JPH08182966A - Pneumatic classifier - Google Patents

Pneumatic classifier

Info

Publication number
JPH08182966A
JPH08182966A JP6337580A JP33758094A JPH08182966A JP H08182966 A JPH08182966 A JP H08182966A JP 6337580 A JP6337580 A JP 6337580A JP 33758094 A JP33758094 A JP 33758094A JP H08182966 A JPH08182966 A JP H08182966A
Authority
JP
Japan
Prior art keywords
classification
classifying
edge
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6337580A
Other languages
Japanese (ja)
Inventor
Youko Goka
洋子 五箇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6337580A priority Critical patent/JPH08182966A/en
Publication of JPH08182966A publication Critical patent/JPH08182966A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • B07B7/0865Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream using the coanda effect of the moving gas stream

Abstract

PURPOSE: To prevent the turbulence of a classifier air current at the tip of a classifying edge and to perform classifying with high accuracy by an accurate classifying point by fascilitating setting of the classifying edge at an optimum position. CONSTITUTION: On lower side walls 23, 25 of side wall blocks 22-24, classifying edges 17, 18 are provided. In the lower part of the side wall block 22, a raw material feeding pipe 16 opened to a classifying chamber 32 is installed. Besides, a core bloc 26 bent downward in the shape of a long ellipse connected to the extention of the tangent line of the bottom of the pipe 16 is installed. In an upper wall 27 of the classifying chamber, an intake air edge 19 of knife edge type is provided on the lower part on the classifying chamber 27 side, and intake air pipes 14, 15 opened to the classifying chamber 32 are installed across the upper wall 27 of the classifying chamber. The pipes 14, 15 are provided with the 1st and the 2nd gas introducing adjusting means 20, 21 and static pressure meters 28, 29, respectively. The classifying edges 17, 18 and the intake air edge 19 can be rotated and set to a desired position. Since a classifying point is thus set accurately, powder having sharp particle size distribution is effective produced, and also there in no variation in the classifying point, and in addition, the change width of the classifying point is extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コアンダ効果を利用し
て粉体原料を分級する気流式分級機に関し、更に詳しく
は、本発明は、重量平均粒径20μm以下の粒子を50
個数%以上含有する粉体原料の分級を、粉体を気流に乗
せて運ぶと共に、コアンダ効果、粉体原料中の個々の粒
子の粒径に応じた慣性力及び遠心力等の差に基づき、所
定の粒度を有する粒子群に効率よく分級し得る気流式分
級機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow classifier for classifying powder raw materials by utilizing the Coanda effect. More specifically, the present invention relates to a powder having a weight average particle size of 20 .mu.m or less.
Based on the Coanda effect, the difference in inertial force, centrifugal force, etc. according to the particle size of each particle in the powder material, while classifying the powder material containing more than a few percent by number and carrying the powder in the air stream. The present invention relates to an airflow classifier capable of efficiently classifying particles having a predetermined particle size.

【0002】[0002]

【従来の技術】粉体原料の分級については、各種の気流
式分級機及び気流式分級方法が提案されているが、この
中で、回転翼を用いる分級機と可動部分を有しない分級
機がある。このうち、可動部分のない分級機としては、
固定壁遠心式分級機と慣性力分級機がある。かかる慣性
力を利用した微粉域で分級できる分級機としては、Lo
ffler.F.and K.Maly:Sympos
ium on Powder Technology
D−2(1981)に例示され、日鉄鉱業製として商品
化されているエルボジェット分級機や、Okuda.
S.and Yasukuni.J.:Proc.In
ter.Symposium on Powder T
echnology ’81,771(1981)で例
示され提案されている分級機がある。図5に従来の慣性
力を利用した分級機の分級室の断面図を示し、図6にそ
の斜視図を示す。これらの図に示された従来の気流式分
級機では、先ず、分級機室132の分級域に開口部を有
する原料供給管116の出口から、粉体原料が気流と共
に分級域内へと高速で噴出される。分級室132内には
コアンダブロック126が設けられており、入気口11
4及び115から、原料供給管116の出口から噴出さ
れる気流と角度の交叉する気流を導入することによっ
て、コアンダブロック126に沿って流れる湾曲気流の
遠心力によって、図5に示す様に、粉体原料を粗粉と中
粉と微粉とに分離し、先端の細くなった分級エッジ11
7及び118によって、粗粉と中粉と微粉の分級を行な
っている。
2. Description of the Related Art For classifying powder raw materials, various airflow classifiers and airflow classifying methods have been proposed. Among them, classifiers using rotary blades and classifiers having no moving parts are proposed. is there. Among them, as a classifier without moving parts,
There are fixed wall centrifugal classifiers and inertial force classifiers. As a classifier capable of classifying in the fine powder region using such inertial force, Lo
ffler. F. and K. Maly: Symposs
ium on Powder Technology
D-2 (1981), an elbow jet classifier commercialized by Nippon Steel Mining Co., Ltd., Okuda.
S. and Yasukuni. J. : Proc. In
ter. Symposium on Powder T
There is a classifier exemplified and proposed in technology '81, 771 (1981). FIG. 5 shows a sectional view of a classification chamber of a conventional classifier utilizing inertial force, and FIG. 6 shows a perspective view thereof. In the conventional airflow type classifier shown in these figures, first, the powder raw material is jetted at high speed into the classification area together with the airflow from the outlet of the raw material supply pipe 116 having an opening in the classification area of the classifier chamber 132. To be done. A Coanda block 126 is provided in the classification chamber 132, and the air inlet 11
4 and 115, by introducing an airflow that intersects the airflow ejected from the outlet of the raw material supply pipe 116 at an angle, the centrifugal force of the curved airflow flowing along the Coanda block 126 causes the powder to flow, as shown in FIG. The body material is separated into coarse powder, medium powder and fine powder, and the classification edge 11 has a thin tip.
7 and 118 classify coarse powder, medium powder and fine powder.

【0003】しかしながら、上記した様な従来の分級機
101では、下記に挙げる問題を有していた。即ち、従
来の分級機101では、分級エッジブロックである側壁
ブロック123及び125、粗粉側の側壁ブロック12
4(以下、単に粗粉側ブロックと呼ぶ)が夫々固定され
ている為、分級エッジ117及び118の先端位置を調
節し、それに応じて分級の為の気流の流量を調節するこ
とによって、分級点(即ち、分級の境となる粒子の大き
さ)を所定の値に設定していた。更に、粉体の比重、及
び所定の分級点に応じた分級エッジ117及び118の
先端位置を検知して移動させ、それに応じて所定流量に
なる様に気流を制御していた。しかし、従来の様に、分
級エッジ117及び118の先端位置のみを調節するだ
けでは、角度によっては、そのエッジ先端付近で気流の
乱れが起こり易く、その結果、精度のよい分級が行われ
ない場合があり、本来であれば大きさが均一でなければ
ならない粒子群の中に他の粒子群に入るべき大きさの粒
子が混入してしまうという場合があった。又、分級点を
変更したい場合に、分級エッジ117及び118の先端
位置を変更させ、それに応じて所定流量となる様に制御
しても、気流方向に沿って分級エッジの位置を制御する
ことは出来ず、結局、分級点を所定の値に合わせるのに
時間を要するばかりでなく、分級精度も低下する等、改
善すべき問題を有していた。
However, the conventional classifier 101 as described above has the following problems. That is, in the conventional classifier 101, the side wall blocks 123 and 125, which are classification edge blocks, and the side wall block 12 on the coarse powder side.
4 (hereinafter, simply referred to as a coarse powder side block) are fixed respectively, the tip positions of the classification edges 117 and 118 are adjusted, and the flow rate of the air flow for classification is adjusted accordingly, so that the classification point (That is, the size of the particle that becomes the boundary of classification) is set to a predetermined value. Further, the specific gravity of the powder and the tip positions of the classification edges 117 and 118 corresponding to a predetermined classification point are detected and moved, and the air flow is controlled so that the predetermined flow rate is obtained accordingly. However, if only adjusting the tip positions of the classification edges 117 and 118 as in the conventional art, the turbulence of the air flow is likely to occur near the tip ends of the edges depending on the angle, and as a result, accurate classification cannot be performed. In some cases, particles having a size that should be uniform should originally be mixed with particles having a size that should be in another particle group. Further, even if the tip positions of the classification edges 117 and 118 are changed and the flow rate is controlled to a predetermined flow rate in accordance with the change of the classification point, the position of the classification edge is not controlled along the air flow direction. In the end, there is a problem to be improved such that not only it takes time to adjust the classification point to a predetermined value but also the classification accuracy is lowered.

【0004】特に、複写機、プリンター等に用いられる
静電荷像現像用トナーの製造の場合に行われる分級の際
には、上記の問題が顕著であった。一般に、トナーには
数多くの異なった性質が要求される。かかる要求性能の
ものを得る為には、使用する原材料についての検討は勿
論のこと、製造方法の違いがトナーの特性に影響を与え
ることも多く、製造方法についても十分に検討する必要
がある。トナー製造の際の分級工程においては、分級さ
れた粒子群が、シャープな粒度分布を有することが要求
される。又、低コストで効率良く安定的に品質のよいト
ナーを作り出すことが望まれている。
In particular, the above-mentioned problems were remarkable in the classification carried out in the case of manufacturing the toner for developing an electrostatic image used in a copying machine, a printer or the like. Toners generally require many different properties. In order to obtain the required performance, the raw materials to be used are, of course, examined, and the difference in the manufacturing method often affects the characteristics of the toner, and it is necessary to thoroughly study the manufacturing method. In the classification step during toner production, classified particle groups are required to have a sharp particle size distribution. Further, it is desired to produce a high-quality toner efficiently and stably at low cost.

【0005】一般的に、トナーの構成材料に使用される
結着樹脂としては、低融点、低軟化点及び低ガラス転移
点の樹脂が結着樹脂として使用されている。この様な樹
脂を含有する粉体を分級機に導入して分級すると、分級
機内での付着あるいは融着が発生し易いという問題があ
る。一方、近年、例えば、複写機の省エネルギー対策と
して、圧力により被記録材に定着させる為に、結着樹脂
として、ワックスの様な軟質のものを使用したり、加熱
式定着する場合であっても、定着スピードを速くした
り、定着に要する消費電力を少なくしたり、且つ低温で
定着させる為に、低ガラス転移点の、或いは低軟化点の
結着樹脂を使用するようになってきている。
Generally, as a binder resin used as a constituent material of a toner, a resin having a low melting point, a low softening point and a low glass transition point is used as the binder resin. When the powder containing such a resin is introduced into a classifier and classified, there is a problem that adhesion or fusion in the classifier is likely to occur. On the other hand, in recent years, for example, even when a soft binder such as wax is used as the binder resin in order to fix it on the recording material by pressure as a measure to save energy in a copying machine, or even when heat fixing is performed. In order to increase the fixing speed, reduce the power consumption required for fixing, and fix at a low temperature, a binder resin having a low glass transition point or a low softening point has been used.

【0006】更に、近年、複写機やプリンターにおける
画質向上の為に、要求されるトナー粒子が徐々に微細化
する方向に進んでいる。一般に、物質は細かくなるに従
い粒子間力の働きが大きくなっていくが、樹脂粒子やト
ナー粒子の場合も同様で、微小サイズになると粒子同士
の凝集性が大きくなっていく。又、粒子同士の質量差も
小さくなっていく。この様な凝集体に、衝撃力や摩擦力
等の外力が働くと、分級装置内に粒子が融着物を発生し
易い。特に、分級エッジ先端への融着が起こり易く、こ
の様な現象が発生すると、分級精度が悪化し、常時安定
した状態で分級装置が稼働していない為、良質の分級品
を長期間にわたり得ることが困難となる。
Further, in recent years, in order to improve image quality in copying machines and printers, required toner particles are gradually becoming finer. Generally, as the substance becomes finer, the action of the interparticle force increases, but the same applies to the case of resin particles and toner particles, and when the substance has a small size, the cohesiveness of the particles increases. Further, the mass difference between the particles also becomes smaller. When an external force such as an impact force or a frictional force acts on such an agglomerate, the particles are likely to generate a fused substance in the classifying device. In particular, fusion is likely to occur at the tip of the classification edge, and when such a phenomenon occurs, the classification accuracy deteriorates and the classification device is not operating in a stable state at all times, so a high-quality classified product can be obtained for a long period of time. Becomes difficult.

【0007】特に、重量平均径が10μm以下のトナー
原料から、シャープな粒度分布を有するトナーを得よう
とする場合には、従来の分級装置では分級収率の低下を
引き起こすという問題がある。更に、重量平均径が8μ
m以下のトナー原料からシャープな粒度分布を有するト
ナーを得ようとする場合には、上記した従来の装置では
分級収率の低下を引き起こすことが顕著に生じる。この
様な点から、微粉体、特にトナーの如き樹脂微粉体を、
安定且つ効率的に分級し得る気流式分級機が望まれてい
る。
In particular, when a toner having a sharp particle size distribution is to be obtained from a toner raw material having a weight average particle diameter of 10 μm or less, there is a problem that a conventional classification device causes a reduction in classification yield. Furthermore, the weight average diameter is 8μ
When a toner having a sharp particle size distribution is to be obtained from a toner raw material having a particle size of m or less, the conventional apparatus described above remarkably causes a decrease in classification yield. From these points, fine powder, especially resin fine powder such as toner,
An airflow classifier capable of stable and efficient classification is desired.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、上記従来技術の問題点を解消した気流式分級装置を
提供することにある。即ち、本発明の目的は、正確な分
級点を設定することにより、より高精度の分級を可能に
し、精緻な粒度分布を有する粉体を効率良く生成し得る
気流式分級装置を提供することにある。又、本発明の他
の目的は、分級室内での融着等が発生しにくく、装置内
での分級点の変動が生ずることがなく、安定な分級が可
能な気流式分級装置を提供することにある。更に、本発
明の目的は、分級点の変更幅が大きい気流式分級装置を
提供することにある。更に、本発明の目的は、分級点の
変更を短時間に成し得る気流式分級装置を提供すること
にある。又、本発明の目的は、重量平均径が10μm以
下の粉体原料からシャープな粒度分布を有する分級品を
効率良く得ることが出来る気流式分級装置を提供するこ
とを目的とする。特に、重量平均径が8μm以下のトナ
ー原料からシャープな粒度分布を有する分級品を効率良
く得られる気流式分級装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide an air flow type classification device which solves the problems of the prior art. That is, an object of the present invention is to provide an air flow type classification device capable of more accurately classifying by setting an accurate classification point and efficiently generating powder having a fine particle size distribution. is there. Another object of the present invention is to provide an airflow type classification device capable of stable classification without causing fusion or the like in the classification chamber and causing no change in the classification point in the device. It is in. Further, it is an object of the present invention to provide an airflow type classification device having a large change range of classification points. Further, it is an object of the present invention to provide an airflow type classification device which can change the classification point in a short time. It is another object of the present invention to provide an airflow classifier which can efficiently obtain a classified product having a sharp particle size distribution from a powder raw material having a weight average diameter of 10 μm or less. In particular, it is an object of the present invention to provide an airflow type classification device which can efficiently obtain a classified product having a sharp particle size distribution from a toner raw material having a weight average diameter of 8 μm or less.

【0009】[0009]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成する。即ち、本発明は、少なくともコ
アンダブロック、側壁ブロック及び複数の分級エッジに
よって形成される分級域を有し、該分級域で原料供給管
から供給される粉体原料がコアンダ効果により、少なく
とも粗粉体群、中粉体群及び微粉体群に分級される気流
式分級機において、粗粉体群側の側壁ブロックの設置位
置が分級域の形状を変更することが出来るように移動可
能に構成されていることを特徴とする気流式分級機であ
る。
The above object is achieved by the present invention described below. That is, the present invention has at least a classification area formed by a Coanda block, a side wall block and a plurality of classification edges, and the powder raw material supplied from the raw material supply pipe in the classification area is at least a coarse powder due to the Coanda effect. Group, medium powder group and fine powder group are classified by air flow type, the side wall block side of the coarse powder group is configured to be movable so that the shape of the classification area can be changed. It is an air flow type classifier characterized by the fact that it is.

【0010】[0010]

【作用】本発明によれば、最適な位置に分級エッジを容
易に設定することが出来る為、分級エッジ先端における
分級気流の乱流を良好に防止し、様々な粉体の比重及び
分級気流条件に応じて正確な分級点から得られ、シャー
プな粒度分布のトナーが高い分級収率で得られ、トナー
成分による装置的摩耗を防ぎ、連続して安定した生産を
行うことが出来る。
According to the present invention, since the classification edge can be easily set to the optimum position, the turbulent flow of the classification airflow at the tip of the classification edge can be effectively prevented, and the specific gravity of various powders and the classification airflow conditions can be improved. According to the above, a toner having a sharp particle size distribution can be obtained with a high classification yield according to the above, and abrasion of the apparatus due to toner components can be prevented, and continuous and stable production can be performed.

【0011】[0011]

【実施例】以下に、添付図面に基づき、本発明の粉体原
料を3分割する気流式分級装置を例にとって説明し、本
発明を詳細に説明する。本発明の気流式分級機の一具体
例として、図1に3分割気流式分級装置の分級室32近
傍の断面図を示し、図2にその斜視図を示した。図1及
び図2において、22、23及び24は夫々側壁ブロッ
クを示す。図に示す様に、下部側壁は23及び25で示
される形状を有し、ナイフエッジ型の分級エッジ17及
び18を夫々具備しており、この分級エッジ17及び1
8により分級室32の分級域は3分画されている。しか
し本発明は、これに限定されず、分級エッジの数を変更
することによって、分級室32は任意の分級域に分割さ
れる。又、本発明の気流式分級機は、図1及び図2に示
す様に、上部にある側壁ブロック22の下部には、分級
室32に開口部を有する原料供給管16が設けられてお
り、更に、該原料供給管16の底部接線の延長方向に対
して下方に折り曲げて長楕円弧を描いたコアンダブロッ
ク26が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings by taking as an example a gas stream classifier for dividing the powder material of the present invention into three parts. As a specific example of the airflow classifier of the present invention, FIG. 1 shows a cross-sectional view of the vicinity of a classification chamber 32 of a three-division airflow classifier, and FIG. 2 shows a perspective view thereof. In FIGS. 1 and 2, reference numerals 22, 23 and 24 denote side wall blocks, respectively. As shown in the figure, the lower side wall has a shape shown by 23 and 25, and is provided with knife edge type classification edges 17 and 18, respectively.
According to 8, the classification area of the classification chamber 32 is divided into three. However, the present invention is not limited to this, and the classification chamber 32 is divided into arbitrary classification regions by changing the number of classification edges. Further, in the air flow classifier of the present invention, as shown in FIGS. 1 and 2, a raw material supply pipe 16 having an opening in a classifying chamber 32 is provided below a side wall block 22 at the upper part, Further, a Coanda block 26 is installed which is bent downward with respect to the direction of extension of the bottom tangent line of the raw material supply pipe 16 to draw an elliptical arc.

【0012】分級室の上部壁27は、図1及び図2に示
した様に、分級室32側の下部部分にナイフエッジ型の
入気エッジ19を具備し、更に分級室の上部壁27を挟
んで分級室32に開口している入気管14及び15が設
けられている。入気管14及び15には、ダンパーの如
き第1及び第2気体導入調節手段20及び21、更に、
静圧計28及び29が設けられている。本発明の気流式
分級機において、上記した様な分級エッジ17、18及
び入気エッジ19の設置位置は、被分級処理原料である
粉体の種類により、或は所望する粒径により調節され
る。即ち、分級エッジ17、18及び入気エッジ19
は、図1に示した様に、夫々の軸17a、18a及び1
9aを中心として回動可能に構成されており、これらの
軸を中心としてエッジを回転させ各エッジの先端部を所
望の位置に設定することが可能である。
As shown in FIGS. 1 and 2, the upper wall 27 of the classification chamber is provided with a knife-edge type air inlet edge 19 in the lower portion on the side of the classification chamber 32, and further the upper wall 27 of the classification chamber is provided. Air inlet pipes 14 and 15 which are sandwiched and open to the classification chamber 32 are provided. The inlet pipes 14 and 15 are provided with first and second gas introduction adjusting means 20 and 21 such as dampers, and
Static pressure gauges 28 and 29 are provided. In the airflow classifier of the present invention, the installation positions of the classification edges 17 and 18 and the air intake edge 19 as described above are adjusted depending on the kind of powder as the raw material to be classified or the desired particle size. . That is, the classification edges 17 and 18 and the intake edge 19
Respectively, as shown in FIG. 1, respectively shafts 17a, 18a and 1
It is configured to be rotatable around 9a, and the edges can be rotated around these axes to set the tip of each edge to a desired position.

【0013】更に、本発明の気流式分級機級機は、従来
の装置では固定されている粗粉側の側壁である粗粉側ブ
ロック24の設定位置も移動可能に構成されており、被
分級処理原料の粉体の種類及び所望する粒径により、設
定位置を変えることが出来る。この結果、本発明では、
上記の分級エッジ17、18及び入気エッジ19の各エ
ッジの設定位置と、粗粉側ブロック24の設定位置とを
適宜に決定することによって、後述する様に、分級室内
32の各分級域を任意且つ容易に設定することが出来
る。粗粉側ブロック24の位置の移動は、好ましくは、
水平又はほぼ水平方向に移動する。この為、図1及び図
2に示されている様に、水平に移動することが可能な位
置調節手段を設け、外移動をステッピングモーター等を
用いて行うのが好ましい。
Further, in the air flow type classifier of the present invention, the setting position of the coarse powder side block 24, which is the side wall on the coarse powder side fixed in the conventional apparatus, is also movable so that classification is performed. The setting position can be changed depending on the type of powder of the processing raw material and the desired particle size. As a result, in the present invention,
By appropriately determining the setting position of each edge of the classification edges 17 and 18 and the air intake edge 19 and the setting position of the coarse powder side block 24, each classification region of the classification chamber 32 is set as described later. It can be set arbitrarily and easily. The movement of the position of the coarse powder side block 24 is preferably
Move horizontally or almost horizontally. For this reason, as shown in FIGS. 1 and 2, it is preferable to provide a position adjusting means capable of moving horizontally and to carry out the external movement by using a stepping motor or the like.

【0014】又、分級室32の底面には、夫々の分画域
に対応させて、排出口が設けられており、例えば、図1
の例では、分級室32内に開口している排出口11、1
2及び13が設けられている。これらの排出口には、互
いの排出口を連通する連通手段を接続し、更に夫々にバ
ルブ手段の如き開閉手段が設けられていてもよい。
Further, the bottom of the classification chamber 32 is provided with an outlet corresponding to each fractionation area, for example, as shown in FIG.
In the example of FIG.
2 and 13 are provided. These discharge ports may be connected to communication means for communicating the discharge ports with each other, and each may be provided with an opening / closing means such as a valve means.

【0015】分級室32に開口部を有する原料供給管1
6は、原料分体を分級室32内へと開口部から噴出する
ことが出来るものであればいずれの構造のものでもよい
が、例えば、図1及び図2に示す様な、直管筒部16a
と、これに続き先端が分級室32への開口部となってい
る角錐筒部16bとから成るものが好ましい。又、直管
筒部の内径と角錐筒部の最も狭まった箇所(分級室32
への開口部)の内径の比を、20:1〜1:1、好まし
くは10:1〜2:1に設定すると、良好な原料分体の
噴出速度が得られる。
Raw material supply pipe 1 having an opening in the classification chamber 32
6 may have any structure as long as it is capable of ejecting the raw material divided material into the classification chamber 32 through the opening portion. For example, a straight pipe tubular portion as shown in FIGS. 1 and 2. 16a
And a pyramidal cylinder portion 16b whose tip is an opening to the classification chamber 32 following this. Also, the inner diameter of the straight pipe cylinder and the narrowest part of the pyramid cylinder (classification chamber 32
When the ratio of the inner diameter of the opening) is set to 20: 1 to 1: 1 and preferably 10: 1 to 2: 1, a good ejection speed of the raw material segmentation can be obtained.

【0016】又、粉体原料を気流と共に原料供給管16
へと投入する手段は、いずれにも限定されないが、例え
ば、0.09〜0.29MPa程度の圧力を加えて送る
方法、分級域の下流側に送風機を設け、これを大型化す
ることによって分級域の負圧をより大きくすることで外
気と粉体原料を自然に吸引する方法、或は、粉体原料の
投入口である原料供給管16に接続してインゼクション
フィーダーを装着し、これによって粉体原料と外気とを
吸引せしめると共に、原料供給管16を経て分級域へ送
る方法等がある。本発明においては、特に上記の3つの
粉体の投入手段のうち、分級域の負圧を大きくして外気
と原料粉を自然に吸引する方法、及びインゼクションフ
ィーダーの装着による方法が、装置面で、更に運転条件
でも好ましい影響が出てくる。
Further, the raw material supply pipe 16 together with the powder raw material is supplied with the air flow.
The means for feeding into is not limited to any, but for example, a method of sending by applying a pressure of about 0.09 to 0.29 MPa, a blower is provided on the downstream side of the classification area, and classification is performed by enlarging it. A method of naturally sucking the outside air and the powder raw material by increasing the negative pressure in the area, or connecting the raw material supply pipe 16 which is an input port of the powder raw material and mounting an injection feeder, There is a method in which the powder raw material and the outside air are sucked by the method, and the powder raw material is sent to the classification area through the raw material supply pipe 16. In the present invention, among the above-mentioned three powder feeding means, in particular, a method of increasing the negative pressure in the classification area to naturally suck the outside air and the raw material powder, and a method of mounting an injection feeder are used. In terms of performance, there is a positive effect on operating conditions.

【0017】以上の様に構成されている多分割(図の例
では3分割)分級域での分級操作は、例えば次の様にし
て行なわれる。即ち、排出口11、12及び13のうち
の少なくとも1つを介して分級室32内を減圧すること
によって、分級室32内への開口部を有する原料供給管
16が減圧され、該減圧によって生じる流動によって原
料供給管16中に気流が生じる。流動する気流の速さは
本発明において限定されないが、好ましくは流速50〜
300m/秒程度の速度で粉体原料を原料供給管16を
介して分級室32内に供給する。以上の手段によって供
給された粉体原料は、原料供給管16の下部に設けられ
ているコアンダブロック26の作用によるコアンダ効果
と、その際に分級室32内に流入する空気の如き気体の
作用とにより湾曲線30を描いて移動し、且つ夫々の粒
子の粒径及び慣性力の大小に応じて、大きい粒子(粗粒
子)は30aで示した様に気流の外側、即ち分級エッジ
18の外側の第1分画域に、中間の粒子(規格内粒径の
粒子)は30bの様に移動して分級エッジ17と18の
間の第2分画域に、更に小さい粒子(規格粒径以下の粒
子)は30cの様に移動して分級エッジ17の内側の第
3分画域に夫々分級される。そして、大きい粒子は排出
口11より、中間粒子は排出口12より、小さい粒子は
排出口13より夫々系外へと排出される。
The classification operation in the multi-division (three divisions in the illustrated example) classification area configured as described above is performed, for example, as follows. That is, by decompressing the inside of the classification chamber 32 via at least one of the discharge ports 11, 12, and 13, the raw material supply pipe 16 having an opening into the classification chamber 32 is decompressed, and the decompression results. An air flow is generated in the raw material supply pipe 16 by the flow. The speed of the flowing air flow is not limited in the present invention, but the flow speed is preferably 50-
The powder raw material is supplied into the classification chamber 32 through the raw material supply pipe 16 at a speed of about 300 m / sec. The powder raw material supplied by the above means has the Coanda effect due to the operation of the Coanda block 26 provided at the lower part of the raw material supply pipe 16 and the operation of gas such as air flowing into the classification chamber 32 at that time. Move in a curved line 30 due to, and depending on the particle size of each particle and the magnitude of the inertial force, the large particles (coarse particles) are outside the air flow, that is, outside the classification edge 18, as indicated by 30a. Intermediate particles (particles with a size within the standard) move to the first fraction area as shown by 30b, and smaller particles (particles with a standard particle size or less) into the second fraction area between the classification edges 17 and 18. The particles) move like 30c and are classified into the third fraction area inside the classification edge 17, respectively. Then, large particles are discharged from the discharge port 11, intermediate particles are discharged from the discharge port 12, and small particles are discharged from the discharge port 13, respectively.

【0018】本実施例による粉体原料の分級において、
分級点は、粉体が分級室32内へ飛び出す位置であるコ
アンダブロック26の左端部分に対する分級エッジ17
及び18の夫々のエッジ先端位置によって主に決定され
る。更に、分級点は、分級気流の流量或いは原料供給管
16からの粉体の噴出速度等の影響を受ける。本発明の
気流式分級装置において、分級室32に粉体原料が導入
されると、粉体中の粒子の大きさに応じて分散して粒子
流が形成される。そこで、その流線に沿って先ず粗粉側
の側壁である粗分ブロック24を移動させ、次いで分級
エッジ17及び18の夫々の先端位置を固定することに
よって、所定の分級点に設定することが出来る。この様
な分級エッジ17及び18の移動と、粗粉側ブロック2
4の移動とにより、コアンダブロック26に沿って飛翔
してくる各粒子群の流れ方向に分級エッジの向きを合わ
せることが出来る。
In the classification of the powder raw material according to this embodiment,
The classification point is the classification edge 17 with respect to the left end portion of the Coanda block 26, which is the position where the powder jumps out into the classification chamber 32.
And 18 respectively. Further, the classification point is affected by the flow rate of the classification airflow, the ejection speed of the powder from the raw material supply pipe 16, and the like. In the gas stream type classifier of the present invention, when the powder raw material is introduced into the classifying chamber 32, it is dispersed according to the size of the particles in the powder to form a particle flow. Therefore, a predetermined classification point can be set by first moving the coarse block 24, which is a side wall on the coarse powder side, along the streamline and fixing the tip positions of the classification edges 17 and 18. I can. Such movement of the classification edges 17 and 18 and the coarse powder side block 2
With the movement of 4, the direction of the classification edge can be aligned with the flow direction of each particle group flying along the Coanda block 26.

【0019】図4に図1の分級室32の近傍の拡大図を
示す。具体的には、図4に示す様に、例えば、原料供給
管16の先端にある開口部の下部に対応した、コアンダ
ブロック26中の位置であるO点を中心として、コアン
ダブロック26の側壁と粗粉側ブロック24との距離a
は、粗粉側ブロック24を位置決め部材33に沿って水
平又は、ほぼ水平に移動させることで調節可能である。
又、分級エッジ17の先端とコアンダブロック26の壁
面の距離cは分級エッジ17の先端を軸17aを中心に
回動させることにより調節可能である。同様に、分級エ
ッジ18の先端とコアンダブロック26の壁面の距離b
は、分級エッジ18の先端を軸18aを中心に回動させ
ることにより調整可能である。すなわち、粗粉側のブロ
ックの変更に伴って、分級室の分級域の形状が変化し、
分級点を容易に且つ大幅に調整することが可能である。
小粒径化が進むに連れて粉体粒子同士の質量の差も小さ
くなるので、遠心力と慣性力を利用した気流式分級機で
は、粉体の質量に左右される粒子群の飛翔軌跡の幅は狭
くなっていき、粗粉側ブロック近傍まで粒子が行き渡ら
ない傾向があった。しかし、該装置では粗粉原料の比重
・分級点等に合わせて粗粉側ブロック24を移動させる
ことにより粒子群の飛翔軌跡の幅が広くなり、分級収率
は向上し、装置上安定な分級を行うことが可能となる。
又分級エッジ先端部等の融着が軽減される傾向にある。
更には、分級エッジ先端部による流れの乱れが防止で
き、排出導管11a、12a、13aを介しての減圧に
よる吸引流の流量を調節することで粒子の飛翔速度を増
加させて分級域での粉体の分散をより向上させ、より高
い粉塵濃度で良好な分級精度で得られ、製品の収率低下
を防止できるだけでなく、同じ粉塵濃度でより良好な分
級精度と製品の収率を向上させることが可能となる。
FIG. 4 shows an enlarged view of the vicinity of the classification chamber 32 shown in FIG. Specifically, as shown in FIG. 4, for example, the side wall of the Coanda block 26 is centered around the point O which is a position in the Coanda block 26 corresponding to the lower part of the opening at the tip of the raw material supply pipe 16. Distance a from coarse powder side block 24
Can be adjusted by moving the coarse powder side block 24 horizontally or substantially horizontally along the positioning member 33.
Further, the distance c between the tip of the classification edge 17 and the wall surface of the Coanda block 26 can be adjusted by rotating the tip of the classification edge 17 about the shaft 17a. Similarly, the distance b between the tip of the classification edge 18 and the wall surface of the Coanda block 26
Can be adjusted by rotating the tip of the classification edge 18 about the shaft 18a. That is, with the change of the block on the coarse powder side, the shape of the classification area of the classification chamber changes,
It is possible to easily and significantly adjust the classification point.
As the particle size decreases, the difference in mass between powder particles also decreases.Therefore, in an air flow classifier that uses centrifugal force and inertial force, the flight trajectory of particle groups that depends on the mass of powder The width became narrower, and there was a tendency that particles did not reach the vicinity of the block on the coarse powder side. However, in this apparatus, by moving the coarse powder side block 24 in accordance with the specific gravity / classification point of the coarse powder raw material, the width of the trajectory of the particle group is widened, the classification yield is improved, and stable classification is performed on the apparatus. It becomes possible to do.
Further, fusion of the tip of the classification edge tends to be reduced.
Furthermore, the flow turbulence at the tip of the classification edge can be prevented, and the flow rate of the suction flow due to the reduced pressure through the discharge conduits 11a, 12a, 13a is adjusted to increase the flight speed of the particles and to reduce the powder in the classification region. Not only can the dispersion of the body be improved, it can be obtained with higher dust concentration with good classification accuracy, and not only the decrease in product yield can be prevented, but also the same dust concentration can improve better classification accuracy and product yield. Is possible.

【0020】又、原料供給管16の先端開口部の下部に
対応するコアンダブロック26中の例えば位置Oを中心
として、入気エッジ19の先端とコアンダブロック26
の側面との距離dは、入気エッジ19の軸19aを中心
として入気エッジ19先端を回動させることにより調節
することが可能であり、これにより、入気管14及び1
5からの気体の流入量及び流入速度を調節することで、
分級点の更なる調節が可能になる。上記の様なエッジの
設置システムは、処理される粉体の性状により決定すれ
ばよく、何ら限定されるものではない。例えば、トナー
原料を分級する場合においては、原料の重量粒子径が1
0μm以下の場合にも効果的であり、特に、8μm以下
の場合は一層効果的である。
Further, the tip of the air inlet edge 19 and the Coanda block 26 are centered around, for example, the position O in the Coanda block 26 corresponding to the lower portion of the tip opening of the raw material supply pipe 16.
The distance d to the side surface of the air intake tube can be adjusted by rotating the tip of the air intake edge 19 around the shaft 19a of the air intake edge 19, whereby the air intake tubes 14 and 1 can be adjusted.
By adjusting the inflow rate and the inflow rate of gas from 5,
Further adjustment of the classification point becomes possible. The edge installation system as described above may be determined according to the properties of the powder to be treated, and is not limited at all. For example, when classifying a toner raw material, the weight particle diameter of the raw material is 1
It is also effective in the case of 0 μm or less, and is particularly effective in the case of 8 μm or less.

【0021】上述の様な方法を実施する為には、通常は
相互の機器をパイプの如き連通手段等によって連結して
なる一体装置システムを使用するのが通常である。この
様な装置システムの好ましい例を図2に示す。図2に示
した一体装置システムは、3分割分級機1(図1及び図
2で示されるもので、詳細は先に説明の通り)、定量供
給機2、振動フィーダー3、捕集サイクロン4、5及び
6を連通手段で連結してなる。
In order to carry out the above-mentioned method, it is usual to use an integrated device system in which mutual devices are connected by a communication means such as a pipe. A preferred example of such a device system is shown in FIG. The integrated device system shown in FIG. 2 is a three-division classifier 1 (shown in FIGS. 1 and 2 and details are as described above), a constant quantity feeder 2, a vibration feeder 3, a collection cyclone 4, 5 and 6 are connected by a communication means.

【0022】図2に示した装置システムにおいて、衝突
式気流粉砕機等で粉砕された粉砕物である粉体原料は、
先ず、適宜の手段により定量供給機2に送り込まれ、次
いで振動フィーダー3を介して原料供給管16により3
分割分級機1内に導入される。導入に際しては、50〜
300m/秒の流速で3分割分級機1内に粉砕物が導入
される。3分割分級機1の分級室を構成する大きさは、
例えば、通常10〜50cm×10〜50cmなので、
粉砕物である分体原料は、0.1〜0.01秒以下の瞬
時に3種以上の粒子群に分級し得る。図2の例では、粉
体原料が3分割分級機1により、大きい粒子(粗粒
子)、中間の粒子(規定内粒子径の粒子)及び小さい粒
子(規定粒径以下の粒子)に3分割される。その後、大
きい粒子は、排出導管11aを通って、捕集サイクロン
6へと送られて回収される。中間の粒子は、排出導管1
2aを介して系外に排出されて捕集サイクロン5で回収
され、製品となるべく夫々回収される。又、規格外の小
さい粒子は、排出導管13aを介して系外に排出され捕
集サイクロン4で回収される。捕集サイクロン4、5及
び6は、粉体原料を原料供給管16を介して分級室32
に吸引導入する為の吸引減圧手段としての働きをしてい
る。
In the apparatus system shown in FIG. 2, the powder raw material which is a pulverized product pulverized by a collision type air flow pulverizer or the like is
First, it is fed into the constant quantity feeder 2 by an appropriate means, and then the raw material supply pipe 16 is used to feed 3 through the vibrating feeder 3.
It is introduced into the division classifier 1. Upon introduction, 50 ~
The pulverized material is introduced into the three-division classifier 1 at a flow rate of 300 m / sec. The size of the classification chamber of the three-division classifier 1 is
For example, since it is usually 10-50 cm x 10-50 cm,
The divided raw material which is a pulverized product can be classified into three or more kinds of particle groups in an instant of 0.1 to 0.01 seconds or less. In the example of FIG. 2, the powder raw material is divided into three particles by the three-division classifier 1 into large particles (coarse particles), intermediate particles (particles with a specified particle diameter) and small particles (particles with a specified particle diameter or less). It After that, the large particles are sent to the collecting cyclone 6 through the discharge conduit 11a and collected. Intermediate particles are exhaust conduit 1
It is discharged to the outside of the system through 2a and collected by the collection cyclone 5, and each product is collected as much as possible. In addition, small nonstandard particles are discharged to the outside of the system through the discharge conduit 13a and collected by the collection cyclone 4. The collecting cyclones 4, 5 and 6 are arranged such that the powder raw material is passed through the raw material supply pipe 16 to the classification chamber 32.
It functions as a suction decompression means for suction introduction into.

【0023】本発明の気流式分級機は、特に電子写真法
による画像形成法に用いられるトナー又はトナー用着色
樹脂粉体を分級する場合に有効に用いられる。特に、低
融点、低軟化点、低ガラス転移点の結着樹脂が含有され
たトナーを分級する場合に有効である。この様な樹脂を
用いたトナー組成物を従来の分級機に供すると、分級エ
ッジ先端に融着物が発生し易く、融着物が発生した場合
には適切な分級点から外れる傾向にある。この為、吸引
減圧による流量調節を行なっても要求される粉体の粒度
分布は得られにくく、分級効率が大幅に低下する。又、
分級した粉体の中に融着物が混入し、品質のよい製品が
得られなかった。これに対し、本発明の気流式分級装置
では、分級エッジ17及び18の移動に際し、粗粉側ブ
ロック24の移動によってコアンダブロック26に沿っ
て飛翔する粒子流の流れ方向に分級エッジの向きを合わ
せることが出来、更に、吸引減圧手段として排出導管1
1a、12a及び13aを介して吸引流の流量を調節す
ることで粒子の飛翔速度を増加させて、分級域での粉体
の分散がより向上できる為に、分級収率が良好になり、
且つ分級エッジ先端への融着を防止又は抑制することが
出来、高精度な分級が出来る効果がある。
The airflow classifier according to the present invention is effectively used particularly for classifying toner or a colored resin powder for toner used in an image forming method by electrophotography. In particular, it is effective when classifying a toner containing a binder resin having a low melting point, a low softening point, and a low glass transition point. When a toner composition using such a resin is subjected to a conventional classifier, a fused substance is likely to be generated at the tip of the classification edge, and when the fused substance is generated, it tends to deviate from an appropriate classification point. Therefore, it is difficult to obtain the required particle size distribution of the powder even if the flow rate is adjusted by suction decompression, and the classification efficiency is significantly reduced. or,
A fusion product was mixed in the classified powder, and a good quality product could not be obtained. On the other hand, in the airflow classifier of the present invention, when the classification edges 17 and 18 are moved, the direction of the classification edge is aligned with the flow direction of the particle flow flying along the Coanda block 26 by the movement of the coarse powder side block 24. In addition, the discharge conduit 1 can be used as a suction pressure reducing means.
By adjusting the flow rate of the suction flow via 1a, 12a and 13a, the flight speed of the particles can be increased and the dispersion of the powder in the classification region can be further improved, so that the classification yield becomes good,
In addition, fusion to the tip of the classification edge can be prevented or suppressed, and there is an effect that highly accurate classification can be performed.

【0024】又、本発明の分級装置においては、粗粉側
ブロック24の位置を移動する場合に、移動手段として
ステッピングモーター等を用い、エッジ先端位置の検知
に検知手段としてポテンショメーター等を用いて、これ
らを制御する制御装置により分級エッジ先端位置を制御
し、更に流量調節の自動化を行なえば、所望の分級点が
短時間に、かつ、より正確に得られるのでより好まし
い。本分級機を用いて、原料粉を分級したところ、重量
平均径が10μm以下のトナー原料からシャープな粒度
分布を有するトナーを得ることができ、従来に比べ効率
良く分級を行うことが可能である。特に、重量平均径が
8μm以下のトナー原料からシャープな粒度分布を有す
るトナーを得ることができる。本装置を用いて、トナー
を従来に比べ効率良く分級し、生成することができる。
In the classifying device of the present invention, when the position of the coarse powder side block 24 is moved, a stepping motor or the like is used as the moving means, and a potentiometer or the like is used as the detecting means for detecting the edge tip position. It is more preferable to control the position of the tip of the classification edge by a control device that controls these and to further automate the flow rate adjustment, because the desired classification point can be obtained more accurately in a short time. When the raw material powder is classified using this classifier, a toner having a sharp particle size distribution can be obtained from a toner raw material having a weight average diameter of 10 μm or less, and classification can be performed more efficiently than in the past. . In particular, a toner having a sharp particle size distribution can be obtained from a toner raw material having a weight average diameter of 8 μm or less. By using this apparatus, it is possible to classify and generate toner more efficiently than ever before.

【0025】[0025]

【発明の効果】以上説明した様に、本発明の気流式分級
装置によれば、最適な位置に分級エッジを容易に設定す
ることが出来る為、分級エッジ先端における分級気流の
乱流を良好に防止し、様々な粉体の比重及び分級気流条
件に応じて正確な分級点から得られ、シャープな粒度分
布のトナーが高い分級収率で得られ、トナー成分による
装置的摩耗を防ぎ、連続して安定した生産を行うことが
出来る。又、本発明によれば、画像濃度が安定して高
く、画像耐久性がよく、カブリ、クリーニング不良等の
画像欠陥のない優れた画像を与えることの出来る静電荷
像現像用トナーが、低コストで提供される。特に、本発
明によれば、重量平均径10μm以下のトナー原料から
シャープな粒度分布を有するトナーを効率よく得ること
が可能であり、更には、重量平均径が8μm以下のトナ
ー原料からシャープな粒度分布を有するトナーを効率良
く得ることが可能となる。
As described above, according to the airflow type classifier of the present invention, the classification edge can be easily set at the optimum position, so that the turbulent flow of the classification airflow at the tip of the classification edge can be improved. It can be obtained from the accurate classification point according to the specific gravity of various powders and classification airflow conditions, and the toner with a sharp particle size distribution can be obtained with a high classification yield, preventing the abrasion of the equipment due to the toner component, and continuously. And stable production can be performed. Further, according to the present invention, a toner for developing an electrostatic charge image, which has a stable and high image density, has good image durability, and can give an excellent image without image defects such as fog and cleaning failure, has a low cost. Provided by. In particular, according to the present invention, it is possible to efficiently obtain a toner having a sharp particle size distribution from a toner raw material having a weight average diameter of 10 μm or less, and further, to obtain a sharp particle size from a toner raw material having a weight average diameter of 8 μm or less. It is possible to efficiently obtain a toner having a distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例の気流式分級機の断面図である。FIG. 1 is a sectional view of an airflow classifier according to an example of the present invention.

【図2】図1の気流式分級機の斜視図である。2 is a perspective view of the airflow classifier of FIG. 1. FIG.

【図3】図1に示す気流式分級機を用いた全体の装置シ
ステムの一例を示す図である。
FIG. 3 is a diagram showing an example of an entire apparatus system using the airflow classifier shown in FIG.

【図4】図1の気流式分級機の分級域部分の部分拡大図
である。
FIG. 4 is a partially enlarged view of a classification area portion of the airflow classifier of FIG.

【図5】従来例の気流式分級機の断面図である。FIG. 5 is a cross-sectional view of a conventional airflow classifier.

【図6】図5の気流式分級機の斜視図である。6 is a perspective view of the airflow classifier of FIG.

【符号の説明】[Explanation of symbols]

1:固体粒子の多分割分級装置 2:定量供給機 3:振動フィルダー 4、5、6:捕集サイクロン 11、12、13:排出口 11a、12a、13a:排出導管 14、15:入気口 16:原料供給管 17、18:分級エッジ 17a、18a:分級エッジの軸 19:入気エッジ 19a:入気エッジの軸 20:第1気体導入調節手段 21:第2気体導入調節手段 22、23:側壁ブロック 24:粗粉側の側壁ブロック(粗粉側ブロック) 25:下部壁 26:コアンダブロック 27:上部壁 28、29:静圧計 30:固体粒子飛散軌跡 30a:粗粉粒子の飛散軌跡 30b:中粉粒子の飛散軌跡 30c:微粉粒子の飛散軌跡 31:インジェクションフィーダ 32:分級室 32:位置決め部材 60:位置調節手段 101:従来の固体粒子多分割分級装置 111、112、113:従来の排出口 114、115:従来の入気口 116:従来の原料供給管 117、118:従来の分級エッジ 119:従来の入気エッジ 120:従来の第1気体導入調節手段 121:従来の第2気体導入調節手段 122、123:従来の側壁 124:従来の粗粉側の側壁ブロック 125:従来の下部壁 126:従来のコアンダブロック 127:従来の上部壁 128、129:従来の静圧計 132:従来の分級室 1: Solid particle multi-division classifier 2: Fixed amount feeder 3: Vibratory fielder 4, 5, 6: Collection cyclone 11, 12, 13: Discharge port 11a, 12a, 13a: Discharge conduit 14, 15: Inlet port 16: Raw material supply pipe 17, 18: Classification edge 17a, 18a: Classification edge axis 19: Inlet edge 19a: Inlet edge axis 20: First gas introduction adjusting means 21: Second gas introduction adjusting means 22, 23 : Side wall block 24: Side wall block on coarse powder side (Coarse powder side block) 25: Lower wall 26: Coanda block 27: Upper wall 28, 29: Static pressure gauge 30: Solid particle scattering trajectory 30a: Coarse particle scattering trajectory 30b : Scattering trajectory of medium powder particles 30c: Scattering trajectory of fine powder particles 31: Injection feeder 32: Classification chamber 32: Positioning member 60: Position adjusting means 101: Conventional solid particles Multi-division classifier 111, 112, 113: Conventional outlet 114, 115: Conventional inlet 116: Conventional raw material supply pipe 117, 118: Conventional classification edge 119: Conventional inlet 120: Conventional First gas introduction adjusting means 121: Conventional second gas introduction adjusting means 122, 123: Conventional side wall 124: Conventional coarse powder side wall block 125: Conventional lower wall 126: Conventional Coanda block 127: Conventional upper part Walls 128, 129: Conventional static pressure gauge 132: Conventional classification chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともコアンダブロック、側壁ブロ
ック及び複数の分級エッジによって形成される分級域を
有し、該分級域で原料供給管から供給される粉体原料が
コアンダ効果により、少なくとも粗粉体群、中粉体群及
び微粉体群に分級される気流式分級機において、粗粉体
群側の側壁ブロックの設置位置が分級域の形状を変更す
ることが出来るように移動可能に構成されていることを
特徴とする気流式分級機。
1. A powdery raw material having at least a classification area formed by a Coanda block, a side wall block and a plurality of classification edges, and the powder raw material supplied from a raw material supply pipe in the classification area is at least a coarse powder group due to the Coanda effect. In an airflow classifier that classifies into a medium powder group and a fine powder group, the installation position of the side wall block on the coarse powder group side is configured to be movable so that the shape of the classification area can be changed. An airflow classifier characterized by this.
【請求項2】 粗粉側の側壁ブロックの設置位置が、水
平方向に、又はほぼ水平方向に移動可能である請求項1
に記載の気流式分級機。
2. The installation position of the side wall block on the coarse powder side is movable in a horizontal direction or in a substantially horizontal direction.
Airflow classifier described in.
JP6337580A 1994-12-28 1994-12-28 Pneumatic classifier Pending JPH08182966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337580A JPH08182966A (en) 1994-12-28 1994-12-28 Pneumatic classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337580A JPH08182966A (en) 1994-12-28 1994-12-28 Pneumatic classifier

Publications (1)

Publication Number Publication Date
JPH08182966A true JPH08182966A (en) 1996-07-16

Family

ID=18309994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337580A Pending JPH08182966A (en) 1994-12-28 1994-12-28 Pneumatic classifier

Country Status (1)

Country Link
JP (1) JPH08182966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755727A2 (en) * 1995-07-25 1997-01-29 Canon Kabushiki Kaisha Gas stream classifier and process for producing toner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755727A2 (en) * 1995-07-25 1997-01-29 Canon Kabushiki Kaisha Gas stream classifier and process for producing toner
EP0755727A3 (en) * 1995-07-25 1997-11-19 Canon Kabushiki Kaisha Gas stream classifier and process for producing toner

Similar Documents

Publication Publication Date Title
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
EP0449323A1 (en) Process for producing toner for developing electrostatic image and apparatus system therefor
KR100254668B1 (en) Gas stream classifier and process for producing toner
EP0666114A2 (en) Gas current classifier and process for producing toner
JP2727245B2 (en) Airflow classifier and airflow classification method
JPH08182966A (en) Pneumatic classifier
KR0161561B1 (en) Gas current classifier and process for producing toner
JP3176779B2 (en) Airflow classifier and airflow classification method
JP3297553B2 (en) Airflow classifier and toner manufacturing method
JP2000042494A (en) Air-current classification
JP3278326B2 (en) Airflow classifier and toner manufacturing method
JP3327773B2 (en) Manufacturing method of toner for electrostatic charge development
JP3347551B2 (en) Airflow classifier and method for producing toner
JP2715338B2 (en) Airflow classifier and airflow classification method
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JPH09299885A (en) Air current classifying device for manufacture of toner
JP3679163B2 (en) Airflow classifier
JP3278325B2 (en) Airflow classifier and toner manufacturing method
JP2001201890A (en) Manufacturing method of toner
JPH11319719A (en) Air flow type classifying apparatus
JPH09290218A (en) Dispersion mixing and air flow type classifying device
JP2715325B2 (en) Airflow classifier and airflow classification method
JP3295793B2 (en) Airflow classifier and toner manufacturing method
JPH0780415A (en) Air classifier and air classification
JPH09187733A (en) Air current-utilizing type classifying apparatus