JP4495765B2 - Direct fuel injection engine - Google Patents
Direct fuel injection engine Download PDFInfo
- Publication number
- JP4495765B2 JP4495765B2 JP2008112447A JP2008112447A JP4495765B2 JP 4495765 B2 JP4495765 B2 JP 4495765B2 JP 2008112447 A JP2008112447 A JP 2008112447A JP 2008112447 A JP2008112447 A JP 2008112447A JP 4495765 B2 JP4495765 B2 JP 4495765B2
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- fuel injection
- cross
- piston
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Description
本発明は、頂面のピストン中心軸方向の高さが円周方向に変化するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティ内に燃料を噴射するフュエルインジェクタとを備えた燃料直噴エンジンに関する。 The present invention relates to a piston in which the height of the top surface in the piston central axis direction changes in the circumferential direction, a cavity recessed at the center of the top surface of the piston, and a fuel injector that injects fuel into the cavity. And a fuel direct injection engine.
燃料直噴エンジン用のフュエルインジェクタの先端部に設けられる燃料噴射孔を円周方向に長い長孔に形成することで、ピストン中心軸方向に見た燃料噴霧角を拡大したものが、下記特許文献1により公知である。
ところで本出願人は、特願2006−175597号により、ペントルーフ型ピストンを備えた燃料直噴ディーゼルエンジンにおいて、ピストン中心軸を通る任意の半平面におけるピストンのキャビティの断面形状を略一致させることで、キャビティ内での燃料および空気の混合状態を円周方向に均一化し、混合気の燃焼状態を改善するものを提案している。 By the way, according to Japanese Patent Application No. 2006-175597, the present applicant, in a fuel direct injection diesel engine equipped with a pent roof type piston, substantially matches the cross-sectional shape of the piston cavity in an arbitrary half plane passing through the piston central axis, Proposals have been made to improve the combustion state of the air-fuel mixture by making the fuel and air mixture in the cavity uniform in the circumferential direction.
しかしながら、ピストン中心軸を通る任意の半平面におけるキャビティの断面形状を略一致させても、キャビティ内にフュエルインジェクタから燃料が噴射される領域とされない領域とが存在すると、燃料および空気の混合状態を円周方向に完全に均一化するのは難しいため、前記混合状態を更に均一化することが望まれていた。 However, even if the cross-sectional shape of the cavity in an arbitrary half plane passing through the piston central axis is substantially the same, if there is a region where fuel is not injected from the fuel injector and a region where fuel is not injected in the cavity, the mixed state of the fuel and air is changed. Since it is difficult to completely uniformize in the circumferential direction, it has been desired to further uniform the mixed state.
本発明は前述の事情に鑑みてなされたもので、ペントルーフ型ピストンを備えた燃料直噴エンジンにおいて、キャビティ内での燃料および空気の混合状態を円周方向に均一化することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to make the mixed state of fuel and air in a cavity uniform in a circumferential direction in a fuel direct injection engine having a pent roof type piston.
上記目的を達成するために、請求項1に記載された発明によれば、頂面のピストン中心軸方向の高さが円周方向に変化するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティ内に燃料を噴射するフュエルインジェクタとを備え、Nを2以上の自然数とし、前記キャビティの内壁面と、ピストン中心軸から放射方向に延びて互いに均等な挟み角を有するN個の半平面とで、前記キャビティをN個の仮想的なキャビティ区分に区画したとき、前記各々の仮想的なキャビティ区分の容積が略等しくなるように、前記キャビティの内壁面の形状を設定し、前記仮想的なキャビティ区分の数Nを前記フュエルインジェクタの燃料噴射軸の数に等しく設定するとともに、ピストン中心軸方向に見たとき、全ての前記仮想的なキャビティ区分において前記挟み角の2等分線を前記燃料噴射軸に一致させた燃料直噴エンジンであって、前記燃料噴射軸の燃料噴霧角を前記挟み角に一致させたことを特徴とする燃料直噴エンジンが提案される。
In order to achieve the above object, according to the invention described in
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記フュエルインジェクタの円周方向に離間する複数の燃料噴射軸のうち、n番目の燃料噴射軸を通る前記キャビティの断面を燃料噴射断面Snとし、前記燃料噴射断面Snと前記キャビティの開口周縁との交点を第1特定点Anとし、前記第1特定点Anを通りかつ前記燃料噴射断面Snにおけるシリンダヘッドの下面と平行な線上には第2特定点Bnが存在し、前記燃料噴射断面Snにおける前記キャビティの底壁部上には第3特定点Cnが存在し、前記第2特定点Bnは前記第1特定点Anよりもピストン中心軸に近い位置にあり、前記第3特定点Cnは前記キャビティの底壁部の最大外径位置よりもピストン中心軸に近い位置にあり、前記第1,2特定点An,Bnを前記燃料噴射断面Snにおける前記シリンダヘッドの下面に沿う線で結ぶ経路AnBnと、前記第1、第3特定点An,Cnを前記燃料噴射断面Snにおける前記キャビティの壁面に沿って結ぶ経路AnCnと、前記第2、第3特定点Bn,Cnを最短直線で結ぶ経路BnCnとで囲まれる断面形状が、各燃料噴射断面Snにおいて略等しくしたものを基準断面形状とし、前記ピストンの頂面のピストン中心軸方向の高さが低い方向に存在する燃料噴射軸を通る前記燃料噴射断面Snほど、前記基準断面形状が拡大するように前記キャビティの内壁面の形状を変化させることで、前記各々の仮想的なキャビティ区分の容積を略等しくしたことを特徴とする燃料直噴エンジンが提案される。
According to the invention described in
また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記ピストンの頂面はペントルーフ状に形成されることを特徴とする燃料直噴エンジンが提案される。 According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, a direct fuel injection engine is proposed in which the top surface of the piston is formed in a pent roof shape. The
請求項1の構成によれば、ピストンの頂面の中央部に凹設したキャビティの内壁面と、ピストン中心軸から放射方向に延びて互いに均等な挟み角を有するN個の半平面とで、キャビティをN個の仮想的なキャビティ区分に区画したとき、各々の仮想的なキャビティ区分の容積が略等しくなるようにキャビティの内壁面の形状を設定し、かつキャビティ区分の数Nを燃料噴射軸の数に等しくするとともに、ピストン中心線方向に見て全てのキャビティ区分の挟み角の2等分線を燃料噴射軸に一致させたので、キャビティにおける燃料および空気の混合状態を円周方向に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。しかも燃料噴射軸の燃料噴霧角を前記挟み角に一致させたので、キャビティの内部に燃料が噴霧されない領域や燃料が重なって噴霧される領域がなくなり、キャビティ区分の等容積化との相乗効果により、キャビティにおける未利用空気を最小限に抑えて燃料および空気の混合状態を更に均一化することができる。
According to the configuration of
また請求項2の構成によれば、先願発明のキャビティの断面形状を基準断面形状とし、ピストンの頂面のピストン中心軸方向の高さが低い方向に存在する燃料噴射軸を通る燃料噴射断面Snほど、前記基準断面形状が拡大するようにキャビティの内壁面の形状を変化させることで、各々の仮想的なキャビティ区分の容積を略等しくしたので、先願発明に比べて各燃料噴射断面Snにおける燃料および空気の混合状態をより均一化することができる。 According to the second aspect of the present invention, the cross-sectional shape of the cavity of the prior invention is a reference cross-sectional shape, and the fuel injection cross section that passes through the fuel injection shaft that exists in the direction in which the height of the piston central axis direction of the top surface of the piston is low. Since the volume of each virtual cavity section is made substantially equal by changing the shape of the inner wall surface of the cavity so that the reference cross-sectional shape becomes larger as Sn, each fuel injection cross-section Sn compared to the prior application invention. It is possible to make the mixed state of the fuel and air more uniform.
また請求項3の構成によれば、ピストンの頂面をペントルーフ状に形成したので、バルブ孔の開口面積を拡大して吸排気効率を高めることができる。 According to the third aspect of the present invention, since the top surface of the piston is formed in a pent roof shape, the opening area of the valve hole can be enlarged to improve the intake / exhaust efficiency.
以下、本発明の実施の形態を添付の図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図1〜図13は本発明の第1の実施の形態を示すもので、図1はディーゼルエンジンの要部縦断面図、図2は図1の2−2線矢視図、図3は図1の3−3線矢視図、図4は図1の4部拡大図、図5は図4の5−5線拡大断面図、図6はピストンの上部斜視図、図7は図3の7−7線断面図、図8は図3の8−8線断面図、図9は図3の9−9線断面図、図10は補正後のキャビティの断面形状を示す、前記図7に対応する図、図11は補正後のキャビティの断面形状を示す、前記図8に対応する図、図12は仮想的なキャビティ区分の説明図、図13はキャビティ区分の方向を円周方向に変化させたときの、該キャビティ区分の容積の変化率を示すグラフである。
1 to 13 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an essential part of a diesel engine, FIG. 2 is a view taken along line 2-2 in FIG. 1, and FIG. 4 is an enlarged view of
図1〜図6に示すように、燃料直噴型のディーゼルエンジンは、シリンダブロック11に形成されたシリンダ12に摺動自在に嵌合するピストン13を備えており、ピストン13はピストンピン14およびコネクティングロッド15を介して図示せぬクランクシャフトに接続される。シリンダブロック11の上面に結合されるシリンダヘッド16の下面に、ピストン13の頂面に対向する2個の吸気バルブ孔17,17と、2個の排気バルブ孔18,18とが開口しており、吸気バルブ孔17,17に吸気ポ−ト19が連通し、排気バルブ孔18,18に排気ポート20が連通する。吸気バルブ孔17,17は吸気バルブ21,21で開閉され、排気バルブ孔18,18は排気バルブ22,22で開閉される。ピストン中心軸Lp上に位置するようにフュエルインジェクタ23が設けられるとともに、フュエルインジェクタ23に隣接するようにグロープラグ24が設けられる。
As shown in FIGS. 1 to 6, the direct fuel injection type diesel engine includes a
ピストン13の頂面と、そこに対向するシリンダヘッド16の下面とは平坦ではなく断面三角形のペントルーフ状に傾斜しており、この形状により、吸気ポ−ト19および排気ポート20の湾曲度を小さくするとともに吸気バルブ孔17,17および排気バルブ孔18,18の直径を確保し、吸気効率および排気効率を高めることができる。
The top surface of the
ピストン13の頂面には、ピストン中心軸Lpを中心とするキャビティ25が凹設される。キャビティ25の径方向外側には、ピストンピン14と平行に直線状に延びる頂部13a,13aから吸気側および排気側に向かって下向きに傾斜する一対の傾斜面13b,13bと、傾斜面13b,13bの下端近傍に形成されてピストン中心軸Lpに直交する一対の平坦面13c,13cと、頂部13a,13aの両端を平坦に切り欠いた一対の切欠き部13d,13dとが形成される。
A
ピストン中心軸Lpに沿って配置されたフュエルインジェクタ23は、ピストン中心軸Lp上の仮想的な点である燃料噴射点Oinjを中心として円周方向に60°間隔で離間する6つの方向に燃料を噴射する。6本の燃料噴射軸のうちの2本の第1燃料噴射軸Li1は、ピストン中心軸Lp方向に見てピストンピン14と重なっており、他の4本の第2燃料噴射軸Li2は、ピストンピン14の方向に対して60°の角度で交差している。またピストン中心軸Lpに直交する方向に見て、6本の第1、第2燃料噴射軸Li1,Li2は斜め下向きに傾斜しており、その下向きの度合いは第1燃料噴射軸Li1については小さく、第2燃料噴射軸Li2については大きくなっている(図8および図9参照)。
The
尚、フュエルインジェクタ23が実際に燃料を噴射する噴射点はピストン中心軸Lpから径方向外側に僅かにずれているが、前記燃料噴射点Oinjは前記第1、第2燃料噴射軸Li1,Li2がピストン中心軸Lpと交差する点として定義される。
The fuel injection point at which the
図4および図5に拡大して示すように、シリンダヘッド16の下面からピストン13側に突出するフュエルインジェクタ23の先端部23aに6個の燃料噴射孔23b…が60°間隔で形成される。各燃料噴射孔23b…の断面形状は円周方向に長い長孔(小判形あるいは陸上競技のトラック形)になっており、ピストン中心軸Lp方向に見た燃料の噴霧角は通常よりも広い60°に設定されている(図12参照)。
As shown in enlarged views in FIGS. 4 and 5, six
次に、図7〜図9を参照して先願発明(特願2006−175597号)のキャビティ25の断面形状を詳述する。先願発明のキャビティ25の断面形状を説明する理由は、先願発明のキャビティ25の断面形状を補正して本願発明のキャビティ25の断面形状を得るからである。図7はピストンピン14に対して直交する方向の断面であり、図8はピストンピン14に対して60°で交差する方向の断面(第2燃料噴射軸Li2を含む断面)であり、図9はピストンピン14に沿う方向の断面(第1燃料噴射軸Li1を含む断面)である。
Next, the sectional shape of the
先願発明は、ピストン中心軸Lpを通る任意の断面において、キャビティ25の形状を可及的に一致させることを狙ったものである。キャビティ25の断面形状はピストン中心軸Lpを挟んで左右二つの部分に分かれており、その二つの部分は図9のピストンピン14方向の断面では概ね直線状に繋がっているが、図7のピストンピン14直交方向の断面と、図8のピストンピン14に対して60°で交差する方向の断面とでは、ピストン13のペントルーフ形状に応じて山型に繋がっている。但し、キャビティ25の断面形状の主要部、つまり図7〜図9に網かけをして示す部分の形状は完全に一致している。
The invention of the prior application aims at matching the shape of the
図7〜図9から明らかなように、ピストン中心軸Lpを中心として形成されたキャビティ25は、ピストン13の頂面から下向きに直線状に延びる周壁部25aと、周壁部25aの下端からピストン中心軸Lpに向かってコンケーブ状に湾曲する曲壁部25bと、曲壁部25bの径方向内端からピストン中心軸Lpに向かって斜め上方に直線状に延びる底壁部25cと、ピストン中心軸Lp上で底壁部25cの径方向内端に連なる頂部25dとで構成される。
As is apparent from FIGS. 7 to 9, the
キャビティ25に対向するシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Haだけ離れて平行に延びるラインをピストン頂面基本線L−a1,L−a2とする。同様にシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hbcだけ離れて平行に延びる線をキャビティ底面基本線L−bc1,L−bc2とし、シリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hdだけ離れて平行に延びる線をキャビティ頂部基本線L−d1,L−d2とする。
Lines extending downward and parallel to each other by a distance Ha from lines L-R1 and L-R2 indicating the lower surface of the
燃料噴射点Oinjを中心とする半径Raの円弧と前記ピストン頂面基本線L−a1,L−a2との交点をa1,a2とする。同様に燃料噴射点Oinjを中心とする半径Rbの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をb1,b2とし、燃料噴射点Oinjを中心とする半径Rcの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をc1,c2とし、燃料噴射点Oinjを中心とする半径Rdの円弧と前記キャビティ頂部基本線L−d1,L−d2との交点をd1,d2とする。交点e1,e2は、前記交点d1,d2からピストン頂面基本線L−a1,L−a2に下ろした垂線が該ピストン頂面基本線L−a1,L−a2に交差する点である。 Intersections between an arc having a radius Ra centered on the fuel injection point Oinj and the piston top surface basic lines L-a1, L-a2 are defined as a1, a2. Similarly, the intersections of the arc of radius Rb centered on the fuel injection point Oinj and the cavity bottom surface basic lines L-bc1, L-bc2 are b1, b2, and the arc of radius Rc centered on the fuel injection point Oinj The intersections of the cavity bottom basic lines L-bc1 and L-bc2 are c1 and c2, and the intersection of the arc having a radius Rd centered on the fuel injection point Oinj and the cavity top basic lines Ld1 and Ld2 is d1. , D2. The intersections e1 and e2 are points where perpendiculars drawn from the intersections d1 and d2 to the piston top surface basic lines L-a1 and L-a2 intersect the piston top surface basic lines L-a1 and L-a2.
キャビティ25の周壁部25aは直線a1b1,a2b2の上にあり、キャビティ25の底壁部25cは直線c1d1,c2d2に一致し、キャビティ25の曲壁部25bは直線a1b1,a2b2および直線c1d1,c2d2を滑らかに接続する。
The
しかして、交点a1,c1,d1,e1あるいは交点a2,c2,d2,e2によって決まる網かけした断面形状が,ピストン中心軸Lpを通る任意の断面において等しくなるように、キャビティ25の形状が設定される。
Thus, the shape of the
前記交点a1,a2は本発明の第1特定点Anに対応し、前記交点e1,e2は本発明の第2特定点Bnに対応し、前記交点d1,d2は本発明の第3特定点Cnに対応するものである。 The intersection points a1 and a2 correspond to the first specific point An of the present invention, the intersection points e1 and e2 correspond to the second specific point Bn of the present invention, and the intersection points d1 and d2 correspond to the third specific point Cn of the present invention. It corresponds to.
図8および図9に示す第1、第2燃料噴射軸Li1,Li2を通る断面については、図9に示すピストンピン14方向の断面(燃料噴射断面S1)における網かけ部分と、図8に示すピストンピン14に対して60°で交差する方向の断面(燃料噴射断面S2)における網かけ部分とは同形になる。
8 and 9, the cross section passing through the first and second fuel injection shafts Li1 and Li2 is shown in FIG. 8 and the shaded portion in the cross section in the direction of the piston pin 14 (fuel injection cross section S1) shown in FIG. The shaded portion in the cross section (fuel injection cross section S2) in the direction intersecting with the
図9に示すピストンピン14方向の断面において、第1燃料噴射軸Li1がキャビティ25と交差する点を燃料衝突点P1とし、図8に示すピストンピン14に対して60°で交差する方向の断面において、第2燃料噴射軸Li2がキャビティ25と交差する点を燃料衝突点P2とする。二つの燃料衝突点P1,P2は、網かけした同一形状の断面上の同じ位置に存在している。従って、燃料衝突点P2の位置は燃料衝突点P1の位置よりも低くなり、燃料噴射点Oinjから延びる第2燃料噴射軸Li2は第1燃料噴射軸Li1よりも更に下向きに燃料を噴射することになる。
In the cross section in the direction of the
燃料噴射点Oinjから燃料衝突点P1までの距離D1は、燃料噴射点Oinjから燃料衝突点P2までの距離D2に略一致する。また燃料衝突点P1におけるキャビティ25の接線と第1燃料噴射軸Li1とが成す燃料衝突角α1は、燃料衝突点P2におけるキャビティ25の接線と第2燃料噴射軸Li2とが成す燃料衝突角α2に略一致する。
A distance D1 from the fuel injection point Oinj to the fuel collision point P1 is substantially equal to a distance D2 from the fuel injection point Oinj to the fuel collision point P2. The fuel collision angle α1 formed by the tangent line of the
以上のように先願発明によれば、ピストン中心軸Lpを通る任意の断面において、燃料噴射点Oinjの近傍のごく一部(交点e1,d1,d2,e2で囲まれた領域)を除いて、キャビティ25の断面形状が同一に形成されている。特に、第1、第2燃料噴射軸Li1,Li2を含む二つの断面(図8および図9参照)においてもキャビティ25の断面形状が同一に形成されており、しかも前記二つの断面において燃料噴射点Oinjから燃料衝突点P1,P2までの距離D1,D2が略等しく設定され、かつ燃料衝突点P1,P2における燃料衝突角α1,α2が略等しく設定されるので、キャビティ25の各部における空気および燃料の混合状態を円周方向に均一化し、混合気の燃焼状態を改善してエンジン出力の増加および排気有害物質の低減を図ることができる。
As described above, according to the invention of the prior application, in an arbitrary cross section passing through the piston center axis Lp, except for a very small part in the vicinity of the fuel injection point Oinj (a region surrounded by the intersections e1, d1, d2, and e2). The cross-sectional shapes of the
また図7および図8に示すピストン13の頂面が傾斜する断面においても、キャビティ25の開口のエッジ(交点a2の部分)が成す角度が、図9に示すピストン13の頂面が平坦な場合に比べて鋭角化することがないため、その部分の熱負荷を軽減して耐熱性を高めることができる。
Further, in the cross section where the top surface of the
ところで先願発明は、図7〜図9におけるキャビティ25の断面形状が、網かけをして示す部分では完全に一致しているものの、燃料噴射点Oinjの近傍の交点e1,d1,d2,e2で囲まれた白抜きの領域で不一致になっている。その理由は、キャビティ25の断面形状のピストン中心軸Lpを挟む二つの部分が、図9のピストンピン14方向の断面では概ね直線状に繋がっているが、図7のピストンピン14直交方向の断面と、図8のピストンピン14に対して60°で交差する方向の断面とでは、ピストン13のペントルーフ形状に応じて山型に繋がっているため、交点e1,d1,d2,e2で囲まれた白抜きの領域の面積が、図9のピストンピン14方向の断面で最も大きく、図8のピストンピン14に対して60°で交差する方向の断面で減少し、図7のピストンピン14直交方向の断面で更に減少するためである。
In the prior invention, the cross-sectional shape of the
本実施の形態は、交点e1,d1,d2,e2で囲まれた白抜きの領域の面積が最大になるピストンピン14方向のキャビティ25の断面形状(図9参照)を基準とし、その他の方向の断面形状を拡大する方向(つまり、キャビティ25の深さを増加させる方向)に補正することで、前記交点e1,d1,d2,e2で囲まれた白抜きの領域の面積の差異を補償し、キャビティ25の全ての方向の断面で空気および燃料の混合状態の一層の均一化を図るものである。
This embodiment is based on the cross-sectional shape of the
図10は、図7のピストンピン14直交方向におけるキャビティ25の断面形状の補正手法を説明するものであり、鎖線の形状は先願発明のものを示し、実線の形状は本実施の形態のものを示している。
FIG. 10 illustrates a method of correcting the cross-sectional shape of the
本実施の形態によるキャビティ25の断面形状の補正は、交点b1および交点c1の位置を、それぞれ交点b1′および交点c1′となるように下方に移動させることで、網かけ部分の面積を増加させることにより行われる。
The correction of the cross-sectional shape of the
先ずキャビティ底面基本線L−bc1と、直線e1d1の下方への延長線との交点をf1として決定する。続いて交点f1を通るキャビティ底面基本線L−bc1を、交点f1を中心として所定角度βだけ下方に回転させ、新たなキャビティ底面基本線L−bc1′を設定する。続いて燃料噴射点Oinjを中心とする半径Rbの円弧と新たなキャビティ底面基本線L−bc1′との交点を前記b1′として決定し、燃料噴射点Oinjを中心とする半径Rcの円弧と新たなキャビティ底面基本線L−bc1′との交点を前記c1′として決定する。 First, the intersection point between the cavity bottom surface basic line L-bc1 and the line extending downward from the straight line e1d1 is determined as f1. Subsequently, the cavity bottom surface basic line L-bc1 passing through the intersection point f1 is rotated downward by a predetermined angle β around the intersection point f1 to set a new cavity bottom surface basic line L-bc1 ′. Subsequently, an intersection point between the arc having the radius Rb centered on the fuel injection point Oinj and the new cavity bottom basic line L-bc1 ′ is determined as the b1 ′, and the arc having the radius Rc centered on the fuel injection point Oinj is newly determined. The intersection point with the cavity bottom surface basic line L-bc1 'is determined as c1'.
しかして、補正後のキャビティ25の断面形状では、キャビティ25の周壁部25aは直線a1b1′の上にあり、キャビティ25の底壁部25cは直線c1′d1に一致し、キャビティ25の曲壁部25bは直線a1b1′および直線c1′d1を滑らかに接続している。
Thus, in the cross-sectional shape of the
尚、キャビティ底面基本線L−bc1とピストン中心軸Lpとの交点をfとし、この交点fを中心としてキャビティ底面基本線L−bc1を所定角度βだけ下方に回転させることで、新たなキャビティ底面基本線L−bc1′を設定しても良い。 An intersection between the cavity bottom surface basic line L-bc1 and the piston center axis Lp is defined as f, and the cavity bottom surface basic line L-bc1 is rotated downward by a predetermined angle β about the intersection point f to obtain a new cavity bottom surface. The basic line L-bc1 ′ may be set.
このように、キャビティ25の内壁面における経路AnCnのうち、経路AnCnの最下部から第3特定点Cnまでの区間は第2燃料噴射軸Li2と近接するが、その区間の形状を変化させることでキャビティ25の内壁面への燃料の付着を抑制して燃焼悪化を防止することができる。
Thus, of the path AnCn on the inner wall surface of the
本実施の形態では、正味平均有効圧力NMEPが、煤が発生しない状態で、先願発明に対して2%程度向上した。 In the present embodiment, the net average effective pressure NMEP is improved by about 2% with respect to the prior application invention in a state where no soot is generated.
図11は、図8のピストンピン14に対して60°で交差する方向におけるキャビティ25の断面形状の補正手法を説明するものであり、鎖線の形状は先願発明のものを示し、実線の形状は本実施の形態のものを示している。
Figure 1 1 is for explaining a method for correcting the cross-sectional shape of the
図9(ピストンピン14方向)および図7(ピストンピン14直交方向)における交点e1,d1,d2,e2で囲まれた白抜きの領域の面積の差異に比べ、図9(ピストンピン14方向)および図8(ピストンピン14に対して60°で交差する方向)の前記面積の差異は小さいため、図11(ピストンピン14に対して60°で交差する方向)におけるキャビティ25の断面形状の拡大量は、図10(ピストンピン14直交方向)におけるキャビティ25の断面形状の拡大量よりも小さなものとなる。
Compared to the difference in the area of the white area surrounded by the intersections e1, d1, d2, e2 in FIG. 9 (
以上、ピストン中心軸Lpの一側のキャビティ25の断面形状の補正について説明したが、ピストン中心軸Lpの他側のキャビティ25の断面形状の補正も全く同様にして行われる。
Although the correction of the cross-sectional shape of the
以上のように、本実施の形態によれば、先願発明が有する問題点、つまり燃料噴射点Oinjの近傍の交点e1,d1,d2,e2で囲まれた領域におけるキャビティ25の各断面形状の不一致が補償されるので、キャビティ25の各部における空気および燃料の混合状態を円周方向に一層均一化し、混合気の燃焼状態を改善してエンジン出力の更なる増加および排気有害物質の更なる低減を図ることができる。
As described above, according to the present embodiment, the problems of the prior invention, that is, the cross-sectional shapes of the
図12は、本実施の形態によるキャビティ25の断面形状の補正を、別の視点で捕らえる説明図である。
FIG. 12 is an explanatory diagram that captures the correction of the cross-sectional shape of the
同図において、キャビティ25の中心を通るピストン中心軸Lpから、6個の半平面X1〜X6が放射状に延びている。隣接する2個の半平面X1〜X6が成す角度(挟み角)は全て60°であり、各半平面X1〜X6の間を2等分する6本の2等分線は、ピストン中心軸Lpの方向に見て第1、第2燃料噴射軸Li1,Li2と重なっている。キャビティ25は6個の半平面X1〜X6によって6個の仮想的なキャビティ区分25A〜25Fに分割されており、本実施の形態によれば、上述したキャビティ25の断面形状の補正により、6個のキャビティ区分25A〜25Fの容積を理論的には同一に設定することが可能である。
In the figure, six half planes X1 to X6 extend radially from a piston central axis Lp passing through the center of the
しかしながら、6個のキャビティ区分25A〜25Fの容積を完全に同一に設定する必要はなく、それを略同一に設定するだけでも、先願発明に比べて燃料の混合状態を円周方向により均一化することができる。具体的には、6個のキャビティ区分25A〜25Fの容積のばらつき、つまり最大容積のキャビティ区分と最小容積のキャビティ区分の容積との差分を先願発明に比べて小さくすれば、燃料の混合状態を円周方向により均一化することができる。
However, it is not necessary to set the volumes of the six
図13は、キャビティ区分の方向(つまり、キャビティ区分の挟み角の2等分線の方向)をピストンピン14の方向を基準(0°)としてピストン中心軸Lpまわりに左右に各60°の範囲で移動させたとき、そのキャビティ区分の容積の変化率を示すものである。破線は従来例に対応し、実線は本実施の形態に対応する。 FIG. 13 shows a range of 60 ° left and right around the piston center axis Lp, with the direction of the cavity section (that is, the direction of the bisector of the sandwich angle of the cavity section) as the direction of the piston pin 14 (0 °). It shows the rate of change of the volume of the cavity section when moved by. A broken line corresponds to the conventional example, and a solid line corresponds to the present embodiment.
何れのものも、キャビティ区分の挟み角の2等分線の方向がピストンピン14の方向に対して60°で交差するとき(図12のキャビティ区分25B,25C,25E,25F参照)を基準とし、そのときの変化率を0%としている。破線で示す従来例では、キャビティ区分の挟み角の2等分線の方向がピストンピン14の方向に一致するとき(図12のキャビティ区分25A,25D参照)、変化率は最大になって7%程度であるが、実線で示す実施の形態では、同じ位置で変化率は最大になるが、その値は大幅に減少して僅か0.5%に抑えられている。
In either case, the direction of the bisector of the sandwich angle of the cavity section intersects the direction of the
従って、本願発明の一つの定義は、「各キャビティ区分25A〜25Fの容積のばらつきが、キャビティの深さを円周方向に均一にした従来例の各キャビティ区分25A〜25Fの容積のばらつきよりも小さいもの」とすることができる。
Accordingly, one definition of the present invention is that "the variation in volume of each
さて、図12から明らかなように、仮想的なキャビティ区分25A〜25Fの数6をフュエルインジェクタ23の燃料噴射軸Li1,Li2の数6に等しく設定し、ピストン中心軸Lp方向に見たとき、前記挟み角の2等分線を燃料噴射軸Li1,Li2に一致させ、かつ燃料噴射軸Li1,Li2の燃料噴霧角γを前記挟み角に一致させたので、容積が等しい各キャビティ区分25A〜25Fの中心線に沿って噴射された燃料は、その噴霧角が各キャビティ区分25A〜25Fの挟み角に等しくなる。これにより、キャビティ25の内部に燃料が噴霧されない領域や燃料が重なって噴霧される領域がなくなり、キャビティ区分25A〜25Fの等容積化との相乗効果により、キャビティ25における燃料および空気の混合状態を更に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。
As apparent from FIG. 12, when the number 6 of the
次に、図14に基づいて本発明の第2の実施の形態を説明する。 Next, a second embodiment of the present invention will be described with reference to FIG.
第1の実施の形態では仮想的なキャビティ区分25A〜25Fの数を6個に設定しているが(N=6)、第2の実施の形態では仮想的なキャビティ区分の数を8個に設定したものである(N=8)。従って燃料噴射軸の数は8本になり、隣り合う燃料噴射軸が成す角度は45°になり、各燃料噴射軸の燃料噴霧角γは45°になる。
In the first embodiment, the number of
この第2の実施の形態によっても、上述した第1の実施の形態と同様の作用効果を達成することができる。 Also according to the second embodiment, it is possible to achieve the same operational effects as those of the first embodiment described above.
以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.
例えば、実施の形態では、仮想的なキャビティ区分の数を6個あるいは8個に設定しているが(N=6またはN=8)、前記キャビティ区分の数は2個以上であれば良い(Nは2以上の自然数)。 For example, in the embodiment, the number of virtual cavity sections is set to 6 or 8 (N = 6 or N = 8), but the number of the cavity sections may be 2 or more ( N is a natural number of 2 or more).
また実施の形態では、仮想的なキャビティ区分25A〜25Fの容積には、上死点にあるピストン13の頂面とシリンダヘッド16の下面とに挟まれた部分の容積を含めず、キャビティ25の開口端縁までの容積(即ち、ピストン頂面基本線L−a1,L−a2より下の容積)としたが、それを含めたものを仮想的なキャビティ区分25A〜25Fの容積として定義しても、同様の作用効果を奏することができる。
In the embodiment, the volume of the
また実施の形態ではディーゼルエンジンについて説明したが、本願発明はディーゼルエンジンに限定されず、燃焼室内に燃料を直接噴射する任意の形式のエンジンに対して適用することができる。 Although the diesel engine has been described in the embodiment, the present invention is not limited to the diesel engine, and can be applied to any type of engine that directly injects fuel into the combustion chamber.
13 ピストン
23 フュエルインジェクタ
25 キャビティ
25c 底壁部
25A〜25F キャビティ区分
Li1 燃料噴射軸
Li2 燃料噴射軸
Lp ピストン中心軸
X1〜X6 半平面
γ 燃料噴霧角
13
Claims (3)
Nを2以上の自然数とし、前記キャビティ(25)の内壁面と、ピストン中心軸(Lp)から放射方向に延びて互いに均等な挟み角を有するN個の半平面(X1〜X6)とで、前記キャビティ(25)をN個の仮想的なキャビティ区分(25A〜25F)に区画したとき、前記各々の仮想的なキャビティ区分(25A〜25F)の容積が略等しくなるように、前記キャビティ(25)の内壁面の形状を設定し、
前記仮想的なキャビティ区分(25A〜25F)の数Nを前記フュエルインジェクタ(23)の燃料噴射軸(Li1,Li2)の数に等しく設定するとともに、ピストン中心軸(Lp)方向に見たとき、全ての前記仮想的なキャビティ区分(25A〜25F)において前記挟み角の2等分線を前記燃料噴射軸(Li1,Li2)に一致させた燃料直噴エンジンであって、
前記燃料噴射軸(Li1,Li2)の燃料噴霧角(γ)を前記挟み角に一致させたことを特徴とする燃料直噴エンジン。 A piston (13) whose height in the piston central axis (Lp) direction of the top surface changes in the circumferential direction; a cavity (25) recessed in the center of the top surface of the piston (13); and the cavity (25) a fuel injector (23) for injecting fuel into the interior,
N is a natural number of 2 or more, and the inner wall surface of the cavity (25) and N half planes (X1 to X6) extending radially from the piston central axis (Lp) and having an equal sandwich angle with each other, When the cavity (25) is divided into N virtual cavity sections (25A to 25F), the volumes of the respective virtual cavity sections (25A to 25F) are substantially equal to each other. )
When the number N of the virtual cavity sections (25A to 25F) is set equal to the number of fuel injection shafts (Li1, Li2) of the fuel injector (23), and viewed in the piston central axis (Lp) direction, A fuel direct injection engine in which the bisector of the included angle coincides with the fuel injection axis (Li1, Li2) in all the virtual cavity sections (25A to 25F) ,
A fuel direct injection engine characterized in that a fuel spray angle (γ) of the fuel injection shaft (Li1, Li2) is made to coincide with the included angle.
前記燃料噴射断面Snと前記キャビティ(25)の開口周縁との交点を第1特定点Anとし、
前記第1特定点Anを通りかつ前記燃料噴射断面Snにおけるシリンダヘッド(16)の下面と平行な線上には第2特定点Bnが存在し、
前記燃料噴射断面Snにおける前記キャビティ(25)の底壁部(25c)上には第3特定点Cnが存在し、
前記第2特定点Bnは前記第1特定点Anよりもピストン中心軸(Lp)に近い位置にあり、
前記第3特定点Cnは前記キャビティ(25)の底壁部(25c)の最大外径位置よりもピストン中心軸(Lp)に近い位置にあり、
前記第1、2特定点An,Bnを前記燃料噴射断面Snにおける前記シリンダヘッド(16)の下面に沿う線で結ぶ経路AnBnと、前記第1、第3特定点An,Cnを前記燃料噴射断面Snにおける前記キャビティ(25)の壁面に沿って結ぶ経路AnCnと、前記第2、第3特定点Bn,Cnを最短直線で結ぶ経路BnCnとで囲まれる断面形状が、各燃料噴射断面Snにおいて略等しくしたものを基準断面形状とし、
前記ピストン(13)の頂面のピストン中心軸(Lp)方向の高さが低い方向に存在する燃料噴射軸(Li1,Li2)を通る前記燃料噴射断面Snほど、前記基準断面形状が拡大するように前記キャビティ(25)の内壁面の形状を変化させることで、前記各々の仮想的なキャビティ区分(25A〜25F)の容積を略等しくしたことを特徴とする、請求項1に記載の燃料直噴エンジン。 Of the plurality of fuel injection shafts (Li1, Li2) spaced in the circumferential direction of the fuel injector (23), the cross section of the cavity (25) passing through the nth fuel injection shaft (Li1, Li2) is taken as the fuel injection cross section. Let Sn be
The intersection of the fuel injection cross section Sn and the opening periphery of the cavity (25) is defined as a first specific point An,
A second specific point Bn exists on a line passing through the first specific point An and parallel to the lower surface of the cylinder head (16) in the fuel injection cross section Sn,
A third specific point Cn exists on the bottom wall portion (25c) of the cavity (25) in the fuel injection cross section Sn,
The second specific point Bn is closer to the piston central axis (Lp) than the first specific point An,
The third specific point Cn is located closer to the piston center axis (Lp) than the maximum outer diameter position of the bottom wall portion (25c) of the cavity (25),
A path AnBn connecting the first and second specific points An and Bn along a line along the lower surface of the cylinder head (16) in the fuel injection cross section Sn, and the first and third specific points An and Cn are connected to the fuel injection cross section. A cross-sectional shape surrounded by a path AnCn connecting along the wall surface of the cavity (25) in Sn and a path BnCn connecting the second and third specific points Bn and Cn by the shortest straight line is substantially in each fuel injection cross section Sn. The equal cross section is used as the reference cross-sectional shape,
The reference cross-sectional shape expands as the fuel injection cross section Sn passes through the fuel injection shafts (Li1, Li2) existing in the direction in which the height of the piston central axis (Lp) direction of the top surface of the piston (13) is low. 2. The direct fuel cell according to claim 1, wherein the volume of each of the virtual cavity sections (25 </ b> A to 25 </ b> F) is made substantially equal by changing the shape of the inner wall surface of the cavity (25). Jet engine.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008112447A JP4495765B2 (en) | 2008-04-23 | 2008-04-23 | Direct fuel injection engine |
EP09158482A EP2112348B1 (en) | 2008-04-23 | 2009-04-22 | Direct fuel injection engine |
AT09158482T ATE544939T1 (en) | 2008-04-23 | 2009-04-22 | DIRECT INJECTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008112447A JP4495765B2 (en) | 2008-04-23 | 2008-04-23 | Direct fuel injection engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009264168A JP2009264168A (en) | 2009-11-12 |
JP4495765B2 true JP4495765B2 (en) | 2010-07-07 |
Family
ID=41390326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008112447A Expired - Fee Related JP4495765B2 (en) | 2008-04-23 | 2008-04-23 | Direct fuel injection engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4495765B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106014676A (en) * | 2016-08-04 | 2016-10-12 | 广西玉柴机器股份有限公司 | Piston of engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013217306A (en) * | 2012-04-10 | 2013-10-24 | Isuzu Motors Ltd | Combustion chamber structure for direct injection engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158554U (en) * | 1988-04-15 | 1989-11-01 | ||
JPH05106442A (en) * | 1991-10-15 | 1993-04-27 | Yanmar Diesel Engine Co Ltd | Direct injection type diesel engine |
JPH05231153A (en) * | 1992-02-19 | 1993-09-07 | Isuzu Motors Ltd | Reentrant type combustion chamber |
JP2008038650A (en) * | 2006-08-02 | 2008-02-21 | Honda Motor Co Ltd | Fuel direct injection diesel engine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006020642B4 (en) * | 2006-05-04 | 2019-05-23 | Daimler Ag | Method for operating an internal combustion engine and internal combustion engine for such a method |
-
2008
- 2008-04-23 JP JP2008112447A patent/JP4495765B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158554U (en) * | 1988-04-15 | 1989-11-01 | ||
JPH05106442A (en) * | 1991-10-15 | 1993-04-27 | Yanmar Diesel Engine Co Ltd | Direct injection type diesel engine |
JPH05231153A (en) * | 1992-02-19 | 1993-09-07 | Isuzu Motors Ltd | Reentrant type combustion chamber |
JP2008038650A (en) * | 2006-08-02 | 2008-02-21 | Honda Motor Co Ltd | Fuel direct injection diesel engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106014676A (en) * | 2016-08-04 | 2016-10-12 | 广西玉柴机器股份有限公司 | Piston of engine |
Also Published As
Publication number | Publication date |
---|---|
JP2009264168A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4732505B2 (en) | Direct fuel injection engine | |
JP4757112B2 (en) | Direct fuel injection diesel engine | |
JP2009215978A (en) | Fuel direct injection engine | |
US9267421B2 (en) | Combustion chamber structure for engine | |
JP4879873B2 (en) | Direct fuel injection engine | |
JP4602292B2 (en) | Direct fuel injection diesel engine | |
JP2010053710A (en) | Fuel injection engine | |
EP2112348B1 (en) | Direct fuel injection engine | |
JP4495765B2 (en) | Direct fuel injection engine | |
JP4922213B2 (en) | Direct fuel injection engine | |
JP4929013B2 (en) | Direct fuel injection engine | |
JP4495766B2 (en) | Direct fuel injection engine | |
JP4929012B2 (en) | Direct fuel injection engine | |
JP4450681B2 (en) | Lean burn engine intake port and its core | |
JP2009222000A (en) | Fuel direct injection engine | |
JP5920262B2 (en) | Compression ignition internal combustion engine | |
JP2009264167A (en) | Direct fuel injection engine | |
JP2010048229A (en) | Fuel direct-injection type engine | |
JP7491833B2 (en) | diesel engine | |
JP4801826B2 (en) | Direct fuel injection engine | |
JPH06101485A (en) | Intake port structure of internal combustion engine for stratified combustion | |
JPH06108863A (en) | Intake port structure of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |