JP4498368B2 - Micro contact type prober - Google Patents

Micro contact type prober Download PDF

Info

Publication number
JP4498368B2
JP4498368B2 JP2007022966A JP2007022966A JP4498368B2 JP 4498368 B2 JP4498368 B2 JP 4498368B2 JP 2007022966 A JP2007022966 A JP 2007022966A JP 2007022966 A JP2007022966 A JP 2007022966A JP 4498368 B2 JP4498368 B2 JP 4498368B2
Authority
JP
Japan
Prior art keywords
cantilever
contact
measurement
terminal surface
measurement terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007022966A
Other languages
Japanese (ja)
Other versions
JP2007121317A (en
Inventor
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007022966A priority Critical patent/JP4498368B2/en
Publication of JP2007121317A publication Critical patent/JP2007121317A/en
Application granted granted Critical
Publication of JP4498368B2 publication Critical patent/JP4498368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、接触式の回路試験用プローバーのプローブとプローブの位置制御、押し込み力制御に関するものである。   The present invention relates to a probe of a contact-type circuit test prober, position control of the probe, and pushing force control.

従来技術としては、接触式の回路試験用プローバーのプローブは、図11に示すように金属製の弾性を有する片持ち梁[112]の先端に探針状の接触子[113]を1ヶ取り付け、LSI回路の任意の測定点にプローブを位置合わせさせるためにプローブの根元部にXYZステージ等の移動機構[111]を有していた。また多点を同時に測定するために、図12に示すように前記プローブをアレー状に並べ等間隔で並ぶ測定端子から、複数個の電気信号を得ていた。また位置合わせの方法として、被検体の測定端子と前記プローブを長焦点の対物レンズ[115]の同一視野下におさめ、被検体の測定端子あるいは前記プローブをステージ等の移動機構で移動させた後、プローブを測定端子に押し付け電気測定を行なっていた。
特開平10−27832号公報
As a conventional technique, a probe of a contact type circuit test prober has a probe-like contact [113] attached to the tip of a metal elastic cantilever [112] as shown in FIG. In order to align the probe with an arbitrary measurement point of the LSI circuit, the probe has a moving mechanism [111] such as an XYZ stage at the base of the probe. In order to measure multiple points simultaneously, a plurality of electrical signals are obtained from measurement terminals arranged in an array at regular intervals as shown in FIG. As an alignment method, the measurement terminal of the subject and the probe are placed in the same field of view of the long-focus objective lens [115], and the measurement terminal of the subject or the probe is moved by a moving mechanism such as a stage. The probe was pressed against the measurement terminal to perform electrical measurement.
Japanese Patent Laid-Open No. 10-27832

被検体の回路が微細化し、検査するメモリー等のセルサイズが1μm×1μm以下になってくると、前記金属製の片持ち梁では、片持ち梁の加工と接触子の加工が困難になってきた。また前記セルが2〜5μmの等間隔で並んだメモリーセルの検査の場合、複数個の金属製のプローブを隣あって並べることが、空間的に難しくなった。   When the circuit of the subject is miniaturized and the cell size of the memory to be inspected becomes 1 μm × 1 μm or less, it becomes difficult to process the cantilever and the contact with the metal cantilever. It was. In the case of inspection of memory cells in which the cells are arranged at equal intervals of 2 to 5 μm, it is difficult to arrange a plurality of metal probes next to each other.

また現在使用しているプローブは、被検体面の押し付け圧力は、セルの微細化により探針が鋭利になるため、押し付け力を制御しないと増加してしまう。たとえばFeRAMのように電極下に強誘電体の薄膜を堆積させ作成したメモリーセルの場合や、TFT液晶のように電極の下に有機薄膜を配した構造体では、プローブの押し付け圧力の増加により、薄膜にダメージを与える可能性が高まり、微小な押し付け力の制御が必要になる。また複数のプローブを隣あって並べた場合、接触子の先端高さが揃っていないとプローブの押し付け込み深さがばらばらになり、各々のプローブの押し付け力が変動し、押し込み不足による接触不良や、押し込みすぎによる薄膜ダメージが生じる。   Further, in the probe currently used, the pressing pressure on the subject surface becomes sharp unless the pressing force is controlled because the probe becomes sharp due to the miniaturization of the cell. For example, in the case of a memory cell made by depositing a ferroelectric thin film under an electrode like FeRAM, or in a structure in which an organic thin film is arranged under an electrode like TFT liquid crystal, The possibility of damaging the thin film increases, and it is necessary to control the minute pressing force. Also, when multiple probes are arranged next to each other, if the tips of the contacts are not aligned, the probe pressing depth will vary, and the pressing force of each probe will vary, resulting in poor contact due to insufficient pressing. , Film damage due to excessive pressing occurs.

またセルサイズが0.5μm×0.5μm以下に減少すると、現行の光学顕微鏡では分解能不足で位置合わせは困難になる。   Further, when the cell size is reduced to 0.5 μm × 0.5 μm or less, the current optical microscope has insufficient resolution and alignment becomes difficult.

上記課題を解決するために、本発明では、従来の金属製のプローブをやめ、原子間力顕微鏡(AFM)等で使用されているマイクロファブリケーションプロセスによるシリコンをベース材料とした微小プローブを使用した。このプローブ(カンチレバー部)は複数個の被検体測定端子の同時測定用に、一つのカンチレバー上に複数個の接触子を作成してある計測用カンチレバーと、またこのカンチレバーの両側に被検体測定端子面と接触子間のZ距離制御用に長めのカンチレバーを有する構造とした。   In order to solve the above-mentioned problems, the present invention uses a micro probe based on silicon based on a microfabrication process used in an atomic force microscope (AFM) and the like, instead of a conventional metal probe. . This probe (cantilever part) has a measuring cantilever in which a plurality of contacts are made on one cantilever for simultaneous measurement of a plurality of object measuring terminals, and an object measuring terminal on both sides of the cantilever. The structure has a long cantilever for controlling the Z distance between the surface and the contact.

Z距離制御用カンチレバーを用い被検体測定端子への接触子の移動速度を制御し、押し付け力制御には計測用カンチレバーのたわみ量が一定になるように制御をおこなった。   The Z distance control cantilever was used to control the moving speed of the contact to the subject measurement terminal, and the pressing force control was performed so that the amount of deflection of the measurement cantilever was constant.

接触子と測定端子との位置合わせ用に、計測用カンチレバーに位置合わせマークを作成し、そのマークを光学顕微鏡で合わせることにより各接触子が測定端子の直上にくるように接触子とマークの位置関係を配した。   To align the contact with the measurement terminal, create an alignment mark on the measurement cantilever, and align the mark with an optical microscope so that each contact is directly above the measurement terminal. Arranged a relationship.

さらに光学顕微鏡以上の分解能で位置合わせするために、一方の端にあるZ距離制御用カンチレバーをAFMのプローブと同様の動作をさせてセルの形状測定を行ないセルの位置を確認し、このカンチレバーの探針と計測用のカンチレバーの接触子との位置関係が既知なことより、セルの直上に接触子を位置合わせできるようにした。   Furthermore, in order to align with a resolution higher than that of an optical microscope, the Z-distance control cantilever at one end is operated in the same manner as the AFM probe to measure the cell shape and confirm the cell position. Since the positional relationship between the probe and the contact of the cantilever for measurement is known, the contact can be positioned directly above the cell.

次に、確実な接触を行なうために、接触子として複数本の林立するカーボンナノチューブを採用した。   Next, in order to perform reliable contact, a plurality of forested carbon nanotubes were employed as contacts.

前記のZ距離制御用のカンチレバーは導電性をもたせ、計測用カンチレバーより長くし、例えば図1に示すように同一チップ上に複数個のカンチレバーを作成する。これらのカンチレバーの変位検出は、M. Tortonese, R. C. Barrett, C. F. Quate Appl. Phys. Lett. 62(8) 1993, 834の論文にあるようにピエゾレジシティブ抵抗を用いた自己変位型でも良く、あるいは光てこ検出器のような外部変位検出器を用いても良い。   The Z distance control cantilever has conductivity and is longer than the measurement cantilever. For example, as shown in FIG. 1, a plurality of cantilevers are formed on the same chip. The displacement detection of these cantilevers may be a self-displacement type using piezoresistive resistance as described in the paper of M. Tortonese, RC Barrett, CF Quate Appl. Phys. Lett. 62 (8) 1993, 834, Alternatively, an external displacement detector such as an optical lever detector may be used.

これらのカンチレバー部は、当初被検体測定端子より数mmの距離が離れている。これらのカンチレバー部を高速で被検体測定端子面に接近させる。初めに長さの長いZ距離制御用カンチレバーが被検体測定端子面と接触し、たわみ信号を発生する。このたわみ信号によりZ粗動の送り速度を低速に切り替える。次に接触子のある計測用のカンチレバーを、被検体測定端子面に接触させ、その後押し込み力が設定量域にはいるまで低速送りを行う。ここで接触子と測定端子の接触を電気的に確認し、各被検体の動作確認を行なう。以下発明の実施形態でより詳しく説明する。   These cantilevers are initially several millimeters away from the subject measurement terminal. These cantilevers are brought close to the subject measurement terminal surface at high speed. First, the long Z-distance control cantilever comes into contact with the subject measurement terminal surface, and generates a deflection signal. The feed speed of Z coarse movement is switched to a low speed by this deflection signal. Next, a measurement cantilever with a contact is brought into contact with the subject measurement terminal surface, and then low-speed feeding is performed until the pushing force enters the set amount range. Here, the contact between the contact and the measurement terminal is electrically confirmed, and the operation of each subject is confirmed. The present invention will be described in more detail below.

以下図3、図4、図9、図10によりこの発明の実施の形態を図面に基づいて説明する。図3は、微小プローバーのプローブ(カンチレバー部)部分の模式図である。図5は、プローブの詳細説明の摸式図であり、図9は微小プローバー装置のプローブとその位置制御機構(XYZ走査スキャナー)とその制御系の模式図である。図10は動作のタイムチートである。   Embodiments of the present invention will be described below with reference to the drawings with reference to FIGS. 3, 4, 9 and 10. FIG. 3 is a schematic diagram of a probe (cantilever part) portion of a micro prober. FIG. 5 is a schematic diagram of detailed description of the probe, and FIG. 9 is a schematic diagram of the probe of the micro prober device, its position control mechanism (XYZ scanning scanner), and its control system. FIG. 10 is an operation time cheat.

<カンチレバー部の構成>
図1、2、3、4、5、6、7、8に示すカンチレバー部の構成を説明する。図1、2は、カンチレバーの変位検出を外部のたとえば光てこ検出器を使用するカンチレバー部であり、図3は、カンチレバーの外形は図1と同様であるが、変位検出をカンチレバー内部に埋め込まれているピエゾ抵抗体[72]によって行う自己検知のカンチレバーを用いた別実施形態である。ピエゾ抵抗体[72]に一定の電流を流し、カンチレバーの変位による歪みをピエゾ抵抗の変化として捕らえ、ブリッジ回路により電流変化として検出している。図4は、3ヶ以上のカンチレバーを持つカンチレバー部の別実施形態である。両端に前記距離制御用のカンチレバーを有し中央部に複数個の計測用のカンチレバーがあり、それぞれの計測用カンチレバーには、複数個の接触子がある。
<Configuration of cantilever part>
The structure of the cantilever part shown in FIGS. 1, 2, 3, 4, 5, 6, 7, and 8 will be described. FIGS. 1 and 2 show a cantilever part that uses an external lever detector, for example, to detect the displacement of the cantilever. FIG. 3 shows the outer shape of the cantilever as in FIG. 1, but the displacement detection is embedded inside the cantilever. It is another embodiment using the self-detection cantilever performed by the piezoresistor [72]. A constant current is passed through the piezoresistor [72], distortion due to displacement of the cantilever is captured as a change in piezoresistance, and is detected as a current change by a bridge circuit. FIG. 4 shows another embodiment of a cantilever portion having three or more cantilevers. The distance control cantilevers are provided at both ends, and a plurality of measurement cantilevers are provided at the center, and each measurement cantilever has a plurality of contacts.

また隣合うカンチレバー上の接触子の間隔は、測定するセル間隔の整数倍になるように配置されている。また計測用カンチレバーが複数個で構成されている訳は、カンチレバーのばね定数の低減とカンチレバー部が測定するセルに対して傾いていた場合個々のカンチレバーで押し込み量を調整し、押し込み力を調整するためである。   The distance between the contacts on the adjacent cantilevers is arranged to be an integral multiple of the cell distance to be measured. Also, the reason why the measuring cantilever is composed of a plurality is that the spring constant of the cantilever is reduced, and when the cantilever part is tilted with respect to the cell to be measured, the pushing amount is adjusted with each cantilever and the pushing force is adjusted. Because.

以下図1、2をもちいて説明する。カンチレバー部は、長さの長いZ距離制御用のカンチレバー[c1](長さl1:400〜1000μm)と接触子のある長さの短い計測用のカンチレバー[c2](長さl2:100〜500μm)が隣あって並ぶ(カンチレバーの探針[40]と接触子[3]の距離はセルピッチの整数倍)ように構成されている。またZ距離制御用のカンチレバーは、金等の導電性の金属で針先までコートされ導電性を持たせてある。   This will be described below with reference to FIGS. The cantilever part has a long cantilever [c1] (length 11: 400 to 1000 μm) for Z distance control and a short measurement cantilever [c2] (length l2: 100 to 500 μm) with a contact. ) Are arranged next to each other (the distance between the cantilever probe [40] and the contact [3] is an integral multiple of the cell pitch). The Z-distance control cantilever is coated with a conductive metal such as gold to the tip of the needle to provide conductivity.

今図2に示すようにカンチレバーを横方向から眺めると、Z距離制御用のカンチレバー[c1]が試料面と接触しているとき、計測用のカンチレバー[c2]は、Z距離制御用のカンチレバー[c1]より高さh<100〜300μm(h=(l1−l2)sinθ;l1:Z距離制御用のカンチレバーの長さ、l2:計測用のカンチレバー長さ、θ:カンチレバー取り付け角度)だけ試料面より浮く構成とする。またZ距離制御用のカンチレバー[c1]の先端半径100〜200nm程度でばね定数は、0.01〜0.1N/mである。ばね定数が柔らかいため、Z距離制御用のカンチレバーを高速で試料面に接触してもカンチレバーの破損や試料面へのダメージは少ない。   When the cantilever is viewed from the side as shown in FIG. 2, when the cantilever [c1] for Z distance control is in contact with the sample surface, the cantilever for measurement [c2] c1] sample surface by height h <100 to 300 μm (h = (l1-l2) sin θ; l1: length of cantilever for Z distance control, l2: cantilever length for measurement, θ: cantilever mounting angle) The structure is more floating. The cantilever [c1] for Z distance control has a tip radius of about 100 to 200 nm and a spring constant of 0.01 to 0.1 N / m. Since the spring constant is soft, even if the Z-distance control cantilever is brought into contact with the sample surface at high speed, the cantilever is hardly damaged or damaged.

次に図5に示す接触子の配置と構成を含めた計測用のカンチレバーの詳細を述べる。接触子[3]は高さ10μm程度の突起であり、先端半径が100〜200nmでこの突起部のみ金属コーティング[31]がほどこされている。この金属コーティングはカンチレバーベース部[70]まで配線[50]され、ベース部で接続用のパット[60]に接続されている。このパットに外部電気試験機(図9[12])が接続されており、接触子と測定端子間にさまざまな試験信号を印加することができる。また図6の平面図に示すように各接触子間の絶縁[75]は、酸化シリコンにより分離されている。さらに接触子の面と接触子の反対側の面とは、図7の断面図に示すように酸化シリコン膜[75]により分離され、接触子の反対側のカンチレバー面は、金属でコーティング[76]されおり、アース電位に接続できシールド電極としてはたらかせることができる。   Next, details of the measurement cantilever including the arrangement and configuration of the contact shown in FIG. 5 will be described. The contact [3] is a protrusion having a height of about 10 μm, the tip radius is 100 to 200 nm, and the metal coating [31] is applied only to this protrusion. This metal coating is wired [50] to the cantilever base [70] and is connected to the connecting pad [60] at the base. An external electrical tester (FIG. 9 [12]) is connected to the pad, and various test signals can be applied between the contact and the measurement terminal. Also, as shown in the plan view of FIG. 6, the insulation [75] between the contacts is separated by silicon oxide. Further, the surface of the contact and the surface on the opposite side of the contact are separated by a silicon oxide film [75] as shown in the sectional view of FIG. 7, and the cantilever surface on the opposite side of the contact is coated with metal [76. It can be connected to ground potential and can serve as a shield electrode.

隣合う接触子の間隔は、検査するセルピッチと等しくあるいはピッチの整数倍で作成する。   The interval between adjacent contacts is made equal to the cell pitch to be inspected or an integer multiple of the pitch.

また図8には、カーボンナノチューブ[33]を複数本林立させ、接触子とした別形態の実施例をしめす。この場合接触子の作り方は、シリコンカンチレバーの基部[71]に1〜3μm角の鉄系の触媒をパターニングし[32]、エタン等のハイドロカーボン雰囲気中で700〜1000℃で気相成長させると、基板と垂直に長さの揃ったカーボンナノチューブが前記鉄系の触媒でパターニングした所から多数成長する。このカーボンナノチューブは導電性があり、基部の鉄系触媒とカンチレバーベース部[70]を金属細線[50]で配線し、また接触子間の絶縁[75]を酸化シリコンにより分離すればよい。カーボンナノチューブを接触子として使用すると、金属でコーティングした接触子に比較し、コーティング材が電界蒸発で飛び出すことも無く安定に電圧を印加できる。またカーボンナノチューブ自身に弾性があり堅牢なため多数回にわたる接触に耐える。   FIG. 8 shows another embodiment in which a plurality of carbon nanotubes [33] are formed as a contact. In this case, the contactor is made by patterning a 1-3 μm square iron-based catalyst on the base [71] of the silicon cantilever [32] and vapor-growing at 700 to 1000 ° C. in a hydrocarbon atmosphere such as ethane. A large number of carbon nanotubes having a uniform length perpendicular to the substrate grow from the patterning with the iron-based catalyst. The carbon nanotubes are conductive, and the iron-based catalyst at the base and the cantilever base [70] may be wired with a thin metal wire [50], and the insulation [75] between the contacts may be separated by silicon oxide. When carbon nanotubes are used as contacts, a voltage can be applied stably without the coating material popping out by field evaporation compared to a metal-coated contact. In addition, the carbon nanotubes themselves are elastic and robust so that they can withstand multiple contact.

<装置主要部構成>
図9を用いて装置の主要部の構成を説明する。カンチレバーを試料に近接させる移動機構(Z粗動機構)[1]にXYZ走査スキャナー[2]が固定されその先端部にカンチレバーベース[70]が取り付けられている。また試料台[5]には被検体[6]を試料台接触子[4]で電気的に接続を取り、前記カンチレバー部に対向して配置している。図9でカンチレバー[c1],[c2]は、自己検知のカンチレバーとして描かれている。図9で示す計測用カンチレバー[c2]の変位信号は、プレアンプ[7]により増幅され、Zサーボ系[8]に入力される。その出力信号をZ走査コントローラー[11]により増幅され、結果としてXYZ走査スキャナー[2]のZ軸が伸縮し、計測用カンチレバーのたわみ量が一定になるように接触子[3]−測定端子間[6]の距離が制御される。一方図9で示すZ距離制御用カンチレバー[c1]からの信号は、同様にプレアンプ[7]により増幅されZ粗動コントローラーに[9]に入力され、Z粗動メカニズム[1]の制御信号として使われている。Z粗動メカニズムは、主に差動ねじ、縮小てこ等のメカ系で構成されmm程度を0.1〜0.05μm刻みで移動できる。ここで測定端子面上数mmから0.1〜0.3mmまでは、Z粗動メカ機構[1]で高速に送り、残り0.1〜0.3mm以下を低速で送るように制御する。
<Main equipment configuration>
The configuration of the main part of the apparatus will be described with reference to FIG. An XYZ scanning scanner [2] is fixed to a moving mechanism (Z coarse movement mechanism) [1] for bringing the cantilever close to the sample, and a cantilever base [70] is attached to the tip thereof. Further, the subject [6] is electrically connected to the sample stage [5] by the sample stage contact [4], and is arranged to face the cantilever portion. In FIG. 9, cantilevers [c1] and [c2] are depicted as self-detecting cantilevers. The displacement signal of the measurement cantilever [c2] shown in FIG. 9 is amplified by the preamplifier [7] and input to the Z servo system [8]. The output signal is amplified by the Z scanning controller [11]. As a result, the Z axis of the XYZ scanning scanner [2] expands and contracts, and the amount of deflection of the measuring cantilever becomes constant, between the contact [3] and the measuring terminal. The distance of [6] is controlled. On the other hand, the signal from the Z distance control cantilever [c1] shown in FIG. 9 is similarly amplified by the preamplifier [7] and input to [9] to the Z coarse motion controller, as a control signal for the Z coarse motion mechanism [1]. It is used. The Z coarse movement mechanism is mainly composed of a mechanical system such as a differential screw and a reduction lever, and can move about mm in steps of 0.1 to 0.05 μm. Here, from a few mm to 0.1 to 0.3 mm on the measurement terminal surface, the Z coarse movement mechanism [1] is controlled to send at high speed, and the remaining 0.1 to 0.3 mm or less is controlled to be sent at low speed.

<距離制御動作と接触子の押し込み力調整>
次に図1と図10のタイムチャートを使ってZ粗動の動作を説明する。最初カンチレバー部は、試料表面から数mm離れている。Z粗動系メカニズム[1]を高速で移動させ図1のようにZ距離制御用のカンチレバー[c1]が試料面と接触するとき[図10:t0]、Z距離制御用のカンチレバーは測定端子面から力を受けカンチレバーの変位信号が変化する。この信号をZ粗動コントローラー[9]に入力し、Z粗動系メカニズム[1]を低速送りに切り替える。この[図10:t0]の時点で計測用のカンチレバー[c2]は、およそhだけ試料面より浮いている。次に低速でおよそh>100〜300μm(h:Z距離制御用カンチレバーと計測用カンチレバーの被検体面からの高さの差)だけ押し込み計測用のカンチレバー[c2]を接触させる。[図10:t1]その後接触子を被検体測定端子面に△hだけ押し込む[図10:t2]。この時計測用カンチレバーは、測定端子面から力を受けカンチレバーの変位信号が変化する。押し付け力は、計測用カンチレバーのばね定数に△h(カンチレバー押し込み深さ)を乗じたものになり、この量は図9の☆印に示す押し付け力設定信号により制御できる。
<Distance control operation and contact pushing force adjustment>
Next, the operation of the Z coarse movement will be described with reference to the time charts of FIGS. Initially, the cantilever part is several mm away from the sample surface. When the Z coarse motion system mechanism [1] is moved at high speed and the Z distance control cantilever [c1] is in contact with the sample surface as shown in FIG. 1 [FIG. 10: t0], the Z distance control cantilever is the measurement terminal. The displacement signal of the cantilever changes due to the force from the surface. This signal is input to the Z coarse motion controller [9], and the Z coarse motion system mechanism [1] is switched to the low speed feed. At this time [FIG. 10: t0], the measurement cantilever [c2] floats from the sample surface by approximately h. Next, the measurement cantilever [c2] is pushed in at a low speed by approximately h> 100 to 300 μm (h: difference in height between the Z-distance control cantilever and the measurement cantilever from the subject surface). [FIG. 10: t1] Thereafter, the contactor is pushed into the object measurement terminal surface by Δh [FIG. 10: t2]. At this time, the measurement cantilever receives a force from the measurement terminal surface, and the displacement signal of the cantilever changes. The pressing force is obtained by multiplying the spring constant of the measuring cantilever by Δh (cantilever pressing depth), and this amount can be controlled by a pressing force setting signal indicated by asterisks in FIG.

最後に図4に示した複数個の計測用カンチレバー有するカンチレバー部を使用する場合は、それぞれ両端のZ距離制御用のカンチレバー[c1]と[c1']のOR信号を取ると、カンチレバーベースが傾いて取り付いていても、どちらか試料面に近い方のZ距離制御用カンチレバー信号をZ粗動コントローラー[9]の信号として使用すればよい。   Finally, when using the cantilever portion having a plurality of measurement cantilevers shown in FIG. 4, if the OR signals of the Z distance control cantilevers [c1] and [c1 ′] at both ends are taken, the cantilever base tilts. The Z distance control cantilever signal closer to the sample surface may be used as the signal for the Z coarse motion controller [9].

被検体の測定端子と接触、押し付け力調整後(t2の後)、前記外部電気試験機[12]より接触子と測定端子間にさまざまな試験信号を印加し、被検体の電気的評価を行なう。   After contact with the measurement terminal of the subject and adjustment of the pressing force (after t2), various test signals are applied between the contact and the measurement terminal from the external electrical tester [12] to perform electrical evaluation of the subject. .

<測定セルとの位置合わせ>
ここでは、被検体をメモリーセルのように空間的に同様の形状が二次元的に配列したセルを前提に説明する。
<Alignment with measurement cell>
Here, the description will be made on the assumption that the subject is a two-dimensional array of spatially similar shapes such as memory cells.

セル測定用のカンチレバー各部の寸法は、以下のように作る。計測用カンチレバー上の接触子は、セルのピッチと等間隔あるいはピッチの整数倍に配置し、またZ距離制御用のカンチレバーの針先と前記接触子の間隔はセルの整数倍になるように作り込む。また計測用カンチレバーの背面または側面に、前記接触子と一定の位置関係をもつ位置合わせマーク[図6:76](大きさ1μm×1μm以上)を作成し、顕微鏡での位置合わせ用のガイドとして使用する。   The dimensions of each part of the cantilever for cell measurement are made as follows. The contacts on the measurement cantilever are arranged at equal intervals with the cell pitch or an integer multiple of the pitch, and the distance between the needle tip of the cantilever for Z distance control and the contact is an integer multiple of the cell. Include. In addition, an alignment mark [Fig. 6: 76] (size: 1 μm × 1 μm or more) having a fixed positional relationship with the contact is created on the back surface or side surface of the measurement cantilever and used as a guide for alignment in a microscope. use.

セルとの微小位置合わせは、計測用カンチレバー上の接触子をセルの直上にくるように、光学顕微鏡で観測しながら、前記XYZ走査スキャナーのXY軸に電圧を印加しXY位置の微調整を行なう。ここでセルが微小で光学顕微鏡で見えない場合は、Z距離制御用のカンチレバーをXYに走査し、このカンチレバーの変位が一定になるようにZスキャナーを制御し、AFMと同様の動作をさせセルの形状を得ることができる。このセルの形状をもとに接触子とセルの位置関係を求め、位置合わせが可能になる。   For fine alignment with the cell, fine adjustment of the XY position is performed by applying a voltage to the XY axes of the XYZ scanning scanner while observing with an optical microscope so that the contact on the measurement cantilever is directly above the cell. . If the cell is too small to be seen with an optical microscope, the Z distance control cantilever is scanned in XY, the Z scanner is controlled so that the displacement of this cantilever is constant, and the cell operates in the same way as the AFM. Can be obtained. Based on the shape of the cell, the positional relationship between the contact and the cell is obtained, and alignment is possible.

この発明により、以上説明したような微小なプローブを用いて、微細化された個々のセルに直接接触し、電気的評価が行なえるようになった。また押し付け力が制御されたことにより押し込み不足による接触不良や、押し込み過ぎによるセルの薄膜へのダメージを与えること無しに電気的評価が行なえるようになった。   According to the present invention, electrical evaluation can be performed by directly contacting each miniaturized cell using the micro probe as described above. In addition, since the pressing force is controlled, electrical evaluation can be performed without causing contact failure due to insufficient pressing or damage to the thin film of the cell due to excessive pressing.

また光学顕微鏡の分解能が不足の場合は、AFMと同様の動作でセルの形状を得ることができ、セル上に正確に接触子を位置合わせすることが可能となった。   Further, when the resolution of the optical microscope is insufficient, the cell shape can be obtained by the same operation as that of the AFM, and the contact can be accurately positioned on the cell.

外部検出器用プローブ(カンチレバー部)の斜視図である。It is a perspective view of the probe (cantilever part) for external detectors. 外部検出器用プローブ(カンチレバー部)の側面図である。It is a side view of the probe (cantilever part) for external detectors. (a)は自己検知のカンチレバーを用いたプローブの斜視図、(b)は(a)におけるA−A’線に沿った断面図である。(A) is a perspective view of a probe using a self-detecting cantilever, and (b) is a cross-sectional view taken along line A-A ′ in (a). 3ヶ以上のカンチレバーを持つプローブの摸式図である。It is a model drawing of a probe having three or more cantilevers. (a)は計測用カンチレバーの斜視図、(b)は(a)においてA方向から見た図である。(A) is a perspective view of a measurement cantilever, (b) is a view seen from the A direction in (a). 計測用カンチレバーの平面図である。It is a top view of a measurement cantilever. 計測用カンチレバーの断面図である。It is sectional drawing of the measurement cantilever. (a)はカーボンナノチューブを接触子に用いた計測用カンチレバーの斜視図、(b)は(a)においてA方向より見た図である。(A) is a perspective view of a measurement cantilever using a carbon nanotube as a contact, and (b) is a view as seen from the A direction in (a). 本発明のプローバー装置の模式図である。It is a schematic diagram of the prober apparatus of this invention. プローブ近接時のタイムチートである。Time cheat when the probe is close. 従来のプローバーのプローブの模式図である。It is a schematic diagram of the probe of the conventional prober. 従来のアレー型にプローブを配したプローバーの模式図である。It is the schematic diagram of the prober which has arranged the probe in the conventional array type.

符号の説明Explanation of symbols

1 Z粗動メカニズム
2 XYZ微動スキャナー
3 プローブ(カンチレバー部)
4 試料台の接触子
5 試料台
6 被検体
7 プレアンプ
8 Zサーボ系
9 Z粗動コントローラー
10 XY走査コントローラー
11 Z走査コントローラー
12 外部電気回路
20 制御用コンピュータ
☆印 押し付け力設定信号
1 Z coarse movement mechanism 2 XYZ fine movement scanner 3 Probe (cantilever part)
4 Contact of Sample Table 5 Sample Table 6 Subject 7 Preamplifier 8 Z Servo System 9 Z Coarse Motion Controller 10 XY Scan Controller 11 Z Scan Controller 12 External Electric Circuit 20 Control Computer ☆ Marking Force Setting Signal

Claims (10)

カンチレバーベースと、
前記カンチレバーベースに支持され、先端半径が100〜200nmであって信号伝達が可能なように配線された接触子を複数有し、該接触子を用いて電気試験を行うための1又は複数の計測用カンチレバーと、
前記カンチレバーベースに支持され、かつ、前記計測用カンチレバーよりも長い腕部を有し、被検体測定端子面との高さ方向の情報を取得するために前記1又は複数の計測用カンチレバーの両側に2本のZ距離制御用カンチレバーと、
前記カンチレバーのZ軸方向の移動を可能とするZ粗動機構と、を備え、
前記2本のZ距離制御用カンチレバーのうち、最も早く前記被検体測定端子面に到達したZ距離制御用カンチレバーにより前記被検体測定端子面との高さ方向の情報を取得し、当該情報に基づいて、前記カンチレバーを前記Z粗動機構により制御移動することで前記計測用カンチレバーに備えた接触子を前記被検体測定端子面に接触させ、その状態で前記計測用カンチレバーによって電気試験を行うことを特徴とする微小接触式プローバー。
A cantilever base,
One or a plurality of measurements for supporting an electrical test using the plurality of contacts supported by the cantilever base and having a tip radius of 100 to 200 nm and wired so that signal transmission is possible. For cantilevers,
An arm that is supported by the cantilever base and has a longer arm than the measurement cantilever, and is provided on both sides of the one or more measurement cantilevers to acquire information in the height direction with respect to the subject measurement terminal surface. Two Z-distance control cantilevers;
A Z coarse movement mechanism that enables movement of the cantilever in the Z-axis direction ,
Of the two Z distance control cantilever earliest said by Z distance control cantilever which has reached the object measurement terminal surface to obtain information in the height direction of the subject measured terminal surface, based on the information and have Dzu, the cantilever is brought into contact with contacts provided in the measuring cantilever by controlling movement by the Z coarse adjustment mechanism in the subject measurement terminal surface, to perform the electrical test by the measurement cantilever in this state A micro-contact prober featuring
前記Z距離制御用カンチレバーを高速で被検体測定端子面に接近させ、前記Z距離制用カンチレバーが被検体測定端子面に接触すると、当該被検体測定端子面からの情報によりたわみ信号を発生させ、当該たわみ信号をトリガにして被検体測定端子面への接近を低速切り替え、
低速で前記計測用カンチレバーを被検体測定端子面に接近させて、被検体測定端子面前記接触子を接触させ、
接触子による前記被検体測定端子面への押し込み力が所定値になると、接触子と測定端子との接触を電気的に確認する請求項1に記載の微小接触式プローバー。
Wherein the Z distance control cantilever is brought close to the object measurement terminal surface at high speed, when the Z distance system cantilever comes into contact with the object measurement terminal surface, to generate a more deflection signals to the information from the object measurement terminal surface , and the deflection signal to trigger switching access to the object measurement terminal surface to the low speed,
The measurement cantilever is brought close to the subject measurement terminal surface at a low speed, the subject measurement terminal surface is brought into contact with the contact,
2. The microcontact prober according to claim 1, wherein when the pushing force of the contact to the subject measurement terminal surface reaches a predetermined value, the contact between the contact and the measurement terminal is electrically confirmed.
前記計測用カンチレバーに設けられた各接触子は、それぞれに接続された配線を含め、各々互いに絶縁された請求項1または2に記載の微小接触式プローバー。 3. The microcontact prober according to claim 1, wherein each contact provided on the measurement cantilever is insulated from each other, including wiring connected thereto. 4. 前記接触子間の絶縁がSOI基板の酸化シリコン層によってなされた請求項1〜3のいずれか1項に記載の微小接触式プローバー。 The microcontact prober according to any one of claims 1 to 3, wherein insulation between the contacts is made by a silicon oxide layer of an SOI substrate. 前記計測用カンチレバーは、測定対象である各セルの配置間隔と略等しい間隔あるいはその整数倍の間隔で接触子が配置された請求項1〜4のいずれか1項に記載の微小接触式プローバー。 The microcontact prober according to any one of claims 1 to 4, wherein the measurement cantilever has contacts arranged at an interval substantially equal to an arrangement interval of each cell to be measured or an integer multiple thereof. 前記接触子は、カーボンナノチューブで構成された請求項1〜5のいずれか1項に記載の微小接触式プローバー。 The microcontact prober according to any one of claims 1 to 5 , wherein the contact is made of carbon nanotubes. 前記接触子は、複数本の林立するカーボンナノチューブで構成された請求項6に記載の微小接触式プローバー。 The microcontact prober according to claim 6, wherein the contact is composed of a plurality of forested carbon nanotubes. 前記計測用カンチレバーは、接触子が設けられた面と背面とが絶縁されており、背面が金属膜でコーティングされた請求項1〜7のいずれか1項に記載の微小接触式プローバー。 The micro contact prober according to any one of claims 1 to 7, wherein the measurement cantilever has a surface on which a contact is provided and a back surface insulated from each other, and the back surface is coated with a metal film. 前記計測用カンチレバーは、接触子が設けられた面の側面及び背面の少なくとも一方に、光学顕微鏡を用いて被検体測定端子面に対する前記計測用カンチレバーの位置を制御するためのガイド用のマークを有する請求項1〜8のいずれか1項に記載の微小接触式プローバー。 The measurement cantilever has a guide mark for controlling the position of the measurement cantilever with respect to the subject measurement terminal surface using an optical microscope on at least one of the side surface and the back surface of the surface provided with the contact. The microcontact type prober according to any one of claims 1 to 8 . 前記計測用カンチレバーの微小位置制御用に、XY方向に動作するピエゾスキャナー、及びZ方向に動作するピエゾスキャナーの少なくとも一つを有する請求項1〜9のいずれか1項に記載の微小接触式プローバー。 10. The microcontact prober according to claim 1 , comprising at least one of a piezo scanner operating in the XY direction and a piezo scanner operating in the Z direction for controlling the micro position of the measurement cantilever. .
JP2007022966A 2007-02-01 2007-02-01 Micro contact type prober Expired - Fee Related JP4498368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022966A JP4498368B2 (en) 2007-02-01 2007-02-01 Micro contact type prober

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022966A JP4498368B2 (en) 2007-02-01 2007-02-01 Micro contact type prober

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30380499A Division JP4260310B2 (en) 1999-10-26 1999-10-26 Micro contact type prober

Publications (2)

Publication Number Publication Date
JP2007121317A JP2007121317A (en) 2007-05-17
JP4498368B2 true JP4498368B2 (en) 2010-07-07

Family

ID=38145269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022966A Expired - Fee Related JP4498368B2 (en) 2007-02-01 2007-02-01 Micro contact type prober

Country Status (1)

Country Link
JP (1) JP4498368B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021146125A1 (en) * 2020-01-13 2021-07-22 Kla Corporation Cantilever-type probe with multiple metallic coatings
US11543431B2 (en) 2020-01-13 2023-01-03 Kla Corporation Cantilever-type probe with multiple metallic coatings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002572B2 (en) * 2018-02-06 2022-01-20 株式会社日立ハイテク probe
WO2019155518A1 (en) * 2018-02-06 2019-08-15 株式会社 日立ハイテクノロジーズ Apparatus for assessing semiconductor device
WO2019155519A1 (en) * 2018-02-06 2019-08-15 株式会社 日立ハイテクノロジーズ Semiconductor device manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288771A (en) * 1988-05-16 1989-11-21 Sumitomo Electric Ind Ltd Probe card and probe device
JPH03102209A (en) * 1989-09-16 1991-04-26 Olympus Optical Co Ltd Atomic force microscope
JPH1027832A (en) * 1996-07-10 1998-01-27 Denki Kagaku Kogyo Kk Circuit board and manufacture thereof
JPH1038916A (en) * 1996-07-23 1998-02-13 Nikon Corp Probe device and electrically connecting method for minute region
JPH10239399A (en) * 1997-02-27 1998-09-11 Mitsubishi Materials Corp Edge sensor, contact probe with edge sensor and probe with edge sensor and contact probe
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
JPH10319040A (en) * 1997-05-20 1998-12-04 Mitsubishi Materials Corp Contact probe and its manufacture
JPH1138021A (en) * 1997-07-18 1999-02-12 Hitachi Constr Mach Co Ltd Scanning probe microscope and approach mechanism thereof
JPH11160334A (en) * 1997-11-28 1999-06-18 Nikon Corp Probe for scanning probe microscope and method for detecting force
JP2001124798A (en) * 1999-10-26 2001-05-11 Seiko Instruments Inc Contacting type micro prober

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288771A (en) * 1988-05-16 1989-11-21 Sumitomo Electric Ind Ltd Probe card and probe device
JPH03102209A (en) * 1989-09-16 1991-04-26 Olympus Optical Co Ltd Atomic force microscope
JPH1027832A (en) * 1996-07-10 1998-01-27 Denki Kagaku Kogyo Kk Circuit board and manufacture thereof
JPH1038916A (en) * 1996-07-23 1998-02-13 Nikon Corp Probe device and electrically connecting method for minute region
JPH10239399A (en) * 1997-02-27 1998-09-11 Mitsubishi Materials Corp Edge sensor, contact probe with edge sensor and probe with edge sensor and contact probe
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
JPH10319040A (en) * 1997-05-20 1998-12-04 Mitsubishi Materials Corp Contact probe and its manufacture
JPH1138021A (en) * 1997-07-18 1999-02-12 Hitachi Constr Mach Co Ltd Scanning probe microscope and approach mechanism thereof
JPH11160334A (en) * 1997-11-28 1999-06-18 Nikon Corp Probe for scanning probe microscope and method for detecting force
JP2001124798A (en) * 1999-10-26 2001-05-11 Seiko Instruments Inc Contacting type micro prober

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021146125A1 (en) * 2020-01-13 2021-07-22 Kla Corporation Cantilever-type probe with multiple metallic coatings
US11543431B2 (en) 2020-01-13 2023-01-03 Kla Corporation Cantilever-type probe with multiple metallic coatings

Also Published As

Publication number Publication date
JP2007121317A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
EP0433604B1 (en) Electrical probe incorporating scanning proximity microscope
JP4200147B2 (en) Fine structure, cantilever, scanning probe microscope, and method for measuring deformation of fine structure
JP5453664B1 (en) Scanning probe microscope prober using self-detecting cantilever
US20070278405A1 (en) Multi-tip surface cantilever probe
JP4260310B2 (en) Micro contact type prober
JP4498368B2 (en) Micro contact type prober
US7945965B2 (en) Sensor for observations in liquid environments and observation apparatus for use in liquid environments
CN111413519B (en) Multi-integrated tip scanning probe microscope
JPH10312592A (en) Information processor and processing method
US20120079636A1 (en) Magnetic sensor and scanning microscope
US6552556B1 (en) Prober for electrical measurement of potentials in the interior of ultra-fine semiconductor devices, and method of measuring electrical characteristics with said prober
JP4245951B2 (en) Electrical property evaluation equipment
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
JP2006284599A (en) Device for acquiring information on sample face using cantilever
US6614243B2 (en) Measurement probe for detecting electrical signals in an integrated semiconductor circuit
KR20190107061A (en) Methods and systems for detecting structures above or below the surface of a sample using probes including cantilevers and probe tips
JP3076467B2 (en) Surface matching method and tunnel microscope and recording / reproducing apparatus using the same
JP2001024038A (en) Probe positioning method and apparatus and method of evaluating member using the same
JP4665704B2 (en) Measuring probe, surface characteristic measuring apparatus, and surface characteristic measuring method
EP1436636B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JPH01195301A (en) Measuring instrument for surface mechanical characteristic
JP5852445B2 (en) High speed scanning probe microscope
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope
JP3114902B2 (en) High-resolution and high-precision measuring device using a scanning tunneling microscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees