JP4496365B2 - Thermoelectric material and manufacturing method thereof - Google Patents

Thermoelectric material and manufacturing method thereof Download PDF

Info

Publication number
JP4496365B2
JP4496365B2 JP2004311740A JP2004311740A JP4496365B2 JP 4496365 B2 JP4496365 B2 JP 4496365B2 JP 2004311740 A JP2004311740 A JP 2004311740A JP 2004311740 A JP2004311740 A JP 2004311740A JP 4496365 B2 JP4496365 B2 JP 4496365B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
compound
container
manufacturing
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004311740A
Other languages
Japanese (ja)
Other versions
JP2006128235A (en
Inventor
華 南 劉
英俊 上野
満 坂本
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004311740A priority Critical patent/JP4496365B2/en
Publication of JP2006128235A publication Critical patent/JP2006128235A/en
Application granted granted Critical
Publication of JP4496365B2 publication Critical patent/JP4496365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、MgSi基化合物を主体とした熱電材料及びその製造方法に関する。特に、MgSi基化合物にドーパント元素としてAl及びZnを添加した熱電材料と、それを溶融法で製造する熱電材料及びその製造方法に関する。 The present invention relates to a thermoelectric material mainly composed of an Mg 2 Si-based compound and a method for producing the same. In particular, the present invention relates to a thermoelectric material in which Al and Zn are added as dopant elements to an Mg 2 Si-based compound, a thermoelectric material for producing the thermoelectric material by a melting method, and a method for producing the thermoelectric material.

熱エネルギーを電気エネルギーに変換し、これと逆の電気エネルギーを冷熱エネルギーに変換できる熱電変換素子は、可動部がなく機器の小型化が可能であるばかりでなく、精密な温度制御にも利用し易い。このため、廃熱回収や電子機器の温度制御、センサーなどにも利用が広がりつつある。   Thermoelectric conversion elements that convert thermal energy into electrical energy and convert the opposite electrical energy into cold energy can be used not only for moving parts and miniaturization of equipment, but also for precise temperature control. easy. For this reason, utilization is spreading to waste heat recovery, temperature control of electronic devices, sensors, and the like.

熱電変換素子に用いられる熱電材料としては、Bi−Te系、Pb−Te系、Si−Ge系、Fe−Si系、Mg−Si系等が知られている。Bi、Te、Pb、Geなどの元素は地球上で存在量が少なく、特にBi及びTeは強い毒性をもつことが、大規模な商用化の難点となっている。一方、Fe−Si系は、融点が高く使用温度範囲が広い上に環境特性にも優れており、熱電材料として有望視されているが、その性能指数が0.1×10−3(1/K)程度と低く、実用性が乏しい。 As a thermoelectric material used for the thermoelectric conversion element, Bi—Te, Pb—Te, Si—Ge, Fe—Si, Mg—Si, and the like are known. Elements such as Bi, Te, Pb, and Ge have a small abundance on the earth, and in particular, Bi and Te have a strong toxicity, which is a difficulty in large-scale commercialization. On the other hand, the Fe—Si system has a high melting point and a wide use temperature range and is excellent in environmental characteristics, and is regarded as a promising thermoelectric material. However, its figure of merit is 0.1 × 10 −3 (1 / K) About as low as practical and poor in practicality.

この性能指数は、Z=ασ/κ、Z:性能指数(1/K)によって算出される。ここで、σは電気伝導率(1/m・Ω)、αは起電力(V/K)、κは熱伝導率(W/m・K)である。これに対してMg−Si系は、低コストでその構成元素は環境負荷が小さく軽量であり、しかも高強度で融点も高いことから利用温度範囲も広いと考えられ、工業的に期待される熱電材料の一つである。 This figure of merit is calculated by Z = α 2 σ / κ, Z: figure of merit (1 / K). Here, σ is electrical conductivity (1 / m · Ω), α is electromotive force (V / K), and κ is thermal conductivity (W / m · K). On the other hand, the Mg-Si system is low in cost, its constituent elements are light and environmentally friendly, lightweight, high strength and high melting point, and is considered to have a wide use temperature range. One of the materials.

そこで、上記のMg−Si系の抱える問題の一つである性能指数の低さを改善するために、ドーパントと呼ばれる不純物を添加して、Mg−Si系材料に半導体特性を発現させ、高温下において高い電気伝導率を示すようにすることで熱電特性の改善が図られている。Mg−Si系材料に添加するドーパントとしては、N型半導体特性を発現させるAl、Sb等や、P型半導体特性を発現させるAg、Cu等が知られている。   Therefore, in order to improve the low figure of merit, which is one of the problems of the Mg-Si system, an impurity called a dopant is added to develop semiconductor characteristics in the Mg-Si system material at high temperatures. The thermoelectric characteristics are improved by exhibiting a high electrical conductivity at. Known dopants added to the Mg—Si-based material include Al, Sb, etc., which develop N-type semiconductor characteristics, and Ag, Cu, etc., which develop P-type semiconductor characteristics.

しかしながら、Mgが活性な金属であり、発火等の危険性があるため、これまでMgSi熱電材料の開発はあまり進められていなかった。従来、この種のMgSi基化合物を製造する方法としては、MgとSiとが原子比で2:1となるようなMg及びSi粉末にドーパント元素粉末を加えた混合粉末、もしくは予め作製したMgSi粉末とドーパント元素粉末とからなる混合粉末を、耐圧加熱装置において大気圧の数倍の雰囲気でMgSiの融点(Tm:1358K)以上に加熱し、その後冷却時にMgSi基化合物を生成させる高圧溶融法がある。 However, Mg 2 Si thermoelectric material has not been developed so far because Mg is an active metal and there is a risk of ignition and the like. Conventionally, as a method for producing this type of Mg 2 Si-based compound, a mixed powder obtained by adding dopant element powder to Mg and Si powder in which Mg and Si are in an atomic ratio of 2: 1, or prepared in advance. A mixed powder composed of Mg 2 Si powder and dopant element powder is heated to a melting point (Tm: 1358K) or higher of Mg 2 Si in an atmosphere several times higher than atmospheric pressure in a pressure heating apparatus, and then cooled to Mg 2 Si based compound There is a high pressure melting method that produces

別のMgSi基化合物の製造方法としては、MgとSiとが原子比で2:1となるようなMg及びSi粉末にドーパント元素粉末を加えた混合粉末、もしくは予め作製したMgSi粉末とドーパント元素粉末とからなる混合粉末を、不活性ガスで置換した加圧容器中のカーボン坩堝に入れ、高周波加熱・溶解する方法が挙げられる。 As another method for producing the Mg 2 Si-based compound, a mixed powder obtained by adding a dopant element powder to Mg and Si powder in which Mg and Si are in an atomic ratio of 2: 1, or a Mg 2 Si powder prepared in advance. And a mixed powder composed of a dopant element powder is placed in a carbon crucible in a pressurized container substituted with an inert gas, and high-frequency heating / dissolution is exemplified.

他のMgSi基化合物の製造方法としては、メカニカルアロイング法と呼ばれるものがある。この方法は、原子比でMgとSiとが2:1となるようにMgとSiの粉末を秤量し、これらの粉末を鉄あるいはセラミックス製のボールにより長時間(例えば、300時間)ボールミル粉砕を行うことで機械的にMgSi粉末を合成するものである。こうして得られたMgSi粉末とドーパント元素とを混合して加熱処理することによりMgSi基化合物が作製される。 As another method for producing the Mg 2 Si-based compound, there is a method called a mechanical alloying method. In this method, Mg and Si powders are weighed so that the atomic ratio of Mg and Si is 2: 1, and these powders are ball milled for a long time (for example, 300 hours) with iron or ceramic balls. By doing so, the Mg 2 Si powder is mechanically synthesized. A Mg 2 Si based compound is produced by mixing the Mg 2 Si powder thus obtained and a dopant element and subjecting the mixture to heat treatment.

更に他のMgSi基化合物の製造方法としては、放電プラズマ法と呼ばれるものがある。この方法は、MgとSiとが原子比で2:1となるようなMg粉末及びSi粉末とドーパント元素粉末とを混合する混合工程と、該混合工程で得られた混合粉末をMgの融点(Tm:923K)以上1073K以下の温度範囲内で所定時間加熱保持して溶融MgとSi粒子との反応によりMgSiを形成させると共に、ドーパント元素を溶融Mg中に溶解させMgSi結晶構造中のMgもしくはSiの一部と置換・固溶させることより、非平衡組織を有するMgSi基化合物が作製される。 Still another method for producing an Mg 2 Si-based compound is called a discharge plasma method. This method includes a mixing step of mixing Mg powder and Si powder and dopant element powder such that the atomic ratio of Mg and Si is 2: 1, and the mixed powder obtained in the mixing step is mixed with the melting point of Mg ( Tm: 923K) and heated and held for a predetermined time within a temperature range of 1073K or less to form Mg 2 Si by reaction between molten Mg and Si particles, and a dopant element is dissolved in molten Mg to form a Mg 2 Si crystal structure. Mg 2 Si based compound having a non-equilibrium structure is produced by substitution and solid solution with a part of Mg or Si.

これに関連する技術として、例えば、特開2002−285274号公報(特許文献1)には、「Mg−Si系熱電材料及びその製造方法」に係る発明が提案されており、「MgとSiの原子比が2:1となるMg粉末及びSi粉末と前記ドーパント元素粉末とを混合する混合工程と、該混合工程で得られた混合粉末をMgの融点Tm(Mg)以上1073K以下の温度範囲内で所定時間加熱保持して溶融MgとSi粒子との反応によりMgSiを形成させると共に、前記ドーパント元素を溶融Mg中に溶解させ前記MgSi結晶構造中のMg若しくはSiの一部と置換・固溶させることよりMgSi基化合物を生成させる加熱保持工程と、該加熱保持工程を前記所定時間後に未反応のSi粒子が残存する程度で停止させる冷却工程とにより作製される。」ことが開示されている。
特開2002−285274号公報
As a technology related to this, for example, Japanese Patent Laid-Open No. 2002-285274 (Patent Document 1) proposes an invention related to “Mg—Si-based thermoelectric material and manufacturing method thereof”. Mixing step of mixing Mg powder and Si powder with an atomic ratio of 2: 1 and the dopant element powder, and mixing powder obtained in the mixing step within a temperature range of Mg melting point Tm (Mg) to 1073 K And heated for a predetermined time to form Mg 2 Si by reaction of molten Mg and Si particles, and the dopant element is dissolved in molten Mg to replace part of Mg or Si in the Mg 2 Si crystal structure - a heating holding step of generating a more Mg 2 Si based compound be a solid solution, cooled Engineering stopping the extent that Si particles of unreacted remains a heating holding step after the predetermined time Is produced. "It has been disclosed by the.
JP 2002-285274 A

しかしながら、この特許文献1には、ドーパンとしてAlの実施例が開示されているが、本発明者の知見によると、Alのみの添加では偏析が大きくなり、ZnのみではP型になってしまいN型とはならない。一方、従来の高圧溶融法及び大気圧下での溶融法(常圧溶融法)等の直接溶融プロセスによって作製したMgSiインゴット中にはクラックが生じ易いので、このインゴットの緻密化が必要である。また、従来の放電プラズマ法で製造した非平衡組織を有するところの0.15at%Alドーパントを含むMgSi基化合物は優れた熱電特性を示すが、前記した高圧及び常圧等の直接溶融法で作製した同組成のMgSiインゴットにおいては、これが平衡組織を有するため、ドーパント元素の大部分が最終凝固部にAl化合物として偏析し、MgSi化合物への固溶量は極めて少なくなり、MgSiインゴットの導電率は極めて低い。従って、放電プラズマ法で用いられるMgSi基熱電材料の最適な化学組成は直接溶融プロセスには適用できない。 However, this Patent Document 1 discloses an example of Al as dopan, but according to the knowledge of the present inventor, segregation increases when only Al is added, and only P becomes p-type when Zn alone. It is not a type. On the other hand, cracks are likely to occur in Mg 2 Si ingots produced by a conventional melting process such as the conventional high pressure melting method and the melting method under atmospheric pressure (atmospheric pressure melting method). is there. Further, the Mg 2 Si based compound containing 0.15 at% Al dopant having a non-equilibrium structure produced by the conventional discharge plasma method shows excellent thermoelectric properties, but the above-described direct melting method such as high pressure and normal pressure is used. In the Mg 2 Si ingot of the same composition prepared in (1), since this has an equilibrium structure, most of the dopant element segregates as an Al compound in the final solidified part, and the amount of solid solution in the Mg 2 Si compound becomes extremely small. The conductivity of the Mg 2 Si ingot is very low. Therefore, the optimum chemical composition of the Mg 2 Si based thermoelectric material used in the discharge plasma method cannot be applied directly to the melting process.

本発明は、上述した事情に鑑みて創案されたものであり、下記の目的を達成するものである。   The present invention has been made in view of the above-described circumstances, and achieves the following objects.

本発明の目的は、大気圧下での溶融法に着目し、製造工程の安全性の向上及び製造コストの削減を図ることができる熱電材料及びその製造方法を提供することにある。   An object of the present invention is to provide a thermoelectric material capable of improving the safety of the manufacturing process and reducing the manufacturing cost by focusing on the melting method under atmospheric pressure and the manufacturing method thereof.

本発明の他の目的は、性能指数の優れたMgSi基化合物に、ドーパント元素としてAl及びZnを複合添加した熱電半導体から成る熱電材料及びその製造方法を提供することにある。 Another object of the present invention is to provide a thermoelectric material comprising a thermoelectric semiconductor in which Al and Zn are added in combination as dopant elements to a Mg 2 Si based compound having an excellent figure of merit, and a method for producing the thermoelectric material.

上記の目的を達成すべく、本発明に係る熱電材料は、Mg−Si基化合物に、ドーパント元素としてAl及びZnを添加することにより形成されたN型熱電半導体からなることを特徴とする。本発明に係る熱電材料は、前記Mg−Si基化合物が、MgとSiとが原子比で2:1であり、前記Al及びZnの添加量が0.21at%〜2at%であると良い。   In order to achieve the above object, the thermoelectric material according to the present invention is characterized by comprising an N-type thermoelectric semiconductor formed by adding Al and Zn as dopant elements to an Mg—Si based compound. In the thermoelectric material according to the present invention, it is preferable that the Mg—Si based compound has Mg and Si in an atomic ratio of 2: 1 and the addition amount of Al and Zn is 0.21 at% to 2 at%.

本発明の熱電材料の製造方法は、大気側に緩衝キャビティを有する黒鉛容器の溶解室内に、塊状のMg及び該Mgと化合物を形成するSiを収容するとともに、ドーパント元素としてAl及びZnを複合添加し、前記緩衝キャビティ内に不活性ガスを置換した状態で、前記黒鉛容器をMgSi化合物の融点以上でMgの沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させ、該化合物融液若しくは合金融液を冷却してインゴットを作製し、該インゴットを粉砕して作製したMgSi原料粉末を焼結することを特徴とする。 The method for producing a thermoelectric material of the present invention accommodates massive Mg and Si that forms a compound with Mg in a melting chamber of a graphite container having a buffer cavity on the atmosphere side, and adds Al and Zn as dopant elements in combination. Then, with the inert gas substituted in the buffer cavity, the graphite container is held for a certain period of time in a temperature range not lower than the melting point of the Mg 2 Si compound and not higher than the boiling point of Mg, thereby allowing the compound melt or the combined liquid to be obtained. It is characterized by producing an ingot by cooling the compound melt or combined liquid, and sintering the Mg 2 Si raw material powder produced by pulverizing the ingot.

また、本発明の熱電材料の製造方法において、前記黒鉛容器は有底筒体からなる容器であって、前記黒鉛容器内に配置され前記容器の空間を区画する準密封用パンチにより、大気側に不活性ガスを導入して収容する前記緩衝キャビティ、及び底部側に前記Mg−Si基化合物及び前記Al及びZnを収納する前記溶解室を形成し、前記不活性ガスで大気と遮断しながら加熱・保持することにより、前記熱電材料の化合物融液若しくは合金融液を作るものであっても良い。   Further, in the method for producing a thermoelectric material according to the present invention, the graphite container is a container made of a bottomed cylindrical body, and is placed in the graphite container by a semi-sealing punch that divides the space of the container. The buffer cavity for introducing and storing the inert gas, and the dissolution chamber for storing the Mg-Si based compound and the Al and Zn are formed on the bottom side, and heated while being blocked from the atmosphere by the inert gas. By holding, a compound melt or a combined financial liquid of the thermoelectric material may be made.

更に、本発明の熱電材料の製造方法において、前記焼結は、前記MgSi原料粉末に電圧・電流を印加し、該MgSi原料粉末の粒子間隙で起こる放電現象により焼結体を作製する放電プラズマ焼結法であるとより効果的なものが製造できる。更に、本発明の熱電材料の製造方法において、前記Al及びZnの添加量が0.21at%〜2at%であるものが良い。 Further, in the manufacturing method of the thermoelectric material of the present invention, the sintering, the Mg 2 Si raw material powder voltage and current is applied to, produce a sintered body by a discharge phenomenon occurring at the particle gap of the Mg 2 Si raw material powder If the discharge plasma sintering method is used, a more effective one can be produced. Furthermore, in the method for producing a thermoelectric material of the present invention, the additive amount of Al and Zn is preferably 0.21 at% to 2 at%.

本発明によれば、大気圧下での溶融法により、製造工程の安全性の向上及び製造コストの削減を図ることができるとともに、性能指数の優れたMgSi基熱電半導体から成る熱電材料を製造することができる。 According to the present invention, a thermoelectric material composed of an Mg 2 Si-based thermoelectric semiconductor having an excellent figure of merit can be achieved by improving the safety of the manufacturing process and reducing the manufacturing cost by a melting method under atmospheric pressure. Can be manufactured.

以下、本発明を実施するための最良の形態を図面に基づいて説明するが、本発明は本実施の形態に限るものではない。図1を用いて、本発明に係る熱電材料の製造に用いる準密封容器(黒鉛容器)の構造を説明する。図示するように、本実施形態で用いる準密封容器1は有底円筒体状を呈する容器であり、その容器本体2は黒鉛により形成されている。この容器本体2の開口部は黒鉛製の蓋体3により閉塞されるように成っており、この蓋体3には、これを貫通するように管状のガス導入口4が設けられている。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings, but the present invention is not limited to this embodiment. The structure of a semi-sealed container (graphite container) used for manufacturing the thermoelectric material according to the present invention will be described with reference to FIG. As shown in the figure, the semi-sealed container 1 used in the present embodiment is a container having a bottomed cylindrical shape, and the container body 2 is made of graphite. The opening of the container body 2 is closed by a graphite lid 3, and the lid 3 is provided with a tubular gas inlet 4 so as to penetrate the lid 3.

また、容器本体2の長手方向中間部には、黒鉛製の準密封用パンチ5が装着されるように成っており、この準密封用パンチ5を介設することにより、該容器本体2内には、大気側に不活性ガスを導入して収容可能な緩衝キャビティ6を隔てて、底部側に原料を収容可能な溶解室7が区画形成されている。準密封用パンチ5は、容器本体2の内孔の内径より若干であるが小サイズである。   Further, a semi-sealing punch 5 made of graphite is attached to the middle part of the container body 2 in the longitudinal direction. In this case, a melting chamber 7 capable of accommodating a raw material is defined on the bottom side with a buffer cavity 6 that can be accommodated by introducing an inert gas to the atmosphere side. The semi-sealing punch 5 is slightly smaller in size than the inner diameter of the inner hole of the container body 2.

準密封用パンチ5は、容器本体2との摩擦力により任意の位置に固定可能である。この準密封用パンチ5を介設することにより、容器本体2の内部空間を上下の空間に区画することができる。即ち、容器本体2の上方の空間は大気側から不活性ガスを導入する空間である緩衝キャビティ6であり、準密封用パンチ5の下部空間である底部側は原料を収容可能な溶解室7が区画形成される。   The semi-sealing punch 5 can be fixed at an arbitrary position by a frictional force with the container body 2. By interposing the semi-sealing punch 5, the internal space of the container body 2 can be partitioned into upper and lower spaces. That is, the space above the container body 2 is a buffer cavity 6 that is a space for introducing an inert gas from the atmosphere side, and the bottom side that is the lower space of the semi-sealing punch 5 is a melting chamber 7 that can accommodate a raw material. A compartment is formed.

準密封用パンチ5は、化合物融液若しくは合金融液の蒸発を押さえる効果を有する。特に、例えばマグネシウムのように、融点923K、沸点1380Kの場合、融点を越えると蒸発するので、パンチ5で準密封空間を形成することによりこの蒸発が抑制され、目的とする成分の均一なマグネシウム合金が製造できる。   The semi-sealing punch 5 has an effect of suppressing the evaporation of the compound melt or the combined financial liquid. In particular, when the melting point is 923K and the boiling point is 1380K, for example, magnesium, it evaporates when the melting point is exceeded. By forming a semi-sealed space with the punch 5, this evaporation is suppressed, and a magnesium alloy having a uniform target component Can be manufactured.

本実施の形態の製造方法は、まず、このような大気側に緩衝キャビティ6を有する準密封容器1の溶解室7内に、Mg及びこれと化合物を形成するSiを収容するとともに、二種類のドーパント原料であるAlとZnを複合添加し、上記緩衝キャビティ6内に不活性ガスを置換した状態で、該準密封容器1をMgSi化合物の融点以上でMgの沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させ、その融液を冷却して多結晶インゴットを作製する。 In the manufacturing method according to the present embodiment, Mg and Si that forms a compound with Mg and the compound are accommodated in the dissolution chamber 7 of the semi-sealed container 1 having the buffer cavity 6 on the atmosphere side. In a state in which Al and Zn as dopant raw materials are added in combination and the inert gas is replaced in the buffer cavity 6, the semi-sealed container 1 is kept at a temperature range between the melting point of the Mg 2 Si compound and the boiling point of Mg. By holding for a time, a compound melt or a combined liquid is produced, and the melt is cooled to produce a polycrystalline ingot.

本実施の形態では、Mgを発火し易い粉末状態で用いるのではなく、塊状のものを上記準密封容器1の溶解室7内に装入する。また、Mgと化合物を形成するSiは、加熱保持時間を減少させるため小さい粒径のものを用いることが好ましく、特に、発火や爆発の危険性がない場合には粉末状のものを用いても構わない。一方、Mgは加熱保持温度で十分に溶解されるので、その原料の形状及びサイズの保持時間への影響は少ない。MgSi基化合物のインゴッドを作製するには、塊状のMg原料と不規則な粒状のSi原料とを原子比が2:1と成るように計量して上記溶解室7内に装入する。 In the present embodiment, Mg is not used in an easily ignited powder state, but a lump is put into the melting chamber 7 of the semi-sealed container 1. In addition, Si that forms a compound with Mg is preferably one having a small particle size in order to reduce the heating and holding time. In particular, if there is no risk of ignition or explosion, a powdery one may be used. I do not care. On the other hand, since Mg is sufficiently dissolved at the heating and holding temperature, there is little influence on the holding time of the shape and size of the raw material. In order to produce an Mg 2 Si-based compound ingot, a massive Mg raw material and an irregular granular Si raw material are weighed so as to have an atomic ratio of 2: 1 and charged into the melting chamber 7.

また、本実施の形態では、ドーパント元素としてAl及びZnを複合添加しており、その複合添加量は0.21at%〜2at%であることが好ましい。ここで、Al及びZnを複合添加するのは、ドーパント元素のマクロ偏析を抑制して、後述データで示されるように性能指数の優れたMgSi基熱電半導体から成る熱電材料を得るためである。 Moreover, in this Embodiment, Al and Zn are compound-added as a dopant element, and it is preferable that the compound addition amount is 0.21 at%-2 at%. Here, the reason why Al and Zn are added in combination is to obtain a thermoelectric material composed of a Mg 2 Si-based thermoelectric semiconductor having an excellent figure of merit, as shown in the data below, while suppressing macrosegregation of the dopant element. .

原料の装入完了後、容器本体2内に準密封用パンチ5を配するとともに、その開口部をガス導入口4を有する蓋体3により閉塞し、該準密封容器1の加熱に際して上記ガス導入口4からアルゴン(Ar)等の不活性ガスを導入し、加熱・保持時及び冷却時に亘って緩衝キャビティ6内を不活性ガスで置換する。本実施形態では、緩衝キャビティ6内に導入する不活性ガスとしてArを用いたが、これに限るものではなく、ヘリウム(He)等の高温で原料と反応しない他のガスを用いても構わない。   After the completion of the charging of the raw material, a semi-sealing punch 5 is arranged in the container body 2 and its opening is closed with a lid 3 having a gas introduction port 4. An inert gas such as argon (Ar) is introduced from the port 4 and the inside of the buffer cavity 6 is replaced with the inert gas during heating / holding and cooling. In the present embodiment, Ar is used as the inert gas introduced into the buffer cavity 6, but the present invention is not limited to this, and other gases that do not react with the raw material at a high temperature such as helium (He) may be used. .

準密封容器1の緩衝キャビティ6内を不活性ガスで置換した後、この準密封容器1を加熱炉内に収納し、MgSi化合物の融点以上でMgの沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させる。ここで、MgSi化合物の融点以上の温度に加熱保持するのは、原料を溶融させて均一な化合物を得るためであり、Mgの沸点以下の温度に加熱保持するのは、Mgの蒸発による発火や爆発を防止するためである。 After replacing the buffer cavity 6 of the semi-sealed container 1 with an inert gas, the semi-sealed container 1 is stored in a heating furnace and kept for a certain time in a temperature range between the melting point of the Mg 2 Si compound and the boiling point of Mg. By doing so, a compound melt or a combined financial liquid is generated. Here, the heating and holding at a temperature equal to or higher than the melting point of the Mg 2 Si compound is to obtain a uniform compound by melting the raw material, and the heating and holding at a temperature not higher than the boiling point of Mg is due to evaporation of Mg. This is to prevent ignition and explosion.

本実施の形態では、準密封容器1の加熱手段として電気炉を用いたが、これに限るものではなく、例えば、誘導加熱や坩堝通電による加熱などの他の加熱手段を用いても構わない。MgSi基化合物のインゴッドを作製するには、例えば、MgSiの融点(Tm(MgSi):1358K)以上でMgの沸点(Tb(Mg):1363K)以下の温度範囲にある1361Kまで加熱し、その温度に2時間保持することにより、MgSi基化合物の融液を生成させる。 In the present embodiment, an electric furnace is used as the heating means of the semi-sealed container 1, but the present invention is not limited to this, and other heating means such as induction heating or heating by crucible energization may be used. In order to produce an ingot of an Mg 2 Si-based compound, for example, 1361K in the temperature range of the melting point of Mg 2 Si (Tm (Mg 2 Si): 1358K) and the boiling point of Mg (Tb (Mg): 1363K). And a melt of Mg 2 Si based compound is generated by maintaining the temperature for 2 hours.

この加熱保持工程において、溶解室7内で発生したガス及び蒸気は容器本体2の内面と準密封用パンチ5の外周面との隙間を通じて外へ逃げられるが、加熱保持温度がMgの沸点以下に設定されているので、準密封容器1の安全性は十分に高い。一方、溶解室7は準密封用パンチ5により準密封されており、溶解室7と緩衝キャビティ6との間のガスの対流を大幅に抑制できるので、Mgの外部への蒸発量は極めて少なく、溶融組成の変化も極めて少ない。更に、上記の加熱・温度保持のみならず、その後の冷却時においても、緩衝キャビティ6内にArガスを流し続けることにより、外部の酸素が緩衝キャビティ6を経由して溶解室7内へ混入するのを抑制することができる。   In this heating and holding step, the gas and vapor generated in the melting chamber 7 escape to the outside through the gap between the inner surface of the container body 2 and the outer peripheral surface of the semi-sealing punch 5, but the heating and holding temperature is below the boiling point of Mg. Since it is set, the safety of the semi-sealed container 1 is sufficiently high. On the other hand, the melting chamber 7 is semi-sealed by the semi-sealing punch 5, and the convection of gas between the melting chamber 7 and the buffer cavity 6 can be greatly suppressed, so that the amount of evaporation of Mg to the outside is extremely small, There is also very little change in the melt composition. Furthermore, not only in the above heating and temperature maintenance, but also in the subsequent cooling, by continuously flowing Ar gas into the buffer cavity 6, external oxygen is mixed into the dissolution chamber 7 through the buffer cavity 6. Can be suppressed.

このように本実施の形態では、上記準密封容器1において、容器本体2の内面と蓋体3の外周面との隙間を緩衝キャビティ6内で発生したガス及び蒸気を逃す出口として利用しているが、上記蓋体3に細孔をあけてもよい。その後、MgSi融液を冷却(炉冷)することにより、多結晶のMgSiインゴットが得られる。そして、このMgSiインゴットをボールミル装置等の粉砕装置を用いてMgSi原料粉末を作製する。 As described above, in the present embodiment, in the semi-sealed container 1, the gap between the inner surface of the container body 2 and the outer peripheral surface of the lid 3 is used as an outlet for releasing the gas and vapor generated in the buffer cavity 6. However, pores may be formed in the lid 3. Thereafter, the Mg 2 Si melt is cooled (furnace cooled) to obtain a polycrystalline Mg 2 Si ingot. Then, to prepare a Mg 2 Si raw material powder using the Mg 2 Si ingot grinding devices ball mill or the like.

次に、得られたMgSi原料粉末を用いて、放電プラズマ焼結法により短時間焼結(例えば、5分)することにより、MgSi化合物半導体の焼結体を作製する。このように本の実施の形態の製造方法によれば、塊状のMgを原料として用いてMgSiインゴットを作製しており、従来の粉末冶金法を用いた製造方法に比べて、取り扱いが困難な粉末状態で用いる必要がないので、生産の安全性を向上させ、製品コストを大幅に低減することができる。 Next, using the obtained Mg 2 Si raw material powder, sintering is performed for a short time (for example, 5 minutes) by a discharge plasma sintering method, thereby producing a sintered body of the Mg 2 Si compound semiconductor. As described above, according to the manufacturing method of the present embodiment, Mg 2 Si ingots are produced using bulk Mg as a raw material, which is difficult to handle as compared with a manufacturing method using a conventional powder metallurgy method. Therefore, the production safety can be improved and the product cost can be greatly reduced.

また、従来の高圧溶融法を用いた製造方法に比べて、高温耐高圧加熱装置を使用する必要がないので、製品コストを低減することができる。更に、従来のメカニカルアロイング法を用いた製造方法に比べて、ボールミルによる混合工程での不純物の混入を防止できるため、高純度のMgSiインゴットを製造することができる。 Moreover, since it is not necessary to use a high-temperature and high-pressure-resistant heating device as compared with the manufacturing method using the conventional high-pressure melting method, the product cost can be reduced. Furthermore, compared with the manufacturing method using the conventional mechanical alloying method, since it is possible to prevent impurities from being mixed in the mixing process using the ball mill, a high-purity Mg 2 Si ingot can be manufactured.

そして、大気側に不活性ガスを導入して収容可能な緩衝キャビティ6を隔てて、底部側に原料を収容可能な溶解室7を有する準密封容器1を用いており、この準密封容器1を不図示の電気炉内で上記温度範囲に加熱・保持するに際して、上記緩衝キャビティ6内をAr等の不活性ガスで置換するので、真空装置を使用する必要がなく、大気圧下において原料を直接溶解することができ、製品コストを大幅に低減することができるものである。   Then, a semi-sealed container 1 having a dissolution chamber 7 capable of accommodating a raw material on the bottom side is used with a buffer cavity 6 that can be accommodated by introducing an inert gas to the atmosphere side. When heating and holding in the above-mentioned temperature range in an electric furnace (not shown), the inside of the buffer cavity 6 is replaced with an inert gas such as Ar, so there is no need to use a vacuum device, and the raw material is directly applied under atmospheric pressure. It can be dissolved and the product cost can be greatly reduced.

加えて、不純物の混入のないMgSi原料粉末を用いて、放電プラズマ焼結法の短時間焼結によりMgSi化合物半導体の焼結体を作製するので、緻密なMgSi熱電半導体を得ることができ、その焼結体にクラックやマクロ偏析が生じることはない。 In addition, since a sintered body of Mg 2 Si compound semiconductor is produced by short-time sintering of the discharge plasma sintering method using Mg 2 Si raw material powder free of impurities, a dense Mg 2 Si thermoelectric semiconductor is manufactured. And no cracks or macrosegregation occur in the sintered body.

なお、本実施の形態では、有底円筒体状の容器本体2内に準密封パンチを配した準密封容器1を用いたが、これに限定されるものではなく、大気側に緩衝キャビティ6を有し、かつ溶解室7が準密封状態の容器であれば、他の形状の容器を用いてもよい。また、本発明の準密封容器1は一室の緩衝キャビティ6を有しているが、これに限るものではなく、二室以上の緩衝キャビティ6を有する容器を構成してもよい。   In the present embodiment, the semi-sealed container 1 in which the semi-sealed punch is disposed in the bottomed cylindrical container body 2 is used. However, the present invention is not limited to this, and the buffer cavity 6 is provided on the atmosphere side. If the dissolution chamber 7 is a semi-sealed container, another shape container may be used. Moreover, although the semi-sealed container 1 of the present invention has one buffer cavity 6, the present invention is not limited to this, and a container having two or more chambers may be configured.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限るものではない。
(熱電材料の製造)
本発明に係るMg−Si系熱電材料は、MgとSi、及び二種類のドーパント元素によって構成される。本実施例の熱電材料の製造方法は、まず、大気側に緩衝キャビティ6を有する準密封容器1の溶解室7内に、Mg66.67−x−ySi33.33AlZn(x+y=0.21〜2)となるように、塊状のMg(99.5%、totalMg+Ca)と不規則な粒子状のSi(99.9%)、及びドーパント粉末原料を収容する。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
(Manufacture of thermoelectric materials)
The Mg—Si based thermoelectric material according to the present invention is composed of Mg and Si and two kinds of dopant elements. In the manufacturing method of the thermoelectric material of the present embodiment, first, Mg 66.67-xy Si 33.33 Al x Zn y (x) is placed in the melting chamber 7 of the semi-sealed container 1 having the buffer cavity 6 on the atmosphere side. The bulk Mg (99.5%, totalMg + Ca), the irregular particulate Si (99.9%), and the dopant powder raw material are accommodated so that + y = 0.21 to 2).

なお、本実施例では、Si粒子の粒径は1〜5mmの範囲のものを用いたが、高温保持時間を減少させるためには小さい粒径のSi原料を用いることが好ましい。一方、Mg原料は保持温度で十分溶解されるので、その原料の形状及びサイズは保持時間への影響は少ない。原料の装入完了後、容器本体2内に準密封用パンチ5を配するとともに、その開口部をガス導入口4を有する蓋体3により閉塞し、該準密封容器1の加熱に際して上記ガス導入口4から不活性ガスとしてArを導入し、加熱・保持及び冷却時に亘って上記緩衝キャビティ6内を不活性ガスで置換する。   In this example, the Si particles having a particle diameter in the range of 1 to 5 mm were used, but it is preferable to use a Si raw material having a small particle diameter in order to reduce the high temperature holding time. On the other hand, since the Mg raw material is sufficiently dissolved at the holding temperature, the shape and size of the raw material have little influence on the holding time. After the completion of the charging of the raw material, a semi-sealing punch 5 is arranged in the container body 2 and its opening is closed with a lid 3 having a gas introduction port 4. Ar is introduced from the port 4 as an inert gas, and the inside of the buffer cavity 6 is replaced with the inert gas during heating, holding and cooling.

そして、MgSiの融点(Tm(MgSi):1358K)以上でMgの沸点(Tb(Mg):1363K)以下の温度範囲での1361Kまで加熱し、2時間程度保持する。この加熱保持工程においては、融点以上に達しているMgのみが溶融し、溶融Mgと固体状態(非凝固状態)にあるSiとの界面において下記化学式に示すような反応(液相−固相反応)が進行することにより、MgSi溶融が得られる。 Then, Mg 2 Si melting point (Tm (Mg 2 Si): 1358K) or at the boiling point of Mg (Tb (Mg): 1363K ) was heated to 1361K at the following temperatures and held for about two hours. In this heating and holding step, only Mg reaching the melting point is melted, and a reaction (liquid phase-solid phase reaction) as shown in the following chemical formula at the interface between molten Mg and Si in a solid state (non-solidified state) ) Proceeds, Mg 2 Si melting is obtained.

2Mg(液相)+Si(固相)→MgSi(液相)
上述したように、加熱保持工程において、溶解室7内で発生したガス及び蒸気は容器本体2の内面と準密封用パンチ5の外周面との隙間を通じて外へ逃げられるが、加熱保持温度がMgの沸点以下に設定されているので、準密封容器1の安全性は十分に高い。一方、溶解室7は準密封用パンチ5により準密封されており、溶解室7と緩衝キャビティ6との間のガスの対流を大幅に抑制できるので、Mgの外部への蒸発量は極めて少なく、溶融組成の変化も極めて少ない。
2Mg (liquid phase) + Si (solid phase) → Mg 2 Si (liquid phase)
As described above, in the heating and holding step, the gas and vapor generated in the melting chamber 7 escape to the outside through the gap between the inner surface of the container body 2 and the outer peripheral surface of the semi-sealing punch 5, but the heating and holding temperature is Mg. Therefore, the safety of the semi-sealed container 1 is sufficiently high. On the other hand, the melting chamber 7 is semi-sealed by the semi-sealing punch 5, and the convection of gas between the melting chamber 7 and the buffer cavity 6 can be greatly suppressed, so that the amount of evaporation of Mg to the outside is extremely small, There is also very little change in the melt composition.

更に、上記の加熱・温度保持のみならず、その後の冷却時においても、緩衝キャビティ6内に0.5ml/minの流量でArガスを流し続けることにより、外部の酸素が緩衝キャビティ6を経由して溶解室7内へ混入するのを十分に抑制することができる。その後、MgSi融液を冷却(炉冷)することにより、多結晶のMgSiインゴットが得られる。得られたMgSiインゴット中には、目視によるマクロ偏析は認められなかった。また 前記のMgSi原料粉末をX線回折により分析した結果、そのインゴットはほぼ単純なMgSiの構造で、未反応のMg及びSiは極めて少ない。 Furthermore, not only in the above heating and temperature maintenance, but also in the subsequent cooling, by continuously flowing Ar gas into the buffer cavity 6 at a flow rate of 0.5 ml / min, external oxygen passes through the buffer cavity 6. Thus, mixing into the melting chamber 7 can be sufficiently suppressed. Thereafter, the Mg 2 Si melt is cooled (furnace cooled) to obtain a polycrystalline Mg 2 Si ingot. In the obtained Mg 2 Si ingot, macrosegregation by visual observation was not recognized. Further, as a result of analyzing the Mg 2 Si raw material powder by X-ray diffraction, the ingot has an almost simple Mg 2 Si structure and very little unreacted Mg and Si.

次に、得られたMgSiインゴットを遊星型ボールミル装置で30分粉砕してMgSi原料粉末を作製した。この原料粉末をX線回折により分析した結果、上記インゴットは略単純なMgSiの構造を示しており、未反応のMg及びSiは極めて少ないことが判った。そして、上記MgSi原料粉末を用いて、放電プラズマ焼結法により大気中で緻密なMgSi化合物半導体の試料を作製した。MgSiの焼結温度は1293Kで、焼結荷重は15MPaであり、保持時間は5分であった。放電プラズマ焼結法は、複合材料、機能材料の接合・焼結が可能で、放電現象による粉体の自己発熱で加熱して焼結体を得る周知の焼結方法であり、その説明は省略する。 Next, the obtained Mg 2 Si ingot was pulverized with a planetary ball mill for 30 minutes to produce a Mg 2 Si raw material powder. As a result of analyzing the raw material powder by X-ray diffraction, it was found that the ingot had a substantially simple Mg 2 Si structure, and that there was very little unreacted Mg and Si. Then, using the Mg 2 Si raw material powder, a dense sample of Mg 2 Si compound semiconductor was produced in the atmosphere by a discharge plasma sintering method. The sintering temperature of Mg 2 Si was 1293 K, the sintering load was 15 MPa, and the holding time was 5 minutes. The discharge plasma sintering method is a well-known sintering method that can bond and sinter composite materials and functional materials, and obtains a sintered body by heating by self-heating of the powder due to the discharge phenomenon. To do.

図2は、MgSi焼結体の光学顕微鏡による結晶組織の観察結果を示す顕微鏡写真である。図示するように、得られた焼結体の組織は、粗粒のMgSi結晶と微細なMgSi結晶からなっていることが分かる。顕微鏡観察の試料を研磨する際、粗粒の結晶のほうが優先的に削り取られるので相対的に低い硬度を示したが、より微細な組織の焼結体の硬度はインゴットよりも高いと考えられる。 FIG. 2 is a photomicrograph showing the observation results of the crystal structure of the Mg 2 Si sintered body with an optical microscope. As shown in the figure, it can be seen that the structure of the obtained sintered body is composed of coarse Mg 2 Si crystals and fine Mg 2 Si crystals. When polishing a sample for microscopic observation, coarse crystals were preferentially scraped off, and thus showed relatively low hardness. However, the hardness of a sintered body having a finer structure is considered to be higher than that of an ingot.

本実施例における加熱工程では、大気雰囲気下で焼結させたが、他の雰囲気(例えば、真空や不活性ガス雰囲気)での焼結プロセスを用いでも構わない。また、本発明の予備実験結果によれば、MgSi原料粉末を用いる場合には、焼結雰囲気による焼結体の熱電特性への影響は少ないことが判っている。
(実施例で得られた熱電材料の特性)
図3から図7は、本発明の製造方法で作製されたMgSi基焼結体の起電力(α)、導電率(σ)、出力因子P、熱伝導率(κ)及び性能指数(Z)等熱電特性を示す説明図である。図3の横軸は温度T、縦軸は起電力αであり、前述した実施例の製造方法で得られた熱電材料の温度Tと起電力αの関係の特性を示すものである。起電力αは熱電半導体材料に1Kの温度差が付いたときに得られる起電力を意味する。本実施例の導電材料の起電力αは、温度700K付近でピークを示している。ただし、この起電力および導電率は、汎用の比抵抗、ホール係数及び熱電能温度依存性同時測定システムを用いて測定したものであり(例えば、熱電変換システム技術総覧:(株)リアライズ社発行,p.33(1995)参照)、熱伝導率は真空理工株式会社製の熱定数測定装置TC7000Winを用いてレーザーフラッシュ法で測定した。
In the heating step in the present embodiment, sintering is performed in an air atmosphere, but a sintering process in another atmosphere (for example, a vacuum or an inert gas atmosphere) may be used. Further, according to the preliminary experimental results of the present invention, it is known that when the Mg 2 Si raw material powder is used, the influence of the sintering atmosphere on the thermoelectric characteristics of the sintered body is small.
(Characteristics of thermoelectric material obtained in Examples)
3 to 7 show the electromotive force (α), conductivity (σ), output factor P, thermal conductivity (κ), and performance index (Mg) of the Mg 2 Si-based sintered body produced by the production method of the present invention. Z) is an explanatory diagram showing isothermal characteristics. The horizontal axis in FIG. 3 is the temperature T, and the vertical axis is the electromotive force α, which shows the characteristics of the relationship between the temperature T and the electromotive force α of the thermoelectric material obtained by the manufacturing method of the above-described embodiment. The electromotive force α means an electromotive force obtained when a thermoelectric semiconductor material has a temperature difference of 1K. The electromotive force α of the conductive material of the present example shows a peak around a temperature of 700K. However, the electromotive force and conductivity are measured using a general-purpose specific resistance, Hall coefficient, and thermoelectric temperature-dependent simultaneous measurement system (for example, thermoelectric conversion system technology overview: issued by Realize Co., Ltd., p.33 (1995)), the thermal conductivity was measured by a laser flash method using a thermal constant measuring device TC7000Win manufactured by Vacuum Riko Co., Ltd.

図4の横軸は温度T、縦軸は導電率σであり、前述した実施例の製造方法で得られた熱電材料の温度と導電率の関係の特性を示すものである。本実施例の熱電材料の導電率σは、低い温度領域で高い特性を示している。図5の横軸は温度T、縦軸は出力因子Pであり、前述した実施例の製造方法で得られた熱電材料の温度と出力因子Pの関係の特性を示すものである。温度400Kから温度700Kにかけてピーク値を示している。   The horizontal axis in FIG. 4 is the temperature T, and the vertical axis is the electrical conductivity σ, which shows the characteristics of the relationship between the temperature and the electrical conductivity of the thermoelectric material obtained by the manufacturing method of the above-described embodiment. The electric conductivity σ of the thermoelectric material of this example shows high characteristics in a low temperature region. The horizontal axis in FIG. 5 is the temperature T, and the vertical axis is the output factor P, which shows the characteristics of the relationship between the temperature of the thermoelectric material and the output factor P obtained by the manufacturing method of the embodiment described above. The peak value is shown from the temperature 400K to the temperature 700K.

図6の横軸は温度T、縦軸は熱伝導率κであり、前述した実施例の製造方法で得られた熱電材料の温度Kと熱伝導率κの関係の特性を示すものである。本実施例の熱電材料の熱伝導率κは、低い温度領域で高い特性を示している。図7の横軸は温度T、縦軸は性能指数Zであり、前述した実施例の製造方法で得られた熱電材料の温度と性能指数Zの関係の特性を示すものである。温度400Kから温度700Kにかけてピーク値を示している。性能指数Zの数値が0.5以上を示す温度領域は、温度450Kないし750Kの範囲を示し、幅広い温度領域で使用できることを示している。   The horizontal axis in FIG. 6 is the temperature T, and the vertical axis is the thermal conductivity κ, which shows the characteristics of the relationship between the temperature K and the thermal conductivity κ of the thermoelectric material obtained by the manufacturing method of the above-described embodiment. The thermal conductivity κ of the thermoelectric material of this example shows high characteristics in a low temperature range. The horizontal axis in FIG. 7 is the temperature T, and the vertical axis is the performance index Z, which shows the characteristics of the relationship between the temperature of the thermoelectric material obtained by the manufacturing method of the above-described embodiment and the performance index Z. The peak value is shown from the temperature 400K to the temperature 700K. The temperature range where the numerical value of the figure of merit Z is 0.5 or more indicates a temperature range of 450K to 750K, indicating that it can be used in a wide temperature range.

このように本実施例によれば、不活性ガスを置換した準密封容器1において、MgとSiとが原子比で2:1となるようなMg及びSi原料と前記ドーパント元素(Al及びZn)とを加熱・保持して溶融させ、冷却することによりMgSiインゴットが得られ、このインゴットを粉砕して、放電プラズマ焼結法を用いて短時間焼結させることにより、緻密なMgSi半導体を製造することができる。特に、前記の製造方法において、ドーパントとしてAl及びZnを複合添加することにより、ドーパント元素のマクロ偏析が抑制され、図3から図7に示すように、性能指数の優れたN型のMgSi基熱電半導体を製造することができるものである。 As described above, according to the present embodiment, in the semi-sealed container 1 in which the inert gas is replaced, the Mg and Si raw materials and the dopant elements (Al and Zn) such that Mg and Si are in an atomic ratio of 2: 1. Are heated, held, melted, and cooled to obtain an Mg 2 Si ingot. The ingot is pulverized and sintered for a short time using a discharge plasma sintering method to obtain a dense Mg 2 Si Semiconductors can be manufactured. In particular, in the manufacturing method described above, by adding Al and Zn as dopants, macrosegregation of the dopant element is suppressed, and as shown in FIGS. 3 to 7, N-type Mg 2 Si having an excellent figure of merit. A base thermoelectric semiconductor can be manufactured.

図1は、本実施例の熱電材料の製造に用いる準密封容器の構造を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the structure of a semi-sealed container used for manufacturing the thermoelectric material of this example. 図2は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料焼結体の光学顕微鏡による結晶組織の観察結果を示す説明図である。FIG. 2 is an explanatory diagram showing the observation results of the crystal structure of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material sintered body produced in this example, using an optical microscope. 図3は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料の起電力(α)を示す説明図である。FIG. 3 is an explanatory diagram showing the electromotive force (α) of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material produced in this example. 図4は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料の導電率(σ)を示す説明図である。FIG. 4 is an explanatory diagram showing the electrical conductivity (σ) of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material produced in this example. 図5は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料の出力因子P、(ασ)を示す説明図である。FIG. 5 is an explanatory diagram showing the output factor P, (α 2 σ) of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material produced in this example. 図6は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料の熱伝導率(κ)を示す説明図である。FIG. 6 is an explanatory diagram showing the thermal conductivity (κ) of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material produced in this example. 図7は、本実施例で作製されたMg66Si33.33Al0.33Zn0.33熱電材料の性能指数(Z)を示す説明図である。FIG. 7 is an explanatory diagram showing the figure of merit (Z) of the Mg 66 Si 33.33 Al 0.33 Zn 0.33 thermoelectric material produced in this example.

符号の説明Explanation of symbols

1…準密封容器
2…容器本体
3…蓋体
4…ガス導入口
5…準密封用パンチ
6…緩衝キャビティ
7…溶解室
DESCRIPTION OF SYMBOLS 1 ... Semi-sealed container 2 ... Container main body 3 ... Cover body 4 ... Gas inlet 5 ... Semi-sealing punch 6 ... Buffer cavity 7 ... Dissolution chamber

Claims (5)

Mg−Si基化合物に、ドーパント元素としてAl及びZnを添加することにより形成されたN型熱電半導体からなる熱電材料であって、
前記Mg−Si基化合物、MgとSi原子比2:1であり、前記Al及びZnの添加量が0.21at%〜2at%であることを特徴とする熱電材料。
A thermoelectric material composed of an N-type thermoelectric semiconductor formed by adding Al and Zn as dopant elements to a Mg-Si based compound ,
The Mg-Si based compound, the atomic ratio of Mg and Si is 2: 1, the thermoelectric material, wherein the amount of the Al and Zn is 0.21at% ~2at%.
大気側に緩衝キャビティを有する黒鉛容器の溶解室内に、塊状のMg及び該Mgと化合物を形成するSiを収容するとともに、ドーパント元素としてAl及びZnを複合添加し、前記緩衝キャビティ内に不活性ガスを置換した状態で、前記黒鉛容器をMgSi化合物の融点以上でMgの沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させ、該化合物融液若しくは合金融液を冷却してインゴットを作製し、該インゴットを粉砕して作製したMgSi原料粉末を焼結する
ことを特徴とする熱電材料の製造方法。
In a melting chamber of a graphite container having a buffer cavity on the atmosphere side, massive Mg and Si forming a compound with Mg are accommodated, and Al and Zn are added in combination as dopant elements, and an inert gas is contained in the buffer cavity. In a state where the graphite vessel is substituted, the graphite container is maintained in a temperature range not lower than the melting point of the Mg 2 Si compound and not higher than the boiling point of Mg for a certain period of time, thereby generating a compound melt or a combined financial liquid. A method for producing a thermoelectric material, characterized in that the liquid is cooled to produce an ingot, and the Mg 2 Si raw material powder produced by pulverizing the ingot is sintered.
請求項に記載の熱電材料の製造方法において、
前記黒鉛容器は有底筒体からなる容器であって、前記黒鉛容器内に配置され前記容器の空間を区画する準密封用パンチにより、大気側に不活性ガスを導入して収容する前記緩衝キャビティ、及び底部側に前記Mg及びSi、並びに前記Al及びZnを収納する前記溶解室を形成し、
前記不活性ガスで大気と遮断しながら加熱・保持することにより、前記熱電材料の化合物融液若しくは合金融液を作る
ことを特徴とする熱電材料の製造方法。
In the manufacturing method of the thermoelectric material of Claim 2 ,
The graphite container is a container having a bottomed cylindrical body, and the buffer cavity is arranged in the graphite container and introduces an inert gas to the atmosphere side and accommodates it by a semi-sealing punch that divides the space of the container. And forming the melting chamber containing the Mg and Si, and the Al and Zn on the bottom side,
A method for producing a thermoelectric material, characterized in that a compound melt or a combined liquid of the thermoelectric material is prepared by heating and holding while blocking the atmosphere with the inert gas.
請求項に記載の熱電材料の製造方法において、
前記焼結は、前記MgSi原料粉末に電圧・電流を印加し、該MgSi原料粉末の粒子間隙で起こる放電現象により焼結体を作製する放電プラズマ焼結法である
ことを特徴とする熱電材料の製造方法。
In the manufacturing method of the thermoelectric material of Claim 2 ,
The sintering, and characterized in that the Mg 2 Si raw material powder voltage and current is applied to a spark plasma sintering method of producing a sintered body by a discharge phenomenon occurring at the particle gap of the Mg 2 Si raw material powder A method for manufacturing a thermoelectric material.
請求項に記載の熱電材料の製造方法において、
前記Al及びZnの添加量が0.21at%〜2at%であることを特徴とする熱電材料の製造方法。
In the manufacturing method of the thermoelectric material of Claim 3 ,
The method for producing a thermoelectric material, wherein the addition amount of Al and Zn is 0.21 at% to 2 at%.
JP2004311740A 2004-10-27 2004-10-27 Thermoelectric material and manufacturing method thereof Expired - Fee Related JP4496365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311740A JP4496365B2 (en) 2004-10-27 2004-10-27 Thermoelectric material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311740A JP4496365B2 (en) 2004-10-27 2004-10-27 Thermoelectric material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006128235A JP2006128235A (en) 2006-05-18
JP4496365B2 true JP4496365B2 (en) 2010-07-07

Family

ID=36722648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311740A Expired - Fee Related JP4496365B2 (en) 2004-10-27 2004-10-27 Thermoelectric material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4496365B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075789A1 (en) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
CN102804433B (en) * 2009-06-30 2017-08-25 学校法人东京理科大学 Magnesium silicon composite and its manufacture method and thermo-electric converting material, thermoelectric conversion element and the thermo-electric conversion module using the composite
TWI485266B (en) * 2009-07-27 2015-05-21 Univ Tokyo Sci Educ Found Aluminum-magnesium-silicon composite material and method for manufacturing the same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the composite material
KR20130006452A (en) * 2010-03-17 2013-01-16 소와 케이디이 가부시키가이샤 PRODUCTION APPARATUS AND METHOD FOR PRODUCING Mg2Si1 - xSnx POLYCRYSTALS
JP5641474B2 (en) 2010-11-08 2014-12-17 日立化成株式会社 Method for producing thermoelectric material comprising Mg2Si based compound
KR101171057B1 (en) 2011-01-17 2012-08-03 배희자 Apparatus for manufacturing thermoelectric element powder for boiler and boiler thermoelectric element of raw material in thermoelectric element manufactured by this
JP5737566B2 (en) * 2011-03-10 2015-06-17 日立化成株式会社 Manufacturing method of magnesium silicide sintered body and manufacturing method of thermoelectric conversion element using the same
JPWO2013047474A1 (en) * 2011-09-26 2015-03-26 学校法人東京理科大学 Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element and thermoelectric conversion module
JP2013073960A (en) * 2011-09-26 2013-04-22 Tokyo Univ Of Science Magnesium silicide, thermoelectric conversion material, sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
WO2014084163A1 (en) 2012-11-27 2014-06-05 学校法人東京理科大学 Mg-Si THERMOELECTRIC CONVERSION MATERIAL, METHOD FOR PRODUCING SAME, SINTERED BODY FOR THERMOELECTRIC CONVERSION, THERMOELECTRIC CONVERSION ELEMENT, AND THERMOELECTRIC CONVERSION MODULE
JP6411782B2 (en) * 2013-08-07 2018-10-24 株式会社Nttファシリティーズ Method for manufacturing thermoelectric material
JP2016207825A (en) * 2015-04-22 2016-12-08 トヨタ紡織株式会社 Thermoelectric conversion material, thermoelectric element including the same, and manufacturing method of thermoelectric conversion material
CN106180717B (en) * 2016-09-15 2019-11-12 南京钛陶智能系统有限责任公司 A kind of liquid material generating device and its control method for 3 D-printing
JP6536615B2 (en) * 2017-03-31 2019-07-03 トヨタ自動車株式会社 Thermoelectric conversion material and method for manufacturing the same
CN114890791B (en) * 2022-05-06 2022-12-23 清华大学 Magnesium antimonide-based thermoelectric material and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955788A1 (en) * 1999-11-19 2001-05-23 Basf Ag Thermoelectrically active materials and generators containing them
JP2002285274A (en) * 2001-03-27 2002-10-03 Daido Steel Co Ltd Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR

Also Published As

Publication number Publication date
JP2006128235A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4496365B2 (en) Thermoelectric material and manufacturing method thereof
Liu et al. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
US9115420B2 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
Liang et al. Ultra-fast non-equilibrium synthesis and phase segregation in In x Sn 1− x Te thermoelectrics by SHS-PAS processing
CA2458274A1 (en) Method for producing a device for direct thermoelectric energy conversion
JP2002285274A (en) Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR
Liu et al. Combustion synthesis of Cu2SnSe3 thermoelectric materials
Li et al. Directional solidification and thermoelectric properties of undoped Mg 2 Sn crystal
JP6879435B2 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
Karati et al. Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys
JP2009094497A (en) p-TYPE THERMOELECTRIC MATERIAL AND ITS MANUFACTURING METHOD
Li et al. Ultrafast one-step combustion synthesis and thermoelectric properties of In-doped Cu2SnSe3
Truong Thermoelectric properties of higher manganese silicides
CN111304492B (en) Low-temperature n-type thermoelectric material and preparation method thereof
CN108929961B (en) Preparation method of half-heusler block thermoelectric material
Jing et al. Microstructural analysis and thermoelectric properties of skutterudite CoSb3 materials produced by melt spinning and spark plasma sintering
Lee et al. Synthesis of Bi-Sb-Te thermoelectric material by the plasma arc discharge process
Pothin et al. Interest of the differential thermal analysis on the characterization of a thermoelectric material: ZnSb
JP2012069968A (en) MANUFACTURING METHOD OF n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
Cha et al. Synthesis and thermoelectric properties of partially double-filled skutterudites (La 1− z Yb z) 0.8 Fe 4− x Co x Sb 12
JP2006124728A (en) Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method
JPH08151269A (en) Thermoelectric conversion material
RU2533624C1 (en) METHOD FOR OBTAINING THERMOELECTRIC MATERIAL OF n-TYPE BASED ON Mg2Si1-xSnx TRIPLE SOLID SOLUTIONS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees