JP2006124728A - Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method - Google Patents

Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method Download PDF

Info

Publication number
JP2006124728A
JP2006124728A JP2004310758A JP2004310758A JP2006124728A JP 2006124728 A JP2006124728 A JP 2006124728A JP 2004310758 A JP2004310758 A JP 2004310758A JP 2004310758 A JP2004310758 A JP 2004310758A JP 2006124728 A JP2006124728 A JP 2006124728A
Authority
JP
Japan
Prior art keywords
active metal
metal
raw material
container
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310758A
Other languages
Japanese (ja)
Inventor
Hua-Nan Liu
華 南 劉
Hidetoshi Ueno
英俊 上野
Mitsuru Sakamoto
満 坂本
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004310758A priority Critical patent/JP2006124728A/en
Publication of JP2006124728A publication Critical patent/JP2006124728A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal material containing an active metal in which a compound or an alloy comprising metals easy to be oxidized or metals easy to be evaporated at low temperature can safely be produced at a low cost, to provide a production device therefor, and to provide the metal material containing the active metal produced by the production method. <P>SOLUTION: In a dissolution chamber 7 of a vessel body 2 in a graphite vessel 1 having a buffer cavity 6 on the air side, a lumpy active metal raw material and the other raw material forming a compound or an alloy of the active metal raw material are contained, and while the inside of the buffer cavity 6 is substituted with inert gas, the graphite vessel 2 is held for a fixed time in a temperature range higher than the melting point of the compound or alloy and also lower than the boiling point of the active metal, thereby a compound melt or an alloy melt is formed, and the compound melt or alloy melt is cooled, in order to produce an ingot. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Mg、Ca等の酸化し易い金属、若しくはMg、Ca等の高温で蒸発し易い金属を含む金属材料(化合物や合金)の製造方法、製造装置及びこの製造方法により得られる活性金属を含む金属材料に関する。   The present invention relates to a method for producing a metal material (compound or alloy) containing a metal that easily oxidizes such as Mg or Ca, or a metal that easily evaporates at a high temperature such as Mg or Ca, a production apparatus, and an active metal obtained by this production method. The present invention relates to a metal material including

Mg、Ca、Ti等は地殻資源埋蔵量が豊富であり、生体への毒性や環境への負荷が小さいという特徴を有する元素であり、その化合物や合金は様々な分野での利用が期待されている。しかし、これらの金属は高温で酸化し易く、特にMg、Caは高温で蒸発し易いという性質を有するため、粉末状態での取り扱いが難しく、その化合物や合金の製造は困難である。
この種の金属材料としては、例えば、Mg−Si系熱電材料、Mg−Si系電子デバイス、及びMg系水素吸蔵合金等に代表されるMg系化合物・合金の他、Ca−Si系電子デバイス及びCa系水素吸蔵合金等に代表されるCa系化合物・合金やTi系合金などが挙げられ、以下にそれぞれの従来の製造方法を説明する。
Mg, Ca, Ti, etc. are elements that have abundant crustal resource reserves and are characterized by low toxicity to the living body and low environmental impact, and their compounds and alloys are expected to be used in various fields. Yes. However, these metals are easy to oxidize at high temperatures, and especially Mg and Ca have the property of being easily evaporated at high temperatures, so that they are difficult to handle in a powder state, and it is difficult to produce their compounds and alloys.
Examples of this type of metal material include, for example, Mg—Si based thermoelectric materials, Mg—Si based electronic devices, Mg based compounds and alloys represented by Mg based hydrogen storage alloys, Ca—Si based electronic devices, and the like. Examples include Ca-based compounds / alloys such as Ca-based hydrogen storage alloys, Ti-based alloys, and the like, and each conventional manufacturing method will be described below.

〔Mg系化合物・合金〕
(Mg−Si系熱電材料)
熱電変換素子に用いられる熱電材料としては、Bi−Te系、Pb−Te系、Si−Ge系、Fe−Si系、Mg−Si系等が知られているが、Bi、Te、Pb、Ge等の元素は地殻資源埋蔵量が少なく、特にBi及びTeは強い毒性を有するため大規模な商用化に対応するのは困難である。また、Fe−Si系においては性能指数が低く、実用性に乏しい。これに対して、Mg−Si系は低コストで、その構成元素は環境負荷も低く軽量であり、しかも高強度で融点も高く、使用温度範囲も広いことから、熱電材料として、工業的に期待される材料の一つである。このMg−Si系熱電材料の代表的なものとして、MgSi基化合物が挙げられる。
[Mg compounds and alloys]
(Mg-Si thermoelectric material)
Bi-Te, Pb-Te, Si-Ge, Fe-Si, Mg-Si, and the like are known as thermoelectric materials used for thermoelectric conversion elements, but Bi, Te, Pb, Ge Such elements as crustal resource reserves are small, and especially Bi and Te have strong toxicity, so it is difficult to deal with large-scale commercialization. In addition, the Fe—Si system has a low figure of merit and is not practical. On the other hand, Mg-Si is low in cost, its constituent elements are low in environmental impact, light weight, high strength, high melting point, and wide operating temperature range, so it is industrially expected as a thermoelectric material. One of the materials to be used. A typical example of the Mg—Si based thermoelectric material is an Mg 2 Si based compound.

しかし、Mgが活性な金属であり、発火等の危険性があるため、MgSi熱電材料の開発はこれまであまり進められていなかった。従来、このMgSi基化合物を製造する方法としては、耐圧加熱装置内を大気圧の数倍の不活性ガス雰囲気とし、この不活性ガス雰囲気においてMgとSiとが原子比で2:1となるMg及びSi粉末にドーパント元素粉末を加えた混合粉末、若しくは予め作製したMgSi粉末とドーパント元素粉末とからなる混合粉末をMgSiの融点(Tm:1358K以上に加熱し、その後、冷却時にMgSi基化合物を生成させる高圧溶融法が挙げられる。 However, since Mg is an active metal and there is a risk of ignition or the like, development of Mg 2 Si thermoelectric materials has not been advanced so far. Conventionally, as a method for producing the Mg 2 Si-based compound, the inside of the pressure-resistant heating apparatus is an inert gas atmosphere several times the atmospheric pressure, and Mg and Si are 2: 1 in atomic ratio in the inert gas atmosphere. A mixed powder obtained by adding dopant element powder to Mg and Si powder, or a previously prepared mixed powder composed of Mg 2 Si powder and dopant element powder is heated to the melting point of Mg 2 Si (Tm: 1358K or higher, and then cooled. A high-pressure melting method that sometimes produces a Mg 2 Si-based compound is mentioned.

また、MgSi基化合物の他の製造方法としては、不活性ガスで置換した加圧容器中の黒鉛坩堝内に、MgとSiとが原子比で2:1となるMg及びSi粉末にドーパント元素粉末を加えた混合粉末、若しくは予め作製したMgSi粉末とドーパント元素粉末とからなる混合粉末を収容し、該黒鉛坩堝を高周波加熱して混合粉末を溶解する方法が挙げられる。 In addition, as another method for producing the Mg 2 Si-based compound, Mg and Si powder in which the atomic ratio of Mg and Si is 2: 1 are contained in a graphite crucible in a pressurized container substituted with an inert gas. Examples include a method of containing a mixed powder to which elemental powder has been added, or a previously prepared mixed powder composed of Mg 2 Si powder and dopant element powder, and melting the mixed powder by heating the graphite crucible at high frequency.

さらに、MgSi基化合物の別の製造方法としては、いわゆるメカニカルアロイング法が挙げられる。この製造方法は、MgとSiとが原子比で2:1となるようにMg及びSi粉末を秤量し、これらの粉末を鉄製あるいはセラミックス製のボールを用いて長時間(例えば、300時間)ボールミル粉砕を行うことで機械的にMgSi粉末を合成し、こうして得られたMgSi粉末とドーパント元素とを混合して加熱処理することによりMgSi基化合物を製造するものである。 Further, as another method for producing a Mg 2 Si based compound, so-called mechanical alloying method. In this manufacturing method, Mg and Si powders are weighed so that the atomic ratio of Mg and Si is 2: 1, and these powders are ball milled for a long time (for example, 300 hours) using iron or ceramic balls. mechanically synthesize the Mg 2 Si powder by performing pulverization, it is to produce a Mg 2 Si based compound thus obtained Mg 2 Si powder and heating treatment the dopant element are mixed.

そして、MgSi基化合物のさらに別の製造方法としては、放電プラズマ法が挙げられる。この製造方法は、MgとSiとが原子比で2:1となるMg及びSi粉末とドーパント元素粉末とを混合する混合工程と、該混合工程で得られた混合粉末をMgの融点(Tm:923K以上1073K以下の温度範囲内で所定時間加熱保持して溶融MgとSi粒子との反応によりMgSiを形成させると共に、ドーパント元素を溶融Mg中に溶解させ、MgSi結晶構造中のMg若しくはSiの一部と置換・固溶させることより、MgSi基化合物を製造するものである(特許文献1参照)。 And, as still another method for manufacturing a Mg 2 Si based compound, a discharge plasma method. In this manufacturing method, a mixing step of mixing Mg and Si powder in which the atomic ratio of Mg and Si is 2: 1 and a dopant element powder are mixed, and the mixed powder obtained in the mixing step is mixed with a melting point of Mg (Tm: In the temperature range of 923 K or more and 1073 K or less, heating and holding for a predetermined time to form Mg 2 Si by reaction between molten Mg and Si particles, and a dopant element is dissolved in molten Mg, and Mg in the Mg 2 Si crystal structure Alternatively, an Mg 2 Si-based compound is produced by substitution and solid solution with a part of Si (see Patent Document 1).

(Mg−Si系電子デバイス)
MgSiは、エネルギーギャップが約0.77eVの半導体であり、熱光起電力デバイスへの応用も期待される。従来、このデバイスの製造方法は、Si基板をMg蒸気雰囲気にさらすことによって、固相反応によりMgSiの膜を作成している。しかし、この製造方法はコスト的に高く、Mgの蒸着プロセスの制御は困難である。従って、現在、Mg−Si化合物を用いて蒸着プロセスにより直接MgSi膜を作成する方法が提案されているが、そのためには高純度で安価なMgSi原料が必要である(非特許文献1参照)。
(Mg-Si electronic device)
Mg 2 Si is a semiconductor having an energy gap of about 0.77 eV, and is expected to be applied to thermophotovoltaic devices. Conventionally, in this device manufacturing method, an Mg 2 Si film is formed by a solid-phase reaction by exposing a Si substrate to an Mg vapor atmosphere. However, this manufacturing method is expensive and it is difficult to control the Mg deposition process. Therefore, currently, a method of directly forming an Mg 2 Si film by a vapor deposition process using an Mg—Si compound has been proposed, but for this purpose, a high-purity and inexpensive Mg 2 Si raw material is required (Non-Patent Document). 1).

(Mg系水素吸蔵合金)
MgNiを代表とするMg系水素吸蔵合金は水素吸蔵量が大きく、軽量かつ安価であるので、実用的価値が大きい。しかし、これらの合金は上記のMgSi基化合物と同様な要因により、安価な製造方法がないのが現状である。
(Mg-based hydrogen storage alloy)
Mg-based hydrogen storage alloys typified by Mg 2 Ni have a large hydrogen storage amount, are lightweight and inexpensive, and thus have a great practical value. However, at present, these alloys do not have an inexpensive manufacturing method due to the same factors as the above Mg 2 Si-based compounds.

〔Ca系化合物・合金〕
(Ca−Si系電子デバイス)
CaとSiとの化合物であるCaSiはエネルギーギャップが約1.9eVの半導体であり、光電子デバイスへの応用が期待されている。しかし、Caは非常に活発な元素であり、常温で水蒸気と反応し、高温では窒素及び酸素とも反応するので、その粉末の製造、貯蔵及び使用には非常に注意を要する。即ち、粉末冶金や、メカニカルアロイング等のCa原料粉末を用いるCaSiの製造は一般的に困難である。また、CaSi化合物の融点は(1587K)であり、MgSiの融点(1358K)よりも高いので、高圧溶融法による製造も困難である。従って、現在、CaSi系電子デバイスはMg−Si系電子デバイスと同様に蒸着・熱処理等の製造方法で製造されている(非特許文献2)。
[Ca compounds and alloys]
(Ca-Si electronic device)
Ca 2 Si, which is a compound of Ca and Si, is a semiconductor having an energy gap of about 1.9 eV, and is expected to be applied to optoelectronic devices. However, Ca is a very active element, which reacts with water vapor at room temperature and also with nitrogen and oxygen at high temperatures, so it requires great care in the production, storage and use of the powder. That is, it is generally difficult to produce Ca 2 Si using Ca raw material powder such as powder metallurgy or mechanical alloying. Moreover, since the melting point of the Ca 2 Si compound is (1587K), which is higher than the melting point of Mg 2 Si (1358K), it is difficult to manufacture by a high pressure melting method. Therefore, at present, Ca 2 Si-based electronic devices are manufactured by a manufacturing method such as vapor deposition and heat treatment as in the case of Mg-Si-based electronic devices (Non-patent Document 2).

(Ca系水素吸蔵合金)
CaとNiとの化合物であるCaNiは優れた水素吸蔵特性を示すことで知られている。このCaNi系化合物は、水素吸蔵合金として、初期活性化処理の容易さ、安定な水素化特性、及び不純ガスに対する対被毒性等に優れており、その実用化が期待される。しかし、CaNiは上記CaSiと同様な要因により、その製造が困難である。
(Ca-based hydrogen storage alloy)
CaNi 5 which is a compound of Ca and Ni is known to exhibit excellent hydrogen storage characteristics. As a hydrogen storage alloy, this CaNi 5 -based compound is excellent in ease of initial activation treatment, stable hydrogenation characteristics, poisoning against impure gas, etc., and its practical application is expected. However, CaNi 5 is difficult to manufacture due to the same factors as Ca 2 Si.

〔Ti系合金〕
Ti及びその合金は耐食性に優れており、特にTi合金は比強度に極めて優れているため、航空機への適用等の需要が多い。また、Ti及びその合金は生体親和性にも優れているので、生体材料としても注目を集めている。さらに、Tiと他の金属との化合物(例えば、TiFe、TiCo、TiNi、TiMn、TiCr及びTiV等)は水素吸蔵材料としても期待できる。しかし、Ti及びその合金は融点が高く、活性で酸素との反応性が高いため、真空溶解や鋳造でしか製造できないという制約がある。
[Ti alloy]
Ti and its alloys are excellent in corrosion resistance. In particular, since Ti alloys are extremely excellent in specific strength, there is a great demand for application to aircraft. Moreover, since Ti and its alloys are excellent in biocompatibility, they are attracting attention as biomaterials. Furthermore, compounds of Ti and other metals (e.g., TiFe, TiCo, TiNi, TiMn 2, TiCr 2 and TiV etc.) can be expected as a hydrogen storage material. However, since Ti and its alloys have a high melting point, are active and have a high reactivity with oxygen, there is a restriction that they can be produced only by vacuum melting or casting.

これに関連する技術として、例えば、「金属酸化物多結晶体、熱電材料、熱電素子およびその製造方法」に係る発明が提案されており(特許文献4参照)、MgやCaを含有する金属酸化物粉末を放電プラズマ焼結やホットプレス焼結する旨が開示されている。   As a technology related to this, for example, an invention relating to “metal oxide polycrystal, thermoelectric material, thermoelectric element and manufacturing method thereof” has been proposed (see Patent Document 4), and metal oxidation containing Mg or Ca is proposed. It is disclosed that the product powder is subjected to spark plasma sintering or hot press sintering.

特開2002−368291号公報JP 2002-368291 A Y.Sato, N.Takagi, H.Tatsuoka, H.Kuwabara: International Union of Materials Research Societies - International Conference of Advanced Materials, IUMRS-ICAM2003,C7-11-P42(2003)Y.Sato, N.Takagi, H.Tatsuoka, H.Kuwabara: International Union of Materials Research Societies-International Conference of Advanced Materials, IUMRS-ICAM2003, C7-11-P42 (2003) H.Mtsui,M.Kramoto,T.Ono,Y.Nose,H.Tatsuoka,H.Kuwabara: J. of Crystal Growth, 237-239(2002),2121H.Mtsui, M.Kramoto, T.Ono, Y.Nose, H.Tatsuoka, H.Kuwabara: J. of Crystal Growth, 237-239 (2002), 2121 特開2003−95741号公報Japanese Patent Laid-Open No. 2003-95741

上述したように、MgSi基化合物に代表されるMg−Si系熱電材料の製造方法は、すべて出発原料にMg粉末を使用するため、加熱保持に際してMg粉末の爆発の危険性があるため取り扱いに注意を要する。その上、従来の溶融法による製造では、MgSiの融点(Tm:1358K以上の温度で加熱保持しており、この融点よりも12Kの高温域にはMgの沸点(Tb:1370Kが存在するため、加熱保持の温度領域においてはMgの蒸発が無視できなくなる。 As described above, the manufacturing method of Mg-Si-based thermoelectric materials represented by Mg 2 Si-based compounds uses Mg powder as a starting material, and therefore there is a risk of explosion of Mg powder during heating and holding. Attention is required. In addition, in the manufacturing by the conventional melting method, the melting point of Mg 2 Si (Tm: 1358K or higher is maintained by heating, and the boiling point of Mg (Tb: 1370K exists) at a temperature higher than this melting point by 12K. Therefore, the evaporation of Mg cannot be ignored in the temperature range of heating and holding.

従って、Mgの蒸発を抑制するための手段として、高圧の不活性ガス雰囲気としなければならず、熱処理用の加熱炉も高圧の雰囲気ガスに耐えうる構造を有しなければならない。一方、高周波加熱を用いる方法では加熱装置が高価になり、大量生産に適しないことなどから、得られる製品のコストが高くなるという問題がある。   Therefore, as a means for suppressing the evaporation of Mg, a high-pressure inert gas atmosphere must be used, and a heating furnace for heat treatment must have a structure that can withstand the high-pressure atmosphere gas. On the other hand, in the method using high frequency heating, there is a problem that the cost of a product to be obtained increases because the heating device becomes expensive and is not suitable for mass production.

また、メカニカルアロイング法を用いる製造方法では、長時間の混合・粉砕作業によりボールが次第に摩耗して粉末中に不純物として混入するため、得られる合金粉末の純度が悪くなるという問題がある。さらに、放電プラズマ法を用いる製造方法では、別途、真空焼結装置が必要となる。その他、MgNiを代表とするMg系水素吸蔵合金も、上記のMgSi基化合物と同様な要因により、安価な装置を用いて製造することができないという問題がある。 In addition, in the manufacturing method using the mechanical alloying method, there is a problem that the purity of the obtained alloy powder is deteriorated because the balls are gradually worn and mixed as impurities in the powder by a long mixing and grinding operation. Furthermore, in the manufacturing method using the discharge plasma method, a vacuum sintering apparatus is separately required. In addition, Mg-based hydrogen storage alloys typified by Mg 2 Ni also have a problem that they cannot be produced using an inexpensive apparatus due to the same factors as the above Mg 2 Si-based compounds.

即ち、Mg系化合物・合金のこれまでの製造方法は爆発の危険性があり、高コストのプロセスが用いられている。また、Ca及びTiもMgと同様に活性な金属であり、その化合物及び合金の製造も、上記Mg系化合物・合金と同様な要因により、その製造が困難かつ高コストになるという問題があった。   That is, conventional production methods for Mg-based compounds / alloys have a risk of explosion, and high-cost processes are used. In addition, Ca and Ti are active metals as well as Mg, and the production of the compounds and alloys thereof is difficult and expensive due to the same factors as the Mg-based compounds and alloys. .

また、特許文献4に記載の製造方法は、粉末状態の原料を放電プラズマ焼結やホットプレス焼結するものであるので、金属酸化物として取り扱う必要があり、Mg、Ca、Ti等の酸化し易い金属、若しくはMg、Ca等の高温で蒸発し易い金属を単体で扱うことはできない。   Moreover, since the manufacturing method described in Patent Document 4 is a method in which a raw material in a powder state is subjected to discharge plasma sintering or hot press sintering, it must be handled as a metal oxide and oxidized such as Mg, Ca and Ti. A simple metal or a metal that easily evaporates at high temperatures such as Mg and Ca cannot be handled alone.

本発明は、上述のような事情に鑑みて創案されたものであり、その目的は、Mg、Ca、Ti等の酸化し易い金属、若しくはMg、Ca等の高温で蒸発し易い金属を含む化合物や合金を安全かつ低コストで製造することができる活性金属を含む金属材料の製造方法、製造装置、及びその製造方法により安全かつ低コストで製造される活性金属を含む金属材料を提供することにある。   The present invention was devised in view of the above circumstances, and its purpose is a compound containing a metal that easily oxidizes such as Mg, Ca, or Ti, or a metal that easily evaporates at a high temperature such as Mg or Ca. To provide a metal material containing an active metal that can be produced safely and at low cost, and a metal material containing an active metal that can be produced safely and at low cost by the production method is there.

上記の目的を達成すべく、本発明は以下の構成を採用した。
本発明に係る活性金属を含む金属材料の製造方法は、大気側に緩衝キャビティを有する黒鉛容器の溶解室内に、塊状の活性金属原料、及び該活性金属原料の化合物若しくは合金を形成する他の原料を収容し、前記緩衝キャビティ内を不活性ガスで置換した状態とし、前記黒鉛容器を前記化合物若しくは前記合金の融点以上で活性金属の沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させ、該化合物融液若しくは合金融液を冷却してインゴットを製造することを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The method for producing a metal material containing an active metal according to the present invention includes a bulk active metal raw material and another raw material for forming a compound or alloy of the active metal raw material in a melting chamber of a graphite container having a buffer cavity on the atmosphere side. And a state in which the inside of the buffer cavity is replaced with an inert gas, and the graphite container is held in a temperature range not lower than the melting point of the compound or the alloy and not higher than the boiling point of the active metal for a certain period of time. A combined financial liquid is produced, and the compound melt or the combined financial liquid is cooled to produce an ingot.

前記活性金属は、酸化し易い金属若しくは高温において蒸発し易い金属であっても良い。又、前記黒鉛容器は有底筒体からなる容器であって、前記黒鉛容器内に配置され前記容器の空間を区画する準密封用パンチを介して、大気側に不活性ガスを導入して収容する前記緩衝キャビティ、及び底部側に塊状の活性金属原料及び他の原料を収納する前記溶解室を有し、前記不活性ガスで大気と遮断しながら加熱・保持することにより、前記活性金属原料の化合物若しくは合金を形成することを特徴とするものが良い。   The active metal may be a metal that easily oxidizes or a metal that easily evaporates at high temperatures. In addition, the graphite container is a container having a bottomed cylindrical body, and is accommodated by introducing an inert gas to the atmosphere side through a semi-sealing punch arranged in the graphite container and defining a space of the container. The buffer cavity and the melting chamber containing the bulk active metal raw material and other raw materials on the bottom side, and heated and held while being cut off from the atmosphere with the inert gas, What is characterized by forming a compound or an alloy is good.

更に、前記黒鉛容器を前記温度範囲に加熱・保持して、前記化合物融液若しくは合金融液を生成させるに際し、前記緩衝キャビティ内を前記不活性ガスで置換しながら生成させることを特徴とするものが良い。   Furthermore, the graphite container is heated and held in the temperature range to generate the compound melt or the combined financial liquid while replacing the buffer cavity with the inert gas. Is good.

本発明の活性金属を含む金属材料製造装置は、主として黒鉛から作られ有底筒体からなる容器であ容器本体と、該容器本体の筒体内面に沿って準密封状態で移動可能な準密封用パンチと、前記容器本体の上面に配置され、不活性ガス導入孔を有する容器蓋体とからなり、前記準密封用パンチを介して、前記準密封用パンチの上部に区画され、大気側に不活性ガスを導入して収容する緩衝キャビティと、前記準密封用パンチの上部に区画され、前記容器本体の底部側に塊状の活性金属原料を収容する溶解室と、前記容器本体及び前記溶解室を加熱・保持するための加熱装置とからなる。   The apparatus for producing a metal material containing an active metal according to the present invention is a container mainly made of graphite and made of a bottomed cylinder, and is semi-sealed that can be moved in a semi-sealed state along the inner surface of the cylinder of the container body. And a container lid body having an inert gas introduction hole disposed on the upper surface of the container body, and is partitioned on the upper part of the semi-sealing punch via the semi-sealing punch, A buffer cavity for introducing and storing an inert gas, a melting chamber that is partitioned at an upper portion of the semi-sealing punch, and that stores a massive active metal raw material on the bottom side of the container main body, and the container main body and the melting chamber And a heating device for heating and holding.

本発明の活性金属を含む金属材料は、前記活性金属原料が、Mg、Ca、Znから選ばれる1種以上であり、前記他の原料がSi、Ni、Fe、Co、Mn、Cr、Vから選ばれる1種以上である前記活性金属を含む金属材料の製造方法により製造されることを特徴とする。   In the metal material containing the active metal of the present invention, the active metal raw material is one or more selected from Mg, Ca, Zn, and the other raw materials are Si, Ni, Fe, Co, Mn, Cr, V. It is manufactured by the manufacturing method of the metal material containing the said active metal which is 1 or more types chosen.

本発明に係る活性金属を含む金属材料の製造方法、製造装置及びこの製造方法により得られる活性金属を含む金属材料によれば、次のような優れた効果を発揮する。
即ち、従来の粉末冶金法を用いた製造方法に比べて、Mg、Ca等の活性金属を取り扱いが困難な粉末状態で用いる必要がないので、製造時の安全性を向上させ、製品コストを大幅に低減することができる。
The method for producing a metal material containing an active metal according to the present invention, the production apparatus, and the metal material containing an active metal obtained by this production method exhibit the following excellent effects.
In other words, compared to the conventional manufacturing method using powder metallurgy, there is no need to use an active metal such as Mg or Ca in a powder state that is difficult to handle, thus improving the safety during manufacturing and greatly increasing the product cost. Can be reduced.

また、大気側に不活性ガスを導入する緩衝キャビティを隔てて溶解室を有する黒鉛容器を用い、該黒鉛容器を上記温度範囲に加熱・保持するに際して、上記緩衝キャビティ内を不活性ガスで置換するので、真空装置を使用する必要がなく、大気圧下において原料を直接溶解することができ、製品コストを大幅に低減することができる。
一方、本発明に係る活性金属を含む金属材料によれば、Mg、Ca、Ti等の酸化し易い金属、若しくは高温で蒸発し易い金属を含む化合物及び合金を安全かつ低コストで提供しうる。
Further, a graphite container having a dissolution chamber is provided with a buffer cavity for introducing an inert gas to the atmosphere side, and the inside of the buffer cavity is replaced with an inert gas when the graphite container is heated and held in the temperature range. Therefore, it is not necessary to use a vacuum apparatus, the raw material can be directly dissolved under atmospheric pressure, and the product cost can be greatly reduced.
On the other hand, according to the metal material containing an active metal according to the present invention, it is possible to provide a safe and low-cost compound and alloy containing a metal that easily oxidizes such as Mg, Ca, Ti, or a metal that easily evaporates at a high temperature.

以下、本発明を実施するための最良の形態を図面に基づいて説明するが、本発明は本実施の形態に限るものではない。図1を用いて、本発明に係る活性金属を含む金属材料の製造方法の実施に用いる黒鉛容器の構造を説明する。図示するように、本実施の形態の製造方法に用いる黒鉛容器1は有底円筒体状を呈する容器であり、その容器本体2の素材は黒鉛により形成されている。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings, but the present invention is not limited to this embodiment. The structure of a graphite container used for carrying out the method for producing a metal material containing an active metal according to the present invention will be described with reference to FIG. As shown in the figure, the graphite container 1 used in the manufacturing method of the present embodiment is a container having a bottomed cylindrical shape, and the material of the container body 2 is made of graphite.

この容器本体(黒鉛坩堝)2の上部は開口しており、この開口部の上端は黒鉛製の蓋体3により閉塞されている。この蓋体3には、これを貫通するように管状のガス導入口4が固定して設けられている。容器本体2の長手方向中間部には、黒鉛製の準密封用パンチ5が配置されている。準密封用パンチ5は、溶解室7内を上下動可能である。この準密封用パンチ5を介設することにより、容器本体2の内部空間を上下の空間に区画することができる。   The upper part of the container body (graphite crucible) 2 is open, and the upper end of the opening is closed by a graphite lid 3. The lid 3 is provided with a tubular gas inlet 4 so as to penetrate therethrough. A semi-sealing punch 5 made of graphite is disposed in the middle portion of the container body 2 in the longitudinal direction. The semi-sealing punch 5 can move up and down in the melting chamber 7. By interposing the semi-sealing punch 5, the internal space of the container body 2 can be partitioned into upper and lower spaces.

即ち、容器本体2の上方の空間は大気側から不活性ガスを導入する空間である緩衝キャビティ6であり、準密封用パンチ5の下部空間である底部側は原料を収容可能な溶解室7が区画形成される。準密封用パンチ5は、化合物融液若しくは合金融液の蒸発を押さえる効果を有する。特に、例えばマグネシウムのように、融点923K、沸点1380Kの場合、融点を越えると蒸発するので、パンチ5で準密封空間を形成することにより、この蒸発が抑制され、目的とする成分の均一なマグネシウム合金が製造できる。   That is, the space above the container body 2 is a buffer cavity 6 that is a space for introducing an inert gas from the atmosphere side, and the bottom side that is the lower space of the semi-sealing punch 5 is a melting chamber 7 that can accommodate a raw material. A compartment is formed. The semi-sealing punch 5 has an effect of suppressing the evaporation of the compound melt or the combined financial liquid. Particularly, for example, when the melting point is 923K and the boiling point is 1380K, such as magnesium, it evaporates when the melting point is exceeded. Therefore, by forming a semi-sealed space with the punch 5, this evaporation is suppressed and uniform magnesium of the target component is obtained. Alloys can be manufactured.

本実施の形態の製造方法は、このような大気側に緩衝キャビティ6を有する黒鉛容器1の溶解室7内に、活性金属原料及びこれと化合物若しくは合金を形成する他の原料を収容し、上記緩衝キャビティ6内に不活性ガスを注入し、空気等と置換した状態で、該黒鉛容器1の溶融室7を化合物、若しくは合金の融点以上で各原料の沸点以下の温度範囲に一定時間保持することにより、化合物融液、若しくは合金融液を生成させ、その融液を冷却して多結晶インゴットを作製するものである。   In the manufacturing method of the present embodiment, the active metal raw material and other raw materials forming a compound or alloy with the active metal raw material are accommodated in the melting chamber 7 of the graphite container 1 having the buffer cavity 6 on the atmosphere side. With the inert gas injected into the buffer cavity 6 and replaced with air or the like, the melting chamber 7 of the graphite container 1 is held for a certain period of time in a temperature range above the melting point of the compound or alloy and below the boiling point of each raw material. Thus, a compound melt or a combined financial liquid is produced, and the melt is cooled to produce a polycrystalline ingot.

活性金属としては、Mg、Ca、Ti、Zn等の酸化し易い金属、若しくはMg、Ca等の高温で蒸発し易い金属が挙げられる。また、これらの活性金属原料と化合物若しくは合金を形成する他の原料としては、Si、Ni、Fe、Co、Mn、Cr、V等が挙げられる。本実施の形態では、これらの活性金属原料を発火し易い粉末状態で用いるのではなく、塊状のものを上記黒鉛容器1の溶解室7内に装入する。   Examples of the active metal include metals that easily oxidize such as Mg, Ca, Ti, and Zn, or metals that easily evaporate at high temperatures such as Mg and Ca. Examples of other raw materials that form compounds or alloys with these active metal raw materials include Si, Ni, Fe, Co, Mn, Cr, and V. In the present embodiment, these active metal raw materials are not used in a powdery state that is easy to ignite, but a lump-like one is charged into the melting chamber 7 of the graphite container 1.

また、活性金属原料と化合物若しくは合金を形成する他の原料は、加熱保持時間を減少させるため小さい粒径のものを用いることが好ましく、特に、発火や爆発の危険性がない場合には粉末状のものを用いても構わない。一方、活性金属原料は加熱保持温度で十分に溶解されるので、その原料の形状及びサイズの保持時間への影響は少ない。そして、例えば、MgSi基化合物のインゴッドを作製する場合には、塊状のMg原料と不規則な粒状のSi原料とを原子比が2:1と成るように計量して上記溶解室7内に装入する。 In addition, other raw materials that form active metal raw materials and compounds or alloys are preferably used with a small particle size in order to reduce the heating and holding time, particularly in the absence of the risk of ignition or explosion. You may use. On the other hand, since the active metal raw material is sufficiently dissolved at the heating and holding temperature, there is little influence on the holding time of the shape and size of the raw material. For example, when an ingot of an Mg 2 Si-based compound is produced, the bulk Mg raw material and the irregular granular Si raw material are weighed so as to have an atomic ratio of 2: 1, and the inside of the melting chamber 7 is measured. To charge.

原料の装入完了後、容器本体2内に準密封用パンチ5を配するとともに、その開口部をガス導入口4を有する蓋体3により閉塞し、溶解室7をArに置換した後、該黒鉛容器1の外側からの加熱に際して上記ガス導入口4からアルゴン(Ar)等の不活性ガスを緩衝キャビティ6内に導入し、加熱・保持時及び冷却時の全時間に亘って緩衝キャビティ6内を不活性ガスで置換する。   After completion of the charging of the raw material, a semi-sealing punch 5 is arranged in the container body 2, the opening is closed with a lid 3 having a gas inlet 4, and the dissolution chamber 7 is replaced with Ar. When heating from the outside of the graphite container 1, an inert gas such as argon (Ar) is introduced into the buffer cavity 6 from the gas inlet 4, and the buffer cavity 6 is filled for the entire time of heating / holding and cooling. Is replaced with an inert gas.

本実施の形態では、緩衝キャビティ6内に導入する不活性ガスとしてArを用いたが、これに限るものではなく、ヘリウム(He)等の高温で原料と反応しない他のガスを用いても構わない。黒鉛容器1の緩衝キャビティ6内を不活性ガスで置換した後、この黒鉛容器1を加熱炉内に収納し、化合物若しくは合金の融点以上で活性金属の沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させる。   In the present embodiment, Ar is used as the inert gas introduced into the buffer cavity 6, but the present invention is not limited to this, and other gases that do not react with the raw material at a high temperature such as helium (He) may be used. Absent. After replacing the inside of the buffer cavity 6 of the graphite container 1 with an inert gas, the graphite container 1 is housed in a heating furnace and kept for a certain period of time within a temperature range not lower than the melting point of the compound or alloy and not higher than the boiling point of the active metal. To produce a compound melt or a combined financial liquid.

ここで、化合物若しくは合金の融点以上の温度に加熱保持するのは、原料を溶融させて均一な化合物若しくは合金を得るためであり、活性金属の沸点以下の温度に加熱保持するのは、活性金属の沸騰による発火や爆発を防止するためである。また、準密封用パンチ5で容器本体2の内部空間を上下の空間に区画したので、この上方の空間は不活性ガスが充満した緩衝キャビティ6であり、下部空間は原料が溶解した溶解室7が区画形成される。   Here, the heating and holding at a temperature equal to or higher than the melting point of the compound or alloy is for obtaining a uniform compound or alloy by melting the raw material, and the heating and holding at a temperature not higher than the boiling point of the active metal. This is to prevent ignition and explosion due to boiling of the water. Further, since the inner space of the container body 2 is partitioned into upper and lower spaces by the semi-sealing punch 5, the upper space is a buffer cavity 6 filled with an inert gas, and the lower space is a dissolution chamber 7 in which a raw material is dissolved. Are partitioned.

本実施の形態では、黒鉛容器1の加熱手段として電気炉を用いたが、活性金属原料の沸点と化合物若しくは合金の融点との差が大きい場合には、例えば、誘導加熱や坩堝通電による加熱などの他の加熱手段を用いても構わない。例えば、MgSi基化合物のインゴッドを作製する場合には、MgSiの融点(Tm(MgSi):1358K)以上でMgの沸点(Tb(Mg):1363K)以下の温度範囲にある1361Kまで加熱し、その温度に2時間保持することにより、MgSi基化合物の融液を生成させる。 In the present embodiment, an electric furnace is used as a heating means for the graphite container 1, but when the difference between the boiling point of the active metal raw material and the melting point of the compound or alloy is large, for example, induction heating or heating by crucible energization, etc. Other heating means may be used. For example, when producing an ingot of an Mg 2 Si-based compound, the temperature is in the range of the melting point of Mg 2 Si (Tm (Mg 2 Si): 1358K) and the boiling point of Mg (Tb (Mg): 1363K). It was heated to 1361K, by holding at that temperature for 2 hours, to produce a melt of Mg 2 Si based compound.

この加熱保持工程において、溶解室7内で発生したガス及び蒸気は容器本体2の内面と準密封用パンチ5の外周面との隙間を通じて外へ逃げられるが、加熱保持温度が活性金属(Mg)の沸点以下に設定されているので、黒鉛容器1の安全性は十分に高い。一方、溶解室7は準密封用パンチ5により準密封されており、溶解室7と緩衝キャビティ6との間のガスの対流を大幅に抑制できるので、活性金属(Mg)の外部への蒸発量は極めて少なく、溶融組成の変化も極めて少ない。さらに、上記の加熱・温度保持のみならず、その後の冷却時においても、緩衝キャビティ6内にArガスを流し続けることにより、外部の酸素が緩衝キャビティ6を経由して溶解室7内へ混入するのを抑制することができる。   In this heating and holding step, the gas and vapor generated in the melting chamber 7 escape to the outside through a gap between the inner surface of the container body 2 and the outer peripheral surface of the semi-sealing punch 5, but the heating and holding temperature is the active metal (Mg). Therefore, the safety of the graphite container 1 is sufficiently high. On the other hand, the melting chamber 7 is semi-sealed by the semi-sealing punch 5 and the convection of the gas between the melting chamber 7 and the buffer cavity 6 can be greatly suppressed, so that the evaporation amount of the active metal (Mg) to the outside is reduced. Is extremely small, and the change in melt composition is very small. Further, not only in the above heating and temperature maintenance, but also in the subsequent cooling, the Ar gas continues to flow into the buffer cavity 6 so that external oxygen is mixed into the dissolution chamber 7 through the buffer cavity 6. Can be suppressed.

このように本実施の形態では、上記黒鉛容器1において、容器本体2の内面と蓋体3の外周面との隙間を緩衝キャビティ6内で発生したガス及び蒸気を逃す出口として利用しているが、蓋体3に細孔をあけても良い。その後、MgSi融液を冷却(炉冷)することにより、多結晶のMgSiインゴットが得られる。 Thus, in the present embodiment, in the graphite container 1, the gap between the inner surface of the container body 2 and the outer peripheral surface of the lid 3 is used as an outlet for releasing the gas and vapor generated in the buffer cavity 6. Further, pores may be formed in the lid 3. Thereafter, the Mg 2 Si melt is cooled (furnace cooled) to obtain a polycrystalline Mg 2 Si ingot.

このように本実施の形態の製造方法によれば、塊状の活性金属を原料として用いており、従来の粉末冶金法を用いた製造方法に比べて、Mg、Ca等の活性金属を取り扱いが困難な粉末状態で用いる必要がないので、生産の安全性を向上させ、製品コストを大幅に低減することができる。また、従来の高圧溶融法を用いた製造方法に比べて、高温耐高圧加熱装置を使用する必要がないので、製品コストを低減することができる。   As described above, according to the manufacturing method of the present embodiment, a massive active metal is used as a raw material, and it is difficult to handle active metals such as Mg and Ca as compared with a manufacturing method using a conventional powder metallurgy method. Therefore, the production safety can be improved and the product cost can be greatly reduced. Moreover, since it is not necessary to use a high-temperature and high-pressure-resistant heating device as compared with the manufacturing method using the conventional high-pressure melting method, the product cost can be reduced.

さらに、従来のメカニカルアロイング法を用いた製造方法に比べて、ボールミルによる混合工程での不純物の混入を防止できるため、高純度化合物を製造することができる。そして、大気側に不活性ガスを導入して収容可能な緩衝キャビティ6を隔てて、底部側に原料を収容可能な溶解室7を有する黒鉛容器1を用いており、この黒鉛容器1を不図示の電気炉内で上記温度範囲に加熱・保持するに際して、上記緩衝キャビティ6内をAr等の不活性ガスで置換するので、真空装置を使用する必要がなく、大気圧下において原料を直接溶解することができ、製品コストを大幅に低減することができるものである。   Furthermore, compared with the manufacturing method using the conventional mechanical alloying method, since mixing of the impurity in the mixing process by a ball mill can be prevented, a high purity compound can be manufactured. A graphite container 1 having a melting chamber 7 capable of accommodating a raw material on the bottom side is used, with a buffer cavity 6 that can be accommodated by introducing an inert gas to the atmosphere side, and this graphite container 1 is not illustrated. When heating and holding in the above temperature range in an electric furnace, the inside of the buffer cavity 6 is replaced with an inert gas such as Ar, so that it is not necessary to use a vacuum apparatus, and the raw material is directly dissolved under atmospheric pressure. The product cost can be greatly reduced.

なお、本実施の形態では、有底円筒体状の容器本体2内に準密封パンチを配した黒鉛容器1を用いたが、これに限定されるものではなく、大気側に緩衝キャビティ6を有し、かつ溶解室7が準密封状態の容器であれば、他の形状の容器を用いてもよい。また、本実施形態の黒鉛容器1は一室の緩衝キャビティ6を有しているが、これに限るものではなく、二室以上の緩衝キャビティ6を有する容器を構成してもよい。   In this embodiment, the graphite container 1 in which a semi-sealed punch is disposed in the bottomed cylindrical container body 2 is used. However, the present invention is not limited to this, and the buffer cavity 6 is provided on the atmosphere side. However, as long as the dissolution chamber 7 is a semi-sealed container, a container of another shape may be used. Moreover, although the graphite container 1 of this embodiment has the buffer cavity 6 of one chamber, it is not restricted to this, You may comprise the container which has the buffer cavity 6 of two or more chambers.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限るものではない。
〔実施例1〕
実施例1は、本発明に係る活性金属を含む金属材料の製造方法を用いて、MgSi基化合物のインゴットの製造する例について説明する。まず、図1に示した黒鉛製の黒鉛容器1の溶解室7内に、MgSi基化合物を生成するMg原料とSi原料とを原子比が2:1となるように装入する。具体的には、塊状のMg原料(99.5%)と不規則な粒子状のSi原料(99.9%)とを黒鉛製の黒鉛容器1の溶解室7内に装入する。なお、本実施例では、Si粒子の平均粒径は1〜5mmの範囲のものを用いたが、高温保持時間を減少させるためには小さい粒径のSi原料を用いることが好ましい。一方、Mg原料は保持温度で十分溶解されるので、その原料の形状及びサイズは保持時間への影響は少ない。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
[Example 1]
Example 1 uses a method for producing a metal material containing an active metal according to the present invention, an example of manufacturing the ingots of Mg 2 Si based compound. First, the Mg raw material for producing the Mg 2 Si-based compound and the Si raw material are charged into the melting chamber 7 of the graphite container 1 made of graphite shown in FIG. 1 so that the atomic ratio is 2: 1. Specifically, massive Mg raw material (99.5%) and irregular particulate Si raw material (99.9%) are charged into the melting chamber 7 of the graphite container 1 made of graphite. In this embodiment, the average particle size of Si particles is in the range of 1 to 5 mm. However, in order to reduce the high temperature holding time, it is preferable to use a Si raw material having a small particle size. On the other hand, since the Mg raw material is sufficiently dissolved at the holding temperature, the shape and size of the raw material have little influence on the holding time.

原料の装入完了後、容器本体2内に準密封用パンチ5を配するとともに、その開口部をガス導入口4を有する蓋体3により閉塞し、該黒鉛容器1の加熱に際して上記ガス導入口4からアルゴン(Ar)等の不活性ガスを導入し、加熱・保持時及び冷却時に亘って緩衝キャビティ6内を不活性ガスで置換する。
そして、MgSiの融点(Tm(MgSi):1358K)以上でMgの沸点(Tb(Mg):1363K)以下の温度範囲での1361Kまで加熱し、2時間保持する。この加熱保持工程においては、融点以上に達しているMgのみが溶融し、溶融Mgと固体状態にあるSiとの界面において下記化1に示す反応(液相−固相反応)が進行することにより、MgSi融液が得られる。
2Mg(液相)+Si(固相)→MgSi(液相)
After the completion of the charging of the raw material, the semi-sealing punch 5 is arranged in the container body 2, and the opening is closed with a lid 3 having a gas inlet 4, and the gas inlet 1 is heated when the graphite container 1 is heated. An inert gas such as argon (Ar) is introduced from 4 and the inside of the buffer cavity 6 is replaced with the inert gas during heating / holding and cooling.
Then, Mg 2 Si melting point (Tm (Mg 2 Si): 1358K) or at the boiling point of Mg (Tb (Mg): 1363K ) was heated to 1361K at the following temperatures, hold 2 hours. In this heating and holding step, only Mg reaching the melting point is melted, and the reaction shown in the following chemical formula 1 (liquid phase-solid phase reaction) proceeds at the interface between the molten Mg and Si in the solid state. Mg 2 Si melt is obtained.
2Mg (liquid phase) + Si (solid phase) → Mg 2 Si (liquid phase)

上述したように、加熱保持工程において、溶解室7内で発生したガス及び蒸気は容器本体2の内面と準密封用パンチ5の外周面との隙間を通じて外へ逃げられるが、加熱保持温度がMgの沸点以下に設定されているので、黒鉛容器1の安全性は十分に高い。一方、溶解室7は準密封用パンチ5により準密封されており、溶解室7と緩衝キャビティ6との間のガスの対流を大幅に抑制できるので、Mgの外部への蒸発量は極めて少なく、溶融組成の変化も極めて少ない。さらに、上記の加熱・温度保持のみならず、その後の冷却時においても、緩衝キャビティ6内に0.5ml/minの流量でArガスを流し続けることにより、外部の酸素が緩衝キャビティ6を経由して溶解室7内へ混入するのを抑制することができる。   As described above, in the heating and holding step, the gas and vapor generated in the melting chamber 7 escape to the outside through the gap between the inner surface of the container body 2 and the outer peripheral surface of the semi-sealing punch 5, but the heating and holding temperature is Mg. Therefore, the safety of the graphite container 1 is sufficiently high. On the other hand, the melting chamber 7 is semi-sealed by the semi-sealing punch 5, and the convection of gas between the melting chamber 7 and the buffer cavity 6 can be greatly suppressed, so that the amount of evaporation of Mg to the outside is extremely small, There is also very little change in the melt composition. Furthermore, not only in the above heating and temperature maintenance, but also in the subsequent cooling, by continuously flowing Ar gas into the buffer cavity 6 at a flow rate of 0.5 ml / min, external oxygen passes through the buffer cavity 6. Thus, it is possible to suppress the entry into the melting chamber 7.

その後、MgSi融液を冷却(炉冷)することにより、多結晶のMgSiインゴットが得られる。ここで得られたMgSiインゴット中には大量のクラックが生じる。このインゴットは蒸着原料として直接利用しうるが、熱電変換素子に応用する場合には、それを粉砕した後、焼結による再加工を必要とする。
得られたMgSiインゴットを粉砕してX線回折により分析した結果、図2に示すように、インゴットは略単純なMgSiの構造を呈しており、未反応のMg及びSiは極めて少ないことが判る。
Mgの沸点はMgSi基化合物の融点の僅か12K上にあるので、MgSi基化合物の大気圧下での製造は一般に困難であったが、本実施形態によれば、大気圧下において安全かつ低コストでMgSi基化合物の多結晶インゴッドを得ることができた。
Thereafter, the Mg 2 Si melt is cooled (furnace cooled) to obtain a polycrystalline Mg 2 Si ingot. A large number of cracks occur in the Mg 2 Si ingot obtained here. This ingot can be directly used as a vapor deposition raw material, but when applied to a thermoelectric conversion element, it needs to be reworked by sintering after pulverizing it.
The obtained Mg 2 Si ingot was pulverized and analyzed by X-ray diffraction. As a result, as shown in FIG. 2, the ingot had a substantially simple structure of Mg 2 Si, and there was very little unreacted Mg and Si. I understand that.
Since the boiling point of Mg is slightly above 12K the melting point of the Mg 2 Si group compound, produced under atmospheric pressure of Mg 2 Si based compounds are generally difficult, according to the present embodiment, under atmospheric pressure A polycrystalline ingot of a Mg 2 Si-based compound could be obtained safely and at low cost.

〔実施例2〕
次に、CaSi系化合物・合金に対応する実施例を説明する。基本的な製造方法は、実施例1の製造方法と実質的に同一であるので、重複する説明は簡略して説明する。溶解室7内に、Ca原料とSi原料とを原子比が2:1となるように装入する。具体的には、塊状のCa原料(99.5%)と不規則な粒子状のSi原料(99.9%)とを黒鉛製の黒鉛容器1の溶解室7内に装入する。なお、本実施例では、Si粒子の平均粒径は1〜5mmの範囲のものを用いた。一方、Ca原料の粒子の平均粒径は、(1−3)mmの範囲のものを用いた。
[Example 2]
Next, an example corresponding to a Ca 2 Si compound / alloy will be described. Since the basic manufacturing method is substantially the same as the manufacturing method of the first embodiment, a duplicate description will be simplified. In the melting chamber 7, the Ca raw material and the Si raw material are charged so that the atomic ratio is 2: 1. Specifically, massive Ca raw material (99.5%) and irregular particulate Si raw material (99.9%) are charged into the melting chamber 7 of the graphite container 1 made of graphite. In this example, the average particle size of Si particles was in the range of 1 to 5 mm. On the other hand, the average particle diameter of the Ca raw material particles was in the range of (1-3) mm.

原料の装入完了後、容器本体2内に準密封用パンチ5を配置し、蓋体3により閉塞し、ガス導入口4からアルゴン(Ar)等の不活性ガスを導入し、加熱・保持時及び冷却時に亘って緩衝キャビティ6内を不活性ガスで置換する。そして、最初に673Kの温度で30分の間予備加熱する。CaSiの融点(Tm(CaSi):1587K)以上でCaの沸点(Tb(Ca):1757K)以下の温度範囲での1633Kまで加熱し、1時間保持する。この加熱保持工程においては、融点以上に達しているCaのみが溶融し、溶融Caと固体状態にあるSiとの界面において下記化2に示す反応(液相−固相反応)が進行することにより、CaSi融液が得られる。
2Ca(液相)+Si(固相)→CaSi(液相)
After the charging of the raw material is completed, a semi-sealing punch 5 is arranged in the container body 2 and closed by the lid 3, and an inert gas such as argon (Ar) is introduced from the gas inlet 4, when heating and holding In addition, the inside of the buffer cavity 6 is replaced with an inert gas during cooling. First, preheating is performed at a temperature of 673 K for 30 minutes. Heat to 1633 K in the temperature range of the melting point of Ca 2 Si (Tm (Ca 2 Si): 1587 K) and the boiling point of Ca (Tb (Ca): 1757 K) and hold for 1 hour. In this heating and holding step, only Ca reaching the melting point or higher is melted, and a reaction (liquid phase-solid phase reaction) shown in the following chemical formula 2 proceeds at the interface between the molten Ca and Si in the solid state. Ca 2 Si melt is obtained.
2Ca (liquid phase) + Si (solid phase) → Ca 2 Si (liquid phase)

上述したように、加熱保持工程において、溶解室7内で発生したガス及び蒸気は容器本体2の内面と準密封用パンチ5の外周面との隙間を通じて外へ逃げられる点、Arガスを流し続ける点等の操作は、実施例1と同一である。   As described above, in the heating and holding step, the gas and vapor generated in the melting chamber 7 escape to the outside through the gap between the inner surface of the container body 2 and the outer peripheral surface of the semi-sealing punch 5, and the Ar gas continues to flow. Operations such as dots are the same as those in the first embodiment.

図1は、本発明に係る活性金属を含む金属材料の製造方法に用いる緩衝キャビティを有する黒鉛容器の構造を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the structure of a graphite container having a buffer cavity used in the method for producing a metal material containing an active metal according to the present invention. 図2は、MgSiインゴットのX線回折結果を示す説明図である。FIG. 2 is an explanatory diagram showing an X-ray diffraction result of the Mg 2 Si ingot.

符号の説明Explanation of symbols

1 黒鉛容器
2 容器本体
3 蓋体
4 ガス導入口
5 準密封用パンチ
6 緩衝キャビティ
7 溶解室
DESCRIPTION OF SYMBOLS 1 Graphite container 2 Container body 3 Lid 4 Gas inlet 5 Semi-sealing punch 6 Buffer cavity 7 Dissolving chamber

Claims (6)

大気側に緩衝キャビティを有する黒鉛容器の溶解室内に、塊状の活性金属原料、及び該活性金属原料の化合物若しくは合金を形成する他の原料を収容し、前記緩衝キャビティ内を不活性ガスで置換した状態とし、前記黒鉛容器を前記化合物若しくは前記合金の融点以上で活性金属の沸点以下の温度範囲に一定時間保持することにより化合物融液若しくは合金融液を生成させ、該化合物融液若しくは合金融液を冷却してインゴットを製造することを特徴とする活性金属を含む金属材料の製造方法。   In a melting chamber of a graphite container having a buffer cavity on the atmosphere side, a bulk active metal raw material and other raw materials forming a compound or alloy of the active metal raw material are accommodated, and the inside of the buffer cavity is replaced with an inert gas. And maintaining the graphite container in a temperature range not lower than the melting point of the compound or the alloy and not higher than the boiling point of the active metal for a certain period of time to produce a compound melt or a combined liquid, and the compound melt or combined liquid A method for producing a metal material containing an active metal, wherein the ingot is produced by cooling the substrate. 前記活性金属は、酸化し易い金属若しくは高温において蒸発し易い金属であることを特徴とする請求項1に記載の活性金属を含む金属材料の製造方法。   The method for producing a metal material containing an active metal according to claim 1, wherein the active metal is a metal that easily oxidizes or a metal that easily evaporates at a high temperature. 前記黒鉛容器は有底筒体からなる容器であって、
前記黒鉛容器内に配置され前記黒鉛容器の空間を区画する準密封用パンチを介して、大気側に不活性ガスを導入して収容する前記緩衝キャビティ、及び底部側に塊状の活性金属原料及び他の原料を収納する前記溶解室を有し、
前記不活性ガスで大気と遮断しながら加熱・保持することにより、前記活性金属原料の化合物若しくは合金を形成することを特徴とする請求項1又は請求項2に記載の活性金属を含む金属材料の製造方法。
The graphite container is a container comprising a bottomed cylindrical body,
Through the semi-sealing punch that is arranged in the graphite container and divides the space of the graphite container, the buffer cavity that introduces and stores the inert gas on the atmosphere side, and the bulk active metal raw material on the bottom side and others The melting chamber for storing the raw material of
The metal material containing an active metal according to claim 1 or 2, wherein a compound or alloy of the active metal raw material is formed by heating and holding while blocking the atmosphere with the inert gas. Production method.
前記黒鉛容器を前記温度範囲に加熱・保持して、前記化合物融液若しくは合金融液を生成させるに際し、前記緩衝キャビティ内を前記不活性ガスで置換しながら生成させることを特徴とする請求項1から請求項3のいずれか1項に記載の活性金属を含む金属材料の製造方法。   2. The graphite container is heated and held in the temperature range to generate the compound melt or combined liquid while generating the buffer cavity while replacing the inert gas with the inert gas. The manufacturing method of the metal material containing the active metal of any one of Claim 3. 主として黒鉛から作られ有底筒体からなる容器であ容器本体と、
該容器本体の筒体内面に沿って準密封状態で移動可能な準密封用パンチと、
前記容器本体の上面に配置され、不活性ガス導入孔を有する容器蓋体とからなり、
前記準密封用パンチを介して、前記準密封用パンチの上部に区画され、大気側に不活性ガスを導入して収容する緩衝キャビティと、
前記準密封用パンチの上部に区画され、前記容器本体の底部側に塊状の活性金属原料を収容する溶解室と、
前記容器本体及び前記溶解室を加熱・保持するための加熱装置と
からなる活性金属を含む金属材料製造装置。
A container body which is a container mainly made of graphite and made of a bottomed cylinder;
A semi-sealing punch movable in a semi-sealed state along the inner surface of the cylindrical body of the container body;
It is arranged on the upper surface of the container body, and consists of a container lid body having an inert gas introduction hole,
A buffer cavity that is partitioned at the top of the semi-sealing punch through the semi-sealing punch and introduces and stores an inert gas on the atmosphere side;
A melting chamber that is partitioned at the top of the semi-sealing punch and that contains a massive active metal raw material on the bottom side of the container body;
An apparatus for producing a metal material containing an active metal, comprising: a heating device for heating and holding the container body and the melting chamber.
前記活性金属原料が、Mg、Ca、Znから選ばれる1種以上であり、前記他の原料がSi、Ni、Fe、Co、Mn、Cr、Vから選ばれる1種以上である請求項1から請求項4のいずれか1項に記載の方法により製造されることを特徴とする活性金属を含む金属材料。
The active metal raw material is one or more selected from Mg, Ca and Zn, and the other raw material is one or more selected from Si, Ni, Fe, Co, Mn, Cr and V. A metal material containing an active metal produced by the method according to claim 4.
JP2004310758A 2004-10-26 2004-10-26 Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method Pending JP2006124728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310758A JP2006124728A (en) 2004-10-26 2004-10-26 Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310758A JP2006124728A (en) 2004-10-26 2004-10-26 Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method

Publications (1)

Publication Number Publication Date
JP2006124728A true JP2006124728A (en) 2006-05-18

Family

ID=36719749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310758A Pending JP2006124728A (en) 2004-10-26 2004-10-26 Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method

Country Status (1)

Country Link
JP (1) JP2006124728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115297A1 (en) * 2010-03-17 2011-09-22 国立大学法人茨城大学 Production apparatus and method for producing mg2si1-xsnx polycrystals
JP2013211370A (en) * 2012-03-30 2013-10-10 Goto Ikueikai N-type thermoelectric material of mgalb14 system
JP2018174273A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Thermoelectric conversion material and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115297A1 (en) * 2010-03-17 2011-09-22 国立大学法人茨城大学 Production apparatus and method for producing mg2si1-xsnx polycrystals
CN102811949A (en) * 2010-03-17 2012-12-05 国立大学法人茨城大学 Production apparatus and method for producing mg2si1-xsnx polycrystals
US9181607B2 (en) 2010-03-17 2015-11-10 Ibaraki University Apparatus and method for producing Mg(2)Si(1-x)Sn(x) polycrystal
JP5882195B2 (en) * 2010-03-17 2016-03-09 国立大学法人茨城大学 Manufacturing apparatus and manufacturing method for Mg2Si1-xSnx polycrystal
JP2013211370A (en) * 2012-03-30 2013-10-10 Goto Ikueikai N-type thermoelectric material of mgalb14 system
JP2018174273A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Thermoelectric conversion material and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Kravchenko et al. Activation of aluminum metal and its reaction with water
Guoxian et al. Hydrogen absorption and desorption characteristics of mechanically milled Mg 35wt.% FeTi1. 2 powders
Xing et al. A brief review of metallothermic reduction reactions for materials preparation
Douglass The formation and dissociation of magnesium alloy hydrides and their use for fuel storage in the hydrogen car
US4839085A (en) Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
Young et al. Pressure–composition–temperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys
Grigorieva et al. Mechanochemical synthesis of intermetallic compounds
JP4496365B2 (en) Thermoelectric material and manufacturing method thereof
Kumar et al. Cyclic hydrogen storage properties of VTiCrAl alloy
CN110629091B (en) High-capacity multi-phase hydrogen storage alloy for fuel cell and preparation method thereof
Raman et al. Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy
Niu et al. Formation of magnesium silicide by mechanical alloying
JPWO2005080617A1 (en) Method for producing Mg-REM-Ni-based hydrogen storage alloy
JP4602926B2 (en) Method for producing alloy powder
KR101352371B1 (en) Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis
TWI321158B (en)
CN108097947A (en) A kind of high capacity Mg-Zn-Ni ternary hydrogen-storage alloys and preparation method thereof
JP2006124728A (en) Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method
CN108929961B (en) Preparation method of half-heusler block thermoelectric material
JP4956826B2 (en) Method for melting high vapor pressure metal-containing alloys
Kim et al. Effect of Na and Cooling Rate on the Activation of Mg–Ni Alloys for Hydrogen Storage
US20040060388A1 (en) Method of producing hydorgen storage alloy
KR20150112341A (en) Method of fabricating Ti-6Al-4V alloy
Msika et al. Zr-substitution in LaNi5-type hydride compound by room temperature ball milling
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223