JP2008038650A - Fuel direct injection diesel engine - Google Patents

Fuel direct injection diesel engine Download PDF

Info

Publication number
JP2008038650A
JP2008038650A JP2006210771A JP2006210771A JP2008038650A JP 2008038650 A JP2008038650 A JP 2008038650A JP 2006210771 A JP2006210771 A JP 2006210771A JP 2006210771 A JP2006210771 A JP 2006210771A JP 2008038650 A JP2008038650 A JP 2008038650A
Authority
JP
Japan
Prior art keywords
fuel injection
piston
cavity
fuel
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006210771A
Other languages
Japanese (ja)
Other versions
JP4602292B2 (en
Inventor
Tatsuya Uchimoto
達也 内本
Hiroshi Sono
比呂志 園
Mitsuhiro Shibata
光弘 柴田
Hiroshi Tajima
寛 但馬
Kenichiro Iketani
健一郎 池谷
Nobuhiko Sasaki
信彦 佐々木
Yukihisa Yamatani
幸久 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006210771A priority Critical patent/JP4602292B2/en
Publication of JP2008038650A publication Critical patent/JP2008038650A/en
Application granted granted Critical
Publication of JP4602292B2 publication Critical patent/JP4602292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/241Cylinder heads specially adapted to pent roof shape of the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To equally mix fuel and air in all circumference direction of a cavity in a fuel direct injection diesel engine provided with a vent roof type piston. <P>SOLUTION: Since an angle α formed by a first fuel injection axis Li1 on which the height of a top surface of a piston 13 is oriented to a highest position and a second and third fuel injection axes Li2, Li3 adjacent in a direction in which the height of the top surface of the piston 13 gets low in a surface crossing a piston axis Lp at right angles in a view in the piston axis Lp direction is set smaller than an angle β formed by the second and third fuel injection axes Li2, Li3, the volume of a cavity 25 shared by fuel injected along each fuel injection axis Li1 - Li2 is made fixed, mixing condition of fuel and air in the cavity 25 is equalized in a circumference direction, and increase of engine output and reduction of exhaust gas harmful substance can be materialized. Since it is not necessary to change the diameter and number of injection orifices of an injector for that, increase of working cost of the injector can be avoided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、頂面の高さが円周方向に変化するピストンと、前記ピストンの中央部に凹設されたキャビティ内に、ピストン中心軸上から円周方向に離間する複数の燃料噴射軸に沿って燃料を噴射するフュエルインジェクタとを備えた燃料直噴ディーゼルエンジンに関する。   The present invention provides a piston whose top surface changes in the circumferential direction, and a plurality of fuel injection shafts spaced circumferentially from the piston central axis in a cavity recessed in the central portion of the piston. The present invention relates to a direct fuel injection diesel engine including a fuel injector that injects fuel along the fuel injection.

一般的に燃料直噴ディーゼルエンジンのピストンの頂面は平坦に形成されているが、ピストンの頂面をペントルーフ状に突出させた燃料直噴ディーゼルエンジンが、下記特許文献1により公知である。   In general, the top surface of a piston of a direct fuel injection diesel engine is formed flat, but a direct fuel injection diesel engine in which the top surface of the piston protrudes in a pent roof shape is known from Patent Document 1 below.

ペントルーフ型のピストンの頂面に凹設したキャビティ内を、その円周方向に沿って複数のエリアに区分けし、キャビティの中心部上方に配置したフュエルインジェクタの噴射ノズルに前記各エリアに燃料を噴射する複数の噴孔を形成することで、各エリアの容積の大小に応じた量の燃料を噴射して燃料と空気との混合状態をキャビティの円周方向に均一化するものが、下記特許文献1により公知である。
特開昭62−255524号公報
The cavity recessed in the top surface of the pent roof type piston is divided into a plurality of areas along its circumferential direction, and fuel is injected into each of the areas through the fuel injector injection nozzle located above the center of the cavity. By forming a plurality of injection holes, the amount of fuel corresponding to the size of each area is injected to make the mixed state of fuel and air uniform in the circumferential direction of the cavity. 1 is known.
JP-A-62-255524

ところで上記従来のものは、各エリアの容積の大小に応じた量の燃料を噴射するために、フュエルインジェクタの噴射ノズルの噴孔の径を異ならせたり、一つのエリアに対して上下異なる方向を指向する複数の噴孔を形成したりしている。   By the way, in order to inject an amount of fuel according to the size of each area, the above-mentioned conventional ones have different injection nozzle diameters of fuel injectors or have different directions in the vertical direction with respect to one area. A plurality of nozzle holes directed to it are formed.

噴孔の径を小さくすると排気有害物質が減少し、噴孔の径を大きくすると排気有害物質が増加することが知られているが、フュエルインジェクタの噴射ノズルの噴孔の径を異ならせる場合には、径の大きい噴孔を設ける必要があるために排気有害物質の増加が懸念される。しかも径が種々に異なる噴孔をフュエルインジェクタの噴射ノズルに形成すると、噴射ノズルの加工コストが増加する問題がある。   It is known that exhaust harmful substances decrease when the diameter of the nozzle hole is reduced, and exhaust harmful substances increase when the diameter of the nozzle hole is increased, but when the diameter of the injection nozzle of the fuel injector is made different. However, since it is necessary to provide a nozzle hole with a large diameter, there is a concern about an increase in exhaust harmful substances. Moreover, if the nozzle holes with different diameters are formed in the injection nozzle of the fuel injector, there is a problem that the processing cost of the injection nozzle increases.

また噴孔から出た噴霧は広がりながら進行するため、一つのエリアに対して複数の噴孔を上下に配置すると、各噴孔からの噴霧が互いに重なって燃料分布が不均一なる可能性がある。   In addition, since the spray emitted from the nozzle holes travels while spreading, if a plurality of nozzle holes are arranged up and down in one area, the sprays from the nozzle holes may overlap each other and the fuel distribution may become non-uniform. .

本発明は前述の事情に鑑みてなされたもので、ペントルーフ型ピストンを備えた燃料直噴ディーゼルエンジンにおいて、キャビティの円周方向の全ての方向で燃料および空気を均一に混合できるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and in a direct fuel injection diesel engine equipped with a pent roof type piston, fuel and air can be uniformly mixed in all directions in the circumferential direction of the cavity. Objective.

上記目的を達成するために、請求項1に記載された発明によれば、頂面の高さが円周方向に変化するピストンと、前記ピストンの中央部に凹設されたキャビティ内に、ピストン中心軸上から円周方向に離間する複数の燃料噴射軸に沿って燃料を噴射するフュエルインジェクタとを備えた燃料直噴ディーゼルエンジンにおいて、前記ピストン中心軸の方向から見て、円周方向におけるピストンの頂面の高さが最低位から最高位に向かう間を指向する燃料噴射軸が、円周方向のうちピストンの頂面の高さが低くなる方向で隣接する燃料噴射軸と成す角度よりも、円周方向のうちピストンの頂面の高さが高くなる方向で隣接する燃料噴射軸と成す角度の方が小さい関係を有することを特徴とする燃料直噴ディーゼルエンジンが提案される。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a piston in which the height of the top surface changes in the circumferential direction, and a cavity recessed in the central portion of the piston. A fuel direct injection diesel engine having a fuel injector that injects fuel along a plurality of fuel injection shafts spaced circumferentially from the central axis, and a piston in a circumferential direction as viewed from the direction of the piston central axis The fuel injection shaft oriented between the height of the top surface of the piston from the lowest position to the highest position is more than the angle formed by the adjacent fuel injection shaft in the direction in which the height of the piston top surface decreases in the circumferential direction. A direct fuel injection diesel engine is proposed in which the angle formed with the adjacent fuel injection shaft is smaller in the direction in which the height of the top surface of the piston becomes higher in the circumferential direction.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記キャビティ内を、円周方向に沿って容積が等しい前記複数の燃料噴射軸と同数のエリアに区分けし、各エリア毎に前記燃料噴射軸が配置されるとともに、各燃料噴射軸に沿う燃料噴射量が等しく設定されることを特徴とする燃料直噴ディーゼルエンジンが提案される。   Further, according to the invention described in claim 2, in addition to the configuration of claim 1, the inside of the cavity is divided into the same number of areas as the plurality of fuel injection shafts having the same volume along the circumferential direction. A fuel direct injection diesel engine is proposed in which the fuel injection shaft is arranged for each area and the fuel injection amount along each fuel injection shaft is set equal.

また請求項3に記載された発明によれば、請求項1の構成に加えて、前記キャビティ内を、円周方向に沿って容積が等しい前記複数の燃料噴射軸の2倍の数のエリアに区分けし、各燃料噴射軸に対して二つのエリアを割り当てるとともに、各燃料噴射軸が前記二つのエリアの境界線上に配置されることを特徴とする燃料直噴ディーゼルエンジンが提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1, the inside of the cavity is an area twice as many as the plurality of fuel injection shafts having the same volume along the circumferential direction. There is proposed a direct fuel injection diesel engine characterized by dividing and allocating two areas for each fuel injection axis and arranging each fuel injection axis on a boundary line between the two areas.

また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、気筒配列方向に対して略直交する方向に延びる複数の吸気ポートを有し、これらの吸気ポートはスロート部が直線状に形成されたストレートポートであることを特徴とする燃料直噴ディーゼルエンジンが提案される。   According to the invention described in claim 4, in addition to the configuration of any one of claims 1 to 3, it has a plurality of intake ports extending in a direction substantially orthogonal to the cylinder arrangement direction. A direct fuel injection diesel engine is proposed in which these intake ports are straight ports having a throat portion formed in a straight line.

また請求項5に記載された発明によれば、請求項1〜請求項4の何れかの構成に加えて、n番目の燃料噴射軸を通る前記キャビティの断面を燃料噴射断面Snとし、前記燃料噴射断面Snと前記キャビティの開口周縁との交点を第1特定点Anとし、前記第1特定点Anを通りかつ前記燃料噴射断面Snにおけるシリンダヘッドの下面と平行な線上には第2特定点Bnが存在し、前記燃料噴射断面Snにおける前記キャビティの底壁部上には第3特定点Cnが存在し、前記第2特定点Bnは前記第1特定点Anよりもピストン中心軸に近い位置にあり、前記第3特定点Cnは前記キャビティの底壁部の最大外径位置よりもピストン中心軸に近い位置にあり、前記第1,2特定点An,Bnを前記燃料噴射断面Snにおける前記シリンダヘッドの下面に沿う線で結ぶ経路AnBnと、前記第1、第3定点An,Cnを前記燃料噴射断面Snにおける前記キャビティの壁面に沿って結ぶ経路AnCnと、前記第2、第3特定点Bn,Cnを最短直線で結ぶ経路BnCnとで囲まれる断面形状が、各燃料噴射断面Snにおいて略等しいことを特徴とする燃料直噴ディーゼルエンジンが提案される。   According to a fifth aspect of the present invention, in addition to any one of the first to fourth aspects, a cross section of the cavity that passes through the nth fuel injection shaft is defined as a fuel injection cross section Sn, and the fuel The intersection of the injection cross section Sn and the opening periphery of the cavity is defined as a first specific point An, and the second specific point Bn passes through the first specific point An and is parallel to the lower surface of the cylinder head in the fuel injection cross section Sn. The third specific point Cn exists on the bottom wall of the cavity in the fuel injection cross section Sn, and the second specific point Bn is closer to the piston center axis than the first specific point An. The third specific point Cn is closer to the piston central axis than the position of the maximum outer diameter of the bottom wall of the cavity, and the first and second specific points An and Bn are the cylinders in the fuel injection cross section Sn. head A path AnBn connected by a line along the lower surface, a path AnCn connecting the first and third fixed points An and Cn along the wall surface of the cavity in the fuel injection cross section Sn, and the second and third specific points Bn and Cn A fuel direct-injection diesel engine is proposed in which the cross-sectional shape surrounded by the path BnCn connecting the two straight lines is substantially equal in each fuel injection cross section Sn.

上記目的を達成するために、請求項1の構成によれば、ピストン中心軸の方向から見て、円周方向におけるピストンの頂面の高さが最低位から最高位に向かう間を指向する燃料噴射軸が、円周方向のうちピストンの頂面の高さが低くなる方向で隣接する燃料噴射軸と成す角度よりも、円周方向のうちピストンの頂面の高さが高くなる方向で隣接する燃料噴射軸と成す角度の方が小さい関係を有するので、各燃料噴射軸に沿って噴射される燃料が分担するキャビティの容積を一定にし、キャビティ内における燃料および空気の混合状態を円周方向に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。しかも、そのためにインジェクタの噴孔の径や噴孔の数を変える必要がないので、インジェクタの加工コストが上昇するのを回避することができる。   In order to achieve the above object, according to the configuration of claim 1, as viewed from the direction of the piston central axis, the fuel is directed while the height of the top surface of the piston in the circumferential direction goes from the lowest position to the highest position. The injection axis is adjacent in the circumferential direction where the height of the top surface of the piston is higher than the angle formed by the adjacent fuel injection shaft in the direction where the height of the top surface of the piston is low in the circumferential direction. Since the angle formed with the fuel injection shaft is smaller, the volume of the cavity shared by the fuel injected along each fuel injection shaft is kept constant, and the mixed state of fuel and air in the cavity is determined in the circumferential direction. It is possible to improve the engine output and reduce exhaust harmful substances. And since it is not necessary to change the diameter of the nozzle hole of an injector and the number of nozzle holes for that purpose, it can avoid that the process cost of an injector raises.

また請求項2の構成によれば、キャビティ内を円周方向に沿って容積が等しい複数の燃料噴射軸と同数のエリアに区分けし、各エリア毎に燃料噴射軸を配置し、かつ各燃料噴射軸に沿う燃料噴射量を等しく設定したので、各燃料噴射軸に沿って噴射される燃料が分担するキャビティの容積を一定にし、キャビティ内における燃料および空気の混合状態を円周方向に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。しかも、そのためにインジェクタの噴孔の径や噴孔の数を変える必要がないので、インジェクタの加工コストが上昇するのを回避することができる。   According to the configuration of claim 2, the inside of the cavity is divided into the same number of areas as the plurality of fuel injection shafts having the same volume along the circumferential direction, the fuel injection shafts are arranged in each area, and each fuel injection Since the fuel injection amount along the axis is set equal, the volume of the cavity shared by the fuel injected along each fuel injection axis is made constant, and the mixed state of the fuel and air in the cavity is made uniform in the circumferential direction. The engine output can be improved and exhaust harmful substances can be reduced. And since it is not necessary to change the diameter of the nozzle hole of an injector and the number of nozzle holes for that purpose, it can avoid that the process cost of an injector raises.

また請求項3の構成によれば、キャビティ内を円周方向に沿って容積が等しい複数の燃料噴射軸の2倍の数のエリアに区分けし、各燃料噴射軸に対して二つのエリアを割り当て、各燃料噴射軸を前記二つのエリアの境界線上に配置したので、各燃料噴射軸に沿って噴射される燃料が分担するキャビティの容積を一定にし、キャビティ内における燃料および空気の混合状態を円周方向に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。しかも、そのためにインジェクタの噴孔の径や噴孔の数を変える必要がないので、インジェクタの加工コストが上昇するのを回避することができる。   According to the configuration of claim 3, the inside of the cavity is divided into twice as many areas as the plurality of fuel injection shafts having the same volume along the circumferential direction, and two areas are assigned to each fuel injection shaft. Since each fuel injection shaft is arranged on the boundary line between the two areas, the volume of the cavity shared by the fuel injected along each fuel injection shaft is made constant, and the mixed state of fuel and air in the cavity is circular. Uniform in the circumferential direction can improve engine output and reduce exhaust harmful substances. And since it is not necessary to change the diameter of the nozzle hole of an injector and the number of nozzle holes for that purpose, it can avoid that the process cost of an injector raises.

また請求項4の構成によれば、気筒配列方向に対して略直交する方向に延びる複数の吸気ポートが、スロート部が直線状に形成されたストレートポートであるので、キャビティ内にスワールが発生するのを抑制して燃料および空気の均一な混合状態を維持することができる。   According to the fourth aspect of the present invention, since the plurality of intake ports extending in a direction substantially orthogonal to the cylinder arrangement direction are straight ports having a throat portion formed in a straight line, a swirl is generated in the cavity. It is possible to maintain a uniform mixed state of fuel and air.

また請求項5の構成によれば、頂面の高さが円周方向に変化するピストンの中央部に凹設されたキャビティ内に、ピストン中心軸上に配置したフュエルインジェクタから複数の燃料噴射軸に沿って燃料を噴射する際に、n番目の燃料噴射軸を通るキャビティの断面を燃料噴射断面Snとし、その燃料噴射断面Sn上で第1〜第3特定点An,Bn,Cnにより規定されるキャビティの断面形状を各燃料噴射断面Snにおいて略等しくなるように設定したので、複数の燃料噴射軸の間隔を均一に設定しても各燃料噴射断面Snにおける燃料および空気の混合状態を均一化してエンジンの出力向上および排気有害物質の更なる低減を図ることができる。またピストンの頂面が傾斜した部分におけるキャビティの開口縁が鋭角化しないため、耐熱応力面でも優位となる。   According to the fifth aspect of the present invention, a plurality of fuel injection shafts are provided from a fuel injector disposed on the piston central axis in a cavity recessed in the central portion of the piston whose top surface changes in the circumferential direction. , The cross section of the cavity passing through the nth fuel injection axis is defined as the fuel injection cross section Sn, and is defined by the first to third specific points An, Bn, Cn on the fuel injection cross section Sn. Since the cross-sectional shape of each cavity is set to be substantially equal in each fuel injection cross section Sn, the mixed state of the fuel and air in each fuel injection cross section Sn is made uniform even if the intervals of the plurality of fuel injection shafts are set to be uniform. As a result, engine output can be improved and exhaust harmful substances can be further reduced. Further, since the opening edge of the cavity in the portion where the top surface of the piston is inclined is not sharpened, the heat stress surface is also superior.

以下、本発明の実施の形態を添付の図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図6は本発明の第1の実施の形態を示すもので、図1はディーゼルエンジンの要部縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線矢視図、図4はピストンの上部斜視図、図5は燃料噴射軸の配置を説明する図、図6はキャビティの単位角度毎の容積を示すグラフである。   1 to 6 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an essential part of a diesel engine, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. FIG. 4 is a top perspective view of the piston, FIG. 5 is a diagram for explaining the arrangement of the fuel injection shaft, and FIG. 6 is a graph showing the volume per unit angle of the cavity.

図1〜図3に示すように、燃料直噴型のディーゼルエンジンは、シリンダブロック11に形成されたシリンダ12に摺動自在に嵌合するピストン13を備えており、ピストン13はピストンピン14およびコネクティングロッド15を介して図示せぬクランクシャフトに接続される。シリンダブロック11の上面に結合されるシリンダヘッド16の下面に、ピストン13の頂面に対向する2個の吸気バルブ孔17,17と、2個の排気バルブ孔18,18とが開口しており、吸気バルブ孔17,17に吸気ポート19,19が連通し、排気バルブ孔18,18に排気ポート20,20が連通する。吸気バルブ孔17,17は吸気バルブ21,21で開閉され、排気バルブ孔18,18は排気バルブ22,22で開閉される。ピストン中心軸Lp上に位置するようにフュエルインジェクタ23が設けられるとともに、フュエルインジェクタ23に隣接するようにグロープラグ24が設けられる。   As shown in FIGS. 1 to 3, the direct fuel injection type diesel engine includes a piston 13 slidably fitted into a cylinder 12 formed in a cylinder block 11, and the piston 13 includes a piston pin 14 and a piston 13. It is connected to a crankshaft (not shown) via a connecting rod 15. Two intake valve holes 17, 17 facing the top surface of the piston 13 and two exhaust valve holes 18, 18 are opened on the lower surface of the cylinder head 16 coupled to the upper surface of the cylinder block 11. The intake ports 19 and 19 communicate with the intake valve holes 17 and 17, and the exhaust ports 20 and 20 communicate with the exhaust valve holes 18 and 18, respectively. The intake valve holes 17 and 17 are opened and closed by intake valves 21 and 21, and the exhaust valve holes 18 and 18 are opened and closed by exhaust valves 22 and 22. A fuel injector 23 is provided so as to be positioned on the piston central axis Lp, and a glow plug 24 is provided adjacent to the fuel injector 23.

吸気ポート19,19は、シリンダ列線Lc(図2参照)に対して直角方向に略直線状に延びるストレートポートであり、これらの吸気ポート19,19から吸気バルブ孔17,17を通ってシリンダ12に供給された吸気にスワールが発生しないように構成される。   The intake ports 19 and 19 are straight ports extending substantially linearly in a direction perpendicular to the cylinder row line Lc (see FIG. 2), and the cylinders pass through the intake valve holes 17 and 17 from these intake ports 19 and 19. 12 is configured so that a swirl is not generated in the intake air supplied to 12.

図1および図4から明らかなように、ピストン13の頂面と、そこに対向するシリンダヘッド16の下面とは平坦ではなく断面三角形のペントルーフ状に傾斜しており、この形状により、吸気ポート19および排気ポート20の湾曲度を小さくするとともに吸気バルブ孔17,17および排気バルブ孔18,18の直径を確保し、吸気効率および排気効率を高めることができる。   As is apparent from FIGS. 1 and 4, the top surface of the piston 13 and the lower surface of the cylinder head 16 facing the piston 13 are not flat but inclined in a pent roof shape having a triangular cross section. In addition, the curvature of the exhaust port 20 can be reduced, and the diameters of the intake valve holes 17 and 17 and the exhaust valve holes 18 and 18 can be ensured to increase the intake efficiency and the exhaust efficiency.

ピストン13の頂面には、ピストン中心軸Lpを中心とするキャビティ25が凹設される。キャビティ25の径方向外側には、ピストンピン14と平行に直線状に延びる頂部13a,13aから吸気側および排気側に向かって下向きに傾斜する一対の傾斜面13b,13bと、傾斜面13b,13bの下端近傍に形成されてピストン中心軸Lpに直交する一対の平坦面13c,13cと、頂部13a,13aの両端を平坦に切り欠いた一対の切欠き部13d,13dとが形成される。   A cavity 25 centered on the piston center axis Lp is recessed in the top surface of the piston 13. On the radially outer side of the cavity 25, a pair of inclined surfaces 13 b, 13 b that incline downward from the top portions 13 a, 13 a extending linearly in parallel with the piston pin 14 toward the intake side and the exhaust side, and inclined surfaces 13 b, 13 b A pair of flat surfaces 13c, 13c that are formed in the vicinity of the lower end of the cylinder and orthogonal to the piston center axis Lp, and a pair of cutout portions 13d, 13d in which both ends of the top portions 13a, 13a are cut out flat are formed.

ペントルーフ型のピストン形状により、キャビティ25の深さはピストンピン14の方向で深くなり、ピストンピン14に直交する方向で浅くなるため、ピストン中心軸Lpまわりの単位角度当たりのキャビティ25の容積は、ピストンピン14の方向で大きくなり、ピストンピン14に直交する方向で小さくなる(図6参照)。   Due to the shape of the pent roof type piston, the depth of the cavity 25 increases in the direction of the piston pin 14 and decreases in the direction orthogonal to the piston pin 14, so that the volume of the cavity 25 per unit angle around the piston central axis Lp is It increases in the direction of the piston pin 14 and decreases in the direction orthogonal to the piston pin 14 (see FIG. 6).

図5に示すように、ピストン中心軸Lpに沿って配置されたフュエルインジェクタ23は、ピストン中心軸Lp上の仮想的な点である燃料噴射点Oinjを中心として円周方向に不等間隔で離間する6つの方向に各々同量の燃料を噴射する。6本の燃料噴射軸のうちの2本の第1燃料噴射軸Li1は、ピストン中心軸Lp方向に見てピストンピン14と重なっており、2本の第1燃料噴射軸Li1から時計方向に角度α回転した位置に2本の第2燃料噴射軸Li2が配置され、2本の第1燃料噴射軸Li1から反時計方向に角度α回転した位置に2本の第3燃料噴射軸Li3が配置される。第2燃料噴射軸Li2および第3燃料噴射軸Li3は角度βを成しており、角度βは角度αよりも大きく設定される。   As shown in FIG. 5, the fuel injectors 23 arranged along the piston center axis Lp are spaced apart at unequal intervals in the circumferential direction around a fuel injection point Oinj, which is a virtual point on the piston center axis Lp. The same amount of fuel is injected in each of the six directions. Of the six fuel injection shafts, two first fuel injection shafts Li1 overlap with the piston pin 14 when viewed in the direction of the piston central axis Lp, and are angled clockwise from the two first fuel injection shafts Li1. Two second fuel injection shafts Li2 are arranged at a position rotated by α, and two third fuel injection shafts Li3 are arranged at a position rotated by an angle α counterclockwise from the two first fuel injection shafts Li1. The The second fuel injection axis Li2 and the third fuel injection axis Li3 form an angle β, and the angle β is set larger than the angle α.

言い換えると、ピストン中心軸Lp方向に見て該ピストン中心軸Lpと直交する面上で、ピストン13の頂面の高さが最低位(ピストンピン14直交方向)から最高位(ピストンピン14方向)に向かう間を指向する第2、第3燃料噴射軸Li2,Li3が、ピストン13の頂面の高さが低くなる方向で隣接する第2、第3燃料噴射軸Li2,Li3と成す角度βよりも、ピストン13の頂面の高さが高くなる方向で隣接する第1燃料噴射軸Li1と成す角度αの方が小さく設定される。   In other words, on the surface orthogonal to the piston center axis Lp when viewed in the direction of the piston center axis Lp, the height of the top surface of the piston 13 is from the lowest position (the direction orthogonal to the piston pin 14) to the highest position (the direction of the piston pin 14). From the angle β formed by the second and third fuel injection shafts Li2 and Li3 that are oriented in the direction toward the first and second fuel injection shafts Li2 and Li3 adjacent to each other in the direction in which the height of the top surface of the piston 13 decreases. Also, the angle α formed with the adjacent first fuel injection axis Li1 in the direction in which the height of the top surface of the piston 13 is increased is set smaller.

キャビティ25は、ピストン中心線Lpを通る6本の直線A,B,C,D,E,Fにより、容積が等しい12個の領域a…,b…,c…に区画される。直線Aはピストンピン14方向に一致し、直線Dはピストンピン14直交方向に一致している。ピストンピン14方向と、それと直交する方向との間の90°の範囲に3個の領域a,b,cが含まれており、ピストン13の頂面が高い方向に位置する領域aの角度は小さく、ピストン13の頂面が低い方向に位置する領域cの角度は大きく、その間の領域bの角度はその中間の値になる。   The cavity 25 is partitioned into 12 regions a..., B..., C... Having the same volume by six straight lines A, B, C, D, E, and F passing through the piston center line Lp. The straight line A coincides with the piston pin 14 direction, and the straight line D coincides with the piston pin 14 orthogonal direction. Three regions a, b, and c are included in a range of 90 ° between the direction of the piston pin 14 and the direction orthogonal thereto, and the angle of the region a where the top surface of the piston 13 is located in the high direction is The angle of the area | region c where it is small and the top surface of the piston 13 is located in a low direction is large, and the angle of the area | region b in the meantime becomes the intermediate value.

第1燃料噴射軸Li1に沿って噴射される燃料は、その両側の二つの領域a,aを分担し、第2、第3燃料噴射軸Li2,Li3に沿って噴射される燃料は、その両側の二つの領域b,cを分担する。上述したように、領域a,b,cの容積は等しく設定されているため、第1燃料噴射軸Li1に沿って噴射される燃料が分担する二つの領域a,aの容積と、第2、第3燃料噴射軸Li2,Li3に沿って噴射される燃料が分担する二つの領域b,cの容積とは等しくなるため、キャビティ25の各部における空気および燃料の混合状態を円周方向に均一化し、混合気の燃焼状態を改善してエンジン出力の増加および排気有害物質の低減を図ることができる。   The fuel injected along the first fuel injection axis Li1 shares two regions a and a on both sides thereof, and the fuel injected along the second and third fuel injection axes Li2 and Li3 is on both sides thereof. The two regions b and c are shared. As described above, since the volumes of the regions a, b, and c are set to be equal, the volumes of the two regions a and a shared by the fuel injected along the first fuel injection axis Li1, Since the volumes of the two regions b and c shared by the fuel injected along the third fuel injection axes Li2 and Li3 are equal, the mixed state of air and fuel in each part of the cavity 25 is made uniform in the circumferential direction. The combustion state of the air-fuel mixture can be improved to increase the engine output and reduce harmful exhaust substances.

以上の説明では、6本の直線A,B,C,D,E,Fでキャビティ25を容積が等しい12個の領域a…,b…,c…に区画し、二つの領域の境界(直線A,C,E上)に第1〜第3燃料噴射軸Li1〜Li3を配置しているが、3本の直線B,D,Fでキャビティ25を容積が等しい6個の領域に区画し、各領域に第1〜第3燃料噴射軸Li1〜Li3をそれぞれ配置すると考えても同じことである。   In the above description, the cavity 25 is divided into 12 regions a..., B..., C... Having the same volume by six straight lines A, B, C, D, E, and F, and the boundary (straight line) between the two regions. The first to third fuel injection shafts Li1 to Li3 are arranged on (A, C, and E), but the cavity 25 is divided into six regions having the same volume by three straight lines B, D, and F, Even if it is considered that the first to third fuel injection shafts Li1 to Li3 are arranged in the respective regions, the same is true.

このとき、吸気ポート19,19がストレートポートで構成されているため、吸気ポート19,19からシリンダ12に供給された吸気にスワールが発生することがなく、よって前記空気および燃料の均一な混合状態が崩れることがない。   At this time, since the intake ports 19 and 19 are configured as straight ports, no swirl is generated in the intake air supplied from the intake ports 19 and 19 to the cylinder 12, so that the air and fuel are uniformly mixed. Will not collapse.

しかも、フュエルインジェクタ23の噴孔の径や上下方向の噴孔数を変える必要がないので、フュエルインジェクタの加工コストが上昇するのを回避することができる。   In addition, since it is not necessary to change the diameter of the injection holes of the fuel injector 23 and the number of injection holes in the vertical direction, it is possible to avoid an increase in the processing cost of the fuel injector.

尚、フュエルインジェクタ23が実際に燃料を噴射する噴射点はピストン中心軸Lpから径方向外側に僅かにずれているが、前記燃料噴射点Oinjは前記第1〜第3燃料噴射軸Li1〜Li3がピストン中心軸Lpと交差する点として定義される。   The fuel injection point at which the fuel injector 23 actually injects fuel is slightly shifted radially outward from the piston center axis Lp. However, the fuel injection point Oinj is defined by the first to third fuel injection shafts Li1 to Li3. It is defined as a point that intersects the piston center axis Lp.

図7〜図10は本発明の第2の実施の形態を示すもので、図7は図3の7−7線断面図、図8は図3の8−8線断面図、図9は図3の9−9線断面図、図10は燃料噴射軸の方向を円周方向に変化させたときの、燃料噴射軸の左右各30°の範囲のキャビティ容積の変化率を示すグラフである。   7 to 10 show a second embodiment of the present invention. FIG. 7 is a sectional view taken along line 7-7 in FIG. 3, FIG. 8 is a sectional view taken along line 8-8 in FIG. 3, and FIG. 3 is a cross-sectional view taken along line 9-9, and FIG. 10 is a graph showing the rate of change of the cavity volume in the range of 30 ° to the left and right of the fuel injection axis when the direction of the fuel injection axis is changed in the circumferential direction.

本発明の第2の実施の形態はキャビティ25の断面形状に特徴を有している。第1の実施の形態のキャビティ25は、ピストンピン14の方向で最も深く、それと直交する方向で最も浅くなっており、よってキャビティ25の単位角度当たりの容積は円周方向に変化していた(図6参照)。それに対し、第2の実施の形態のキャビティ25は、円周方向に深さが略一定になっている。   The second embodiment of the present invention is characterized by the cross-sectional shape of the cavity 25. The cavity 25 of the first embodiment is deepest in the direction of the piston pin 14 and shallowest in a direction perpendicular to the piston pin 14, and thus the volume per unit angle of the cavity 25 changes in the circumferential direction ( (See FIG. 6). In contrast, the cavity 25 of the second embodiment has a substantially constant depth in the circumferential direction.

以下、キャビティ25の形状を詳細に説明する。尚、図7はピストンピン14に対して直交する方向の断面であり、図8は(ピストンピン14に対して角度αで交差する方向の断面(第2燃料噴射軸Li2および第3燃料噴射軸Li3を含む断面)であり、図9はピストンピン14に沿う方向の断面(第1燃料噴射軸Li1を含む断面)である。   Hereinafter, the shape of the cavity 25 will be described in detail. 7 is a cross section in a direction orthogonal to the piston pin 14, and FIG. 8 is a cross section (second fuel injection shaft Li2 and third fuel injection shaft in a direction intersecting the piston pin 14 at an angle α. 9 is a cross section in the direction along the piston pin 14 (cross section including the first fuel injection axis Li1).

ここで重要なことは、図7〜図9の断面は、何れも燃料噴射点Oinjを通ってピストン13の頂面に直交する方向の断面であるということである。図7のピストンピン14直角方向の断面と、図9のピストンピン14方向の断面とは、その切断面がピストン13の頂面と直交し、かつピストン中心軸Lpを含んでいる。それに対し、図8のピストンピン14に対して角度αで交差する方向の断面は、第2燃料噴射軸Li2あるいは第3燃料噴射軸Li3を通り、かつピストン13の頂面(つまり傾斜面13b,13b)に直交しており、ピストン中心軸Lpを含まない断面となっている。即ち、図3において、7−7線に沿う切断面と9−9線に沿う切断面とは紙面に直交しているが、8−8線に沿う切断面は紙面に直交しておらず、ピストン13の傾斜面13b,13bに直交している。   What is important here is that the cross sections in FIGS. 7 to 9 are cross sections in a direction perpendicular to the top surface of the piston 13 through the fuel injection point Oinj. The cross section in the direction perpendicular to the piston pin 14 in FIG. 7 and the cross section in the direction of the piston pin 14 in FIG. 9 have their cut surfaces orthogonal to the top surface of the piston 13 and include the piston central axis Lp. On the other hand, a cross section in a direction intersecting with the piston pin 14 in FIG. 8 at an angle α passes through the second fuel injection shaft Li2 or the third fuel injection shaft Li3, and the top surface of the piston 13 (that is, the inclined surface 13b, It is orthogonal to 13b) and has a cross section that does not include the piston central axis Lp. That is, in FIG. 3, the cut surface along line 7-7 and the cut surface along line 9-9 are orthogonal to the paper surface, but the cut surface along line 8-8 is not orthogonal to the paper surface, The piston 13 is orthogonal to the inclined surfaces 13b and 13b.

本実施の形態の特徴は、燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面において、キャビティ25の形状が略一致していることである。キャビティ25の断面形状は燃料噴射点Oinjを挟んで左右二つの部分に分かれており、その二つの部分は図9のピストンピン14方向の断面では概ね直線状に繋がっているが、図7のピストンピン14直角方向の断面と、図8のピストンピン14に対して角度αで交差する方向の断面とでは、ピストン13のペントルーフ形状に応じて山型に繋がっている。しかしながら、キャビティ25の断面形状の主要部、つまり図7〜図9に網かけをして示す部分の形状は完全に一致している。   The feature of the present embodiment is that the shape of the cavity 25 substantially matches in any cross section that passes through the fuel injection point Oinj and is orthogonal to the top surface of the piston 13. The cross-sectional shape of the cavity 25 is divided into two parts on the left and right with the fuel injection point Oinj in between. The two parts are connected in a straight line in the cross section in the direction of the piston pin 14 in FIG. A cross section in a direction perpendicular to the pin 14 and a cross section in a direction intersecting with the piston pin 14 in FIG. 8 at an angle α are connected in a mountain shape according to the pent roof shape of the piston 13. However, the main part of the cross-sectional shape of the cavity 25, that is, the shape of the part shown by shading in FIGS.

図7〜図9から明らかなように、ピストン中心軸Lpを中心として形成されたキャビティ25は、ピストン13の頂面から下向きに直線状に延びる周壁部25aと、周壁部25aの下端からピストン中心軸Lpに向かってコンケーブ状に湾曲する曲壁部25bと、曲壁部25bの径方向内端からピストン中心軸Lpに向かって斜め上方に直線状に延びる底壁部25cと、ピストン中心軸Lp上で底壁部25cの径方向内端に連なる頂部25dとで構成される。   As is apparent from FIGS. 7 to 9, the cavity 25 formed around the piston center axis Lp includes a peripheral wall portion 25 a extending linearly downward from the top surface of the piston 13, and a piston center from the lower end of the peripheral wall portion 25 a. A curved wall portion 25b that curves in a concave shape toward the axis Lp, a bottom wall portion 25c that linearly extends obliquely upward from the radial inner end of the curved wall portion 25b toward the piston central axis Lp, and a piston central axis Lp The top portion 25d is continuous with the radially inner end of the bottom wall portion 25c.

キャビティ25に対向するシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Haだけ離れて平行に延びるラインをピストン頂面基本線L−a1,L−a2とする。同様にシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hbcだけ離れて平行に延びる線をキャビティ底面基本線L−bc1,L−bc2とし、シリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hdだけ離れて平行に延びる線をキャビティ頂部基本線L−d1,L−d2とする。   Lines extending downward and parallel to a distance Ha from lines L-R1 and L-R2 indicating the lower surface of the cylinder head 16 facing the cavity 25 are defined as piston top surface basic lines L-a1 and L-a2. Similarly, lines extending downward in parallel by a distance Hbc from the lines L-R1 and L-R2 indicating the lower surface of the cylinder head 16 are defined as cavity bottom surface basic lines L-bc1 and L-bc2, and the lower surface of the cylinder head 16 is illustrated. The lines extending downward in parallel from the lines L-R1 and L-R2 by a distance Hd are defined as cavity top basic lines L-d1 and L-d2.

燃料噴射点Oinjを中心とする半径Raの円弧と前記ピストン頂面基本線L−a1,L−a2との交点をa1,a2とする。同様に燃料噴射点Oinjを中心とする半径Rbの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をb1,b2とし、燃料噴射点Oinjを中心とする半径Rcの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をc1,c2とし、燃料噴射点Oinjを中心とする半径Rdの円弧と前記キャビティ頂部基本線L−d1,L−d2との交点をd1,d2とする。交点e1,e2は、前記交点d1,d2からピストン頂面基本線L−a1,L−a2に下ろした垂線が該ピストン頂面基本線L−a1,L−a2に交差する点である。   Intersection points between an arc having a radius Ra centered on the fuel injection point Oinj and the piston top surface basic lines L-a1, L-a2 are defined as a1, a2. Similarly, the intersections of the arc of radius Rb centered on the fuel injection point Oinj and the cavity bottom surface basic lines L-bc1, L-bc2 are b1, b2, the arc of radius Rc centered on the fuel injection point Oinj and the aforementioned The intersections of the cavity bottom basic lines L-bc1 and L-bc2 are c1 and c2, and the intersection of the arc of radius Rd centered on the fuel injection point Oinj and the cavity top basic lines Ld1 and Ld2 is d1. , D2. The intersections e1 and e2 are points where perpendiculars drawn from the intersections d1 and d2 to the piston top surface basic lines L-a1 and L-a2 intersect the piston top surface basic lines L-a1 and L-a2.

キャビティ25の周壁部25aは直線a1b1、a2,b2の上にあり、キャビティ25の底壁部25cは直線c1d1、c2,d2に一致し、キャビティ25の曲壁部25bは直線a1b1,a2b2および直線c1d1,c2d2を滑らかに接続する。   The peripheral wall portion 25a of the cavity 25 is above the straight lines a1b1, a2, and b2, the bottom wall portion 25c of the cavity 25 is coincident with the straight lines c1d1, c2, and d2, and the curved wall portion 25b of the cavity 25 is the straight lines a1b1, a2b2, and straight lines. Connect c1d1 and c2d2 smoothly.

しかして、交点a1,c1,d1,e1あるいは交点a2,c2,d2,e2によって決まる網かけした断面形状が,燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面において等しくなるように、キャビティ25の形状が設定される。   Thus, the shaded cross-sectional shape determined by the intersection points a1, c1, d1, e1 or the intersection points a2, c2, d2, e2 is equal in any cross section orthogonal to the top surface of the piston 13 through the fuel injection point Oinj. Thus, the shape of the cavity 25 is set.

前記交点a1,a2は本発明の第1特定点Anに対応し、前記交点e1,e2は本発明の第2特定点Bnに対応し、前記交点d1,d2は本発明の第3特定点Cnに対応するものである。   The intersection points a1 and a2 correspond to the first specific point An of the present invention, the intersection points e1 and e2 correspond to the second specific point Bn of the present invention, and the intersection points d1 and d2 correspond to the third specific point Cn of the present invention. It corresponds to.

図8および図9に示す第1〜第3燃料噴射軸Li1〜Li3を通る断面については、図9に示すピストンピン14方向の断面(燃料噴射断面S1)における網かけ部分と、図8に示すピストンピン14に対して角度αで交差する方向の断面(燃料噴射断面S2)における網かけ部分とは同形になる。   8 and FIG. 9, the cross section passing through the first to third fuel injection axes Li1 to Li3 is shown in the shaded portion in the cross section in the direction of the piston pin 14 (fuel injection cross section S1) shown in FIG. The shaded portion in the cross section (fuel injection cross section S2) in the direction intersecting the piston pin 14 at an angle α has the same shape.

ピストン中心軸Lpに直交する方向に見て、6本の第1〜第3燃料噴射軸Li1〜Li3は斜め下向きに傾斜しており、その下向きの度合いは第1燃料噴射軸Li1については小さく、第2、第3燃料噴射軸Li2,LI3については大きくなっている。   When viewed in a direction perpendicular to the piston center axis Lp, the six first to third fuel injection shafts Li1 to Li3 are inclined obliquely downward, and the downward degree is small for the first fuel injection shaft Li1, The second and third fuel injection shafts Li2 and LI3 are larger.

図9に示すピストンピン14方向の断面において、第1燃料噴射軸Li1がキャビティ25と交差する点を燃料衝突点P1とし、図8に示すピストンピン14に対して角度αで交差する方向の断面において、第2燃料噴射軸Li2および第3燃料噴射軸Li3がキャビティ25と交差する点を燃料衝突点P2とする。二つの燃料衝突点P1,P2は、網かけした同一形状の断面上の同じ位置に存在している。従って、燃料衝突点P2の位置は燃料衝突点P1の位置よりも低くなり、燃料噴射点Oinjから延びる第2燃料噴射軸Li2および第3燃料噴射軸Li3は第1燃料噴射軸Li1よりも更に下向きに燃料を噴射することになる。   In the cross section in the direction of the piston pin 14 shown in FIG. 9, the point where the first fuel injection axis Li1 intersects the cavity 25 is defined as the fuel collision point P1, and the cross section in the direction intersecting the piston pin 14 shown in FIG. , A point where the second fuel injection axis Li2 and the third fuel injection axis Li3 intersect the cavity 25 is defined as a fuel collision point P2. The two fuel collision points P1 and P2 exist at the same position on the cross-section of the same shape shaded. Therefore, the position of the fuel collision point P2 is lower than the position of the fuel collision point P1, and the second fuel injection axis Li2 and the third fuel injection axis Li3 extending from the fuel injection point Oinj are further downward than the first fuel injection axis Li1. The fuel will be injected into the tank.

燃料噴射点Oinjから燃料衝突点P1までの距離D1は、燃料噴射点Oinjから燃料衝突点P2までの距離D2に一致する。また燃料衝突点P1におけるキャビティ25の接線と第1燃料噴射軸Li1とが成す燃料衝突角α1は、燃料衝突点P2におけるキャビティ25の接線と第2燃料噴射軸Li2とが成す燃料衝突角α2に一致する。   A distance D1 from the fuel injection point Oinj to the fuel collision point P1 is equal to a distance D2 from the fuel injection point Oinj to the fuel collision point P2. The fuel collision angle α1 formed by the tangent line of the cavity 25 at the fuel collision point P1 and the first fuel injection axis Li1 is the fuel collision angle α2 formed by the tangent line of the cavity 25 at the fuel collision point P2 and the second fuel injection axis Li2. Match.

以上のように本実施の形態によれば、燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面において、燃料噴射点Oinjの近傍のごく一部(交点e1,d1,d2,e2で囲まれた領域)を除いて、キャビティ25の断面形状が同一に形成されている。特に、第1〜第3燃料噴射軸Li12〜Li3を含む二つの断面(図8および図9参照)においてもキャビティ25の断面形状が同一に形成されており、しかも前記二つの断面において燃料噴射点Oinjから燃料衝突点P1,P2までの距離D1,D2が等しく設定され、かつ燃料衝突点P1,P2における燃料衝突角α1,α2が等しく設定されるので、キャビティ25の各部における空気および燃料の混合状態を円周方向に更に均一化し、混合気の燃焼状態を改善してエンジン出力の増加および排気有害物質の更なる低減を図ることができる。   As described above, according to the present embodiment, in an arbitrary cross section passing through the fuel injection point Oinj and orthogonal to the top surface of the piston 13, only a part of the vicinity of the fuel injection point Oinj (intersection points e1, d1, d2, Except for the region surrounded by e2, the cavity 25 has the same cross-sectional shape. Particularly, the two cross sections including the first to third fuel injection shafts Li12 to Li3 (see FIGS. 8 and 9) have the same cross-sectional shape of the cavity 25, and the fuel injection point in the two cross sections. The distances D1 and D2 from Oinj to the fuel collision points P1 and P2 are set to be equal, and the fuel collision angles α1 and α2 at the fuel collision points P1 and P2 are set to be equal. It is possible to further uniform the state in the circumferential direction and improve the combustion state of the air-fuel mixture to increase the engine output and further reduce the exhaust harmful substances.

また図7および図8に示すピストン13の頂面が傾斜する断面においても、キャビティ25の開口のエッジ(交点a2の部分)が成す角度が、図9に示すピストン13の頂面が平坦な場合に比べて鋭角化することがないため、その部分の熱負荷を軽減して耐熱性を高めることができる。   Further, in the cross section where the top surface of the piston 13 shown in FIGS. 7 and 8 is inclined, the angle formed by the edge of the opening of the cavity 25 (the portion of the intersection point a2) is flat when the top surface of the piston 13 shown in FIG. Therefore, the heat load of the portion can be reduced and the heat resistance can be improved.

また燃料噴射点Oinjを通るキャビティ25の断面のうち、燃料および空気の混合に大きな影響を与える断面は、ピストン中心軸Lpを含む断面ではなく、ピストン13の頂面に直交する断面である。なぜならば、キャビティ25内における燃料微粒子の円周方向の拡散はピストン13の頂面に沿う方向に発生し、その拡散方向に直交する断面がピストン13の頂面に直交する断面だからである。本実施の形態では、燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面において、キャビティ25の形状を略一致させたことで、キャビティ25の各部における燃料および空気の混合状態をより一層均一化することができる。   Of the cross section of the cavity 25 passing through the fuel injection point Oinj, the cross section that greatly affects the mixing of fuel and air is not a cross section including the piston central axis Lp but a cross section orthogonal to the top surface of the piston 13. This is because the circumferential diffusion of the fuel fine particles in the cavity 25 occurs in the direction along the top surface of the piston 13, and the cross section orthogonal to the diffusion direction is a cross section orthogonal to the top surface of the piston 13. In the present embodiment, the shape of the cavity 25 is substantially matched in an arbitrary cross section passing through the fuel injection point Oinj and orthogonal to the top surface of the piston 13, so that the mixed state of the fuel and air in each part of the cavity 25 is changed. It can be made more uniform.

また交点d1,d2はキャビティ25の底壁部25cと頂部25dとの境界に位置するので、交点d1,d2および交点e1,e2をできるだけピストン中心軸Lpに接近させ、網かけした断面形状が各燃料噴射断面Snにおいて占める比率を高くし、キャビティ25の円周方向の各断面における燃料および空気の混合状態のばらつきを最小限に抑えることができる。   Since the intersection points d1 and d2 are located at the boundary between the bottom wall portion 25c and the top portion 25d of the cavity 25, the intersection points d1 and d2 and the intersection points e1 and e2 are made as close as possible to the piston center axis Lp. The ratio occupied in the fuel injection cross section Sn can be increased, and the variation in the mixed state of the fuel and air in each cross section in the circumferential direction of the cavity 25 can be minimized.

図10は、燃料噴射軸の方向をピストンピン14の方向を基準(0°)としてピストン中心軸Lpまわりに左右に各60°の範囲で移動させたとき、前記燃料噴射軸の左右各30°の範囲におけるキャビティ25の容積の変化率を示すものである。実線は燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面におけるキャビティ25の断面形状を一致させた本実施の形態に対応し、破線は従来例に対応する。同図から明らかなように、従来例では容積の変化率が20%を越えているのに対し、本実施の形態では容積の変化率が10%未満に抑えられていることが分かる。   FIG. 10 shows that when the direction of the fuel injection shaft is moved in the range of 60 ° to the left and right around the piston center axis Lp with the direction of the piston pin 14 as a reference (0 °), each 30 ° to the left and right of the fuel injection shaft. The rate of change of the volume of the cavity 25 in the range is shown. The solid line corresponds to the present embodiment in which the cross-sectional shape of the cavity 25 in an arbitrary cross section orthogonal to the top surface of the piston 13 passes through the fuel injection point Oinj, and the broken line corresponds to the conventional example. As can be seen from the figure, the volume change rate exceeds 20% in the conventional example, whereas the volume change rate is suppressed to less than 10% in the present embodiment.

本実施の形態は、燃料噴射点Oinjを通ってピストン13の頂面に直交する任意の断面において、キャビティ25の形状を略一致させたものであるが、キャビティ25の形状が略一致するとは、上述した容積の変化率が10%未満となるような僅かな形状の変化、例えば燃料噴射断面Snがピストン中心軸Lpを通る場合や、燃料噴射断面Snがピストン13の頂面と直交した状態から僅かに傾く場合を許容するものとして定義される。   In the present embodiment, the shape of the cavity 25 is substantially matched in any cross section orthogonal to the top surface of the piston 13 through the fuel injection point Oinj. A slight change in shape such that the rate of change in volume is less than 10%, for example, when the fuel injection cross section Sn passes through the piston central axis Lp, or when the fuel injection cross section Sn is orthogonal to the top surface of the piston 13. Defined as allowing a slight tilt.

以上のように、第2の実施の形態では、キャビティ25の単位角度毎の容積が円周方向に殆ど変化しないので、第1燃料噴射軸Li1が第2、第3燃料噴射軸Li2,Li3に対して成す角度αと、第2燃料噴射軸Li2および第3燃料噴射軸Li3が相互に成す角度βとの差を減少させることができる。   As described above, in the second embodiment, the volume per unit angle of the cavity 25 hardly changes in the circumferential direction, so that the first fuel injection shaft Li1 becomes the second and third fuel injection shafts Li2 and Li3. The difference between the angle α formed between the second fuel injection shaft Li2 and the third fuel injection shaft Li3 can be reduced.

ところで、第1、第2の実施の形態は6本の燃料噴射軸Li1〜Li3を備えているが、燃料噴射軸の数は6本に限定されるものではない。   By the way, although 1st, 2nd embodiment is equipped with six fuel-injection shafts Li1-Li3, the number of fuel-injection shafts is not limited to six.

図11(A)に示す第3の実施の形態は4本の燃料噴射軸Liを備えており、ピストン中心軸Lp方向に見て該ピストン中心軸Lpと直交する面上で、ピストンピン14の方向を挟む二つの燃料噴射軸Liの成す角度αは、ピストンピン14に直交する方向を挟む二つの燃料噴射軸Liの成す角度βよりも小さく設定される。   The third embodiment shown in FIG. 11 (A) includes four fuel injection shafts Li, and the piston pin 14 is arranged on a surface orthogonal to the piston central axis Lp when viewed in the piston central axis Lp direction. The angle α formed by the two fuel injection axes Li sandwiching the direction is set smaller than the angle β formed by the two fuel injection axes Li sandwiching the direction orthogonal to the piston pin 14.

図11(B)に示す第4の実施の形態は8本の燃料噴射軸Li1〜Li3を備えており、ピストンピン14の方向に沿う2本の第1燃料噴射軸Li1と、ピストンピン14に直交する方向に沿う2本の第3燃料噴射軸Li3と、それらに間に配置される4本の第2燃料噴射軸Li2とを備えており、ピストン中心軸Lp方向に見て該ピストン中心軸Lpと直交する面上で、第1、第2燃料噴射軸Li1,Li2の成す角度αは、第2、第3燃料噴射軸Li2,Li3の成す角度βよりも小さく設定される。   The fourth embodiment shown in FIG. 11 (B) includes eight fuel injection shafts Li1 to Li3. Two first fuel injection shafts Li1 along the direction of the piston pin 14 and the piston pin 14 are provided. Two third fuel injection shafts Li3 along the direction orthogonal to each other and four second fuel injection shafts Li2 disposed between them are provided, and the piston central shaft is seen in the piston central shaft Lp direction. On the surface orthogonal to Lp, the angle α formed by the first and second fuel injection axes Li1 and Li2 is set smaller than the angle β formed by the second and third fuel injection axes Li2 and Li3.

これらの第3、第4の実施の形態によっても、上述した第1、第2の実施の形態と同様の作用効果を達成することができる。   Also according to the third and fourth embodiments, the same effects as those of the first and second embodiments described above can be achieved.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態では第1燃料噴射軸Li1がピストン13の頂面の高さが最も高い方向を指向しているが、必ずしも前記最も高い方向を指向する必要はない。   For example, in the embodiment, the first fuel injection shaft Li1 is directed in the direction in which the height of the top surface of the piston 13 is the highest, but it is not necessarily directed in the highest direction.

また第1の実施の形態では、第1〜第3燃料噴射軸Li1〜Li3がピストン中心線Lpに対して成すコーン角が同一に設定されているが、例えば噴霧の吹きこぼれを防止するために、第1の実施の形態の変形例として、第1〜第3燃料噴射軸Li1〜Li3毎にコーン角を異ならせても良い。   In the first embodiment, the cone angles formed by the first to third fuel injection shafts Li1 to Li3 with respect to the piston center line Lp are set to be the same. For example, in order to prevent spray spilling, As a modification of the first embodiment, the cone angle may be varied for each of the first to third fuel injection shafts Li1 to Li3.

ディーゼルエンジンの要部縦断面図Diesel engine longitudinal section 図1の2−2線断面図2-2 sectional view of FIG. 図1の3−3線矢視図3-3 line view of FIG. ピストンの上部斜視図Top perspective view of piston 燃料噴射軸の配置を説明する図The figure explaining arrangement of a fuel injection axis キャビティの単位角度毎の容積を示す図Diagram showing volume per unit angle of cavity 図3の7−7線断面図Sectional view along line 7-7 in FIG. 図3の8−8線断面図Sectional view taken along line 8-8 in FIG. 図3の9−9線断面図Sectional view along line 9-9 in FIG. 燃料噴射軸の方向を円周方向に変化させたときの、燃料噴射軸の左右各30°の範囲のキャビティ容積の変化率を示すグラフA graph showing the rate of change of cavity volume in the range of 30 ° to the left and right of the fuel injection shaft when the direction of the fuel injection shaft is changed in the circumferential direction. 本発明の第3、第4の実施の形態を示す図The figure which shows the 3rd, 4th embodiment of this invention

符号の説明Explanation of symbols

13 ピストン
19 吸気ポート
23 フュエルインジェクタ
25 キャビティ
25c 底壁部
Li1 燃料噴射軸
Li2 燃料噴射軸
Li3 燃料噴射軸
Lc シリンダ列線
Lp ピストン中心軸
α 角度
β 角度
13 Piston 19 Intake port 23 Fuel injector 25 Cavity 25c Bottom wall portion Li1 Fuel injection axis Li2 Fuel injection axis Li3 Fuel injection axis Lc Cylinder row Lp Piston center axis α Angle β Angle

Claims (5)

頂面の高さが円周方向に変化するピストン(13)と、前記ピストン(13)の中央部に凹設されたキャビティ(25)内に、ピストン中心軸(Lp)上から円周方向に離間する複数の燃料噴射軸(Li1,Li2,Li3)に沿って燃料を噴射するフュエルインジェクタ(23)とを備えた燃料直噴ディーゼルエンジンにおいて、
前記ピストン中心軸(Lp)の方向から見て、円周方向におけるピストン(13)の頂面の高さが最低位から最高位に向かう間を指向する燃料噴射軸(Li2)が、円周方向のうちピストン(13)の頂面の高さが低くなる方向で隣接する燃料噴射軸(Li3)と成す角度(β)よりも、円周方向のうちピストン(13)の頂面の高さが高くなる方向で隣接する燃料噴射軸(Li1)と成す角度(α)の方が小さい関係を有することを特徴とする燃料直噴ディーゼルエンジン。
The piston (13) whose height of the top surface changes in the circumferential direction, and the cavity (25) recessed in the central portion of the piston (13), from above the piston central axis (Lp) in the circumferential direction. In a fuel direct injection diesel engine comprising a fuel injector (23) for injecting fuel along a plurality of spaced apart fuel injection shafts (Li1, Li2, Li3),
When viewed from the direction of the piston central axis (Lp), the fuel injection axis (Li2) oriented while the height of the top surface of the piston (13) in the circumferential direction goes from the lowest position to the highest position is the circumferential direction. The height of the top surface of the piston (13) in the circumferential direction is higher than the angle (β) formed with the adjacent fuel injection shaft (Li3) in the direction in which the height of the top surface of the piston (13) decreases. A direct fuel injection diesel engine characterized in that an angle (α) formed with a fuel injection shaft (Li1) adjacent in a direction of increasing has a smaller relationship.
前記キャビティ(25)内を、円周方向に沿って容積が等しい前記複数の燃料噴射軸(Li1,Li2,Li3)と同数のエリアに区分けし、各エリア毎に前記燃料噴射軸(Li1,Li2,Li3)が配置されるとともに、各燃料噴射軸(Li1,Li2,Li3)に沿う燃料噴射量が等しく設定されることを特徴とする、請求項1に記載の燃料直噴ディーゼルエンジン。   The cavity (25) is divided into the same number of areas as the plurality of fuel injection shafts (Li1, Li2, Li3) having the same volume along the circumferential direction, and the fuel injection shafts (Li1, Li2) for each area. , Li3), and the fuel injection amount along each fuel injection shaft (Li1, Li2, Li3) is set equal. 前記キャビティ(25)内を、円周方向に沿って容積が等しい前記複数の燃料噴射軸(Li1,Li2,Li3)の2倍の数のエリアに区分けし、各燃料噴射軸(Li1,Li2,Li3)に対して二つのエリアを割り当てるとともに、各燃料噴射軸(Li1,Li2,Li3)が前記二つのエリアの境界線上に配置されることを特徴とする、請求項1に記載の燃料直噴ディーゼルエンジン。   The inside of the cavity (25) is divided into twice as many areas as the plurality of fuel injection shafts (Li1, Li2, Li3) having the same volume along the circumferential direction, and each fuel injection shaft (Li1, Li2, 2. The direct fuel injection according to claim 1, wherein two areas are allocated to Li 3) and each fuel injection shaft (Li 1, Li 2, Li 3) is arranged on a boundary line between the two areas. diesel engine. シリンダ列線(Lc)方向に対して略直交する方向に延びる複数の吸気ポート(19)を有し、これらの吸気ポート(19)はスロート部が直線状に形成されたストレートポートであることを特徴とする、請求項1〜請求項3の何れか1項に記載の燃料直噴ディーゼルエンジン。   It has a plurality of intake ports (19) extending in a direction substantially orthogonal to the direction of the cylinder row (Lc), and these intake ports (19) are straight ports having a throat portion formed in a straight line. The direct fuel injection diesel engine according to any one of claims 1 to 3, wherein the direct fuel injection diesel engine is characterized. n番目の燃料噴射軸(Li1,Li2,Li3)を通る前記キャビティ(25)の断面を燃料噴射断面Snとし、
前記燃料噴射断面Snと前記キャビティ(25)の開口周縁との交点を第1特定点Anとし、
前記第1特定点Anを通りかつ前記燃料噴射断面Snにおけるシリンダヘッド(16)の下面と平行な線上には第2特定点Bnが存在し、
前記燃料噴射断面Snにおける前記キャビティ(25)の底壁部(25c)上には第3特定点Cnが存在し、
前記第2特定点Bnは前記第1特定点Anよりもピストン中心軸(Lp)に近い位置にあり、
前記第3特定点Cnは前記キャビティ(25)の底壁部(25c)の最大外径位置よりもピストン中心軸(Lp)に近い位置にあり、
前記第1,2特定点An,Bnを前記燃料噴射断面Snにおける前記シリンダヘッド(16)の下面に沿う線で結ぶ経路AnBnと、前記第1、第3定点An,Cnを前記燃料噴射断面Snにおける前記キャビティ(25)の壁面に沿って結ぶ経路AnCnと、前記第2、第3特定点Bn,Cnを最短直線で結ぶ経路BnCnとで囲まれる断面形状が、各燃料噴射断面Snにおいて略等しいことを特徴とする、請求項1〜請求項4の何れか1項に記載の燃料直噴ディーゼルエンジン。
A section of the cavity (25) passing through the nth fuel injection axis (Li1, Li2, Li3) is defined as a fuel injection section Sn,
The intersection of the fuel injection cross section Sn and the opening periphery of the cavity (25) is defined as a first specific point An,
A second specific point Bn exists on a line passing through the first specific point An and parallel to the lower surface of the cylinder head (16) in the fuel injection cross section Sn,
A third specific point Cn exists on the bottom wall portion (25c) of the cavity (25) in the fuel injection cross section Sn,
The second specific point Bn is closer to the piston central axis (Lp) than the first specific point An,
The third specific point Cn is located closer to the piston center axis (Lp) than the maximum outer diameter position of the bottom wall portion (25c) of the cavity (25),
A path AnBn connecting the first and second specific points An and Bn along a line along the lower surface of the cylinder head (16) in the fuel injection section Sn, and the first and third fixed points An and Cn are connected to the fuel injection section Sn. The cross-sectional shape surrounded by the path AnCn connecting along the wall surface of the cavity (25) and the path BnCn connecting the second and third specific points Bn and Cn with the shortest straight line is substantially equal in each fuel injection cross section Sn. The direct fuel injection diesel engine according to any one of claims 1 to 4, wherein
JP2006210771A 2006-08-02 2006-08-02 Direct fuel injection diesel engine Expired - Fee Related JP4602292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210771A JP4602292B2 (en) 2006-08-02 2006-08-02 Direct fuel injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210771A JP4602292B2 (en) 2006-08-02 2006-08-02 Direct fuel injection diesel engine

Publications (2)

Publication Number Publication Date
JP2008038650A true JP2008038650A (en) 2008-02-21
JP4602292B2 JP4602292B2 (en) 2010-12-22

Family

ID=39173984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210771A Expired - Fee Related JP4602292B2 (en) 2006-08-02 2006-08-02 Direct fuel injection diesel engine

Country Status (1)

Country Link
JP (1) JP4602292B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113518A1 (en) * 2008-03-11 2009-09-17 本田技研工業株式会社 Direct fuel-injection engine
JP2009264169A (en) * 2008-04-23 2009-11-12 Honda Motor Co Ltd Direct fuel injection engine
JP2009264168A (en) * 2008-04-23 2009-11-12 Honda Motor Co Ltd Direct fuel injection engine
JP2009281378A (en) * 2008-04-23 2009-12-03 Honda Motor Co Ltd Fuel direct-injection engine
WO2014091556A1 (en) * 2012-12-11 2014-06-19 ボルボ ラストバグナー アクチエボラグ Fuel injection device and cylinder head thermal load lightening method
WO2014106904A1 (en) * 2013-01-07 2014-07-10 トヨタ自動車株式会社 Internal combustion engine
CN104956043A (en) * 2013-01-31 2015-09-30 丰田自动车株式会社 Internal combustion engine
JPWO2014106903A1 (en) * 2013-01-07 2017-01-19 トヨタ自動車株式会社 Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52162302U (en) * 1976-06-04 1977-12-09
JPS61207817A (en) * 1985-03-12 1986-09-16 Mazda Motor Corp Direct injection type engine
JPS62255524A (en) * 1986-04-30 1987-11-07 Isuzu Motors Ltd Pent roof type direct injection internal combustion engine
JPH04159444A (en) * 1990-10-23 1992-06-02 Nissan Motor Co Ltd Direct injection diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52162302U (en) * 1976-06-04 1977-12-09
JPS61207817A (en) * 1985-03-12 1986-09-16 Mazda Motor Corp Direct injection type engine
JPS62255524A (en) * 1986-04-30 1987-11-07 Isuzu Motors Ltd Pent roof type direct injection internal combustion engine
JPH04159444A (en) * 1990-10-23 1992-06-02 Nissan Motor Co Ltd Direct injection diesel engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113518A1 (en) * 2008-03-11 2009-09-17 本田技研工業株式会社 Direct fuel-injection engine
JP2009215979A (en) * 2008-03-11 2009-09-24 Honda Motor Co Ltd Direct fuel-injection engine
EP2251532A4 (en) * 2008-03-11 2011-07-27 Honda Motor Co Ltd Direct fuel-injection engine
EP2251532A1 (en) * 2008-03-11 2010-11-17 Honda Motor Co., Ltd. Direct fuel-injection engine
JP2009281378A (en) * 2008-04-23 2009-12-03 Honda Motor Co Ltd Fuel direct-injection engine
JP4495766B2 (en) * 2008-04-23 2010-07-07 本田技研工業株式会社 Direct fuel injection engine
JP4495765B2 (en) * 2008-04-23 2010-07-07 本田技研工業株式会社 Direct fuel injection engine
JP2009264168A (en) * 2008-04-23 2009-11-12 Honda Motor Co Ltd Direct fuel injection engine
JP2009264169A (en) * 2008-04-23 2009-11-12 Honda Motor Co Ltd Direct fuel injection engine
US8627798B2 (en) 2008-12-17 2014-01-14 Honda Motor Co., Ltd. Direct fuel-injection engine
WO2014091556A1 (en) * 2012-12-11 2014-06-19 ボルボ ラストバグナー アクチエボラグ Fuel injection device and cylinder head thermal load lightening method
WO2014106904A1 (en) * 2013-01-07 2014-07-10 トヨタ自動車株式会社 Internal combustion engine
CN104903557A (en) * 2013-01-07 2015-09-09 丰田自动车株式会社 Internal combustion engine
EP2942506A4 (en) * 2013-01-07 2015-12-30 Toyota Motor Co Ltd Internal combustion engine
JP5983778B2 (en) * 2013-01-07 2016-09-06 トヨタ自動車株式会社 Internal combustion engine
JPWO2014106903A1 (en) * 2013-01-07 2017-01-19 トヨタ自動車株式会社 Internal combustion engine
CN104956043A (en) * 2013-01-31 2015-09-30 丰田自动车株式会社 Internal combustion engine
EP2952707A4 (en) * 2013-01-31 2016-02-17 Toyota Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP4602292B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4757112B2 (en) Direct fuel injection diesel engine
JP4602292B2 (en) Direct fuel injection diesel engine
EP2204560B1 (en) Direct fuel-injection engine
JP4888330B2 (en) Direct injection internal combustion engine
US9670826B2 (en) Self-igniting internal combustion engine having piston recesses having swirl steps
JP2009215978A (en) Fuel direct injection engine
JP2018172974A (en) Internal combustion engine
EP2112348B1 (en) Direct fuel injection engine
JP2010053710A (en) Fuel injection engine
JP4879873B2 (en) Direct fuel injection engine
JP4929013B2 (en) Direct fuel injection engine
CN101636572B (en) Direct fuel-injection engine
JP4495765B2 (en) Direct fuel injection engine
JP4495766B2 (en) Direct fuel injection engine
JP4922213B2 (en) Direct fuel injection engine
JP2010144593A (en) Fuel direct-injection engine
JP4801826B2 (en) Direct fuel injection engine
JP2009222000A (en) Fuel direct injection engine
JP2010048229A (en) Fuel direct-injection type engine
JP2009264167A (en) Direct fuel injection engine
JP2019065776A (en) Fuel injection nozzle for internal combustion engine, and internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees