装置におい
て、原料供給ノズルを気流式分級装置の上面部に具備
し、該原料供給ノズルの側面側にコアンダブロックを具
備し、該原料供給ノズルの後端部に粉体原料を供給する
ための粉体原料導入管と該粉体原料導入管の外周囲に高
圧エアー導入部とを有することを特徴とする気流式分級
装置に関する。
According to the present invention, a powder raw material supplied from a raw material supply nozzle is provided at least in a coarse powder group by a Coanda effect in a classification area formed by at least a Coanda block and a plurality of classification edges. In an airflow classifier for classifying into a medium powder group and a fine powder group, a raw material supply nozzle is provided on an upper surface of the airflow type classification apparatus, and a Coanda block is provided on a side surface side of the raw material supply nozzle, The present invention relates to a gas stream classifying device, which has a powder raw material introducing pipe for supplying a powder raw material to a rear end portion of a raw material supply nozzle and a high-pressure air introducing portion around the outer periphery of the powder raw material introducing pipe.

【0017】さらに本発明は、結着樹脂及び着色剤を少
なくとも含有する着色樹脂粒子をコアンダ効果を利用し
た気流式分級装置で分級し、分級された分級粉から静電
荷像現像用トナーを製造する方法において、気流式分級
装置の上面部に設置されている原料供給ノズルは後端部
に着色樹脂粒子を供給するための粉体原料導入管と該粉
体原料導入管の外周囲に高圧エアー導入部とを有し、原
料供給ノズルに着色樹脂粒子を供給し、該原料供給ノズ
ルの側面側に設置されたコアンダブロック及び複数の分
級エッジにより形成される分級域にて、原料供給ノズル
から供給される着色樹脂粒子を、コアンダ効果により少
なくとも粗粉体群、中粉体群及び微粉体群に分級し、分
級された中粉体群からトナーを生成することを特徴とす
るトナーの製造方法に関する。
Further, according to the present invention, colored resin particles containing at least a binder resin and a colorant are classified by an airflow classifier utilizing the Coanda effect, and a toner for developing an electrostatic image is produced from the classified powder. In the method, the raw material supply nozzle installed on the upper surface of the airflow classifier is a powder raw material introducing pipe for supplying colored resin particles to the rear end, and high pressure air is introduced around the outer periphery of the powder raw material introducing pipe. And a colored resin particle is supplied to the raw material supply nozzle, and is supplied from the raw material supply nozzle in a classification area formed by a Coanda block and a plurality of classification edges installed on the side surface side of the raw material supply nozzle. A method for producing a toner, characterized in that colored resin particles according to the Coanda effect are classified into at least a coarse powder group, a medium powder group and a fine powder group, and a toner is produced from the classified medium powder group. On.

【0018】[0018]

【発明の実施の形態】本発明の気流式分級装置及びその
装置を利用してトナーを製造する方法においては、好ま
しくは鉛直方向に対してθ=45°以下の角度で設置さ
れている原料供給ノズルの後端部に高圧エアー導入部と
粉体原料導入管を具備し、粉体原料導入管の上方にある
原料供給口から原料粉体を供給し、供給された原料粉体
は粉体原料導入口下部から粉体原料導入口の内側中心よ
り放射され、高圧エアーに乗って加圧されて分散し、原
料供給ノズルから供給することができる。そして、分級
域の形状を変更する場合には、分級点を大幅に変更でき
ると共に、分級エッジ先端付近での気流の乱れを発生さ
せることなく分級点を精度良く調整できるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the gas stream classifying apparatus of the present invention and the method for manufacturing a toner using the apparatus, preferably, the raw material supply is installed at an angle of θ = 45 ° or less with respect to the vertical direction. The rear end of the nozzle is equipped with a high-pressure air inlet and a powder raw material introduction pipe, and the raw material powder is supplied from the raw material supply port above the powder raw material introduction pipe. It can be radiated from the lower part of the introduction port from the inner center of the powder raw material introduction port, and can be supplied by a raw material supply nozzle by being pressurized and dispersed on high pressure air. When the shape of the classification area is changed, the classification point can be significantly changed, and the classification point can be adjusted with high accuracy without causing turbulence of the air flow near the tip of the classification edge.

【0019】[0019]

【実施例】以下に本発明を添付図面に基づいてより詳細
に説明する。
The present invention will be described in more detail below with reference to the accompanying drawings.

【0020】本発明の気流式分級機の一例として図1
(断面図)及び図2、及び3(斜視図)に示す形式の装
置を一具体例として例示する。
FIG. 1 shows an example of an airflow classifier according to the present invention.
An apparatus of the type shown in (cross-sectional view) and FIGS. 2 and 3 (perspective view) is illustrated as a specific example.

【0021】図1、図2及び図3において、側壁22及
び23は分級室の一部を形成し、分級エッジブロック2
4及び25は分級エッジ17及び18を具備している。
分級エッジ17及び18は、軸17a及び18aを中心
にして、回動可能であり、分級エッジを回動して分級エ
ッジ先端位置を変えることができる。各分級エッジブロ
ック24及び25は上下に設置位置をスライドさせるこ
とが可能であり、それにともなってそれぞれのナイフエ
ッジ型の分級エッジ17及び18も上下にスライドす
る。この分級エッシ17及び18により、分級室32の
分級ゾーンは3分画されている。
In FIGS. 1, 2 and 3, the side walls 22 and 23 form a part of the classification chamber, and the classification edge block 2
4 and 25 have classification edges 17 and 18.
The classification edges 17 and 18 are rotatable about the shafts 17a and 18a, and the classification edge tip position can be changed by rotating the classification edge. Each classifying edge block 24 and 25 can be slid up and down, and the knife edge type classifying edges 17 and 18 are slid up and down accordingly. The classification zones of the classification chamber 32 are divided into three by the classification essences 17 and 18.

【0022】原料粉体を導入するための原料供給口40
を原料供給ノズル16の最後端部に有し、該原料供給ノ
ズル16の後端部に高圧エアー供給部41と粉体原料導
入管42とを有し且つ分級室32に開口部を有する原料
供給ノズル16を側壁22の右側に設け、該原料供給ノ
ズル16の右側接線の延長方向に対して長楕円弧を描い
たコアンダブロック26が設置されている。分級室32
の左側ブロック27は、分級室32の左側方向にナイフ
エッジ型の入気エッジ19を具備し、更に分級室32の
左側には分級室32に開口する入気管14及び15を設
けてある。また、入気管14及び15にはダンパーのご
とき第1気体導入調節手段20及び第2気体導入調節手
段21と静圧計28及び静圧計29を設けてある。
Raw material supply port 40 for introducing raw material powder
At the rear end of the raw material supply nozzle 16, a high pressure air supply unit 41 and a powder raw material introduction pipe 42 at the rear end of the raw material supply nozzle 16, and a raw material supply having an opening in the classification chamber 32. The nozzle 16 is provided on the right side of the side wall 22, and a Coanda block 26 having a long elliptical arc drawn in the extending direction of the right tangent line of the raw material supply nozzle 16 is installed. Classification room 32
The left block 27 is provided with a knife edge type air inlet edge 19 in the leftward direction of the classification chamber 32, and further, on the left side of the classification chamber 32, air inlet pipes 14 and 15 which open to the classification chamber 32 are provided. Further, the inlet pipes 14 and 15 are provided with a first gas introduction adjusting means 20 and a second gas introduction adjusting means 21, such as a damper, a static pressure gauge 28 and a static pressure gauge 29.

【0023】分級エッジ17及び18及び入気エッジ1
9の位置は、被分級処理原料である粉体の種類及び所望
の粒径により調節される。
Classification edges 17 and 18 and intake edge 1
The position of 9 is adjusted depending on the type of powder as the raw material to be classified and the desired particle size.

【0024】また、分級室32の右側にはそれぞれの分
画域に対応させて、分級室内に開口する排出口11、1
2及び13を有し、排出口11、12及び13にはパイ
プの如き連通手段が接続されており、それぞれにバルブ
手段のごとき開閉手段を設けてよい。
Further, on the right side of the classification chamber 32, the discharge ports 11 and 1 opened in the classification chamber in correspondence with respective fractionation areas.
2 and 13, and the outlets 11, 12 and 13 are connected to a communicating means such as a pipe, and each of them may be provided with an opening / closing means such as a valve means.

【0025】原料供給ノズル16は直角筒部と角錐筒部
とから成り、直角筒部の内径と角錐筒部の最も狭い箇所
の内径の比を20:1から1:1、好ましくは10:1
から2:1に設定すると、良好な導入速度が得られる。
The raw material supply nozzle 16 is composed of a right-angled cylinder portion and a pyramidal cylinder portion, and the ratio of the inner diameter of the right-angled cylinder portion to the inner diameter of the narrowest part of the pyramidal cylinder portion is 20: 1 to 1: 1, preferably 10: 1.
If the ratio is set to 2: 1 from, a good introduction speed can be obtained.

【0026】以上のように構成してなる多分割分級域で
の分級操作は例えば次のようにして行なう。すなわち、
排出口11、12、13の少なくとも1つを介して分級
室内を減圧し、分級室内に開口部を有する原料供給ノズ
ル16中を高圧エアーと該減圧によって流動する気流に
よって好ましくは流速50〜300m/秒の速度で粉体
を原料供給ノズル16を介して分級室に噴出する。
The classification operation in the multi-division classification area configured as described above is performed, for example, as follows. That is,
The inside of the classification chamber is decompressed through at least one of the outlets 11, 12, and 13, and the high-pressure air in the raw material supply nozzle 16 having an opening in the classification chamber and the air flow flowing by the decompression preferably have a flow rate of 50 to 300 m / The powder is ejected into the classification chamber through the raw material supply nozzle 16 at a speed of 2 seconds.

【0027】分級室に導入された粉体中の粒子はコアン
ダブロック26のコアンダ効果による作用と、その際流
入する空気のごとき気体の作用とにより湾曲線30a、
30b、30c等を描いて移動し、それぞれの粒子の粒
径及び慣性力の大小に応じて、大きい粒子(粗粒子)は
気流の外側、すなわち分級エッジ18の外側の第1分
画、中間の粒子は分級エッジ18と17の間の第2分
画、小さい粒子は分級エッジ17の内側の第3分画に分
級され、分級された大きい粒子は排出口11より排出さ
れ、分級された中間の粒子は排出口12より排出され、
分級された小さい粒子は排出口13よりそれぞれ排出さ
れる。
The particles in the powder introduced into the classifying chamber are curved due to the action of the Coanda effect of the Coanda block 26 and the action of gas such as inflowing air at the curved line 30a,
30b, 30c, etc. are drawn and moved, and large particles (coarse particles) are moved outside the airflow, that is, outside the classification edge 18 according to the particle size of each particle and the magnitude of the inertial force. The particles are classified into the second fraction between the classification edges 18 and 17, the small particles are classified into the third fraction inside the classification edge 17, and the classified large particles are discharged from the discharge port 11 and the classified intermediate particles. The particles are discharged from the discharge port 12,
The classified small particles are discharged from the discharge port 13, respectively.

【0028】本実施例による粉体の分級において、分級
点は粉体が分級室32内へ飛び出す位置であるコアンダ
ブロック26の下端部分に対する分級エッジ17及び1
8のエッジ先端位置によって主に決定される。さらに、
分級点は分級気流の流量あるいは原料供給ノズル16か
らの粉体の噴出速度等の影響を受ける。
In the classification of the powder according to this embodiment, the classification point is the position where the powder jumps out into the classification chamber 32, and the classification edges 17 and 1 with respect to the lower end portion of the Coanda block 26.
8 is mainly determined by the edge tip position. further,
The classification point is affected by the flow rate of the classification airflow, the ejection speed of the powder from the raw material supply nozzle 16, and the like.

【0029】本発明の気流式分級装置において、原料供
給口40から原料粉体を供給し、供給された原料粉体は
粉体原料導入口42下部から粉体原料導入口の内側中心
より放射され、高圧エアー導入部41から噴出している
高圧エアーに乗って加速されて良好に分散し、瞬時に原
料供給ノズル16から分級室内へ導入され、分級され
て、分級機系外へ排出されるため、分級機へ導入される
粉体は原料供給ノズル16から分級室内の導入口部位に
よって、個々の粒子の軌跡が撹乱せずに凝集粉が一次粒
子まで分散された状態で推進力をもって飛翔することが
重要である。原料供給ノズル16内から流動する粒子流
は原料を上部から導入するとき、原料供給ノズル16の
開口部より側位にコアンダブロック26を具備している
分級室32に粉体流を導入すると、粒子の飛翔軌跡が乱
れることなく粒子の大きさに応じて分散して粒子流が形
成されるので、その流線に沿った向きに分級エッジを移
動させ、次いで分級エッジのエッジ先端位置を固定し、
所定の分級点に設定することができる。この分級エツジ
17及び18の移動に際し、分級エッジブロック24及
び25との同時移動により、コアンダブロック26に沿
って飛翔する粒子流の流れ方向にエッジの向きを沿わす
ことができる。
In the gas stream classifier of the present invention, the raw material powder is supplied from the raw material supply port 40, and the supplied raw material powder is radiated from the lower part of the powder raw material introduction port 42 from the inner center of the powder raw material introduction port. Since the high-pressure air ejected from the high-pressure air introduction part 41 is accelerated and dispersed well, and is instantly introduced from the raw material supply nozzle 16 into the classification chamber, classified, and discharged outside the classifier system. The powder introduced into the classifier should be propelled by the propulsive force in a state where the aggregated particles are dispersed up to the primary particles without disturbing the trajectory of individual particles depending on the inlet portion in the classification chamber from the raw material supply nozzle 16. is important. The particle flow flowing from the raw material supply nozzle 16 is such that when the raw material is introduced from above, the powder flow is introduced into the classification chamber 32 having the Coanda block 26 on the side of the opening of the raw material supply nozzle 16, Since the particle trajectory is formed according to the size of the particles without disturbing the flight trajectory of, the classification edge is moved in the direction along the streamline, and then the edge tip position of the classification edge is fixed,
It can be set to a predetermined classification point. When the classification edges 17 and 18 move, the edges can be oriented in the flow direction of the particle flow flying along the Coanda block 26 by the simultaneous movement of the classification edge blocks 24 and 25.

【0030】具体的には、図5において、原料供給ノズ
ル16の先端開口部16aの側面部に対応するコアンダ
ブロック26中の例えば位置Oを中心として、分級エッ
ジ17の先端とコアンダブロック26の側面との距離L
4 及び分級エッジ17の側面とコアンダブロック26の
側面との距離L1 は、分級エッジブロック24を位置決
め部材33に沿って上下に移動させることで、位置決め
部材34に沿って分級エッジ17を上下に移動させ、さ
らに分級エッジ17の先端を軸17aを中心にして回動
させることにより調節可能である。
Specifically, in FIG. 5, the tip of the classification edge 17 and the side surface of the Coanda block 26 are centered around, for example, the position O in the Coanda block 26 corresponding to the side surface of the tip opening 16a of the raw material supply nozzle 16. Distance L
4 and the distance L 1 between the side surface of the classification edge 17 and the side surface of the Coanda block 26 are moved up and down along the positioning member 33 by moving the classification edge block 24 up and down along the positioning member 34. It can be adjusted by moving and further rotating the tip of the classification edge 17 about the shaft 17a.

【0031】同様に、分級エッジ18の先端とコアンダ
ブロック26の側壁との距離L5 及び分級エッジ17の
側面と分級エッジ18の側面との距離L2 もしくは分級
エッジ18の側面と側壁23の側面との距離L3 は、分
級エッジブロック25を位置決め部材35に沿って上下
に移動させることで、位置決め部材36に沿って分級エ
ッジ18を上下に移動させ、さらに分級エッジ18の先
端を軸18aを中心にして回動させることにより調整可
能である。すなわち、原料供給ノズル16の先端開口部
16aの側面部にコアンダブロック26、分級エッジ1
7及び18を設置させ、なおかつ分級エッジブロック2
4または/及び分級エッジブロック25の設置位置の変
更に伴って、分級室の分級域が拡大し、分級点を容易に
且つ大幅に調整することができる。
Similarly, the distance L 5 between the tip of the classification edge 18 and the side wall of the Coanda block 26, the distance L 2 between the side surface of the classification edge 17 and the side surface of the classification edge 18, or the side surface of the classification edge 18 and the side surface of the side wall 23. The distance L 3 between and is moved up and down along the positioning member 35 by moving the classifying edge block 25 up and down along the positioning member 35, and the tip of the classifying edge 18 is further moved along the axis 18a. It can be adjusted by rotating it around the center. That is, the Coanda block 26 and the classification edge 1 are provided on the side surface of the tip opening 16a of the raw material supply nozzle 16.
7 and 18 are installed, and classification edge block 2
4 or / and the location of the classification edge block 25 is changed, the classification area of the classification chamber is expanded, and the classification point can be easily and significantly adjusted.

【0032】そのため、分級エッジ先端部による流れの
乱れが防止でき、排出道管11a、12a及び13aを
介しての減圧による吸引流の流量を調節することで粒子
の飛翔速度を増加させて分級域での粉体原料の分散をよ
り向上させ、より高い粉塵濃度でも良好な分級精度が得
られ、製品の収率低下を防止できるだけでなく、同じ粉
塵濃度でもより良好な分級精度と製品の収率の向上が可
能になる。
Therefore, the flow turbulence due to the tip of the classification edge can be prevented, and the flying speed of particles can be increased by adjusting the flow rate of the suction flow due to the pressure reduction through the discharge conduits 11a, 12a and 13a to increase the classification range. In addition to improving the dispersion of the powder raw material, good classification accuracy can be obtained even at a higher dust concentration, not only can the product yield be prevented from decreasing, but also at the same dust concentration a better classification accuracy and product yield can be obtained. Can be improved.

【0033】また、入気エッジ19の先端とコアンダブ
ロック26の壁面との距離L6 は、軸19aを中心とし
て入気エッジ19先端を回動させることにより調節可能
であり、これにより、入気管14及び15からの気体の
流入量及び流入速度を調節することで、分級点のさらな
る調整が可能である。
The distance L 6 between the tip of the air intake edge 19 and the wall surface of the Coanda block 26 can be adjusted by rotating the tip of the air intake edge 19 about the shaft 19a. Further adjustment of the classification point is possible by adjusting the inflow rate and the inflow rate of gas from 14 and 15.

【0034】上記の設定距離は粉体原料の特性等に応じ
て適宜決定されるが、着色樹脂粒子の真密度が0.3〜
1.4g/cm3 のとき、 L0 <L1 +L2 <nL3 (n≧1:実数) 1.4g/cm3 を越える場合、 L0 <L3 <L1 +L2 を満足することが好ましい。これを満足する場合は、シ
ャープな分布を有する製品(中粉体)を効率良く得るこ
とができる。
The above set distance is appropriately determined according to the characteristics of the powder raw material, and the true density of the colored resin particles is 0.3 to
When 1.4g / cm 3 , L 0 <L 1 + L 2 <nL 3 (n ≧ 1: real number) When 1.4g / cm 3 is exceeded, L 0 <L 3 <L 1 + L 2 must be satisfied. Is preferred. When this is satisfied, a product (medium powder) having a sharp distribution can be efficiently obtained.

【0035】通常、本発明の気流式分級装置は、相互の
機器をパイプのごとき連通手段で連結し、装置システム
に組み込まれて使用される。そうした装置システムの好
ましい例を図6に示す。図6に示す一体装置システム
は、3分割分級機1(図1及び図2に示される分級装
置)、定量供給機2、振動フィーダー3、捕集サイクロ
ン4、5、6を連通手段で連結してなるものである。
In general, the airflow classifier of the present invention is used by being connected to each other by a communication means such as a pipe and incorporated in an apparatus system. A preferred example of such a device system is shown in FIG. In the integrated device system shown in FIG. 6, the three-division classifier 1 (classification device shown in FIGS. 1 and 2), the constant quantity feeder 2, the vibration feeder 3, and the collecting cyclones 4, 5, 6 are connected by communication means. It will be.

【0036】この装置システムにおいて、粉体は、適宜
の手段により、定量供給機2に送り込まれ、ついで振動
フィーダー3を介し、原料供給ノズル16により3分割
分級機1内に導入される。導入に際しては、50〜30
0m/秒の流速で3分割分級機1内に粉体を導入する。
3分割分級機1の分級室を構成する大きさは通常〔10
〜50cm〕×〔10〜50cm〕なので、粉体は0.
1〜0.01秒以下の瞬時に3種以上の粒子群に分級し
得る。そして、3分割分級機1に、大きい粒子(粗粒
子)、中間の粒子、小さい粒子に分級される。その後、
大きい粒子は排出導管11aを通って、捕集サイクロン
6に送られ回収される。中間の粒子は排出導管12aを
介して系外に排出され捕集サイクロン5で捕集される。
小さい粒子は、排出導管13aを介して系外に排出され
捕集される。捕集サイクロン4、5、6は粉体を原料供
給ノズル16を介して分級室に吸引導入するための吸引
減圧手段としての働きをすることも可能である。
In this apparatus system, the powder is fed to the quantitative feeder 2 by an appropriate means, and then introduced into the three-division classifier 1 by the raw material feed nozzle 16 through the vibrating feeder 3. Upon introduction, 50-30
The powder is introduced into the three-division classifier 1 at a flow rate of 0 m / sec.
The size of the classifying chamber of the three-division classifier 1 is usually [10
.About.50 cm] × [10 to 50 cm], so the powder has a density of 0.
The particles can be classified into three or more kinds of particle groups in an instant of 1 to 0.01 seconds or less. Then, the three-division classifier 1 classifies the particles into large particles (coarse particles), intermediate particles, and small particles. afterwards,
The large particles are sent to the collection cyclone 6 through the discharge conduit 11a and collected. Intermediate particles are discharged to the outside of the system through the discharge conduit 12a and collected by the collecting cyclone 5.
The small particles are discharged to the outside of the system via the discharge conduit 13a and collected. The collection cyclones 4, 5, and 6 can also function as suction decompression means for sucking and introducing the powder into the classification chamber through the raw material supply nozzle 16.

【0037】本発明の気流式分級装置は、特に電子写真
法による画像形成法に用いられるトナー又はトナー用着
色樹脂粉体を分級する場合に有効である。特に、低融
点、低軟下点、低ガラス転移点を有する結着樹脂からな
るトナー組成物を分級する場合に有効である。
The airflow classifier of the present invention is particularly effective for classifying toners or colored resin powders for toners used in the image forming method by electrophotography. In particular, it is effective when classifying a toner composition composed of a binder resin having a low melting point, a low softening point, and a low glass transition point.

【0038】このような樹脂を用いたトナー組成物を従
来の分級機に供すると、インジェクションエアー導入管
先端部から原料供給ノズルにかけての粒子流路管と分級
エッジ先端に融着物が発生しやすく、融着物が発生した
場合には適切な分級点からずれてしまう。そのうえで、
吸引減圧による流量調節を行なっても、要求される粉体
の粒度分布は得られにくく、分級効率が激減してしま
う。更に分級した粉体の中に融着物が混入したりして品
質の良い製品が得られにくい。
When a toner composition using such a resin is subjected to a conventional classifier, a fusion product is apt to be generated on the particle flow pipe from the injection air introduction pipe tip to the raw material supply nozzle and the classification edge tip, When a fused substance is generated, it deviates from an appropriate classification point. Then,
Even if the flow rate is adjusted by suction and decompression, it is difficult to obtain the required particle size distribution of the powder, and the classification efficiency is drastically reduced. Further, it is difficult to obtain a high-quality product because a fusion product is mixed in the classified powder.

【0039】本発明の分級装置では、粒子流の流れ方向
に分級エッジ17及び18を分級エッジブロック24及
び25との同時移動によりコアンダブロック26に沿っ
て飛翔する粒子流の流れ方向に分級エッジの向きを沿わ
したうえで、吸引減圧手段として排出道管11a、12
a、13aを通して吸引流の流量を調節することで粒子
の飛翔速度を増加させて分級域での粉体の分散がより向
上できるために、分級収率が良好になり、かつ、分級エ
ッジ先端への融着を防止又は抑制し、高精度な分級がで
きる効果がある。
In the classification apparatus of the present invention, the classification edges 17 and 18 are moved in the flow direction of the particle stream simultaneously with the classification edge blocks 24 and 25 to move the classification edges in the flow direction of the particle flow flying along the Coanda block 26. After passing the direction, the discharge passage pipes 11a, 12 are used as suction pressure reducing means.
By controlling the flow rate of the suction flow through a and 13a, the flight speed of particles can be increased and the dispersion of powder in the classification area can be further improved, so that the classification yield is improved and the particles at the tip of the classification edge are improved. It is possible to prevent or suppress the fusion of, and to perform highly accurate classification.

【0040】本発明の分級装置では、粉体の粒子径が小
さい程、効果がより顕著であり、特に重量平均径が10
μm以下の粉体を分級する場合にシャープな粒度分布を
有する分級品を得ることが可能であり、さらには重量平
均径が6μm以下の粉体からシャープな粒度分布を有す
る分級品を得ることが可能である。
In the classifying apparatus of the present invention, the smaller the particle size of the powder, the more remarkable the effect, and particularly the weight average particle size of 10
It is possible to obtain a classified product having a sharp particle size distribution when classifying a powder having a particle size of less than or equal to μm. Furthermore, a classified product having a sharp particle size distribution can be obtained from a powder having a weight average diameter of 6 μm or less. It is possible.

【0041】また、本発明の分級装置においては、分級
エッジの向き及びエッジ先端位置の移動に移動手段とし
てステッピングモーター等を用い、エッジ先端位置の検
知に検知手段としてポテンショメーター等を用いて、こ
れらを制御する制御装置により分級エッジ先端位置を制
御し、更に流量調節の自動化を行なえば、所望の分級点
が短時間に、かつ、より正確に得られるのでより好まし
い。
Further, in the classifying device of the present invention, a stepping motor or the like is used as the moving means for moving the direction of the classification edge and the edge tip position, and a potentiometer or the like is used as the detecting means for detecting the edge tip position. It is more preferable to control the position of the tip of the classification edge by a control device for controlling and further automate the flow rate adjustment because a desired classification point can be obtained more accurately in a short time.

【0042】〔実施例1〕 ・スチレン−ブチルアクリレートジビニルベンゼン共重
合体 100重量部 (モノマー重合重量比80.0/19.0/1.0、重
量平均分子量Mw35万) ・磁性酸化鉄(平均粒径0.18μm) 100重量部 ・ニグロシン 2重量部 ・低分子量エチレン−プロピレン共重合体 4重量部
Example 1 Styrene-butyl acrylate divinylbenzene copolymer 100 parts by weight (monomer polymerization weight ratio 80.0 / 19.0 / 1.0, weight average molecular weight Mw 350,000) Magnetic iron oxide (average Particle size 0.18 μm) 100 parts by weight Nigrosine 2 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight

【0043】上記材料をヘンシェルミキサー(FM−7
5型、三井三池化工機(株)製)でよく混合した後、温
度150℃に設定した2軸混練機(PCM−30型、池
貝鉄工(株)製)にて混練した。得られた混練物を冷却
し、ハンマーミルにて1mm以下に粗粉砕し、トナー製
造用の粗砕物を得た。該粗砕物を衝突式気流粉砕機で微
粉砕し、重量平均径6.7μmの粉砕原料を得られ、真
密度が1.73g/cm3 であった。
Henschel mixer (FM-7)
After thoroughly mixing with a No. 5 type, manufactured by Mitsui Miike Kakoki Co., Ltd., the mixture was kneaded with a twin-screw kneader (PCM-30 type, manufactured by Ikegai Tekko KK) set at a temperature of 150 ° C. The obtained kneaded material was cooled and coarsely pulverized with a hammer mill to 1 mm or less to obtain a coarsely crushed material for toner production. The coarsely pulverized product was finely pulverized by a collision type air flow pulverizer to obtain a pulverized raw material having a weight average diameter of 6.7 μm, and a true density was 1.73 g / cm 3 .

【0044】この得られた粉砕原料を供給機2を介し
て、振動フィーダー3及び原料供給管16(粉体原料導
入管42,高圧エアー導入部41及び変形筒部43)を
介して35.0kg/hの割合でコアンダ効果を利用し
て粗粉体、中粉体及び微粉体の3種に分級するために図
1に示す多分割分級機1に導入した。
35.0 kg of the obtained pulverized raw material is passed through the feeder 2 and the vibration feeder 3 and the raw material supply pipe 16 (powder raw material introducing pipe 42, high pressure air introducing portion 41 and deforming cylindrical portion 43). A multi-division classifier 1 shown in FIG. 1 was used to classify into three types of coarse powder, medium powder and fine powder by utilizing the Coanda effect at a ratio of / h.

【0045】導入に際しては排出口11、12、13に
連通している捕集サイクロン4、5、6の吸引減圧によ
る系内の減圧から派生する吸引力と原料供給ノズル16
に取付けた高圧エアー導入部41からの圧縮空気を利用
した。
At the time of introduction, the suction force derived from the reduced pressure in the system by the suction reduced pressure of the collection cyclones 4, 5, 6 communicating with the discharge ports 11, 12, 13 and the raw material supply nozzle 16
The compressed air from the high-pressure air introduction part 41 attached to was used.

【0046】又、分級域の形状を変更するために、各々
の設定距離を L0 =6mm(原料供給ノズル排出口16aの高さ径) L1 =34mm(分級エッジ17の側面とコアンダブロ
ック26の側面との距離) L2 =33mm(分級エッジ17の側面と分級エッジ1
8の側面との距離) L3 =37mm(分級エッジ18の側面と側壁23の側
面との距離) L4 =16mm(分級エッジ17の先端とコアンダブロ
ック26の側面との距離) L5 =34mm(分級エッジ18の先端とコアンダブロ
ック26の側面との距離) L6 =25mm(入気エッジ19の先端とコアンダブロ
ック26の側面との距離) R=14mm(コアンダブロック26の弧の半径) にして分級を行なった。
Further, in order to change the shape of the classification area, each set distance is set to L 0 = 6 mm (height diameter of the raw material supply nozzle discharge port 16a) L 1 = 34 mm (side surface of the classification edge 17 and the Coanda block 26) the distance between the side surfaces) L 2 = 33mm (side and classifying edge of the classifying edge 17 1
8 of the distance between the side) L 3 = 37mm (distance between the side surface of the classification distance between side surfaces and the side wall 23 of the edge 18) L 4 = 16mm (classification tip and the Coanda block 26 of the edge 17) L 5 = 34mm (Distance between tip of classification edge 18 and side surface of Coanda block 26) L 6 = 25 mm (distance between tip of air inlet edge 19 and side surface of Coanda block 26) R = 14 mm (radius of arc of Coanda block 26) And classified.

【0047】導入された微粉砕原料は0.1秒以下の瞬
時に分級された。分級された中粉体は重量平均粒径が
6.95μm(粒径4.0μm以下の粒子を22個数%
含有し、粒径10.08μm以上の粒子を1.0体積%
含有する)のシャープな分布を有する中粉体を分級収率
(投入された粉砕原料の全量に対する最終的に得られた
中粉体との比率)88%で得ることができ、トナー用と
して優れた性能を有していた。尚、分級された粗粉は前
記粉砕工程に再度循環した。
The introduced finely pulverized raw material was instantly classified for 0.1 second or less. The classified medium powder has a weight average particle size of 6.95 μm (22% by number of particles having a particle size of 4.0 μm or less).
Contains 1.0% by volume of particles having a particle size of 10.08 μm or more
It is possible to obtain a medium powder having a sharp distribution of (containing) in a classification yield (ratio of the finally obtained medium powder to the total amount of the pulverized raw materials charged) of 88%, which is excellent for toner. Had good performance. The classified coarse powder was recycled to the crushing step.

【0048】トナー微粉砕粉の真密度は、本発明におい
て、次の測定装置を用いて行なった。即ち、測定装置と
してはマイクロメトリックス アキュピック1330
(島津製作所製)を用い、トナー微粉砕粉を5g計り取
って真密度を求めた。
The true density of the toner finely pulverized powder was measured by the following measuring device in the present invention. That is, as a measuring device, Micrometrics Accupic 1330
(Manufactured by Shimadzu Corporation) was used to weigh 5 g of toner finely pulverized powder to determine the true density.

【0049】トナーの粒度分布は種々の方法によって測
定できるが、本発明においては、次の測定装置を用いて
行なった。
The particle size distribution of the toner can be measured by various methods, but in the present invention, it was measured using the following measuring device.

【0050】即ち、測定装置としてはコールターカウン
ターTA−11型あるいはコールターマルチサイザー1
1(コールター社製)を用いて。電解液は1級塩化ナト
リウムを用いて約1%Nacl水溶液を調整する。例え
ば、ISOTONR−11(コールターサイエンティフ
ィックジャパン社製)が使用できる。
That is, as a measuring device, Coulter Counter TA-11 type or Coulter Multisizer 1 is used.
1 (manufactured by Coulter). As the electrolytic solution, an approximately 1% aqueous NaCl solution is prepared using first-grade sodium chloride. For example, ISOTONR-11 (manufactured by Coulter Scientific Japan) can be used.

【0051】測定法としては前記電解液水溶液100〜
150ml中に分散剤として界面活性剤、好ましくはア
ルキルベンゼンスルホン酸塩を0.1〜5ml加え、さ
らに測定試料を2〜20mg加える。試料を懸濁した電
解液は超音波分散機で約1〜3分間分散処理を行ない、
前記測定装置により、アパチャーとして100μアパチ
ャーを用い、トナーの体積、個数を測定して体積分布と
個数分布とを算出した。それから、本発明の係るところ
の体積分布から求める重量基準の重量平均径を求めた。
As a measuring method, the electrolytic solution 100 to
To 150 ml, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is dispersed by an ultrasonic disperser for about 1 to 3 minutes,
The volume and the number of toner particles were measured by using the 100 μ-aperture as the aperture with the above-mentioned measuring device to calculate the volume distribution and the number distribution. Then, the weight-based weight average diameter determined from the volume distribution according to the present invention was determined.

【0052】〔実施例2〜4〕実施例1と同様のトナー
製造用の粗砕物を衝突式気流粉砕機で粉砕して得た表1
に示す粉砕原料を用いて、表1に示す分級域の設定距離
とした他は同様の装置システムで分級を行なった。表2
及び表3に示すように、いずれもシャープな分布を有す
る中粉体を効率良く得ることができ、トナー用として優
れた性能を有していた。
Examples 2 to 4 Table 1 obtained by crushing the same coarsely pulverized product for toner production as in Example 1 with a collision type air flow pulverizer
The pulverized raw material shown in Table 1 was used to perform classification with the same apparatus system except that the set distance in the classification area shown in Table 1 was used. Table 2
As shown in Table 3 and Table 3, it was possible to efficiently obtain a medium powder having a sharp distribution, and it had excellent performance as a toner.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】(実施例5〜6) ・不飽和ポリエステル樹脂 100重量部 ・銅フタロシアニン顔料 4.5重量部 (C.I.Pigment Blue 15) ・荷電制御剤 4.0重量部Examples 5-6 Unsaturated polyester resin 100 parts by weight Copper phthalocyanine pigment 4.5 parts by weight (CI Pigment Blue 15) Charge control agent 4.0 parts by weight

【0057】上記材料をヘンシェルミキサー(FM−7
5型、三井三池化工機(株)製)でよく混合した後、温
度100℃に設定した2軸混練機(PCM−30型、池
貝鉄工(株)製)にて混練した。得られた混練物を冷却
し、ハンマーミルにて1mm以下に粗粉砕し、トナー製
造用の粗砕物を得た。該粗砕物を衝突式気流粉砕機で微
粉砕し、重量平均径6.5μmの粉砕原料を得られ、真
密度が1.08g/cm3 であった。
Henschel mixer (FM-7
After thoroughly mixing with a No. 5 type, manufactured by Mitsui Miike Kakoki Co., Ltd., the mixture was kneaded with a twin-screw kneader (PCM-30 type, manufactured by Ikegai Iron Works Co., Ltd.) set at a temperature of 100 ° C. The obtained kneaded material was cooled and coarsely pulverized with a hammer mill to 1 mm or less to obtain a coarsely crushed material for toner production. The coarsely pulverized product was finely pulverized by a collision type air flow pulverizer to obtain a pulverized raw material having a weight average diameter of 6.5 μm and a true density of 1.08 g / cm 3 .

【0058】この粉砕原料を用いて、表4に示す分級条
件とした他は実施例1と同様の装置システムで分級を行
なった。
Using this pulverized raw material, classification was carried out in the same apparatus system as in Example 1 except that the classification conditions shown in Table 4 were used.

【0059】また、上記粗砕物を衝突式気流粉砕機で微
粉砕し、重量平均粒径5.5μmの粉砕原料(実施例
6)を得、表4に示す分級条件で分級を行なった。
Further, the above-mentioned coarsely pulverized product was finely pulverized by a collision type air flow pulverizer to obtain a pulverized raw material (Example 6) having a weight average particle diameter of 5.5 μm, which was classified under the classification conditions shown in Table 4.

【0060】表5及び表6に示すように、いずれもシャ
ープな分布を有する中粉体を効率良く得ることができ、
トナー用として優れた性能を有していた。
As shown in Tables 5 and 6, medium powder having a sharp distribution can be efficiently obtained.
It had excellent performance for toner.

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【表6】 [Table 6]

【0064】(比較例1〜3)実施例1と同様のトナー
原料を用いて、トナー製造用の粗砕物を衝突式気流粉砕
機で微粉砕し、重量平均粒径6.9μmの粉砕原料(比
較例1)と重量平均粒径5.5μmの粉砕原料(比較例
2)を得た。
(Comparative Examples 1 to 3) Using the same toner raw material as in Example 1, the coarsely pulverized product for toner production was finely pulverized by a collision type air flow pulverizer to obtain a pulverized raw material having a weight average particle diameter of 6.9 μm ( Comparative Example 1) and a pulverized raw material (Comparative Example 2) having a weight average particle diameter of 5.5 μm were obtained.

【0065】また、トナー原料を実施例5のものに代
え、重量平均粒径6.0μmの粉砕原料(比較例3)を
得た。
Further, the toner raw material was changed to that of Example 5 to obtain a pulverized raw material having a weight average particle diameter of 6.0 μm (Comparative Example 3).

【0066】分級は図10のフローチャートに従って行
ない、多分割分級装置は図7、図8及び図9のものを用
いた。
The classification was carried out according to the flow chart of FIG. 10, and the multi-division classifiers shown in FIGS. 7, 8 and 9 were used.

【0067】各々の分級条件は表7に示す通りであり、
分級によって得られた中粉体の粒度分布等は表8〜表1
0に示す通りであった。
The classification conditions are as shown in Table 7,
The particle size distribution and the like of the intermediate powder obtained by classification are shown in Table 8 to Table 1.
It was as shown in 0.

【0068】[0068]

【表7】 [Table 7]

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】[0071]

【表10】 [Table 10]

【0072】[0072]

【発明の効果】本発明の気流式分級装置によれば、分級
エッジ先端部における融着を良好に防止し得、また、分
級エッジ先端における分級気流の乱流を良好に防止し、
様々な粉体の比重及び分級気流条件に応じて正確な分級
点が得られ、装置が連動稼働しているときも分級点がず
れることなく分級収率の向上が図れる。特に、重量平均
粒径10μm以下のトナーを分級する場合に有効であ
る。
According to the airflow classifier of the present invention, fusion at the tip of the classifying edge can be satisfactorily prevented, and turbulent flow of the classifying airflow at the tip of the classifying edge can be satisfactorily prevented.
Accurate classification points can be obtained according to the specific gravity of various powders and classification airflow conditions, and the classification yield can be improved without shifting the classification points even when the device is operating in conjunction. In particular, it is effective when classifying a toner having a weight average particle diameter of 10 μm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気流式分級装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of an airflow type classification device of the present invention.

【図2】本発明の気流式分級装置の斜視図である。FIG. 2 is a perspective view of an airflow classification device of the present invention.

【図3】本発明の気流式分級装置の斜視図である。FIG. 3 is a perspective view of an airflow type classification device of the present invention.

【図4】図1におけるA−A′断面図である。FIG. 4 is a sectional view taken along the line AA ′ in FIG. 1;

【図5】図1の要部を示す図である。5 is a diagram showing a main part of FIG.

【図6】本発明を用いた分級プロセスの一例を示す説明
図である。
FIG. 6 is an explanatory diagram showing an example of a classification process using the present invention.

【図7】従来の気流式分級装置の概略断面図である。FIG. 7 is a schematic cross-sectional view of a conventional airflow classifier.

【図8】従来の気流式分級装置の斜視図である。FIG. 8 is a perspective view of a conventional airflow classifier.

【図9】従来の原料供給部の斜視図である。FIG. 9 is a perspective view of a conventional raw material supply unit.

【図10】従来の分級プロセスの一例を示す図である。FIG. 10 is a diagram showing an example of a conventional classification process.

【符号の説明】[Explanation of symbols]

1、101 気流式分級装置 2 定量供給機 3 振動フィーダー 4、5、6 捕集サイクロン 11、12、13 排出口 11a、12a、13a 排出導管 14、15 入気管 16 原料供給ノズル 17、18、117、118 分級エッジ 19 入気エッジ 20 第1気体導入調節手段 21 第2気体導入調節手段 22、23 側壁 24、25、124、125 分級エッジブロック 26 コアンダブロック 27 上部ブロック 28、29 静圧計 30a、30b、30c 固体粒子飛散方向 31 インジェクションエアー導入管 32 分級室 33、34、35、36 位置決め部材 40 原料供給口 41 高圧エアー導入部 42 粉体原料導入管 1, 101 Airflow classifier 2 Quantitative feeder 3 Vibration feeder 4, 5, 6 Collection cyclone 11, 12, 13 Discharge port 11a, 12a, 13a Discharge conduit 14, 15 Intake pipe 16 Raw material supply nozzle 17, 18, 117 , 118 Classification edge 19 Inlet edge 20 First gas introduction adjusting means 21 Second gas introduction adjusting means 22, 23 Side walls 24, 25, 124, 125 Classification edge block 26 Coanda block 27 Upper block 28, 29 Static pressure gauge 30a, 30b , 30c Solid particle scattering direction 31 Injection air introduction pipe 32 Classification chamber 33, 34, 35, 36 Positioning member 40 Raw material supply port 41 High pressure air introduction part 42 Powder raw material introduction pipe

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくともコアンダブロック及び複数の
分級エッジにより形成される分級域にて、原料供給ノズ
ルから供給される粉体原料を、コアンダ効果により少な
くとも粗粉体群、中粉体群及び微粉体群に分級するため
の気流式分級装置において、 原料供給ノズルを気流式分級装置の上面部に具備し、該
原料供給ノズルの側面側にコアンダブロックを具備し、
該原料供給ノズルの後端部に粉体原料を供給するための
粉体原料導入管と該粉体原料導入管の外周囲に高圧エア
ー導入部とを有することを特徴とする気流式分級装置。
1. A powder raw material supplied from a raw material supply nozzle in at least a classification area formed by a Coanda block and a plurality of classification edges, at least a coarse powder group, a medium powder group, and a fine powder due to the Coanda effect. In an airflow classifying device for classifying into groups, a raw material supply nozzle is provided on the upper surface of the airflow type classification device, and a Coanda block is provided on the side surface side of the raw material supply nozzle.
An air flow classifying device, comprising: a powder raw material introducing pipe for supplying a powder raw material to a rear end portion of the raw material supply nozzle; and a high pressure air introducing portion around an outer periphery of the powder raw material introducing pipe.
【請求項2】 原料供給ノズルは、鉛直方向に対して4
5°以下の角度で設置されている請求項1に記載の気流
式分級装置。
2. The raw material supply nozzle has four nozzles in the vertical direction.
The airflow classification device according to claim 1, wherein the airflow classification device is installed at an angle of 5 ° or less.
【請求項3】 分級された粗粉体群を排出するための粗
粉排出口は、分級された微粉体群を排出するための微粉
排出口よりも下方に設置されている請求項1または2に
記載の気流式分級装置。
3. The coarse powder discharge port for discharging the classified coarse powder group is installed below the fine powder discharge port for discharging the classified fine powder group. Airflow type classifier described in.
【請求項4】 原料供給ノズルの後端部に粉体原料導入
管を高圧エアー供給口の中央に設置し、粉体原料導入管
の外壁と高圧エアー供給口内壁間に高圧エアーを供給す
る供給口を有する請求項1乃至3のいずれかに記載の気
流式分級装置。
4. A powder raw material introduction pipe is installed at the center of the high pressure air supply port at the rear end of the raw material supply nozzle, and high pressure air is supplied between the outer wall of the powder raw material introduction pipe and the inner wall of the high pressure air supply port. The airflow classifier according to any one of claims 1 to 3, which has a mouth.
【請求項5】 前記分級エッジの設置位置が移動可能で
あり、前記分級エッジの設置位置が変更可能である請求
項1乃至4のいずれかに記載の気流式分級装置。
5. The airflow classification device according to claim 1, wherein the installation position of the classification edge is movable, and the installation position of the classification edge is changeable.
【請求項6】 前記分級エッジの先端が回動可能なよう
に、分級エッジが前記分級エッジブロックに具備されて
いる請求項1乃至5のいずれかに記載の気流式分級装
置。
6. The airflow classification device according to claim 1, wherein the classification edge block is provided with a classification edge so that a tip of the classification edge can rotate.
【請求項7】 前記分級エッジブロックが鉛直方向また
はほぼ鉛直方向にその設置位置を移動し得る請求項1乃
至6のいずれかに記載のいずれかに記載の気流式分級装
置。
7. The airflow classifying device according to claim 1, wherein the classifying edge block can move its installation position in a vertical direction or a substantially vertical direction.
【請求項8】 前記分級エッジが鉛直方向またはほぼ鉛
直方向にその設置位置を移動し得る請求項1乃至7のい
ずれかに記載の気流式分級装置。
8. The airflow classification device according to claim 1, wherein the classification edge can move its installation position in a vertical direction or a substantially vertical direction.
【請求項9】 結着樹脂及び着色剤を少なくとも含有す
る着色樹脂粒子をコアンダ効果を利用した気流式分級装
置で分級し、分級された分級粉から静電荷像現像用トナ
ーを製造する方法において、 気流式分級装置の上面部に設置されている原料供給ノズ
ルは後端部に着色樹脂粒子を供給するための粉体原料導
入管と該粉体原料導入管の外周囲に高圧エアー導入部と
を有し、 原料供給ノズルに着色樹脂粒子を供給し、 該原料供給ノズルの側面側に設置されたコアンダブロッ
ク及び複数の分級エッジにより形成される分級域にて、
原料供給ノズルから供給される着色樹脂粒子を、コアン
ダ効果により少なくとも粗粉体群、中粉体群及び微粉体
群に分級し、分級された中粉体群からトナーを生成する
ことを特徴とするトナーの製造方法。
9. A method for classifying colored resin particles containing at least a binder resin and a colorant with an airflow classifier utilizing a Coanda effect, and producing a toner for developing an electrostatic charge image from the classified particles. The raw material supply nozzle installed on the upper surface of the airflow classifier is provided with a powder raw material introducing pipe for supplying colored resin particles to the rear end and a high pressure air introducing unit around the outer periphery of the powder raw material introducing pipe. In the classifying region formed by the Coanda block and the plurality of classification edges installed on the side surface side of the raw material supply nozzle, the colored resin particles are supplied to the raw material supply nozzle,
The colored resin particles supplied from the raw material supply nozzle are classified into at least a coarse powder group, a medium powder group and a fine powder group by the Coanda effect, and a toner is generated from the classified medium powder group. Toner manufacturing method.
【請求項10】 該分級エッジを具備する分級エッジブ
ロックが、分級域の形状を変更できるようにその設置位
置を変更して、各々の設定距離を L0 >0、L1 >0、L2 >0、L3 >0 (式中、L0 は原料供給ノズル排出口の高さ径を示し、 L1 は中粉体群と微粉体群とに分画する分級エッジの側
面と、これに対峙するコアンダブロックの側面との距離
を示し、 L2 は中粉体群と微粉体群とに分画する分級エッジの側
面と、粗粉体群と中粉体群とに分画する分級エッジの側
面との距離を示し、 L3 は粗粉体群と中粉体群とに分画する分級エッジの側
面と、これに対峙する側壁の側面との距離を示す。)と
設定し、 着色樹脂粒子の真密度が0.3〜1.4g/cm3 のと
きL0 <L1 +L2 <nL3 (n≧1:実数)である条
件下で分級をおこなう請求項9に記載のトナーの製造方
法。
10. A classification edge block having the classification edge is changed in its installation position so that the shape of the classification area can be changed, and the set distances of L 0 > 0, L 1 > 0, L 2 are set. > 0, L 3 > 0 (In the formula, L 0 indicates the height diameter of the raw material supply nozzle discharge port, L 1 indicates the side of the classification edge for dividing into the medium powder group and the fine powder group, and Indicates the distance from the side surface of the facing Coanda block, and L 2 is the side surface of the classification edge that separates into the medium powder group and the fine powder group, and the classification edge that separates into the coarse powder group and the medium powder group. It represents the distance between the side surface of, L 3 is set and the side of the classifying edge demarcating coarse powder group and the medium powder group and the bisection. indicating the distance between the side surfaces of the side walls facing to) and, coloring when the true density of the resin particles is 0.3~1.4g / cm 3 L 0 <L 1 + L 2 <nL 3 (n ≧ 1: real number) Contact classification under a Method for producing a toner according to Nau claim 9.
【請求項11】 該分級エッジを具備する分級エッジブ
ロックが、分級域の形状を変更できるようにその設置位
置を変更して、各々の設定距離を、 L0 >0、L1 >0、L2 >0、L3 >0 (式中、L0 は原料供給ノズル排出口の高さ径を示し、 L1 は中粉体群と微粉体群とに分画する分級エッジの側
面と、これに対峙するコアンダブロックの側面との距離
を示し、 L2 は中粉体群と微粉体群とに分画する分級エッジの側
面と、粗粉体群と中粉体群とに分画する分級エッジの側
面との距離を示し、 L3 は粗粉体群と中粉体群とに分画する分級エッジの側
面と、これに対峙する側壁の側面との距離を示す。)と
設定し、 着色樹脂粒子の真密度が1.4g/cm3 を越える場合
にL0 <L3 <L1 +L2 である条件下で分級をおこな
う請求項9に記載のトナーの製造方法。
11. A classification edge block having the classification edge is changed in its installation position so that the shape of the classification area can be changed, and the set distances of the classification edge blocks are L 0 > 0, L 1 > 0, L, respectively. 2 > 0, L 3 > 0 (where L 0 is the height diameter of the material supply nozzle discharge port, L 1 is the side surface of the classification edge that divides into the medium powder group and the fine powder group, and Indicates the distance from the side surface of the Coanda block facing L, and L 2 is the side surface of the classification edge that divides into the medium powder group and the fine powder group, and the classification that separates into the coarse powder group and the medium powder group. It represents the distance between the side edges, L 3 is set and the side of the classifying edge demarcating coarse powder group and the medium powder group and the binary, indicates the distance between the side surfaces of the side walls facing thereto.) and, The classification is performed under the condition of L 0 <L 3 <L 1 + L 2 when the true density of the colored resin particles exceeds 1.4 g / cm 3. Manufacturing method of the above toner.
JP18916095A 1995-07-25 1995-07-25 Airflow classifier and toner manufacturing method Expired - Fee Related JP3278326B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18916095A JP3278326B2 (en) 1995-07-25 1995-07-25 Airflow classifier and toner manufacturing method
US08/685,963 US5934478A (en) 1995-07-25 1996-07-22 Gas stream classifier and process for producing toner
DE69619904T DE69619904T2 (en) 1995-07-25 1996-07-24 Gas flow classifiers and methods for producing toner
EP96111928A EP0755727B1 (en) 1995-07-25 1996-07-24 Gas stream classifier and process for producing toner
CN96110290A CN1054554C (en) 1995-07-25 1996-07-25 Gas stream classifier and process for producing toner
KR1019960030243A KR100254668B1 (en) 1995-07-25 1996-07-25 Gas stream classifier and process for producing toner
US09/252,078 US6015648A (en) 1995-07-25 1999-02-18 Gas stream classifier and process for producing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18916095A JP3278326B2 (en) 1995-07-25 1995-07-25 Airflow classifier and toner manufacturing method

Publications (2)

Publication Number Publication Date
JPH0938581A true JPH0938581A (en) 1997-02-10
JP3278326B2 JP3278326B2 (en) 2002-04-30

Family

ID=16236466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18916095A Expired - Fee Related JP3278326B2 (en) 1995-07-25 1995-07-25 Airflow classifier and toner manufacturing method

Country Status (1)

Country Link
JP (1) JP3278326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135760A (en) * 2012-01-17 2012-07-19 Mitsubishi Chemicals Corp Powder classification method
CN113333288A (en) * 2021-06-07 2021-09-03 湘潭大学 Multi-particle-size powder classifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135760A (en) * 2012-01-17 2012-07-19 Mitsubishi Chemicals Corp Powder classification method
CN113333288A (en) * 2021-06-07 2021-09-03 湘潭大学 Multi-particle-size powder classifier

Also Published As

Publication number Publication date
JP3278326B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
EP0449323B1 (en) Process for producing toner for developing electrostatic image and apparatus therefor
KR100254668B1 (en) Gas stream classifier and process for producing toner
KR100186817B1 (en) Gas current classifier and process for producing toner
KR0161561B1 (en) Gas current classifier and process for producing toner
JPH06230606A (en) Production of toner and producing equipment system used therefor
JPH09187732A (en) Preparation of toner
JP3297553B2 (en) Airflow classifier and toner manufacturing method
JP3278326B2 (en) Airflow classifier and toner manufacturing method
JPH1115196A (en) Production of toner and production system
JP3327773B2 (en) Manufacturing method of toner for electrostatic charge development
JP3278325B2 (en) Airflow classifier and toner manufacturing method
JP2001201890A (en) Manufacturing method of toner
JP3347551B2 (en) Airflow classifier and method for producing toner
JP3295794B2 (en) Airflow classifier and toner manufacturing method
JPH09314060A (en) Air-flow type classifying device and production of electrostatic charge image developing toner
JP3327763B2 (en) Airflow classifier and toner manufacturing method
JPH09187733A (en) Air current-utilizing type classifying apparatus
JP3295793B2 (en) Airflow classifier and toner manufacturing method
JP3382468B2 (en) Manufacturing method of toner
JP2715338B2 (en) Airflow classifier and airflow classification method
JPH1099784A (en) Air classifier and production of electrostatic charge image developing toner
JPH1110090A (en) Air classifier and production of electrostatic charge image developing toner
JPH07109523B2 (en) Method for producing toner for developing electrostatic image
JPH1078677A (en) Production of toner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees