JP4495455B2 - Steel strip casting - Google Patents

Steel strip casting Download PDF

Info

Publication number
JP4495455B2
JP4495455B2 JP2003528333A JP2003528333A JP4495455B2 JP 4495455 B2 JP4495455 B2 JP 4495455B2 JP 2003528333 A JP2003528333 A JP 2003528333A JP 2003528333 A JP2003528333 A JP 2003528333A JP 4495455 B2 JP4495455 B2 JP 4495455B2
Authority
JP
Japan
Prior art keywords
steel
casting
inclusions
content
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003528333A
Other languages
Japanese (ja)
Other versions
JP2005501741A (en
JP2005501741A5 (en
Inventor
ブレッジ・ウォルター
マハパトラ・ラーマ・バラフ
ストレッチョフ・レイザー
Original Assignee
ニューコア・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニューコア・コーポレーション filed Critical ニューコア・コーポレーション
Publication of JP2005501741A publication Critical patent/JP2005501741A/en
Publication of JP2005501741A5 publication Critical patent/JP2005501741A5/ja
Application granted granted Critical
Publication of JP4495455B2 publication Critical patent/JP4495455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

A method of producing strip comprising the steps of assembling a pair of casting rolls with a nip between them, introducing between the casting rolls to form a casting pool of molten carbon steel having a total oxygen content of at least 100 ppm and usually less than 250 ppm, counter rotating the casting rolls, solidifying the molten steel on the rolls to form metal shells with levels of oxide inclusions reflected by the total oxygen content of the molten steel, and forming thin steel strip through the nip between the casting rolls from the solidified shells. A unique steel strip may be obtained using the method having ductile properties.

Description

本発明は鋼ストリップ鋳造に関し、特に、双ロール鋳造機での薄鋼ストリップの連続鋳造に適用される。     The present invention relates to steel strip casting and is particularly applicable to continuous casting of thin steel strips in a twin roll caster.

双ロール鋳造では、溶融金属が相互方向に回転する一対の冷却水平鋳造ロール間に導入されることにより、金属殻が動いているロール表面上に凝固してロール間のロール間隙で合わされ、ロール間のロール間隙から下方に送給される凝固ストリップ品を生み出す。本明細書では「ロール間隙」という語をロール同士が最接近する領域全般を指すものとして用いる。溶融金属は取鍋から小容器へと注がれて、そこからロール間隙の上方に位置した金属供給ノズルを通って流れ、ロール間のロール間隙へと向かわされ、ロール間隙直上にあってロール間隙長さ方向に沿って延びるロール鋳造表面に支持された溶融金属鋳造溜めを形成できる。通常、この鋳造溜めを画成するのは、ロール端面に摺動係合で保持されて、溢流しないよう鋳造溜めの2端を堰止める側板又は堰であるが、電磁バリヤ等の代替手段も提案されている。     In twin-roll casting, molten metal is introduced between a pair of cooled horizontal casting rolls that rotate in the opposite directions, so that the metal shell solidifies on the moving roll surface and fits in the roll gap between the rolls. This produces a solidified strip product fed downward from the roll gap. In this specification, the term “roll gap” is used to indicate the entire region where the rolls are closest to each other. Molten metal is poured from the ladle into a small container and flows from there through a metal supply nozzle located above the roll gap, directed to the roll gap between the rolls, and directly above the roll gap. A molten metal casting pool supported on a roll casting surface extending along the length direction can be formed. Usually, the casting reservoir is defined by a side plate or a weir that is held by sliding engagement with the roll end face and blocks the two ends of the casting reservoir so as not to overflow, but alternative means such as an electromagnetic barrier may also be used. Proposed.

アメリカ特許第5,720,336号US Pat. No. 5,720,336 アメリカ特許第5,934,359号US Patent No. 5,934,359 アメリカ特許第6,059,014号US Patent No. 6,059,014 アメリカ特許第5,184,668号US Pat. No. 5,184,668 アメリカ特許第5,277,243号US Pat. No. 5,277,243 ドイツ、デュッセルドルフで行われたMETEC会議99(1999年6月13〜15日)に提出された書類「プロジェクトMでの最近の開発、BHP及びIHIによる低炭素鋼ストリップ鋳造の共同開発」Document submitted to METEC Conference 99 in Düsseldorf, Germany (June 13-15, 1999) "Recent development in Project M, joint development of low carbon steel strip casting by BHP and IHI"

双ロール鋳造機での薄鋼ストリップ鋳造の場合、鋳造溜めの溶鋼は一般に1500℃程度以上もの温度になるので、ロール鋳造表面全体にわたり非常に高速で冷却する必要がある。特に重要なのは、鋳造表面での鋼初期凝固時に高い熱流束と広範な核生成を達成して金属殻を形成することである。アメリカ特許第5,720,336号により、溶融金属と各鋳造表面との界面に本質的な液体層が形成されるよう、脱酸品として形成される金属酸化物の大部分が初期凝固温度で液体であるよう溶鋼成分を調節することで、初期凝固時の熱流束を増やすことのできる仕方が開示されている。アメリカ特許第5,934,359号及び第6,059,014号及び国際出願AU99/00641号に開示されているように、初期凝固時の鋼の核生成は鋳造表面の肌理(texture)に影響され得る。特に、国際出願AU99/00641号では、ランダムな凹凸の肌理が、鋳造表面全体にわたり分配される核生成可能な場所を提供して初期凝固を高め得ることが開示されている。我々は、核生成が溶鋼中の酸化介在物(oxide inclusions)の存在にも左右されること、そして、驚くべきことには双ロールストリップ鋳造で、鋳造前の溶鋼脱酸時に形成される介在物の数を最少にした「クリーンな」鋼での鋳造が有利でないことを今回つきとめた。   In the case of thin steel strip casting in a twin roll caster, the molten steel in the casting pool is generally at a temperature of about 1500 ° C. or higher, and therefore it is necessary to cool the entire roll casting surface at a very high speed. Of particular importance is the achievement of high heat flux and extensive nucleation during the initial solidification of steel at the casting surface to form a metal shell. According to US Pat. No. 5,720,336, most of the metal oxide formed as deoxidized product is at the initial solidification temperature so that an essential liquid layer is formed at the interface between the molten metal and each casting surface. A method is disclosed in which the heat flux during initial solidification can be increased by adjusting the molten steel component to be liquid. As disclosed in US Pat. Nos. 5,934,359 and 6,059,014 and international application AU99 / 00641, steel nucleation during initial solidification affects the texture of the casting surface. Can be done. In particular, International Application AU99 / 00641 discloses that random textured textures can provide nucleation sites that are distributed over the entire casting surface to enhance initial solidification. We believe that nucleation is also dependent on the presence of oxide inclusions in the molten steel, and surprisingly the number of inclusions formed during deoxidation of the molten steel prior to casting in twin roll strip casting. This time, I found out that casting with “clean” steel with the least amount of iron was not advantageous.

連続鋳造用の鋼は注入前に取鍋内で脱酸処理される。双ロール鋳造では鋼がケイ素マンガン取鍋脱酸を受けるのが一般であるが、カルシウム添加のアルミニウム脱酸を用いることで、溶融金属を鋳造溜めに送給する金属供給システムの細い金属流通路を詰まらせ得る固形のAl23介在物の形成を制御することが可能である。今までは、取鍋処理して溶鋼中の全酸素レベルを最小限とすることにより、鋼の最適なクリーンを求めるのが望ましいと考えられてきた。しかしながら、我々が今回つきとめたことは、鋼の酸素レベルを下げることで介在物の容積が減らされ、そして、もし鋼の全酸素含量を或るレベル以下に減少させたら、鋼とロール表面との初期接触の性質が悪影響を受け、急速な初期凝固と高い熱流束を生じるのに不充分な核生成となってしまい得ることである。溶鋼は取鍋内での脱酸により整えられて、全酸素含量が鋳造ロール上での充分な凝固と充分なストリップ品の製造を確保する範囲内とされる。溶鋼は、初期凝固に適切な密度の核生成場所をロール表面上に提供するのに充分な酸化介在物(典型的にはMnO、CaO、SiO及び/又はAl)の分配を含み、結果としてのストリップ品が凝固介在物の特徴的な分布を示す。 Steel for continuous casting is deoxidized in a ladle before pouring. In twin-roll casting, steel is generally subjected to deoxidation of a silicon manganese ladle. By using aluminum deoxidation with addition of calcium, the narrow metal flow path of the metal supply system that delivers molten metal to the casting pool is used. It is possible to control the formation of solid Al 2 O 3 inclusions that can be clogged. In the past, it has been considered desirable to seek an optimum clean of the steel by ladle treatment to minimize the total oxygen level in the molten steel. However, what we have found this time is that the volume of inclusions is reduced by lowering the oxygen level of the steel, and if the total oxygen content of the steel is reduced below a certain level, The nature of the initial contact is adversely affected and can result in insufficient nucleation to produce rapid initial solidification and high heat flux. The molten steel is trimmed by deoxidation in the ladle so that the total oxygen content is in a range that ensures sufficient solidification on the casting roll and sufficient strip production. The molten steel includes a distribution of sufficient oxidizing inclusions (typically MnO, CaO, SiO 2 and / or Al 2 O 3 ) to provide a density nucleation site on the roll surface suitable for initial solidification. The resulting strip product shows a characteristic distribution of solidified inclusions.

間にロール間隙を有し、ロール間隙の端に隣接した閉込めクロージャを備えた、一対の冷却鋳造ロールを組立て、
鋼を鋳造ロール間に導入して鋳造ロール間に鋳造溜めを形成し、
鋳造ロールを相互回転させ、溶鋼を凝固させ、金属殻を鋳造ロール表面上に形成して、
前記凝固殻から鋳造ロールのロール間隙を介して凝固薄鋼ストリップを形成する諸段階からなる連続鋳造による鋼ストリップ製造方法において、
溶鋼が、0.0001〜0.01重量%の炭素含量、0.01〜2.0重量%のマンガン含量、0.01〜10重量%のケイ素含量を有し、遊離酸素及び脱酸介在物中の酸素からなる少なくとも100ppmの全酸素含量を有する低炭素鋼であり、溶鋼を固化して溶鋼の全酸素含量を反映した2〜4g/cm の介在物密度で酸化介在物レベルの鋼中に分配されるMnO、SiO、Alのうちいずれか1つ又はそれ以上からなる脱酸介在物と凝固介在物からなる酸化介在物を有する前記金属殻を形成し、薄鋼ストリップの形成を促進する連続鋳造による鋼ストリップ製造方法が提供される。
Assembling a pair of cooling cast rolls having a roll gap in between and having a confinement closure adjacent to the end of the roll gap;
Steel is introduced between the casting rolls to form a casting pool between the casting rolls,
The casting rolls are mutually rotated, the molten steel is solidified, and a metal shell is formed on the casting roll surface,
In the steel strip manufacturing method by continuous casting, comprising the steps of forming a solidified thin steel strip from the solidified shell through a roll gap of the casting roll,
The molten steel has a carbon content of 0.0001 to 0.01 wt%, a manganese content of 0.01 to 2.0 wt%, a silicon content of 0.01 to 10 wt%, free oxygen and deoxidation inclusions A low carbon steel with a total oxygen content of at least 100 ppm consisting of oxygen in the middle, in a steel with an oxide inclusion level at an inclusion density of 2-4 g / cm 3 reflecting the total oxygen content of the molten steel by solidifying the molten steel Forming the metal shell having deoxidized inclusions consisting of any one or more of MnO, SiO 2 , Al 2 O 3 and oxidation inclusions consisting of solidified inclusions , A method of manufacturing a steel strip by continuous casting that facilitates formation is provided.

鋳造溜めの溶鋼の全酸素含量は100〜250ppmにできる。より具体的には、約200ppmにできる。低炭素鋼は0.001〜0.1重量%の炭素含量、0.1〜2.0重量%のマンガン含量、0.01〜10重量%のケイ素含量を有することができる。鋼は0.01重量%程度又はそれ以下のアルミニウム含量を有することができる。アルミニウムは例えば0.008重量%以下の少量でもよい。溶鋼はケイ素/マンガンキルド鋼とすることができる。   The total oxygen content of the cast pool molten steel can be 100-250 ppm. More specifically, it can be about 200 ppm. The low carbon steel can have a carbon content of 0.001 to 0.1 wt%, a manganese content of 0.1 to 2.0 wt%, and a silicon content of 0.01 to 10 wt%. The steel can have an aluminum content on the order of 0.01% by weight or less. Aluminum may be a small amount, for example, 0.008% by weight or less. The molten steel can be silicon / manganese killed steel.

酸化介在物は凝固介在物及び脱酸介在物である。凝固介在物は鋳造での鋼の冷却・凝固時に形成され、脱酸介在物は鋳造前の溶鋼脱酸時に形成される。凝固鋼は、2〜4g/cm3の介在物密度で鋼中に分配されるMnO、SiO、Al23 のうちいずれか1つ又はそれ以上で通常は構成される酸化介在物を含むことができる。 Oxidation inclusions are solidification inclusions and deoxidation inclusions. Solidification inclusions are formed during cooling and solidification of steel in casting, and deoxidation inclusions are formed during deoxidation of molten steel before casting. Solidified steel contains oxidative inclusions usually composed of any one or more of MnO, SiO 2 , Al 2 O 3 distributed in the steel at inclusion density of 2-4 g / cm 3. be able to.

溶鋼は鋳造ロール間への導入前に取鍋内で精製し、取鍋で鋼装入物及び鉱滓形成材料を加熱することによりケイ素、マンガン、カルシウム酸化物を含む鉱滓で覆われた溶鋼を形成することによって鋳造溜めを形成することができる。溶鋼は不活性ガスを吹き込むことにより撹拌して脱硫を引き起こし、ケイ素/マンガンキルド鋼等の鋼では、次いで酸素を吹き込むことにより、少なくとも100ppm、通常は250ppm以下の所望全酸素含量の鋼を製造できる。脱硫により溶鋼の硫黄含量を0.01重量%以下に減らすことができる。   Molten steel is refined in a ladle before being introduced between casting rolls, and the steel charge and slag formation material are heated in the ladle to form molten steel covered with slag containing silicon, manganese, and calcium oxide. By doing so, a casting pool can be formed. Molten steel is agitated by blowing inert gas to cause desulfurization, and steels such as silicon / manganese killed steel can then be blown to produce steel with the desired total oxygen content of at least 100 ppm, usually 250 ppm or less. . By desulfurization, the sulfur content of the molten steel can be reduced to 0.01% by weight or less.

上記したような双ロール連続鋳造で製造される薄鋼ストリップは厚が5mm以下であり、凝固酸化介在物を含む凝固鋼として形成される。介在物の分布は、外面から2ミクロン深さのストリップの2表面域が少なくとも120介在物/mm2の単位面積当たり密度の凝固介在物を含むようにできる。 A thin steel strip produced by twin roll continuous casting as described above has a thickness of 5 mm or less, and is formed as a solidified steel containing solidified oxide inclusions. The distribution of inclusions can be such that two surface areas of a 2 micron deep strip from the outer surface contain solidification inclusions with a density per unit area of at least 120 inclusions / mm 2 .

凝固鋼はケイ素/マンガンキルド鋼とすることができ、酸化介在物は、MnO、SiO2及びAl23 介在物のうちの1つまたはそれ以上からなることができる。介在物は典型的には2〜12ミクロンの大きさとすることができるので、介在物の少なくとも過半数はその大きさ範囲内である。 The solidified steel can be a silicon / manganese killed steel and the oxidation inclusions can consist of one or more of MnO, SiO 2 and Al 2 O 3 inclusions. Inclusions can typically be 2 to 12 microns in size, so that at least a majority of the inclusions are within that size range.

上記した方法により、酸化介在物中に分配された酸素含量の多い独自の鋼が製造される。具体的には、溶鋼の酸素含量が多いことと鋳造溜め内で溶鋼の駐留時間が短いこととが組み合わさって、展性(ductility)特性の改良された薄鋼ストリップが生み出される。   The above-described method produces a unique steel with a high oxygen content distributed in the oxidized inclusions. Specifically, the combination of the high oxygen content of the molten steel and the short residence time of the molten steel in the casting pool produces a thin steel strip with improved ductility characteristics.

本発明をより詳細に記述できるよう、いくつかの実施例を添付図面を参照して提供する。 In order that the invention may be described in more detail, several embodiments are provided with reference to the accompanying drawings.

我々は、アメリカ特許第5,184,668号及び第5,277,243号に充分に記述された種類の双ロール鋳造機を用いて1mm厚程度及びそれ以下の鋼ストリップを製造し、広範な鋳造試験を行った。ケイ素マンガンキルド鋼を用いた斯かる鋳造試験により、図1に示すように、溶鋼中の酸化介在物の融点が鋼凝固時に得られる熱流束に対し効果を有することが実証された。低融点酸化物により、溜め上域での溶融金属と鋳造ロール表面との伝熱接触が改良され、高い伝熱速度を生み出す。融点が鋳造溜めの鋼温度よりも高い場合、液状介在物は生じない。従って、介在物融点が約1600℃以上の場合には伝熱速度の劇的な減少がある。   We produce steel strips of about 1 mm thickness and less using a twin roll caster of the type fully described in US Pat. Nos. 5,184,668 and 5,277,243 A casting test was conducted. Such a casting test using silicon manganese killed steel has demonstrated that the melting point of the oxide inclusions in the molten steel has an effect on the heat flux obtained during solidification of the steel, as shown in FIG. The low melting point oxide improves the heat transfer contact between the molten metal and the casting roll surface in the upper region of the reservoir and produces a high heat transfer rate. If the melting point is higher than the steel temperature of the casting pool, no liquid inclusions are produced. Therefore, when the inclusion melting point is about 1600 ° C. or higher, there is a dramatic decrease in the heat transfer rate.

アルミニウムキルド鋼での鋳造試験により、高融点アルミナ介在物(融点2050℃)の形成を避けるためにはカルシウム処理をして液体CaO・Al23介在物を有する必要があることが示された。 Cast tests on aluminum killed steel showed that it was necessary to have calcium treatment and liquid CaO.Al 2 O 3 inclusions to avoid the formation of high melting alumina inclusions (melting point 2050 ° C.). .

凝固金属殻内に、従って薄鋼ストリップ内に形成される酸化介在物は、鋼の冷却・凝固時に形成される介在物と、取鍋での精製時に形成される脱酸介在物とからなる。   Oxidized inclusions formed in the solidified metal shell, and thus in the thin steel strip, consist of inclusions formed during steel cooling and solidification and deoxidized inclusions formed during refining in a ladle.

鋼中の遊離酸素レベルは冷却時にメニスカスで劇的に減少され、ストリップ表面近くに凝固介在物が生ずることになる。これらの凝固介在物は、次式により大部分はMnO・SiO2からなる。
Mn + Si + 3O = MnO・SiO2
Free oxygen levels in the steel are dramatically reduced at the meniscus when cooled, resulting in solidification inclusions near the strip surface. Most of these solidified inclusions are made of MnO.SiO 2 according to the following formula.
Mn + Si + 3O = MnO · SiO 2

エネルギ分散型分光法(EDS)マップから得られるストリップ表面の凝固介在物の様子を図2に示す。凝固介在物が極端に微細(典型的には2〜3μm以下)であり、表面から10〜20μm以内に帯状に位置していることがわかる。ストリップ中の介在物の典型的な大きさ分布を、ドイツ、デュッセルドルフで行われたMETEC会議99(1999年6月13〜15日)に提出した我々の書類「プロジェクトMでの最近の開発、BHP及びIHIによる低炭素鋼ストリップ鋳造の共同開発」から図3に示す。   The state of the solidified inclusions on the strip surface obtained from the energy dispersive spectroscopy (EDS) map is shown in FIG. It can be seen that the solidified inclusions are extremely fine (typically 2 to 3 μm or less) and are located in a band shape within 10 to 20 μm from the surface. Our document “Recent Developments in Project M, BHP” submitted to METEC Conference 99 (June 13-15, 1999) in Dusseldorf, Germany, shows the typical size distribution of inclusions in the strip. 3 from "Joint development of low carbon steel strip casting by IHI and IHI".

凝固介在物の比較レベルは主に鋼中のマンガン及びケイ素レベルにより左右される。図3は、マンガン:ケイ素の比が介在物の液相温度に重大な効果を有することを示している。0.001〜0.1重量%の炭素含量、0.1〜2.0重量%のマンガン含量、0.1〜10重量%のケイ素含量及び0.01重量%程度又はそれ以下のアルミニウム含量を有するマンガンケイ素キルド鋼は、鋳造溜め上域で鋼冷却時に斯かる酸化介在物を製造できる。特に、M06と名付けられた鋼は次の組成を有することができる。
炭素 0.06 重量%
マンガン 0.6 重量%
ケイ素 0.28 重量%
アルミニウム 0.002重量%。
The comparative level of solidified inclusions depends mainly on the manganese and silicon levels in the steel. FIG. 3 shows that the manganese: silicon ratio has a significant effect on the liquidus temperature of the inclusions. Carbon content of 0.001 to 0.1% by weight, manganese content of 0.1 to 2.0% by weight, silicon content of 0.1 to 10% by weight and aluminum content of about 0.01% by weight or less. Manganese silicon killed steel can produce such oxidized inclusions when the steel is cooled in the upper casting pool. In particular, a steel named M06 can have the following composition:
Carbon 0.06 wt%
Manganese 0.6 wt%
Silicon 0.28% by weight
0.002% by weight of aluminum.

脱酸介在物は取鍋での溶鋼脱酸時にアルミニウム、ケイ素及びマンガンで生み出される。従って、脱酸時に形成される酸化介在物の組成は主にMnO・SiO2・Alをベースとしている。これらの脱酸介在物はストリップ中にランダムに位置していて、ストリップ表面近くの凝固介在物よりも粗い。 Deoxidation inclusions are produced in aluminum, silicon and manganese during deoxidation of molten steel in the ladle. Therefore, the composition of the oxidized inclusion formed during deoxidation is mainly based on MnO.SiO 2 .Al 2 O 3 . These deoxidation inclusions are randomly located in the strip and are coarser than the solidification inclusions near the strip surface.

介在物のアルミナ含量は鋼の遊離酸素レベルに強い効果を有する。図4は、アルミナ含量が増えにつれて鋼中の遊離酸素が減ることを示している。以下の反応からわかるように、アルミナを導入することで, MnO・SiO2介在物が希釈される結果、活性が減少し、それがひいては遊離酸素レベルを減少させる。
MnSi + 3O + Al ⇔ (Al)・MnO・SiO
The alumina content of inclusions has a strong effect on the free oxygen level of the steel. FIG. 4 shows that free oxygen in the steel decreases as the alumina content increases. As can be seen from the following reaction, the introduction of alumina results in dilution of the MnO.SiO 2 inclusions, resulting in decreased activity, which in turn reduces free oxygen levels.
MnSi + 3O + Al 2 O 3 ⇔ (Al 2 O 3 ) · MnO · SiO 2

MnO−SiO−Alベースの介在物に関し、液相温度に対する介在物組成の効果は図5に示す三相図から得ることができる。薄鋼ストリップ中の酸化介在物の分析により、MnO/SiO2比が典型的には0.6〜0.8の範囲内であることが示され、この体制では、図6に示すように、酸化介在物のアルミナ含量が介在物融点(液相温度)に最強の効果を有することが判明した。 For inclusions based on MnO—SiO 2 —Al 2 O 3 , the effect of inclusion composition on liquidus temperature can be obtained from the three-phase diagram shown in FIG. Analysis of the oxidized inclusions in the thin steel strip shows that the MnO / SiO 2 ratio is typically in the range of 0.6 to 0.8, in this regime, as shown in FIG. It was found that the alumina content of the oxidized inclusion had the strongest effect on the inclusion melting point (liquidus temperature).

本発明による鋳造では、鋼初期凝固温度で液体である凝固介在物及び脱酸介在物を有すること、及び鋳造溜めの溶鋼が少なくとも100ppmの酸素含量を有して溶鋼の全酸素含量に反映された酸化介在物レベルを有する金属殻を製造して、鋳造ロール表面での鋼の初期凝固時に核生成及び高い熱流束を促進することが重要であると我々は突きとめた。凝固介在物も脱酸介在物も酸化介在物であり、核生成場所を提供して金属凝固プロセス時の核生成に著しく貢献するが、脱酸介在物は、濃度が変えられ得る点で結局のところ速度制御である。脱酸介在物は非常に大きくて典型的には4ミクロン以上であるが、凝固介在物は全般に2ミクロン以下であり、MnO・SiO2 ベースであってAl23 を含まないが、脱酸介在物はAl23も有する. The casting according to the invention has solidification inclusions and deoxidation inclusions that are liquid at the initial solidification temperature of the steel, and the molten steel in the casting pool has an oxygen content of at least 100 ppm and is reflected in the total oxygen content of the molten steel. We have determined that it is important to produce metal shells with oxidized inclusion levels to promote nucleation and high heat flux during the initial solidification of steel on the casting roll surface. Both solidification inclusions and deoxidation inclusions are oxidative inclusions that provide a nucleation site and contribute significantly to nucleation during the metal solidification process. However, it is speed control. Deoxidation inclusions are very large, typically 4 microns or more, but solidification inclusions are generally less than 2 microns, are based on MnO.SiO 2 and do not contain Al 2 O 3 acid inclusions have also Al 2 O 3.

上記M06等級のケイ素/マンガンキルド鋼を用いた鋳造試験で、鋼の全酸素含量が取鍋精製工程で100ppmより低いレベルに減少されたら、熱流束が減少されて鋳造が損なわれるが、全酸素含量が少なくとも100ppm以上、典型的には200ppm程度ならば、良好な鋳造結果が達成できることが判明している。全酸素含量は「ルコ」(Leco)機器により測定でき、取鍋処理時の「リンス」(rinsing)の程度、即ち、多孔栓又はトップランスを介し取鍋内に泡立てられるアルゴンの量と処理の持続時間により制御される。全酸素含量は、ルコTC−436窒素/酸素測定器を用い、ルコから入手可能であるTC436窒素/酸素測定器指示マニュアル (フォーム番号200−403改訂版、1996年4月、7−1頁〜7−4頁の第7章)に記述の従来の手順により測定した。   In a casting test using the above M06 grade silicon / manganese killed steel, if the total oxygen content of the steel is reduced to a level lower than 100 ppm in the ladle refining process, the heat flux is reduced and casting is impaired. It has been found that good casting results can be achieved if the content is at least 100 ppm or more, typically around 200 ppm. The total oxygen content can be measured with a “Leco” instrument, the degree of “rinsing” during ladle processing, ie the amount of argon bubbled into the ladle via a porous plug or top lance and the amount of treatment. Controlled by duration. The total oxygen content can be obtained from the TC436 Nitrogen / Oxygen Analyzer Instruction Manual (Form No. 200-403 Revised, April 1996, p.7-1, available from Luco using a Luco TC-436 Nitrogen / Oxygen Analyzer. It was measured by the conventional procedure described in Chapter 7 on page 7-4.

高い全酸素含量で得られる高められた熱流束が核生成場所としての酸化介在物の利用可能性によるものかどうかを知るために、取鍋脱酸をケイ化カルシウム(Ca−Si)で行う鋼で鋳造試験が行われ、その結果がM06等級鋼として知られる低炭素ケイ素キルド鋼での鋳造と比較された。 結果を次の表に示す。   Steel to perform ladle deoxidation with calcium silicide (Ca-Si) to know if the increased heat flux obtained with high total oxygen content is due to the availability of oxidation inclusions as nucleation sites A casting test was conducted and the results were compared to casting with a low carbon silicon killed steel known as M06 grade steel. The results are shown in the following table.

Figure 0004495455
Figure 0004495455

マンガン及びケイ素レベルは通常のケイ素キルド等級と類似していたが、Ca−Si組の遊離酸素レベルは低く、酸化介在物は比較的多くの酸化カルシウムを含んでいた。Ca−Si組の熱流束は、介在物融点が低いにも関わらず、低かった (表2参照)。 Manganese and silicon levels were similar to normal silicon kill grades, but the free oxygen level of the Ca-Si set was low and the oxide inclusions contained relatively much calcium oxide. The heat flux of the Ca—Si group was low despite the low inclusion melting point (see Table 2).

Figure 0004495455
Figure 0004495455

Ca−Si等級の遊離酸素レベルはM06等級の40〜50ppmに比べ低く、典型的には20〜30ppmであった。酸素は表面活性素子であり、従って、酸素レベルの減少は、溶鋼と鋳造ロールとの間の濡れを減少させて伝熱速度の減少を引き起こすと予想される。しかしながら、図7から、40〜20ppmの酸素減少では観測された熱流束の減少を説明できる程表面張力を増加させるのには充分でないかもしれないと思われる。   The free oxygen level of the Ca-Si grade was lower than the M06 grade of 40-50 ppm, typically 20-30 ppm. Oxygen is a surface active element, and therefore a decrease in oxygen level is expected to cause a decrease in heat transfer rate by reducing wetting between the molten steel and the casting roll. However, it can be seen from FIG. 7 that a 40-20 ppm oxygen reduction may not be sufficient to increase the surface tension to account for the observed heat flux reduction.

鋼の酸素レベルを下げることにより介在物の容積が減り、従って、初期核生成用の酸化介在物の数が減る、と結論できる。これは鋼とロール表面との間の初期接触の性質に悪影響を与える可能性を持つ。ディップテスト(dip testing)作業により、約120/mmの核生成単位面積当たり密度が、鋳造溜め上域であるメニスカス域での初期凝固で充分な熱流束を発生させるのに必要であることが示された。ディップテストは、双ロール鋳造機の鋳造表面での状態を密にシュミレートした速度で冷却ブロックを溶鋼浴内へと進めることを含む。鋼は溶融浴内を移動しつつ冷却ブロック上に凝固し、ブロック表面に凝固鋼の層を生み出す。この層厚を面積全体にわたり所々の地点で計測して凝固速度の変動、従って、種々の位置での伝熱の有効速度をマッピングできる。従って、全体の凝固速度や全熱流束計測を行うことが可能である。ストリップ表面の微構造を調べ、凝固微構造の変化を観測凝固速度及び伝熱値の変化と関連づけて、冷却表面での初期凝固時の核生成に関連した構造を調べることも可能である。ディップテスト装置は、アメリカ特許第5,720,336号に比較的詳細に記述されている。 It can be concluded that lowering the oxygen level of the steel reduces the volume of inclusions and hence the number of oxidative inclusions for initial nucleation. This has the potential to adversely affect the nature of the initial contact between the steel and the roll surface. Due to the dip testing operation, a density per nucleation unit area of about 120 / mm 2 is necessary to generate sufficient heat flux in the initial solidification in the meniscus area, which is the upper casting pool area. Indicated. The dip test involves advancing the cooling block into the molten steel bath at a speed that closely simulates the condition at the casting surface of the twin roll caster. As the steel moves through the molten bath, it solidifies on the cooling block, creating a layer of solidified steel on the block surface. This layer thickness can be measured at various points throughout the area to map the variation in solidification rate, and thus the effective rate of heat transfer at various locations. Therefore, it is possible to measure the entire solidification rate and total heat flux. It is also possible to examine the microstructure of the strip surface and correlate the change in solidification microstructure with the observed solidification rate and change in heat transfer value to investigate the structure associated with nucleation during initial solidification on the cooling surface. The dip test apparatus is described in relatively detail in US Pat. No. 5,720,336.

初期核生成時の液状鋼の酸素含量と伝熱の関係を付録1に記述したモデルを用いて調べた。このモデルは、全介在物が球形であって鋼全体にわたり均一に分配されている、と想定している。表面層を2μmであると想定し、その表面層に存在する介在物のみが鋼初期凝固時の核生成工程に参画できると想定した。モデルの入力は、鋼の全酸素含量、介在物径、ストリップ厚、鋳造速度、表面層厚であった。出力は、120/mm2の目標核生成単位面積当たり密度を達成するのに必要な鋼全体での介在物の%であった。 The relationship between oxygen content and heat transfer in liquid steel during initial nucleation was investigated using the model described in Appendix 1. This model assumes that all inclusions are spherical and are evenly distributed throughout the steel. Assuming that the surface layer is 2 μm, it was assumed that only the inclusions present in the surface layer could participate in the nucleation process during the initial solidification of the steel. The model inputs were steel total oxygen content, inclusion diameter, strip thickness, casting speed, and surface layer thickness. The output was the percent of inclusions in the overall steel needed to achieve a target nucleation unit area density of 120 / mm 2 .

図8は、ストリップ厚を1.6mm、鋳造速度を80/分と想定した場合の、核生成プロセスに参画し、全酸素含量で表現される種々の鋼クリーンレベルで目標の核生成単位面積当たり密度を達成するのに必要な、表面層中の酸化介在物の%のグラフである。これは、介在物の大きさ2μm、全酸素含量200ppmでは, 表面層で利用可能な全酸化介在物の20%が目標核生成単位面積当たり密度120/mm2を達成するのに必要であることを示している。しかしながら、全酸素含量80ppmでは、介在物の50%位が臨界核生成速度を達成するのに必要であり、全酸素レベル40ppmは目標の核生成単位面積当たり密度を達成するのに不充分な酸化介在物レベルである。従って、取鍋内での脱酸により鋼を整える場合には、鋼の酸素含量を制御して100〜250ppm、典型的には約200ppmの全酸素含量を生み出すことができる。この結果、初期凝固時に鋳造ロールに隣接した2ミクロンの深さの層は単位面積当たり密度が少なくとも120/mm2の酸化介在物を含む。これらの介在物は最終凝固ストリップ品の外面層中に存在し、適宜の試験、例えばエネルギ分散型分光法(EDS)で検出できる。 Figure 8 shows the participation in the nucleation process, assuming a strip thickness of 1.6 mm and a casting speed of 80 / min, per target nucleation unit area at various steel clean levels expressed in total oxygen content. FIG. 5 is a graph of the percentage of oxidized inclusions in the surface layer required to achieve density. This means that with an inclusion size of 2 μm and a total oxygen content of 200 ppm, 20% of the total oxidation inclusions available in the surface layer are necessary to achieve a target density of 120 / mm 2 per unit nucleation unit area. Is shown. However, at a total oxygen content of 80 ppm, as much as 50% of the inclusions are necessary to achieve the critical nucleation rate, and a total oxygen level of 40 ppm is insufficient oxidation to achieve the target density per nucleation unit area. At the inclusion level. Thus, when preparing steel by deoxidation in a ladle, the oxygen content of the steel can be controlled to produce a total oxygen content of 100-250 ppm, typically about 200 ppm. As a result, the 2 micron deep layer adjacent to the casting roll during initial solidification contains oxidized inclusions with a density per unit area of at least 120 / mm 2 . These inclusions are present in the outer surface layer of the final solidified strip product and can be detected by a suitable test such as energy dispersive spectroscopy (EDS).

(例)
[入力]
(充分な伝熱速度を得るのに必要な)臨界核生成単位面積当たり密度(数/mm2) 120
(この値は実験のディップテスト作業から得られた。)
ロール幅(m) 1
ストリップ厚(mm) 1.6
取鍋トン(t) 120
鋼密度(kg/m3) 7800
全酸素(ppm) 75
介在物密度(kg/m) 3000

[出力]
介在物質量(kg) 21.42857
介在物径(m) 2.00E−06
介在物容積(m) 0.0
介在物の全数 1706096451319381.5
表面層厚μm(片側) 2
表面介在物全数 4265241128298.4536
(これらの介在物のみが初期核生成工程に参画できる)
鋳造速度(m/分) 80
ストリップ長(m) 9615.38462
ストリップ表面積(m) 19230.76923
必要な核生成場所の全数 2307692.30760
核生成工程に参画するのに必要な利用可能な介在物の% 54.10462
(Example)
[input]
Density per unit area of critical nucleation (necessary to obtain sufficient heat transfer rate) (number / mm 2 ) 120
(This value was obtained from the experimental dip test work.)
Roll width (m) 1
Strip thickness (mm) 1.6
Ladle ton (t) 120
Steel density (kg / m 3) 7800
Total oxygen (ppm) 75
Inclusion density (kg / m 3 ) 3000

[output]
Amount of intervening substance (kg) 21.42857
Inclusion diameter (m) 2.00E-06
Inclusion volume (m 3 ) 0.0
Total number of inclusions 1706096451319381.5
Surface layer thickness μm (one side) 2
Total number of surface inclusions 42652411288.45.4536
(Only these inclusions can participate in the initial nucleation process)
Casting speed (m / min) 80
Strip length (m) 9615.38462
Strip surface area (m 2 ) 19230.76923
Total number of nucleation sites required 23076992.30760
% Of available inclusions required to participate in the nucleation process 54.1462

(付録1)
[記号一覧表]
w = ロール幅(m)
t = ストリップ厚(mm)
= 取鍋内の鋼重量(トン)
ρ= 鋼密度(kg/m
ρ= 介在物密度(kg/m
= 鋼の全酸素(ppm)
d = 介在物径(m)
= 1介在物の容積(m
= 介在物の質量(kg)
= 介在物の全数
= 表面層厚(μm)
= (核生成プロセスに参画できる)表面中にある介在物の全数
u = 鋳造速度(m/分)
= ストリップ長(m)
= ストリップ表面積(m
req = 目標の核生成密度を達成するのに必要な介在物全数
NC= (ディップテストから得た)単位面積当たりの目標核生成密度(数/mm
av = 初期核生成工程のため鋳造ロール表面での溶鋼から利用可能な全介在物の%
[式]
(1) m= (O× m× 0.001)/0.42
注: マンガンケイ素キルド鋼では、酸素0.42kgが、30%MnO、40%SiO及び30%Al組成の介在物1kgを製造するのに必要である。
(カルシウム注入の)アルミニウムキルド鋼では、酸素0.38kgが、50%Al及び50%CaO組成の介在物1kgを製造するのに必要である。
(2) v = 4.19 × (d/2)
(3) N= m/(ρ× v
(4) Ns = (2.0 t× 0.001 × N/t)
(5) L= (m× 1000)/(ρ× w × t/1000)
(6) A= 2.0 × L× w
(7) Nreq = A× 10× NC
(8) Nav % = (Nreq/N) × 100.0
式1は、鋼中の介在物質量を計算する。
式2は、球形であると仮定した1介在物の容積を計算する。
式3は、鋼中で利用可能な介在物全数を計算する。
式4は、(各側で2μmであると想定して)表面層で利用可能な全介在物数を計算する。これらの介在物が初期核生成でのみ参画できることに注意。
式5及び式6は、ストリップの全表面積を計算するのに用いる。
式7は、目標の核生成速度を達成するのに表面で必要な介在物数を計算する。
式8は、核生成工程に参画しなければならない表面で利用可能な全介在物の%を計算するのに用いられる。この数が100%より大ならば、表面での介在物の数は目標の核生成速度達成に充分でないことに注意。
(Appendix 1)
[Symbol list]
w = roll width (m)
t = strip thickness (mm)
m s = steel weight in ladle (tons)
ρ s = steel density (kg / m 3 )
ρ i = inclusion density (kg / m 3 )
O t = total oxygen in steel (ppm)
d = Inclusion diameter (m)
v i = 1 inclusion volume (m 3 )
m i = mass of inclusion (kg)
N t = total number of inclusions t s = surface layer thickness (μm)
N s = total number of inclusions in the surface (can participate in the nucleation process) u = casting speed (m / min)
L s = strip length (m)
A s = strip surface area (m 2)
N req = total number of inclusions necessary to achieve the target nucleation density NC t = target nucleation density per unit area (obtained from dip test) (number / mm 2 )
N av =% of total inclusions available from the molten steel on the casting roll surface for the initial nucleation process
[formula]
(1) m i = (O t × m s × 0.001) /0.42
Note: In manganese silicon killed steel, 0.42 kg of oxygen is required to produce 1 kg of inclusions with a composition of 30% MnO, 40% SiO 2 and 30% Al 2 O 3 .
In aluminum killed steel (calcium injected), 0.38 kg of oxygen is required to produce 1 kg of inclusions with 50% Al 2 O 3 and 50% CaO composition.
(2) v i = 4.19 × (d / 2) 3
(3) N t = m i / (ρ i × v i)
(4) N s = (2.0 t s × 0.001 × N t / t)
(5) L s = (m s × 1000) / (ρ s × w × t / 1000)
(6) A s = 2.0 × L s × w
(7) N req = A s × 10 6 × NC t
(8) N av % = (N req / N s ) × 100.0
Equation 1 calculates the amount of inclusions in the steel.
Equation 2 calculates the volume of one inclusion assumed to be spherical.
Equation 3 calculates the total number of inclusions available in the steel.
Equation 4 calculates the total number of inclusions available in the surface layer (assuming 2 μm on each side). Note that these inclusions can only participate in early nucleation.
Equations 5 and 6 are used to calculate the total surface area of the strip.
Equation 7 calculates the number of inclusions required on the surface to achieve the target nucleation rate.
Equation 8 is used to calculate the percentage of total inclusions available on the surface that must participate in the nucleation process. Note that if this number is greater than 100%, the number of inclusions on the surface is not sufficient to achieve the target nucleation rate.

ケイ素/マンガンキルド鋼を用いた双ロール鋳造試験で得られた、熱流束に対する介在物融点の効果を示す。Figure 3 shows the effect of inclusion melting point on heat flux obtained in a twin roll casting test using silicon / manganese killed steel. 凝固鋼ストリップ中の一群の微細凝固介在物を示す、マンガンのエネルギ分散型分光法(EDS) マップである。2 is an energy dispersive spectroscopy (EDS) map of manganese showing a group of finely solidified inclusions in a solidified steel strip. 介在物液相温度に対し、マンガン:ケイ素含量を変えることの効果を示すグラフである。It is a graph which shows the effect of changing manganese: silicon content to inclusion liquid phase temperature. (ストリップ介在物から計測される)アルミナ含量と脱酸効果との関係を示す。Fig. 4 shows the relationship between alumina content (measured from strip inclusions) and deoxidation effect. MnO・SiO・Alの三相図である。It is a three-phase diagram of MnO.SiO 2 .Al 2 O 3 . アルミナ含量介在物と液相温度との関係を示す。The relationship between an alumina content inclusion and a liquidus temperature is shown. 表面張力に対する溶鋼中の酸素の効果を示す。The effect of oxygen in molten steel on the surface tension is shown. 相異なる鋼クリーンレベルでの核生成で利用可能な介在物に関する計算結果のグラフである。It is a graph of the calculation result about the inclusion which can be used by nucleation in different steel clean levels.

Claims (3)

間にロール間隙を有し、ロール間隙の端に隣接した閉込めクロージャを備えた、一対の冷却鋳造ロールを組立て、
鋼を鋳造ロール間に導入して鋳造ロール間に鋳造溜めを形成し、
鋳造ロールを相互回転させ、溶鋼を凝固させ、金属殻を鋳造ロール表面上に形成して、
前記凝固殻から鋳造ロールのロール間隙を介して凝固薄鋼ストリップを形成する諸段階からなる連続鋳造による鋼ストリップ製造方法において、
取鍋内の装入鋼及び鉱滓形成材料を加熱してケイ素、マンガン、カルシウム酸化物を含む鉱滓によって覆われた溶鋼を形成することにより鋳造溜め形成前の取鍋の溶鋼を精製し、不活性ガスを溶鋼中に吹き込むことで取鍋内の溶鋼を撹拌して脱硫させ、その後、酸素を吹き込んで全酸素含量が100ppm以上の溶鋼を製造する、
更なる段階からなり、
溶鋼溜めの溶鋼が、0.001〜0.1重量%の炭素含量、0.1〜2.0重量%のマンガン含量、0.1〜10重量%のケイ素含量、0.01重量%程度又はそれ以下のアルミニウム含量を有し、遊離酸素及び脱酸化介在物中の酸素からなる全酸素含量が100ppm〜250ppmのマンガンケイ素キルド鋼であり、
前記鋳造ロール表面上に形成される金属殻が、
2〜4g/cm の介在物密度で鋼中に分配されるMnO、SiO 、Al のうちいずれか1つ又はそれ以上からなる酸化介在物を有し、薄鋼ストリップの形成を促進する、ことを特徴とする連続鋳造による鋼ストリップ製造方法。
Assembling a pair of cooling cast rolls having a roll gap in between and having a confinement closure adjacent to the end of the roll gap;
Steel is introduced between the casting rolls to form a casting pool between the casting rolls,
The casting rolls are mutually rotated, the molten steel is solidified, and a metal shell is formed on the casting roll surface,
In the steel strip manufacturing method by continuous casting, comprising the steps of forming a solidified thin steel strip from the solidified shell through a roll gap of the casting roll,
The molten steel in the ladle before the formation of the casting pool is refined by heating the charged steel in the ladle and the material for forming the slag to form a molten steel covered with iron, which contains silicon, manganese, and calcium oxide. The molten steel in the ladle is stirred and desulfurized by blowing gas into the molten steel, and then oxygen is blown to produce molten steel having a total oxygen content of 100 ppm or more.
It consists of further stages
Molten sump molten steel, the carbon content of 0.001 to 0.1 wt%, 0.1 to 2.0 wt% of manganese content, silicon content of from 0.1 to 10 wt%, about 0.01% or A manganese silicon killed steel having a lower aluminum content and a total oxygen content of 100 ppm to 250 ppm consisting of free oxygen and oxygen in deoxidation inclusions ;
A metal shell formed on the casting roll surface,
Having oxidized inclusions of any one or more of MnO, SiO 2 , Al 2 O 3 distributed in the steel at an inclusion density of 2-4 g / cm 3 to form a thin steel strip A method of producing a steel strip by continuous casting, characterized by promoting.
鋳造時の溶鋼の硫黄含量が0.01重量%以下である、請求項1で請求の鋼ストリップ製造方法。 The method for producing a steel strip according to claim 1 , wherein the sulfur content of the molten steel at the time of casting is 0.01% by weight or less . 凝固鋼が100〜250ppmの全酸素含量を有する、請求項1又は請求項2で請求の鋼ストリップ製造方法。 3. A method according to claim 1 or claim 2 , wherein the solidified steel has a total oxygen content of 100 to 250 ppm .
JP2003528333A 2001-09-14 2002-09-13 Steel strip casting Expired - Fee Related JP4495455B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32226101P 2001-09-14 2001-09-14
PCT/AU2002/001257 WO2003024644A1 (en) 2001-09-14 2002-09-13 Casting steel strip

Publications (3)

Publication Number Publication Date
JP2005501741A JP2005501741A (en) 2005-01-20
JP2005501741A5 JP2005501741A5 (en) 2005-10-27
JP4495455B2 true JP4495455B2 (en) 2010-07-07

Family

ID=23254097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003528333A Expired - Fee Related JP4495455B2 (en) 2001-09-14 2002-09-13 Steel strip casting

Country Status (16)

Country Link
US (1) US20030111206A1 (en)
EP (1) EP1439926B1 (en)
JP (1) JP4495455B2 (en)
CN (1) CN1277634C (en)
AT (1) ATE509716T1 (en)
AU (2) AU2002331433A2 (en)
BR (1) BRPI0212499B1 (en)
CO (1) CO5560594A2 (en)
HR (1) HRP20040234B1 (en)
IS (1) IS7168A (en)
MX (1) MXPA04002374A (en)
MY (1) MY134786A (en)
NO (1) NO342646B1 (en)
RU (1) RU2297900C2 (en)
UA (1) UA77001C2 (en)
WO (1) WO2003024644A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA76140C2 (en) * 2001-04-02 2006-07-17 Nucor Corp A method for ladle refining of steel
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
US7485196B2 (en) * 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US7048033B2 (en) 2001-09-14 2006-05-23 Nucor Corporation Casting steel strip
US6808550B2 (en) * 2002-02-15 2004-10-26 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
US20040144518A1 (en) * 2003-01-24 2004-07-29 Blejde Walter N. Casting steel strip with low surface roughness and low porosity
NZ541204A (en) * 2003-01-24 2007-04-27 Nucor Corp Casting steel strip
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
AT504225B1 (en) 2006-09-22 2008-10-15 Siemens Vai Metals Tech Gmbh METHOD FOR PRODUCING A STEEL STRIP
EP2162252B1 (en) * 2007-05-06 2021-07-07 Nucor Corporation An age hardened thin cast strip product with microalloy additions, and method for making the same
US7975754B2 (en) 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking
US8444780B2 (en) * 2009-02-20 2013-05-21 Nucor Corporation Hot rolled thin cast strip product and method for making the same
US20100215981A1 (en) * 2009-02-20 2010-08-26 Nucor Corporation Hot rolled thin cast strip product and method for making the same
WO2011100798A1 (en) 2010-02-20 2011-08-25 Bluescope Steel Limited Nitriding of niobium steel and product made thereby
RU2587106C2 (en) * 2012-03-07 2016-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Steel sheet for hot forming, method for production thereof and hot-forged steel material
CN103305759B (en) * 2012-03-14 2014-10-29 宝山钢铁股份有限公司 Thin strip continuous casting 700MPa grade high-strength weather-resistant steel manufacturing method
CN103695756B (en) * 2013-12-12 2016-01-13 武汉钢铁(集团)公司 The half-technique non oriented silicon steel adopting CSP to produce and method
CN104357737B (en) * 2014-11-14 2017-03-15 北京科技大学 A kind of NdFeB target preparation methoies with texture characteristic
GB2547608B (en) * 2014-12-19 2022-02-23 Nucor Corp Method of making thin floor plate
CN108986629B (en) * 2018-08-30 2020-12-29 中南大学 Double-roller thin-strip continuous casting crystallizer simulation device and method thereof
CN109036073B (en) * 2018-08-30 2020-12-29 中南大学 Device and method for simulating generation of surface oxidation film of thin-strip continuous casting crystallization roller
CN109444039B (en) * 2018-09-21 2021-06-15 首钢集团有限公司 Method for predicting critical reduction of dynamic recrystallization during micro-alloy steel hot rolling
CN112522580A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Martensitic steel strip and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468249A (en) * 1982-09-16 1984-08-28 A. Finkl & Sons Co. Machinery steel
JP2795871B2 (en) * 1989-02-03 1998-09-10 新日本製鐵株式会社 Continuous casting of thin cast slab
JP2846404B2 (en) * 1990-04-06 1999-01-13 新日本製鐵株式会社 Method of manufacturing low carbon steel slab by twin roll casting method
JPH0811809B2 (en) * 1991-08-14 1996-02-07 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2677493B2 (en) * 1992-09-17 1997-11-17 新日本製鐵株式会社 Cr-Ni-based stainless steel thin plate having no roughened surface and method for producing the same
JPH06246393A (en) * 1993-03-02 1994-09-06 Nkk Corp Method for continuously casting simn deoxidized steel by molten steel stirring treatment
AUPN176495A0 (en) * 1995-03-15 1995-04-13 Bhp Steel (Jla) Pty Limited Casting of metal
DE69615176T2 (en) * 1995-05-05 2002-07-04 Bhp Steel Jla Pty Ltd MOLDING STEEL TAPES
AUPN937696A0 (en) * 1996-04-19 1996-05-16 Bhp Steel (Jla) Pty Limited Casting steel strip
US6059014A (en) * 1997-04-21 2000-05-09 Ishikawajima Heavy Industries Co., Ltd. Casting steel strip
AUPO710497A0 (en) * 1997-06-02 1997-06-26 Bhp Steel (Jla) Pty Limited Casting metal strip
JP4730981B2 (en) * 1998-02-16 2011-07-20 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
AUPR047900A0 (en) * 2000-09-29 2000-10-26 Bhp Steel (Jla) Pty Limited A method of producing steel
UA76140C2 (en) * 2001-04-02 2006-07-17 Nucor Corp A method for ladle refining of steel

Also Published As

Publication number Publication date
US20030111206A1 (en) 2003-06-19
CN1553836A (en) 2004-12-08
JP2005501741A (en) 2005-01-20
ATE509716T1 (en) 2011-06-15
HRP20040234A2 (en) 2004-08-31
EP1439926A4 (en) 2004-11-03
AU2008249238B2 (en) 2011-03-24
MY134786A (en) 2007-12-31
MXPA04002374A (en) 2004-11-22
HRP20040234B1 (en) 2013-02-28
AU2002331433A2 (en) 2003-04-01
BR0212499A (en) 2004-12-28
CN1277634C (en) 2006-10-04
NO20041500L (en) 2004-06-10
EP1439926B1 (en) 2011-05-18
UA77001C2 (en) 2006-10-16
RU2297900C2 (en) 2007-04-27
WO2003024644A1 (en) 2003-03-27
NO342646B1 (en) 2018-06-25
AU2008249238A1 (en) 2008-12-18
CO5560594A2 (en) 2005-09-30
IS7168A (en) 2004-03-03
EP1439926A1 (en) 2004-07-28
BRPI0212499B1 (en) 2015-12-08
RU2004111292A (en) 2005-05-20

Similar Documents

Publication Publication Date Title
JP4495455B2 (en) Steel strip casting
JP6078216B2 (en) Steel material with high austenite grain roughening temperature and method for producing the same
US7588649B2 (en) Casting steel strip
US6547849B2 (en) Ladle refining of steel
AU2002244528A1 (en) Ladle refining of steel
JP4323166B2 (en) Metallurgical products of carbon steel especially for the purpose of galvanization, and methods for producing the same
JPH01299742A (en) Method for continuously casting bloom or billet by calcium treatment
JPH06114500A (en) Production of low-carbon sulfur free-cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees