JP4494719B2 - Storage battery heat sink and storage battery cooling device - Google Patents

Storage battery heat sink and storage battery cooling device Download PDF

Info

Publication number
JP4494719B2
JP4494719B2 JP2003016042A JP2003016042A JP4494719B2 JP 4494719 B2 JP4494719 B2 JP 4494719B2 JP 2003016042 A JP2003016042 A JP 2003016042A JP 2003016042 A JP2003016042 A JP 2003016042A JP 4494719 B2 JP4494719 B2 JP 4494719B2
Authority
JP
Japan
Prior art keywords
storage battery
heat
heat sink
heat receiving
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003016042A
Other languages
Japanese (ja)
Other versions
JP2004227986A (en
Inventor
隆広 志村
雅章 山本
晃 秀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003016042A priority Critical patent/JP4494719B2/en
Publication of JP2004227986A publication Critical patent/JP2004227986A/en
Application granted granted Critical
Publication of JP4494719B2 publication Critical patent/JP4494719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車載用の鉛蓄電池の冷却装置、特に複数のセルに区画された電槽からなる蓄電池用のヒートシンクおよび冷却方法に関する。
【0002】
【従来の技術】
自動車用の電源として、複数のセル室に区画された電槽を備えた鉛蓄電池が用いられている。自動車内の電装部品の増加に伴い、車載用の蓄電池の電源電圧が増える傾向にあり、セル室の数は増加傾向にある。
例えば、36V鉛蓄電池では、横方向に2個づつのセルが縦方向に並列して9列配置され、合計18個のセルが配置されている。充電時に各セルから熱を生じるが、複数のセルを並べて配置すると、中央部に配置されたセルの放熱性が悪くなり、電池寿命低下の原因となる。
【0003】
特開平10−144266号公報(以下、「先行技術」という)には、従来の鉛電池の冷却装置が開示されている。図14は先行技術の蓄電池100の断面図である。図14に示すように、セル101とセル101の間には隔壁部102があり、隔壁部102は金属部材103を樹脂等の材料104によって被覆して形成されている。更に、電槽の外周部が、樹脂部材等によって被覆された板状ヒートパイプによって形成されている。上述したように、先行技術においては、隔壁部の熱伝導性を高めて、放熱性を向上するために、金属部材があらかじめ内包された材料を電槽壁面に使用して中央部のセルから効率良く熱を取り出す方法が開示されている。
【0004】
【特許文献1】
特開平10−144266号公報
【0005】
【発明が解決しようとする課題】
先行技術に開示されたように、金属部材があらかじめ内包された材料を電槽壁面に使用すると、蓄電池の寿命が低下して、蓄電池を交換する必要が生じたとき、蓄電池と共に電槽壁面に使用された、金属部材があらかじめ内包された材料を全て新しいものに交換しなければならない。即ち、先行技術に開示された装置は、蓄電池の壁面にヒートシンクを組み込んだ所謂ヒートシンク一体型の蓄電池である。従って、蓄電池の寿命低下に際して、蓄電池と共に蓄電池冷却装置、例えば、ヒートシンクを交換するために、コストが非常に高くなるという問題点がある。更に、電槽壁面に使用された、金属部材があらかじめ内包された材料自体の機能は低下するわけではないので、資源の無駄が多く、リサイクルの観点から好ましくないと言う問題点がある。
【0006】
従って、本発明の目的は、高い電源電圧の蓄電池の熱を効率的に外部に放熱して蓄電池の寿命を延ばし、蓄電池の交換に伴うコストを低下することができる、車載用の鉛蓄電池の冷却装置および冷却方法を提供することにある。
【0007】
【課題を解決するための手段】
発明者は、上述した従来の問題点を解決するために鋭意研究を重ねた。その結果、蓄電池の壁面にヒートシンクを組み込んだ所謂ヒートシンク一体型の蓄電池ではなく、所定の間隙を備えて複数のセルに区画された電槽からなる蓄電池に取り外し可能で、蓄電池の中央部のセルにも接続可能なヒートシンクを用いることによって、蓄電池のみを交換するだけでよく、高い電源電圧の蓄電池の熱を効率的に外部に放熱して蓄電池の寿命を延ばし、蓄電池の交換に伴うコストを低下することができる、車載用の鉛蓄電池の冷却装置および冷却方法を提供することができることが判明した。
【0008】
更に、車のトランクルーム内に上述した蓄電池用ヒートシンクを設置し、蓄電池用ヒートシンクに対応した形状の蓄電池を蓄電池用ヒートシンクに嵌合して、蓄電池と蓄電池用ヒートシンクとを熱的に接続することによって、蓄電池を冷却する蓄電池冷却装置を提供することができることが判明した。
【0009】
この発明は、上述した研究結果に基づいてなされたものであって、この発明の蓄電池用ヒートシンクの第1の態様は、所定の間隙を備えて複数のセルに区画されてその上部が一体的に形成された電槽からなる蓄電池を冷却するための蓄電池用ヒートシンクであって、井形状に形成され、前記セルに熱的に接続して、蓄電池の前記セルからの熱を受け入れる受熱部と、前記受熱部の井形状の外側を囲むように前記受熱部と一体に形成され前記受熱部から伝わる熱を放出する放熱部と、を備え、前記受熱部または前記放熱部の一方または両方によって囲まれて形成された空間に、前記蓄電池の複数のセルの四方の側面が前記受熱部または前記放熱部の一方または両方と接触する態様で前記蓄電池が着脱可能に挿入されるようにしたことを特徴とする蓄電池用ヒートシンクである。
【0012】
この発明の蓄電池用ヒートシンクの第4の態様は、前記放熱部の少なくとも1部にフィンを備えている、蓄電池用ヒートシンクである。
【0014】
この発明の蓄電池用ヒートシンクの第6の態様は、前記受熱部がヒートパイプ部を備えている、蓄電池用ヒートシンクである。
【0015】
この発明の蓄電池用ヒートシンクのその他の態様は、前記第1受熱部および前記第2受熱部が前記間隙の全てに挿入されている、蓄電池用ヒートシンクである。
【0016】
この発明の蓄電池用ヒートシンクのその他の態様は、前記第1受熱部および前記第2受熱部が所定の前記間隙にのみ挿入されている、蓄電池用ヒートシンクである。
【0017】
この発明の蓄電池用ヒートシンクのその他の態様は、前記受熱部が中空部を備えている、蓄電池用ヒートシンクである。
【0018】
この発明の蓄電池冷却装置の第1の態様は、車のトランクルーム内に上述した蓄電池用ヒートシンクが設置されており、前記蓄電池用ヒートシンクに対応した形状の蓄電池を前記蓄電池用ヒートシンクに前記トランクルームの開口側から着脱可能に挿入して、前記蓄電池と前記蓄電池用ヒートシンクとを熱的に接続して蓄電池を冷却する、蓄電池冷却装置である。
【0019】
この発明の蓄電池冷却装置の第2の態様は、車体外表面と熱的に接続した金属板を更に備え、前記蓄電池用ヒートシンクが前記金属板上に設置され、前記蓄電池からの熱をトランクルーム内および/または外気に放熱する、蓄電池冷却装置である。
【0020】
この発明の蓄電池冷却装置のその他の態様は、前記トランクルーム内に送風手段が備えられ、前記放熱部が強制冷却される、蓄電池冷却装置である。
【0021】
【発明の実施の形態】
この発明の蓄電池用ヒートシンクおよび蓄電池冷却装置を図面を参照しながら説明する。
この発明の蓄電池用ヒートシンクの1つの態様は、所定の間隙を備えて複数のセルに区画された電槽からなる蓄電池の前記セル間の前記間隙に脱着可能に挿入され、前記セルに熱的に接続して、蓄電池の前記セルからの熱を受け入れる受熱部と、前記受熱部と一体に形成されて、前記受熱部の熱を放出する放熱部からなる蓄電池用ヒートシンクである。
【0022】
図1(a)は、この発明の蓄電池用ヒートシンクを電槽に装着したときの外観の1例を示す図である。図1(b)は、図1(b)は、蓄電池用ヒートシンクと電槽を分離した状態を示す図である。図1(b)に示すように、蓄電池の電槽2は所定の間隙を備えて複数のセルに区画されており、セル間の上述した間隙に脱着可能に蓄電池用ヒートシンクが挿入される。即ち、図1(b)に示すように、電槽は櫛刃形状からなっており、その上部が一体的に形成され、その下部4は、スリット42によってそれぞれ分離されており、分離された間隙に蓄電池用ヒートシンク1の受熱部6、7が熱的に密接に接続するように嵌め込まれている。図1(a)および図1(b)に示すように、蓄電池用ヒートシンク1は、セル間の間隙に脱着可能に挿入され、セルに熱的に接続して、蓄電池のセルからの熱を受け入れる受熱部と、受熱部と一体に形成されて蓄電池の外周部に配置され、受熱部の熱を放出する放熱部5とからなっている。放熱部5は必要によりフィン部3を備えていてもよい。
【0023】
図2は、この発明の蓄電池用ヒートシンクの1つの態様の断面図である。図2に示すように、蓄電池は、横方向に2個づつのセル4が縦方向に並列して9列配置され、合計18個のセルが配置されている。このように配置された分離されたセル4の四周を囲むように、蓄電池用ヒートシンクが脱着可能に間隙に挿入され配置される。この態様の蓄電池用ヒートシンクは、間隙に挿入される受熱部が平行な複数の第1受熱部6、および、第1受熱部と直交する少なくとも1つの第2受熱部7からなっており、第1受熱部と第2受熱部が蓄電池の内側部において直交している。即ち、受熱部が格子状からなっている。蓄電池用ヒートシンクの放熱部からなる外周部5には、四周にわたって放熱フィン部3が設けられている。
【0024】
蓄電池用ヒートシンクは、例えば、アルミニウム押し出し材によって形成される。上述したように、蓄電池用ヒートシンクは、セルを分離する間隙に嵌め込まれているので、取り外し可能である。蓄電池用ヒートシンクの受熱部は、セルの外壁面に熱的に密接に接続されているので、セルからの熱が容易に受熱部に移動する。必要に応じて、蓄電池の分離したセルの外周面または放熱部のセルとの接触面に伝熱グリスを塗布してもよい。セルから受熱部に移動した熱は、外周部の放熱部に容易に移動し、外周部に設けられたフィン部から外部に放熱される。
【0025】
この発明の蓄電池用ヒートシンクは、蓄電池の電槽の分離されたセルに受熱部が熱的に密接に接続しているので、中央部のセルの熱も速やかに受熱部に移動し、更に外周部、フィン部に移動されて放熱されるので、ヒートシンクを装着しない場合には、蓄電池内と外気との間で温度差が31℃にも達していたのが、この発明の蓄電池用ヒートシンクを装着すると、蓄電池内と外気との間で温度差が18℃と著しく低下する。従って、電池の寿命を著しく長くすることができる。更に、蓄電池の寿命が低下して交換する際にも、蓄電池用ヒートシンクはそのまま使用することができ、蓄電池の交換に伴うコストを大幅に低下することができる。
【0026】
図3は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。図3に示す態様の蓄電池用ヒートシンクは、図2に示した態様の蓄電池用ヒートシンクの外周部に備えられたフィン部に更に保護部が備えられている。即ち、この態様の蓄電池用ヒートシンクは、間隙に挿入される受熱部が平行な複数の第1受熱部6、および、第1受熱部と直交する少なくとも1つの第2受熱部7からなっており、第1受熱部と第2受熱部が蓄電池の内側部において格子状を形成するように直交している。
【0027】
蓄電池用ヒートシンクの放熱部からなる外周部5には、四周にわたって放熱フィン部3が設けられ、更に、放熱フィン部3の外周部5に保護部15が設けられている。このようにフィン部に保護部を設けることによって、フィン部の強度が増大し、変形し難くなる。その結果、優れた放熱性能が維持される。特に、車載用の36V鉛電池は重量が約20kg程度になり、電池設置時にフィン部を変形させたり損傷する恐れが有り、保護部を備えることによって、フィン部を保護することができる。
【0028】
この態様の蓄電池用ヒートシンクも例えば、アルミニウム押し出し材によって一体的に成形することができる。保護部は、ろう付け等によってフィン部に接合してもよい。なお、保護部には必要により通風孔を設けてもよい。この態様においても、蓄電池用ヒートシンクの受熱部は、セルの外壁面に熱的に密接に接続されているので、セルからの熱が容易に受熱部に移動する。必要に応じて、蓄電池の分離したセルの外周面または放熱部のセルとの接触面に伝熱グリスを塗布してもよい。セルから受熱部に移動した熱は、外周部の放熱部に容易に移動し、外周部に設けられたフィン部から外部に放熱される。
【0029】
図4は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。この態様の蓄電池用ヒートシンクは、受熱部が少なくとも2つの部分に分割可能である蓄電池用ヒートシンクである。図4には、点線にそって縦方向および横方向に、受熱部が4つの部分11、12、13、14に分割される蓄電池用ヒートシンクを示している。図5は、分割された受熱部の1つの部分を示す図である。この態様の蓄電池用ヒートシンクは、間隙に挿入される受熱部が平行な複数の第1受熱部6、および、第1受熱部と直交する少なくとも1つの第2受熱部7からなっており、第1受熱部と第2受熱部が蓄電池の内側部において格子状に直交しており、そして、放熱部からなる外周部5には、四周にわたって放熱フィン部3が設けられている。
【0030】
このような蓄電池用ヒートシンクを、上述したように縦横方向に中央部分で4つに分割して作製している。図5に示すように、4つの部分(ユニット)に分割された場合においては、セル間の間隙に挿入されて、4つのセルの四周を取り囲む第1受熱部6と第2受熱部7がセルの外周面に熱的に密接に接続する。残りの3つの部分(ユニット)も同様にセル間の間隙に挿入されて、4つのユニットが組合わされて全体として、図4に示すように、各セルの四周が、第1受熱部6と第2受熱部7に熱的に密接に接続される。
【0031】
上述した態様においては、蓄電池用ヒートシンクが4つのユニットに分割された例を示したが、分割は4つに限定されること無く、2、6等任意の数に分割することができる。この態様の蓄電池用ヒートシンクも、例えば、アルミニウム押し出し材によって成形することができる。
上述した態様の蓄電池用ヒートシンクにおいては、第1受熱部および第2受熱部がセル間の間隙の全てに挿入されているが、別の態様においては、第1受熱部および第2受熱部がセル間の所定の間隙にのみ挿入されていてもよい。即ち、セルの全ての隔壁に蓄電池用ヒートシンクが熱的に接続される必要は無く、例えば、放熱の容易な部分に位置する3つのセルを合わせてその外周を囲むように第1受熱部および第2受熱部を配置してもよい。
【0032】
図6は、第1受熱部および第2受熱部がセル間の所定の間隙にのみ挿入されている蓄電池用ヒートシンクの部分を示す図である。即ち、図6に示す部分は、図4に示す12の部分に対応している。蓄電池のセルの全ての外周面に蓄電池用ヒートシンクを熱的に接続させる必要は無く、温度が高くなる中央部セルとそれほど温度が高くならない周辺部のセルとの間で取り扱いを異にしてもよい。図6に示すように、中央部のセル4は、温度が高くなるので、第1受熱部6および第2受熱部7ならびに外周部5によって四周を囲まれ、それらに熱的に密接に接続される。これに対して、左上の3つのセルは、中央部に比べて温度がそれほど高くならないので、3つのセルを合わせた部分4'は、部分4'全体の四周を囲むように
第1受熱部6および第2受熱部7ならびに外周部5を配置して、熱的に密接に接続すればよい。
【0033】
なお、図6に示す態様の蓄電池用ヒートシンクは、図4に示したように、縦横方向に中央部で4つの部分(ユニット)に分割された1つの部分である。図6に示した3つのセルを合わせた部分4'と1つのセルの部分4との組み合わせのユニット12を、図4に示したユニット11、ユニット13、ユニット14にも適用して作製してもよい。このように4つに区分されたユニットからなる蓄電池用ヒートシンクを作製することによって、中央部の6つのセル4は、それぞれ四周を第1受熱部6および第2受熱部7ならびに外周部5によって囲まれて、熱的にそれらに密接に接続され、周辺部に位置する3つのセルを合わせた部分4'全体を第1受熱部6および第2受熱部7ならびに外周部5によって囲まれて、熱的にそれらに密接に接続される。
【0034】
図7は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。図6を参照して、縦横方向に中央部で4つの部分(ユニット)に分割された蓄電池用ヒートシンクを説明したが、図7に示す態様においては、蓄電池用ヒートシンクは、分割されることのない単体からなる態様である。図7に示すように、蓄電池の電槽は所定の間隙を備えて複数のセルに区画されており、セル間の所定の間隙に脱着可能に受熱部が挿入されている。即ち、図7に示すように、中央部の6つのセル4は、温度が高くなるので、第1受熱部6および第2受熱部7ならびに外周部5によって四周を囲まれ、それらに熱的に密接に接続される。
【0035】
更に、周辺部セル群、即ち、それぞれ3つのセルを合わせた部分4'は、中央部に比べて温度がそれほど高くならないので、3つのセルを合わせた部分4'全体の四周を囲むように第1受熱部6および第2受熱部7ならびに外周部5が配置され、熱的に密接に接続される。この態様の蓄電池用ヒートシンクは、セルを分離する間隙の内、上述した部分の間隙に嵌め込まれているので、取り外し可能である。蓄電池用ヒートシンクの受熱部は、所定のセルの外壁面に熱的に密接に接続されているので、セルからの熱が容易に受熱部に移動し、セルから受熱部に移動した熱は、外周部の放熱部に容易に移動し、外周部に設けられたフィン部から外部に放熱される。上述したように蓄電池用ヒートシンクの受熱部を温度の高い中央部と温度の低い周辺部で変化させて配置することによって、不必要な部分の受熱部が省略され、より効率的なヒートシンクが得られる。
なお、図7に示す蓄電池用ヒートシンクは、図6に示した部分に分割されるヒートシンクであってもよい。その際には、中央部セルの外周面は、図6に示した第2受熱部の一部と、他のセルの第2受熱部の一部に熱的に密接に接続される。
【0036】
図8は、受熱部がセル間の所定の間隙にのみ挿入されている他の態様の蓄電池用ヒートシンクの部分を示す図である。即ち、蓄電池のセルの全ての外周面に蓄電池用ヒートシンクを熱的に接続させる必要は無く、温度が高くなる中央部セルとそれほど温度が高くならない周辺部のセルとの間で受熱部の配置を変化させてもよい。図8に示すように、例えば、周辺部の4つのセルは、中央部に比べて温度がそれほど高くならないので、4つのセルを合わせた部分4'全体の四周を囲むように受熱部を配置して、熱的に密接に接続すればよい。図8に示す受熱部は所定の形状に曲げられた平面型ヒートパイプからなっており、第1受熱部に対応する部分8、第2受熱部に対応する部分8'、外周部に対応する部分10からなっている。
【0037】
外周部に対応する部分10には、放熱部としてのフィン部9が取り付けられている。図8に示すように、フィン部9を外周部10のセル部分4'側に設けることによって、フィン部を保護することができる。勿論、フィン部を外周部のセル部分4'と反対側に設けてもよい。その際には、更に保護部を設けてもよい。平面型ヒートパイプとフィン部とはろう付け、伝熱性の接着剤による接着等の方法で接合されている。
この態様の蓄電池用ヒートシンクは、平面型ヒートパイプからなっており、セルの外周面に直接ヒートパイプが熱的に接続されるので、熱移動性能が極めて高く、放熱効果に優れている。
【0038】
なお、図8に示す態様の蓄電池用ヒートシンクは、後述する概ね4つの部分(ユニット)に分割された1つの部分である。このように概ね4つに区分されたユニットからなる蓄電池用ヒートシンクを作製することによって、周辺部に位置する4つのセルを合わせた部分4'全体を、平面型ヒートパイプからなる受熱部8、8'および外周部10によって囲まれて、受熱部8、8'において平面型ヒートパイプの吸熱面に密接に熱的に接続される。この態様の蓄電池用ヒートシンクは、セルを分離する間隙の内、上述した部分の間隙に嵌め込まれており、取り外し可能である。蓄電池用ヒートシンクの受熱部は熱移動に優れた平面型ヒートパイプからなっており、所定のセルの外壁面に熱的に密接に接続されているので、セルからの多量の熱が容易に受熱部に移動し、セルから受熱部に移動した熱は、平面型ヒートパイプ内に内蔵された作動流体の相変化によって速やかに外周部の放熱部に移動し、外周部に設けられたフィン部から外部に放熱される。
【0039】
図9は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。即ち、図8に示した平面型ヒートパイプからなる受熱部およびフィン部からなる放熱部からなる蓄電池用ヒートシンクの部分(ユニット)を4つ組み合わせた、分割可能な蓄電池用ヒートシンクの態様である。即ち、ユニット21、ユニット22、ユニット23およびユニット24を組み合わせる。共通部分の受熱部8'は、何れかのユニットの一部を共用してもよく、図8に示すようなユニットを重ね合わせてもよい。
【0040】
図9に示すように、中央部分に位置するセル4は、それぞれ3方向を平面型ヒートパイプに熱的に密接に接続されているので、セル4から生じる熱はヒートパイプ内に封入された作動液の相変化によってフィン部からなる放熱部に速やかに移動され、放熱性能は極めて高い。残りの周辺部のセルが位置する部分4'は、中心部に位置する壁面部は平面型ヒートパイプの受熱部8'と熱的に密接に接続されるので、同様に、セル群から生じる熱はヒートパイプ内に封入された作動液の相変化によってフィン部9に速やかに移動され、放熱性能は極めて高い。
【0041】
勿論、断面形状が図9に示される単体(一体型)の蓄電池用ヒートシンクであってもよい。一体型の蓄電池用ヒートシンクの場合には、図9に示す態様の蓄電池用ヒートシンクは、周辺部21、22、23、24に位置する4つのセルを合わせた部分4'全体をそれぞれ、平面型ヒートパイプからなる受熱部8、8'および外周部10によって囲み、受熱部8、8'において平面型ヒートパイプの吸熱面に密接に熱的に接続される。中央部に位置するセル4は、それぞれ3方向を平面型ヒートパイプの受熱部8、8'に熱的に密接に接続されている。
【0042】
この態様の蓄電池用ヒートシンクは、セルを分離する間隙の内、上述した部分の間隙に嵌め込まれており、取り外し可能である。蓄電池用ヒートシンクの受熱部は熱移動に優れた平面型ヒートパイプからなっており、所定のセルの外壁面に熱的に密接に接続されているので、セルからの多量の熱が容易に受熱部に移動し、セルから受熱部に移動した熱は、平面型ヒートパイプ内に内蔵された作動流体の相変化によって速やかに外周部の放熱部に移動し、外周部に設けられたフィン部から外部に放熱される。
【0043】
上述したように、フィン部9を外周部10のセル部分4'側に設けることによって、フィン部を保護することができる。勿論、フィン部を外周部のセル部分4'と反対側に設けてもよい。その際には、更に保護部を設けてもよい。平面型ヒートパイプとフィン部とはろう付け、伝熱性の接着剤による接着等の方法で接合されている。
【0044】
図10は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。この態様の蓄電池用ヒートシンクは、受熱部が(強制空冷用の)中空部を備えている、蓄電池用ヒートシンクである。即ち、蓄電池用ヒートシンクは、所定の間隙に挿入され、セルからの熱を受け入れる平行な複数の第1受熱部、および、第1受熱部と直交する少なくとも1つの第2受熱部、および、受熱部と一体に形成されて受熱部の熱を放出するフィン部からなる放熱部を備えている。
【0045】
図10に示すように、隣接するセルの外周面に熱的に接続される第1受熱部36は、内部に強制空冷用の中空部38を備えており、中空部の中にフィン部33が設けられている。第1受熱部36と直交する第2受熱部37も、同様に、隣接するセルの外周面に熱的に接続され、内部に強制空冷用の中空部38を備えており、中空部の中にフィン部33が設けられている。フィン部が設けられている中空部は、そのまま自然放熱でもよいが、中空部に強制的に空気を送り放熱効率を高めることができる。第1受熱部および第2受熱部は、セル間の全ての間隙に挿入されて、個々のセルの熱を受熱してもよく、更に、例えば、3つのセルをまとめた部分の間の間隙のみに挿入されて、セル群の熱を受熱してもよい。または、図9を参照して説明したように、中央部のセルには、個別に受熱部が熱的に接続され、その他の周辺部はセル群をまとめた部分に熱的に接続されてもよい。
【0046】
図11は、図10に示す蓄電池用ヒートシンクを蓄電池に装着した状態を説明する図である。蓄電池用ヒートシンクは、所定の間隙(即ち、セル3個からなるセル群の間の間隙)に挿入され、セル群からの熱を受け入れる平行な複数の第1受熱部、および、第1受熱部と直交する少なくとも1つの第2受熱部、および、受熱部と一体に形成されて受熱部の熱を放出するフィン部からなる放熱部を備えている。図11に示すように、中央部のそれぞれ3個のセルからなる2つのセル群4'、周辺部に位置するそれぞれ3個のセルからなる4つのセル群4'の間の間隙に受熱部が挿入されている。
【0047】
中央部のセル群4'のそれぞれの3個のセルは、両側部のセルの2つの外周面が受熱部に熱的に密接に接続され、中央部のセルは、1つの外周面が受熱部に熱的に密接に接続されている。周辺部のセル群4'のそれぞれの3個のセルは、中央部側のセルの2つの外周面が受熱部に熱的に密接に接続され、その他のセルは、1つの外周面が受熱部に熱的に密接に接続されている。
図11に示す態様の蓄電池用ヒートシンクにおいては、中央部のセル群は3個のセルからなっているが、中央部の個々のセルの発熱の状態に応じて、中央部のセル群の数を変化させ、または、第1受熱部の数を増やしてもよい。
【0048】
図11に示し、上述したように、隣接するセル群4'の外周面に熱的に接続される第1受熱部36は、内部に強制空冷用の中空部38を備えており、中空部の中にフィン部33が設けられている。第1受熱部36と直交する第2受熱部37も、同様に、隣接するセルの外周面に熱的に接続され、内部に強制空冷用の中空部38を備えており、中空部の中にフィン部33が設けられている。フィン部が設けられている中空部は、そのまま自然放熱でもよいが、中空部に強制的に空気を送り放熱効率を高めることができる。
【0049】
次に、上述した各種の態様の蓄電池用ヒートシンクを使用して、自動車に搭載した状態で蓄電池を冷却する状態を説明する。
図12は、トランクルーム内に配置したこの発明の蓄電池用ヒートシンクに蓄電池を装着する状態を説明する図である。図12に示すように、トランクルームの底部に蓄電池用ヒートシンク1が取り付けられている。このようにトランクルーム内に取り付けられた蓄電池用ヒートシンクに、蓄電池が脱着可能な状態で嵌め込まれる。即ち、蓄電池は、電槽の上部2が一体的に形成され、その下部4は、それぞれ分離されて、櫛歯形状からなっている。このように形成された蓄電池が図中、矢印で示すように下方に向かって移動し、蓄電池のセルの分離された間隙に、フィン部3を備えた蓄電池用ヒートシンク1が嵌め込まれる。
【0050】
蓄電池のセルの分離された間隙に蓄電池用ヒートシンクを嵌め込むことによって、上述したように、各セルの外周面が蓄電池用ヒートシンクの受熱部に熱的に密接に接続され、セルに生じる熱を受熱部で受熱し、放熱部に移動されて、トランクルーム内に放熱される。トランクルーム内に放出された熱は所定の手段によって、トランクルーム外に放出され、蓄電池の冷却を促進させる。必要に応じて、蓄電池のセル間の間隙に伝熱グリス等を塗布してもよい。
【0051】
更に、蓄電池用ヒートシンクは、上述した各種態様であってもよい。即ち、平面型ヒートパイプを備えた蓄電池用ヒートシンクであってもよく、ヒートパイプを車体等に接続することによって、蓄電池のセルが発する熱を車体等に移動してもよい。蓄電池用ヒートシンクは、個々のセルの外周面に受熱部が熱的に密接に接続されるのではなく、上述したように、中央部のセル群、周辺部のセル群に区分し、中央部および周辺部のセル群の外周面に、受熱部が熱的に密接に接続されていてもよい。更に、隣接するセル群の外周面に熱的に接続される受熱部は、内部に強制空冷用の中空部を備えて、中空部の中にフィン部が設けられていてもよい。フィン部が設けられている中空部は、そのまま自然放熱でもよいが、中空部に強制的に空気を送り放熱効率を高めることができる。
【0052】
図13は、トランクルーム内に配置したこの発明の蓄電池用ヒートシンクに蓄電池を装着する他の状態を説明する図である。図13に示すように、トランクルームの底部に、車体外面42に熱的に接続されて金属板41が設置され、更に金属板と熱的に接続されて蓄電池用ヒートシンク1が取り付けられている。このように金属板41および車体外面42と熱的に接続されてトランクルーム内に取り付けられた蓄電池用ヒートシンクに、蓄電池が脱着可能な状態で嵌め込まれる。上述したように、蓄電池は、電槽の上部2が一体的に形成され、その下部4は、それぞれ分離されて、櫛歯形状からなっている。このように形成された蓄電池のセルの分離された間隙に、フィン部3を備えた蓄電池用ヒートシンク1が嵌め込まれる。
【0053】
金属板41および車体外面42と熱的に接続されてトランクルーム内に取り付けられた蓄電池用ヒートシンクに、セルの分離された間隙を備えた蓄電池を嵌め込むことによって、上述したように、各セルの外周面が蓄電池用ヒートシンクの受熱部に熱的に密接に接続され、セルに生じる熱を受熱部で受熱し、放熱部に移動されて、トランクルームから車体外面に放熱される。この場合においても、必要に応じて、蓄電池のセル間の間隙に伝熱グリス等を塗布してもよい。
蓄電池は、その重量が重いので、金属板上に設置するだけで、金属板と蓄電池用ヒートシンクとの間の熱的な接続が可能であるが、必要に応じて、熱伝導性シートやグリス等を挟んでネジ止めによって金属板に固定してもよい。
【0054】
上述したように、蓄電池用ヒートシンクは、セルを分離する間隙に嵌め込まれているので、取り外し可能であり、蓄電池用ヒートシンクの受熱部は、セルの外壁面に熱的に密接に接続されているので、セルからの熱が容易に受熱部に移動する。セルから受熱部に移動した熱は、外周部の放熱部に容易に移動し、外周部に設けられたフィン部から外部に放熱される。
【0055】
この発明の蓄電池用ヒートシンクは、蓄電池の電槽の分離されたセルに受熱部が熱的に密接に接続しているので、中央部のセルの熱も速やかに受熱部に移動し、更に外周部、フィン部に移動されて放熱されるので、蓄電池の寿命が概ね2倍になる。更に、蓄電池の寿命が低下して交換する際にも、蓄電池用ヒートシンクはそのまま使用することができ、蓄電池の交換に伴うコストを大幅に低下することができる。蓄電池のセルの全ての外周面に蓄電池用ヒートシンクを熱的に接続させる必要は無く、温度が高くなる中央部セルとそれほど温度が高くならない周辺部のセルとの間で取り扱いを異にしてもよく、柔軟性に富んだ蓄電池用ヒートシンクである。
【0056】
この発明によると、蓄電池の壁面にヒートシンクを組み込んだ所謂ヒートシンク一体型の蓄電池ではなく、所定の間隙を備えて複数のセルに区画された電槽からなる蓄電池に取り外し可能で、蓄電池の中央部のセルにも接続可能なヒートシンクを用いることによって、蓄電池のみを交換するだけでよく、高い電源電圧の蓄電池の熱を効率的に外部に放熱して蓄電池の寿命を延ばし、蓄電池の交換に伴うコストを低下することができる、車載用の鉛蓄電池の冷却装置および冷却方法を提供することができる。
更に、車のトランクルーム内に上述した蓄電池用ヒートシンクを設置し、蓄電池用ヒートシンクに対応した形状の蓄電池を蓄電池用ヒートシンクに嵌合して、蓄電池と蓄電池用ヒートシンクとを熱的に接続することによって、蓄電池を冷却する蓄電池冷却装置を提供することができる。
【0057】
【発明の効果】
この発明によると、高い電源電圧の蓄電池の熱を効率的に外部に放熱して蓄電池の寿命を延ばし、蓄電池の交換に伴うコストを低下することができる、車載用の鉛蓄電池の冷却装置および冷却方法を提供することができる。
【図面の簡単な説明】
【図1】図1(a)は、この発明の蓄電池用ヒートシンクを電槽に装着したときの外観の1例を示す図である。図1(b)は、蓄電池用ヒートシンクと電槽を分離した状態を示す図である。
【図2】図2は、この発明の蓄電池用ヒートシンクの1つの態様の断面図である。
【図3】図3は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。
【図4】図4は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。
【図5】図5は、分割された受熱部の1つの部分を示す図である。
【図6】図6は、第1受熱部および第2受熱部がセル間の所定の間隙にのみ挿入されている蓄電池用ヒートシンクの部分を示す図である。
【図7】図7は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。
【図8】図8は、受熱部がセル間の所定の間隙にのみ挿入されている他の態様の蓄電池用ヒートシンクの部分を示す図である。
【図9】図9は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。
【図10】図10は、この発明の蓄電池用ヒートシンクの他の態様の断面図である。
【図11】図11は、図10に示す蓄電池用ヒートシンクを蓄電池に装着した状態を説明する図である。
【図12】図12は、トランクルーム内に配置したこの発明の蓄電池用ヒートシンクに蓄電池を装着する状態を説明する図である。
【図13】図13は、トランクルーム内に配置したこの発明の蓄電池用ヒートシンクに蓄電池を装着する他の状態を説明する図である。
【図14】図14は先行技術の蓄電池100の断面図である。
【符号の説明】
1.蓄電池用ヒートシンク
2.電槽
3.フィン部
4.電槽(セル)の下部
4'.セル群
5.放熱部
6.第1受熱部
7.第2受熱部
8.第1受熱部に対応する部分
8'.第2受熱部に対応する部分
9.フィン部
10.外周部に対応する部分
11.蓄電池用ヒートシンクの分割された部分
12.蓄電池用ヒートシンクの分割された部分
13.蓄電池用ヒートシンクの分割された部分
14.蓄電池用ヒートシンクの分割された部分
15.保護部
21.ユニット
22.ユニット
23.ユニット
24.ユニット
33.フィン部
36.第1受熱部
37.第2受熱部
38.中空部
40.トランクルーム
41.金属板
42.車体外面
100.従来の蓄電池
101.セル
102.隔壁部
103.金属部材
104.樹脂材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for a lead-acid battery for vehicle use, and more particularly to a heat sink and a cooling method for a storage battery including a battery case partitioned into a plurality of cells.
[0002]
[Prior art]
As a power source for automobiles, a lead storage battery including a battery case partitioned into a plurality of cell chambers is used. With the increase in the number of electrical components in automobiles, the power supply voltage of in-vehicle storage batteries tends to increase, and the number of cell rooms tends to increase.
For example, in a 36V lead acid battery, two cells in the horizontal direction are arranged in nine rows in parallel in the vertical direction, and a total of 18 cells are arranged. Heat is generated from each cell during charging. However, if a plurality of cells are arranged side by side, the heat dissipating property of the cells arranged in the central portion is deteriorated, which causes a reduction in battery life.
[0003]
Japanese Patent Laid-Open No. 10-144266 (hereinafter referred to as “prior art”) discloses a conventional lead battery cooling device. FIG. 14 is a cross-sectional view of a prior art storage battery 100. As shown in FIG. 14, a partition wall 102 is provided between the cells 101, and the partition wall 102 is formed by covering a metal member 103 with a material 104 such as a resin. Furthermore, the outer peripheral part of the battery case is formed by a plate heat pipe covered with a resin member or the like. As described above, in the prior art, in order to increase the thermal conductivity of the partition wall and improve the heat dissipation, the material in which the metal member is encapsulated in advance is used for the battery case wall surface so that the efficiency is improved from the central cell. A method for well extracting heat is disclosed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-144266
[0005]
[Problems to be solved by the invention]
As disclosed in the prior art, when a material containing a metal member is used for the battery case wall surface, the life of the storage battery is reduced and the battery needs to be replaced. It is necessary to replace all the materials in which the metal members are included in advance with new ones. That is, the device disclosed in the prior art is a so-called heat sink-integrated storage battery in which a heat sink is incorporated in the wall surface of the storage battery. Therefore, when the life of the storage battery is reduced, the storage battery cooling device, for example, the heat sink is replaced together with the storage battery, so that there is a problem that the cost becomes very high. Furthermore, since the function of the material itself used for the battery case wall and containing the metal member in advance is not lowered, there is a problem that a lot of resources are wasted and it is not preferable from the viewpoint of recycling.
[0006]
Accordingly, an object of the present invention is to cool a lead-acid battery for in-vehicle use, which can efficiently dissipate the heat of the storage battery with a high power supply voltage to the outside to extend the life of the storage battery and reduce the cost associated with the replacement of the storage battery. It is to provide an apparatus and a cooling method.
[0007]
[Means for Solving the Problems]
The inventor has intensively studied to solve the above-described conventional problems. As a result, it is not a so-called heat sink-integrated storage battery in which a heat sink is incorporated in the wall surface of the storage battery, but can be removed to a storage battery consisting of a battery case that has a predetermined gap and is divided into a plurality of cells. However, by using a heat sink that can be connected, it is only necessary to replace the storage battery, efficiently dissipating the heat of the storage battery with a high power supply voltage to the outside, extending the life of the storage battery, and reducing the cost associated with the replacement of the storage battery It has been found that a cooling device and a cooling method for a lead-acid battery for vehicle use can be provided.
[0008]
Furthermore, by installing the above-mentioned storage battery heat sink in the trunk room of the car, fitting a storage battery having a shape corresponding to the storage battery heat sink into the storage battery heat sink, and thermally connecting the storage battery and the storage battery heat sink, It has been found that a storage battery cooling device for cooling a storage battery can be provided.
[0009]
The present invention has been made based on the above-described research results, and the first aspect of the heat sink for a storage battery according to the present invention is partitioned into a plurality of cells with a predetermined gap. And the upper part was integrally formed Storage battery consisting of battery case Storage battery heatsink for cooling the battery, formed in a well shape, A heat receiving portion that is thermally connected to the cell and receives heat from the cell of the storage battery; To surround the outside of the well shape of the heat receiving part Formed integrally with the heat receiving portion. , Heat receiving part Transmitted from Heat dissipation part that releases heat And, in a space surrounded by one or both of the heat receiving part or the heat radiating part, four side surfaces of the plurality of cells of the storage battery are in contact with one or both of the heat receiving part or the heat radiating part. The storage battery is detachably inserted in such a manner as to It is a heat sink for storage batteries.
[0012]
The 4th aspect of the heat sink for storage batteries of this invention is a heat sink for storage batteries provided with the fin in at least 1 part of the said thermal radiation part.
[0014]
The 6th aspect of the heat sink for storage batteries of this invention is a heat sink for storage batteries in which the said heat receiving part is provided with the heat pipe part.
[0015]
The other aspect of the heat sink for storage batteries of this invention is a heat sink for storage batteries in which the said 1st heat receiving part and the said 2nd heat receiving part are inserted in all the said gap | intervals.
[0016]
Another aspect of the heat sink for storage battery according to the present invention is a heat sink for storage battery in which the first heat receiving portion and the second heat receiving portion are inserted only in the predetermined gap.
[0017]
The other aspect of the heat sink for storage batteries of this invention is a heat sink for storage batteries in which the said heat receiving part is provided with the hollow part.
[0018]
According to a first aspect of the storage battery cooling device of the present invention, the above-described storage battery heat sink is installed in a car trunk room, and a storage battery having a shape corresponding to the storage battery heat sink is used as the storage battery heat sink. Removably inserted from the trunk room opening side The storage battery cooling device cools the storage battery by thermally connecting the storage battery and the storage battery heat sink.
[0019]
The second aspect of the storage battery cooling device of the present invention further includes a metal plate thermally connected to the outer surface of the vehicle body, the storage battery heat sink is installed on the metal plate, and heat from the storage battery is transferred into the trunk room and It is a storage battery cooling device that dissipates heat to the outside air.
[0020]
Another aspect of the storage battery cooling device of the present invention is a storage battery cooling device in which an air blowing means is provided in the trunk room and the heat radiating portion is forcibly cooled.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
A heat sink for a storage battery and a storage battery cooling device of the present invention will be described with reference to the drawings.
One aspect of the heat sink for a storage battery according to the present invention is removably inserted into the gap between the cells of a storage battery including a battery case having a predetermined gap and partitioned into a plurality of cells, and is thermally inserted into the cell. A heat sink for a storage battery comprising a heat receiving part connected to receive heat from the cells of the storage battery, and a heat radiating part formed integrally with the heat receiving part to release the heat of the heat receiving part.
[0022]
Fig.1 (a) is a figure which shows an example of an external appearance when the heat sink for storage batteries of this invention is mounted | worn with a battery case. FIG.1 (b) is a figure which shows the state which separated the heat sink for storage batteries, and the battery case. As shown in FIG. 1B, the battery case 2 of the storage battery is partitioned into a plurality of cells with a predetermined gap, and a heat sink for the storage battery is inserted in the above-described gap between the cells so as to be detachable. That is, as shown in FIG. 1B, the battery case has a comb blade shape, the upper part thereof is integrally formed, and the lower part 4 is separated by the slits 42, and the separated gaps are formed. The heat receiving portions 6 and 7 of the storage battery heat sink 1 are fitted so as to be thermally and closely connected. As shown in FIG. 1 (a) and FIG. 1 (b), the storage battery heat sink 1 is detachably inserted into the gap between the cells, and is thermally connected to the cells to receive heat from the storage battery cells. The heat receiving portion and the heat radiating portion 5 are formed integrally with the heat receiving portion and disposed on the outer peripheral portion of the storage battery, and release the heat of the heat receiving portion. The heat radiating part 5 may be provided with the fin part 3 if necessary.
[0023]
FIG. 2 is a cross-sectional view of one embodiment of the heat sink for a storage battery of the present invention. As shown in FIG. 2, the storage battery has nine rows of two cells 4 arranged in parallel in the horizontal direction, and a total of 18 cells are arranged. A storage battery heat sink is detachably inserted into the gap so as to surround the four circumferences of the separated cells 4 arranged in this manner. The storage battery heat sink according to this aspect includes a plurality of first heat receiving portions 6 parallel to the heat receiving portions inserted into the gap, and at least one second heat receiving portion 7 orthogonal to the first heat receiving portions. The heat receiving part and the second heat receiving part are orthogonal to each other on the inner side of the storage battery. That is, the heat receiving portion is formed in a lattice shape. A heat radiating fin portion 3 is provided over the entire circumference of the outer peripheral portion 5 formed of the heat radiating portion of the heat sink for the storage battery.
[0024]
The storage battery heat sink is formed of, for example, an aluminum extruded material. As described above, since the storage battery heat sink is fitted in the gap separating the cells, it can be removed. Since the heat receiving part of the heat sink for the storage battery is thermally and closely connected to the outer wall surface of the cell, the heat from the cell easily moves to the heat receiving part. As needed, you may apply | coat heat-transfer grease to the outer peripheral surface of the cell which the storage battery isolate | separated, or the contact surface with the cell of a thermal radiation part. The heat transferred from the cell to the heat receiving portion easily moves to the heat radiating portion on the outer peripheral portion, and is radiated to the outside from the fin portion provided on the outer peripheral portion.
[0025]
In the heat sink for the storage battery according to the present invention, the heat receiving part is thermally and closely connected to the separated cell of the battery case of the storage battery, so that the heat of the cell in the central part also moves quickly to the heat receiving part, and further the outer peripheral part. When the heat sink is not attached, the temperature difference between the inside of the storage battery and the outside air has reached 31 ° C. When the heat sink for the storage battery of the present invention is attached. The temperature difference between the storage battery and the outside air is significantly reduced to 18 ° C. Therefore, the life of the battery can be significantly increased. Furthermore, even when the life of the storage battery is reduced and replaced, the heat sink for the storage battery can be used as it is, and the cost associated with replacement of the storage battery can be greatly reduced.
[0026]
FIG. 3 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention. The storage battery heat sink of the aspect shown in FIG. 3 is further provided with a protection part in the fin part provided in the outer peripheral part of the storage battery heat sink of the aspect shown in FIG. That is, the storage battery heat sink of this aspect is composed of a plurality of first heat receiving portions 6 parallel to the heat receiving portions inserted in the gap, and at least one second heat receiving portion 7 orthogonal to the first heat receiving portions, The first heat receiving part and the second heat receiving part are orthogonal to each other so as to form a lattice shape in the inner part of the storage battery.
[0027]
A heat dissipating fin portion 3 is provided on the outer peripheral portion 5 formed of the heat dissipating portion of the storage battery heat sink, and a protective portion 15 is provided on the outer peripheral portion 5 of the heat dissipating fin portion 3. Thus, by providing a protection part in a fin part, the intensity | strength of a fin part increases and it becomes difficult to deform | transform. As a result, excellent heat dissipation performance is maintained. In particular, the in-vehicle 36V lead battery has a weight of about 20 kg, and there is a risk that the fin part may be deformed or damaged when the battery is installed. By providing the protection part, the fin part can be protected.
[0028]
The storage battery heat sink of this aspect can also be integrally formed of, for example, an aluminum extruded material. The protective part may be joined to the fin part by brazing or the like. In addition, you may provide a ventilation hole in a protection part as needed. Also in this aspect, since the heat receiving part of the heat sink for storage battery is thermally connected closely to the outer wall surface of the cell, the heat from the cell easily moves to the heat receiving part. As needed, you may apply | coat heat-transfer grease to the outer peripheral surface of the cell which the storage battery isolate | separated, or the contact surface with the cell of a thermal radiation part. The heat transferred from the cell to the heat receiving portion easily moves to the heat radiating portion on the outer peripheral portion, and is radiated to the outside from the fin portion provided on the outer peripheral portion.
[0029]
FIG. 4 is a cross-sectional view of another embodiment of the heat sink for a storage battery according to the present invention. The heat sink for storage batteries of this aspect is a heat sink for storage batteries in which the heat receiving part can be divided into at least two parts. FIG. 4 shows a heat sink for a storage battery in which the heat receiving portion is divided into four portions 11, 12, 13, and 14 along the dotted line in the vertical direction and the horizontal direction. FIG. 5 is a diagram showing one portion of the divided heat receiving portion. The storage battery heat sink according to this aspect includes a plurality of first heat receiving portions 6 parallel to the heat receiving portions inserted into the gap, and at least one second heat receiving portion 7 orthogonal to the first heat receiving portions. The heat receiving portion and the second heat receiving portion are orthogonal to each other in a lattice shape on the inner side of the storage battery, and the heat dissipating fin portion 3 is provided over the four circumferences on the outer peripheral portion 5 formed of the heat dissipating portion.
[0030]
Such a heat sink for a storage battery is produced by dividing the heat sink for a storage battery into four at the center in the vertical and horizontal directions as described above. As shown in FIG. 5, when divided into four parts (units), the first heat receiving part 6 and the second heat receiving part 7 that are inserted into the gap between the cells and surround the four circumferences of the four cells are the cells. Thermally and intimately connected to the outer peripheral surface. The remaining three portions (units) are similarly inserted into the gaps between the cells, and the four units are combined to form the entire four rounds of each cell as shown in FIG. 2 Thermally closely connected to the heat receiving portion 7.
[0031]
In the embodiment described above, an example in which the storage battery heat sink is divided into four units has been described. However, the division is not limited to four, and can be divided into any number such as 2, 6, and the like. The storage battery heat sink of this aspect can also be formed by, for example, an aluminum extruded material.
In the heat sink for a storage battery of the above-described aspect, the first heat receiving part and the second heat receiving part are inserted in all the gaps between the cells. In another aspect, the first heat receiving part and the second heat receiving part are the cells. It may be inserted only in a predetermined gap. That is, it is not necessary to thermally connect the storage battery heat sink to all the partition walls of the cell. For example, the first heat receiving portion and the first heat receiving portion are arranged so as to surround the outer periphery of the three cells located in the portion where heat dissipation is easy. Two heat receiving units may be arranged.
[0032]
FIG. 6 is a diagram showing a part of the heat sink for the storage battery in which the first heat receiving part and the second heat receiving part are inserted only in a predetermined gap between the cells. That is, the part shown in FIG. 6 corresponds to the part 12 shown in FIG. It is not necessary to thermally connect the storage battery heat sink to all the outer peripheral surfaces of the storage battery cells, and the handling may be different between the central cell where the temperature is high and the peripheral cell where the temperature is not so high. . As shown in FIG. 6, since the temperature of the central cell 4 is increased, the four sides are surrounded by the first heat receiving portion 6, the second heat receiving portion 7 and the outer peripheral portion 5, and are thermally connected closely to them. The On the other hand, the three cells in the upper left do not have a high temperature compared to the central portion, so that the portion 4 ′ that combines the three cells surrounds the entire circumference of the portion 4 ′.
What is necessary is just to arrange | position the 1st heat receiving part 6, the 2nd heat receiving part 7, and the outer peripheral part 5, and to thermally connect it closely.
[0033]
In addition, the heat sink for storage batteries of the aspect shown in FIG. 6 is one part divided | segmented into four parts (unit) by the center part in the vertical / horizontal direction, as shown in FIG. The unit 12 of the combination of the part 4 ′ combining the three cells shown in FIG. 6 and the part 4 of one cell is also applied to the unit 11, unit 13, and unit 14 shown in FIG. Also good. Thus, by producing the heat sink for storage batteries composed of four units, the six cells 4 in the central part are surrounded by the first heat receiving part 6, the second heat receiving part 7 and the outer peripheral part 5, respectively. The entire portion 4 ′, which is thermally connected closely to them and includes the three cells located in the peripheral portion, is surrounded by the first heat receiving portion 6, the second heat receiving portion 7, and the outer peripheral portion 5. Are closely connected to them.
[0034]
FIG. 7 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention. With reference to FIG. 6, the storage battery heat sink divided into four parts (units) at the center in the vertical and horizontal directions has been described. However, in the embodiment shown in FIG. 7, the storage battery heat sink is not divided. It is an embodiment consisting of a single substance. As shown in FIG. 7, the battery case of the storage battery is partitioned into a plurality of cells with a predetermined gap, and a heat receiving portion is inserted in the predetermined gap between the cells so as to be detachable. That is, as shown in FIG. 7, the six cells 4 in the central part are heated, so the four sides are surrounded by the first heat receiving part 6, the second heat receiving part 7, and the outer peripheral part 5, and thermally Closely connected.
[0035]
Further, since the peripheral cell group, that is, the portion 4 ′ where the three cells are combined, does not have a much higher temperature than the center portion, the peripheral cell group surrounds the entire circumference of the portion 4 ′ where the three cells are combined. The 1 heat receiving part 6, the 2nd heat receiving part 7, and the outer peripheral part 5 are arrange | positioned, and are thermally connected closely. Since the heat sink for storage batteries of this aspect is fitted in the gap of the above-mentioned part among the gaps separating the cells, it can be removed. Since the heat receiving part of the heat sink for the storage battery is thermally and closely connected to the outer wall surface of the predetermined cell, the heat from the cell easily moves to the heat receiving part, and the heat transferred from the cell to the heat receiving part It easily moves to the heat radiating part of the part, and is radiated to the outside from the fin part provided on the outer peripheral part. As described above, by disposing the heat receiving portion of the heat sink for storage battery at the central portion having a high temperature and the peripheral portion having a low temperature, unnecessary heat receiving portions are omitted and a more efficient heat sink can be obtained. .
In addition, the heat sink for storage batteries shown in FIG. 7 may be a heat sink divided into the portions shown in FIG. In that case, the outer peripheral surface of the central cell is thermally and closely connected to a part of the second heat receiving part shown in FIG. 6 and a part of the second heat receiving part of another cell.
[0036]
FIG. 8 is a diagram showing a part of a heat sink for a storage battery in another mode in which the heat receiving part is inserted only in a predetermined gap between cells. That is, it is not necessary to thermally connect the storage battery heat sink to all the outer peripheral surfaces of the storage battery cells, and the arrangement of the heat receiving part is arranged between the central cell where the temperature is high and the peripheral cell where the temperature is not so high. It may be changed. As shown in FIG. 8, for example, the temperature of the four cells in the peripheral part is not so high compared to the central part, so the heat receiving part is arranged so as to surround the entire four circumferences of the part 4 ′ where the four cells are combined. Then, it is only necessary to thermally connect them closely. The heat receiving portion shown in FIG. 8 is composed of a planar heat pipe bent into a predetermined shape, a portion 8 corresponding to the first heat receiving portion, a portion 8 ′ corresponding to the second heat receiving portion, and a portion corresponding to the outer peripheral portion. It consists of ten.
[0037]
A fin portion 9 as a heat radiating portion is attached to the portion 10 corresponding to the outer peripheral portion. As shown in FIG. 8, by providing the fin portion 9 on the cell portion 4 ′ side of the outer peripheral portion 10, the fin portion can be protected. Of course, you may provide a fin part on the opposite side to cell part 4 'of an outer peripheral part. In that case, you may provide a protection part further. The planar heat pipe and the fin portion are joined by a method such as brazing or adhesion with a heat conductive adhesive.
The storage battery heat sink of this aspect is composed of a planar heat pipe, and since the heat pipe is thermally connected directly to the outer peripheral surface of the cell, the heat transfer performance is extremely high and the heat dissipation effect is excellent.
[0038]
In addition, the heat sink for storage batteries of the aspect shown in FIG. 8 is one part divided | segmented into the roughly four parts (unit) mentioned later. In this way, by preparing a storage battery heat sink composed of units roughly divided into four parts, the entire portion 4 ′, which is a combination of the four cells located in the peripheral part, is combined with heat receiving parts 8, 8 composed of planar heat pipes. Surrounded by 'and the outer peripheral portion 10, the heat receiving portions 8 and 8 ′ are closely and thermally connected to the endothermic surface of the planar heat pipe. The heat sink for storage battery of this aspect is fitted in the gap of the above-mentioned part among the gaps separating the cells, and is removable. The heat receiving part of the heat sink for the storage battery is a flat heat pipe excellent in heat transfer, and is thermally connected closely to the outer wall surface of a predetermined cell, so that a large amount of heat from the cell can be easily received. The heat transferred from the cell to the heat receiving part quickly moves to the heat radiating part of the outer peripheral part due to the phase change of the working fluid contained in the flat heat pipe, and is externally transferred from the fin part provided on the outer peripheral part. Heat is dissipated.
[0039]
FIG. 9 is a cross-sectional view of another embodiment of the heat sink for a storage battery of the present invention. That is, it is an embodiment of a separable storage battery heat sink that combines four parts (units) of a storage battery heat sink composed of a heat receiving section composed of a planar heat pipe and a heat radiation section composed of fins as shown in FIG. That is, the unit 21, the unit 22, the unit 23, and the unit 24 are combined. The common heat receiving portion 8 ′ may share a part of any of the units, or may overlap the units as shown in FIG.
[0040]
As shown in FIG. 9, the cells 4 located in the central part are thermally connected in three directions to the planar heat pipe, respectively, so that the heat generated from the cells 4 is enclosed in the heat pipe. Due to the phase change of the liquid, it is quickly moved to the heat radiating part consisting of the fin part, and the heat radiating performance is extremely high. In the portion 4 ′ where the remaining peripheral cells are located, the wall portion located in the center is thermally connected closely to the heat receiving portion 8 ′ of the planar heat pipe. Is quickly moved to the fin portion 9 by the phase change of the working fluid sealed in the heat pipe, and the heat dissipation performance is extremely high.
[0041]
Needless to say, the heat sink for a single battery (integral type) whose cross-sectional shape is shown in FIG. 9 may be used. In the case of an integrated storage battery heat sink, the storage battery heat sink of the embodiment shown in FIG. 9 is a flat type heat sink for the entire portion 4 ′ including the four cells located in the peripheral portions 21, 22, 23, 24. It is surrounded by heat receiving portions 8 and 8 'made of pipes and an outer peripheral portion 10, and is closely and thermally connected to the heat absorbing surface of the planar heat pipe at the heat receiving portions 8 and 8'. The cell 4 located in the center is thermally connected closely to the heat receiving portions 8 and 8 ′ of the planar heat pipe in three directions.
[0042]
The heat sink for storage battery of this aspect is fitted in the gap of the above-mentioned part among the gaps separating the cells, and is removable. The heat receiving part of the heat sink for the storage battery is a flat heat pipe excellent in heat transfer, and is thermally connected closely to the outer wall surface of a predetermined cell, so that a large amount of heat from the cell can be easily received. The heat transferred from the cell to the heat receiving part quickly moves to the heat radiating part of the outer peripheral part due to the phase change of the working fluid contained in the flat heat pipe, and is externally transferred from the fin part provided on the outer peripheral part. Heat is dissipated.
[0043]
As described above, by providing the fin portion 9 on the cell portion 4 ′ side of the outer peripheral portion 10, the fin portion can be protected. Of course, you may provide a fin part on the opposite side to cell part 4 'of an outer peripheral part. In that case, you may provide a protection part further. The planar heat pipe and the fin portion are joined by a method such as brazing or adhesion with a heat conductive adhesive.
[0044]
FIG. 10 is a cross-sectional view of another embodiment of the heat sink for a storage battery of the present invention. The heat sink for a storage battery of this aspect is a heat sink for a storage battery in which the heat receiving portion includes a hollow portion (for forced air cooling). That is, the storage battery heat sink is inserted into a predetermined gap and receives a plurality of parallel first heat receiving portions that receive heat from the cells, and at least one second heat receiving portion orthogonal to the first heat receiving portions, and the heat receiving portion. And a heat dissipating part composed of a fin part that discharges heat from the heat receiving part.
[0045]
As shown in FIG. 10, the first heat receiving portion 36 that is thermally connected to the outer peripheral surface of the adjacent cell includes a hollow portion 38 for forced air cooling inside, and the fin portion 33 is provided in the hollow portion. Is provided. Similarly, the second heat receiving portion 37 orthogonal to the first heat receiving portion 36 is also thermally connected to the outer peripheral surface of the adjacent cell, and has a hollow portion 38 for forced air cooling inside, and in the hollow portion. Fin portions 33 are provided. Although the hollow part provided with the fin part may be subjected to natural heat dissipation as it is, it is possible to increase the heat dissipation efficiency by forcibly sending air to the hollow part. The first heat receiving part and the second heat receiving part may be inserted into all the gaps between the cells to receive the heat of the individual cells, and for example, only the gaps between the parts where the three cells are combined May be inserted to receive the heat of the cell group. Alternatively, as described with reference to FIG. 9, the heat receiving portion is individually thermally connected to the cells in the central portion, and the other peripheral portions may be thermally connected to the portion where the cell group is assembled. Good.
[0046]
FIG. 11 is a diagram for explaining a state in which the storage battery heat sink shown in FIG. 10 is attached to the storage battery. The storage battery heat sink is inserted into a predetermined gap (that is, a gap between three cell groups), and a plurality of parallel first heat receiving parts for receiving heat from the cell group, and a first heat receiving part, There is provided at least one second heat receiving portion that is orthogonal to the heat receiving portion, and a heat radiating portion that is formed integrally with the heat receiving portion and includes a fin portion that releases heat from the heat receiving portion. As shown in FIG. 11, the heat receiving portion is located in a gap between two cell groups 4 ′ each including three cells in the center and four cell groups 4 ′ each including three cells located in the periphery. Has been inserted.
[0047]
In each of the three cells of the central cell group 4 ′, the two outer peripheral surfaces of the cells on both sides are thermally closely connected to the heat receiving portion, and one outer peripheral surface of the central cell is the heat receiving portion. Is closely connected thermally. In each of the three cells in the peripheral cell group 4 ', the two outer peripheral surfaces of the cells on the central side are thermally closely connected to the heat receiving portion, and the other outer cells have one outer peripheral surface on the heat receiving portion. Is closely connected thermally.
In the heat sink for storage battery shown in FIG. 11, the central cell group is composed of three cells. Depending on the heat generation state of the individual cells in the central part, the number of the central cell groups is determined. It may be changed or the number of first heat receiving portions may be increased.
[0048]
As shown in FIG. 11 and described above, the first heat receiving portion 36 that is thermally connected to the outer peripheral surface of the adjacent cell group 4 ′ includes a hollow portion 38 for forced air cooling inside, and A fin portion 33 is provided inside. Similarly, the second heat receiving portion 37 orthogonal to the first heat receiving portion 36 is also thermally connected to the outer peripheral surface of the adjacent cell, and has a hollow portion 38 for forced air cooling inside, and in the hollow portion. Fin portions 33 are provided. Although the hollow part provided with the fin part may be subjected to natural heat dissipation as it is, it is possible to increase the heat dissipation efficiency by forcibly sending air to the hollow part.
[0049]
Next, the state which cools a storage battery in the state mounted in the motor vehicle using the storage battery heat sink of the various aspects mentioned above is demonstrated.
FIG. 12 is a diagram illustrating a state in which the storage battery is mounted on the storage battery heat sink of the present invention disposed in the trunk room. As shown in FIG. 12, the heat sink 1 for storage batteries is attached to the bottom of the trunk room. Thus, the storage battery is fitted into the storage battery heat sink attached in the trunk room in a detachable state. That is, in the storage battery, the upper part 2 of the battery case is integrally formed, and the lower part 4 is separated from each other and has a comb shape. The storage battery thus formed moves downward as indicated by an arrow in the figure, and the storage battery heat sink 1 including the fin portion 3 is fitted into the gap between the cells of the storage battery.
[0050]
By inserting the storage battery heat sink into the separated gaps of the storage battery cells, as described above, the outer peripheral surface of each cell is thermally connected closely to the heat receiving portion of the storage battery heat sink, and the heat generated in the cells is received. The heat is received by the part, moved to the heat radiating part, and radiated into the trunk room. The heat released into the trunk room is released to the outside of the trunk room by a predetermined means to promote the cooling of the storage battery. You may apply | coat heat transfer grease etc. to the gap | interval between the cells of a storage battery as needed.
[0051]
Furthermore, the heat sink for storage batteries may be the various aspects described above. That is, the heat sink for storage batteries provided with a planar heat pipe may be used, and the heat generated by the cells of the storage battery may be transferred to the vehicle body or the like by connecting the heat pipe to the vehicle body or the like. The heat sink for a storage battery is divided into a cell group in the central part and a cell group in the peripheral part as described above, rather than the heat receiving part being thermally and closely connected to the outer peripheral surface of each cell. The heat receiving portion may be thermally and closely connected to the outer peripheral surface of the peripheral cell group. Furthermore, the heat receiving part thermally connected to the outer peripheral surface of the adjacent cell group may include a hollow part for forced air cooling inside, and a fin part may be provided in the hollow part. Although the hollow part provided with the fin part may be subjected to natural heat dissipation as it is, it is possible to increase the heat dissipation efficiency by forcibly sending air to the hollow part.
[0052]
FIG. 13 is a diagram for explaining another state in which the storage battery is mounted on the heat sink for the storage battery of the present invention disposed in the trunk room. As shown in FIG. 13, a metal plate 41 is installed on the bottom of the trunk room, which is thermally connected to the vehicle body outer surface 42, and further, the storage battery heat sink 1 is attached thermally connected to the metal plate. In this way, the storage battery is fitted into the storage battery heat sink that is thermally connected to the metal plate 41 and the vehicle body outer surface 42 and attached to the trunk room in a detachable state. As described above, in the storage battery, the upper part 2 of the battery case is integrally formed, and the lower part 4 is separated from each other and has a comb shape. The heat sink 1 for storage batteries provided with the fin portions 3 is fitted into the gap between the cells of the storage battery formed in this way.
[0053]
As described above, the outer periphery of each cell is fitted into the heat sink for the storage battery that is thermally connected to the metal plate 41 and the vehicle body outer surface 42 and attached in the trunk room, as described above. The surface is thermally connected closely to the heat receiving portion of the heat sink for the storage battery, receives heat generated in the cell at the heat receiving portion, is moved to the heat radiating portion, and is radiated from the trunk room to the outer surface of the vehicle body. Even in this case, heat transfer grease or the like may be applied to the gap between the cells of the storage battery as necessary.
Since the storage battery is heavy, thermal connection between the metal plate and the storage battery heat sink is possible just by installing it on the metal plate, but if necessary, heat conductive sheet, grease, etc. You may fix to a metal plate by screwing on both sides.
[0054]
As described above, since the heat sink for the storage battery is fitted in the gap separating the cells, it can be removed, and the heat receiving portion of the heat sink for the storage battery is thermally connected closely to the outer wall surface of the cell. The heat from the cell easily moves to the heat receiving part. The heat transferred from the cell to the heat receiving portion easily moves to the heat radiating portion on the outer peripheral portion, and is radiated to the outside from the fin portion provided on the outer peripheral portion.
[0055]
In the heat sink for a storage battery according to the present invention, the heat receiving part is thermally and closely connected to the separated cells of the battery case of the storage battery, so that the heat of the cell in the central part also moves quickly to the heat receiving part, and further the outer peripheral part Since it is moved to the fin portion and dissipated, the life of the storage battery is approximately doubled. Furthermore, even when the life of the storage battery is reduced and replaced, the heat sink for the storage battery can be used as it is, and the cost associated with replacement of the storage battery can be greatly reduced. There is no need to thermally connect the storage battery heat sink to all the outer peripheral surfaces of the storage battery cells, and the handling may be different between the central cell where the temperature is high and the peripheral cell where the temperature is not so high. It is a flexible heat sink for storage batteries.
[0056]
According to this invention, it is not a so-called heat sink-integrated storage battery in which a heat sink is incorporated in the wall surface of the storage battery, but can be removed to a storage battery consisting of a battery case with a predetermined gap and divided into a plurality of cells. By using a heat sink that can also be connected to the cell, it is only necessary to replace the storage battery, efficiently dissipating the heat of the storage battery with a high power supply voltage to the outside, extending the life of the storage battery, and reducing the cost associated with replacement of the storage battery It is possible to provide a cooling device and a cooling method for an in-vehicle lead storage battery that can be reduced.
Furthermore, by installing the above-mentioned storage battery heat sink in the trunk room of the car, fitting a storage battery having a shape corresponding to the storage battery heat sink into the storage battery heat sink, and thermally connecting the storage battery and the storage battery heat sink, A storage battery cooling device for cooling the storage battery can be provided.
[0057]
【The invention's effect】
According to the present invention, a cooling device and cooling system for in-vehicle lead storage batteries that can efficiently dissipate the heat of the storage battery with a high power supply voltage to the outside, thereby extending the life of the storage battery and reducing the cost associated with the replacement of the storage battery. A method can be provided.
[Brief description of the drawings]
FIG. 1 (a) is a diagram showing an example of an external appearance when the storage battery heat sink of the present invention is attached to a battery case. FIG.1 (b) is a figure which shows the state which isolate | separated the heat sink for storage batteries, and the battery case.
FIG. 2 is a cross-sectional view of one embodiment of a heat sink for a storage battery according to the present invention.
FIG. 3 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention.
FIG. 4 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention.
FIG. 5 is a diagram showing one portion of a divided heat receiving portion.
FIG. 6 is a diagram showing a part of a heat sink for a storage battery in which a first heat receiving part and a second heat receiving part are inserted only in a predetermined gap between cells.
FIG. 7 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention.
FIG. 8 is a diagram showing a part of a heat sink for a storage battery according to another mode in which a heat receiving part is inserted only in a predetermined gap between cells.
FIG. 9 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention.
FIG. 10 is a cross-sectional view of another embodiment of a heat sink for a storage battery according to the present invention.
11 is a diagram for explaining a state in which the storage battery heat sink shown in FIG. 10 is attached to the storage battery. FIG.
FIG. 12 is a diagram for explaining a state in which a storage battery is mounted on a heat sink for storage battery of the present invention disposed in a trunk room.
FIG. 13 is a diagram for explaining another state in which the storage battery is mounted on the heat sink for storage battery of the present invention disposed in the trunk room.
14 is a cross-sectional view of a prior art storage battery 100. FIG.
[Explanation of symbols]
1. Heat sink for storage battery
2. Battery case
3. Fin part
4). Lower part of battery case (cell)
4 '. Cell group
5). Heat dissipation part
6). 1st heat receiving part
7). Second heat receiving part
8). Part corresponding to the first heat receiving part
8 '. Part corresponding to the second heat receiving part
9. Fin part
10. Parts corresponding to the outer periphery
11. Divided part of storage battery heat sink
12 Divided part of storage battery heat sink
13. Divided part of storage battery heat sink
14 Divided part of storage battery heat sink
15. Protection part
21. unit
22. unit
23. unit
24. unit
33. Fin part
36. 1st heat receiving part
37. Second heat receiving part
38. Hollow part
40. Trunk room
41. Metal plate
42. Body exterior
100. Conventional storage battery
101. cell
102. Bulkhead
103. Metal parts
104. Resin material

Claims (5)

所定の間隙を備えて複数のセルに区画されてその上部が一体的に形成された電槽からなる蓄電池を冷却するための蓄電池用ヒートシンクであって、
井形状に形成され、前記セルに熱的に接続して、蓄電池の前記セルからの熱を受け入れる受熱部と、
前記受熱部の井形状の外側を囲むように前記受熱部と一体に形成され前記受熱部から伝わる熱を放出する放熱部と、
を備え、
前記受熱部または前記放熱部の一方または両方によって囲まれて形成された空間に、前記蓄電池の複数のセルの四方の側面が前記受熱部または前記放熱部の一方または両方と接触する態様で前記蓄電池が着脱可能に挿入されるようにしたことを特徴とする蓄電池用ヒートシンク。
A heat sink for a storage battery for cooling a storage battery comprising a battery case that is partitioned into a plurality of cells with a predetermined gap and the upper part of which is integrally formed ,
A heat receiving portion that is formed in a well shape, is thermally connected to the cell, and receives heat from the cell of the storage battery;
Is formed on the heat receiving portion and integrally so as to surround the outer wells shape of the heat receiving portion, a heat radiating portion for radiating heat transferred from the heat receiving section,
With
The storage battery is configured in such a manner that four side surfaces of a plurality of cells of the storage battery are in contact with one or both of the heat receiving part or the heat radiating part in a space surrounded by one or both of the heat receiving part or the heat radiating part. A heat sink for a storage battery , wherein the battery is detachably inserted .
前記放熱部の少なくとも1部にフィンを備えている、請求項1に記載の蓄電池用ヒートシンク。The heat sink for storage batteries according to claim 1 , wherein fins are provided in at least a part of the heat radiating part. 前記受熱部がヒートパイプ部を備えている、請求項1または2に記載の蓄電池用ヒートシンク。The heat sink for a storage battery according to claim 1 or 2 , wherein the heat receiving portion includes a heat pipe portion. 車のトランクルーム内に請求項1からの何れか1項に記載の蓄電池用ヒートシンクが設置されており、前記蓄電池用ヒートシンクに対応した形状の蓄電池を前記蓄電池用ヒートシンクに前記トランクルームの開口側から着脱可能に挿入して、前記蓄電池と前記蓄電池用ヒートシンクとを熱的に接続して蓄電池を冷却する、蓄電池冷却装置。The storage battery heat sink according to any one of claims 1 to 3 is installed in a trunk room of a car, and a storage battery having a shape corresponding to the storage battery heat sink is attached to or detached from the opening of the trunk room. A storage battery cooling device that is inserted as possible and cools the storage battery by thermally connecting the storage battery and the storage battery heat sink. 車体外表面と熱的に接続した金属板を更に備え、前記蓄電池用ヒートシンクが前記金属板上に設置され、前記蓄電池からの熱をトランクルーム内および/または外気に放熱する、請求項4に記載の蓄電池冷却装置。5. The metal plate according to claim 4 , further comprising a metal plate thermally connected to an outer surface of the vehicle body, wherein the storage battery heat sink is installed on the metal plate, and dissipates heat from the storage battery into the trunk room and / or outside air. Storage battery cooling device.
JP2003016042A 2003-01-24 2003-01-24 Storage battery heat sink and storage battery cooling device Expired - Lifetime JP4494719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016042A JP4494719B2 (en) 2003-01-24 2003-01-24 Storage battery heat sink and storage battery cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016042A JP4494719B2 (en) 2003-01-24 2003-01-24 Storage battery heat sink and storage battery cooling device

Publications (2)

Publication Number Publication Date
JP2004227986A JP2004227986A (en) 2004-08-12
JP4494719B2 true JP4494719B2 (en) 2010-06-30

Family

ID=32903622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016042A Expired - Lifetime JP4494719B2 (en) 2003-01-24 2003-01-24 Storage battery heat sink and storage battery cooling device

Country Status (1)

Country Link
JP (1) JP4494719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186616A1 (en) * 2017-04-04 2018-10-11 주식회사 엘지화학 Battery pack having crash beam and drainage structure
WO2018186582A1 (en) * 2017-04-04 2018-10-11 주식회사 엘지화학 Battery pack having crash beam structure
US10862180B2 (en) 2017-07-11 2020-12-08 Lg Chem, Ltd. Battery module and battery pack including same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648698B1 (en) * 2005-03-25 2006-11-23 삼성에스디아이 주식회사 Secondary battery module
JP5026007B2 (en) * 2006-07-06 2012-09-12 富士重工業株式会社 Secondary battery storage device
KR101106103B1 (en) 2009-04-01 2012-01-18 주식회사 엘지화학 Battery Module of Improved Safety
DE102009040147A1 (en) * 2009-09-04 2011-03-10 Li-Tec Battery Gmbh Electrochemical energy storage device for vehicles and method for cooling or heating such an electrochemical energy storage device
DE102009041137B4 (en) 2009-09-14 2022-02-17 Volkswagen Ag Thermoelectric unit, battery unit, device for temperature control of a battery unit and method for temperature control
KR101218751B1 (en) * 2010-01-06 2013-01-07 주식회사 엘지화학 Middle or Large-sized Battery Pack of Improved Cooling Efficiency
KR101796106B1 (en) 2011-11-17 2017-11-10 한온시스템 주식회사 Battery assembly for vehicle
JP5833519B2 (en) * 2012-09-27 2015-12-16 アイシン軽金属株式会社 Cell type battery case
JP2014093224A (en) * 2012-11-05 2014-05-19 Toyota Industries Corp Battery pack
US10027002B2 (en) 2014-02-24 2018-07-17 Lg Chem, Ltd. Vehicle battery pack with improved cooling efficiency
CN109148998B (en) * 2017-12-25 2021-11-09 北京海博思创科技股份有限公司 Battery thermal management device for energy storage cabinet
WO2022196405A1 (en) * 2021-03-17 2022-09-22 三洋電機株式会社 Battery pack
FR3130077B1 (en) * 2021-12-08 2024-04-05 Renault Sas Battery module comprising a means of separation between cells and a condenser.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186616A1 (en) * 2017-04-04 2018-10-11 주식회사 엘지화학 Battery pack having crash beam and drainage structure
WO2018186582A1 (en) * 2017-04-04 2018-10-11 주식회사 엘지화학 Battery pack having crash beam structure
KR20180112617A (en) * 2017-04-04 2018-10-12 주식회사 엘지화학 Battery Pack having crash beam structure
CN109891624A (en) * 2017-04-04 2019-06-14 株式会社Lg化学 Battery pack with anticollision girder construction
KR102172517B1 (en) * 2017-04-04 2020-10-30 주식회사 엘지화학 Battery Pack having crash beam structure
US10971770B2 (en) 2017-04-04 2021-04-06 Lg Chem, Ltd. Battery pack having crash beam structure
CN109891624B (en) * 2017-04-04 2022-01-18 株式会社Lg化学 Battery pack with anti-collision beam structure
US11450913B2 (en) 2017-04-04 2022-09-20 Lg Energy Solution, Ltd. Battery pack having crash beam and drain structure
US10862180B2 (en) 2017-07-11 2020-12-08 Lg Chem, Ltd. Battery module and battery pack including same

Also Published As

Publication number Publication date
JP2004227986A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4494719B2 (en) Storage battery heat sink and storage battery cooling device
US20110097617A1 (en) Battery Set with Heat Conducting Jelly
US20180294452A1 (en) Tray, power battery pack and electric vehicle
CN105932352B (en) Cooling circuit with a cooling fluid for a lithium battery, and vehicle comprising said cooling circuit
US20110217587A1 (en) Battery pack having improved heat dissipation and mounting structure and battery pack assembly including the same
CN208986063U (en) A kind of new energy car battery case with heat sinking function
US10933725B2 (en) Electrical axle drive for a vehicle
JP5161533B2 (en) Battery module and battery pack
CN105742542A (en) Forced convection power battery heat radiation device
CN213026305U (en) Power battery package and vehicle
US20160294025A1 (en) Cooler for secondary battery
KR102058688B1 (en) Battery Module of Indirect Cooling
JP2006156404A (en) Secondary battery module
KR101496523B1 (en) Radiant heat plate for battery cell
JP2009147187A (en) Cooling device of heating element
CN210074100U (en) Battery pack and battery pack heat dissipation structure
JP2023527946A (en) Battery module assemblies, battery packs and devices powered by batteries
CN113381094A (en) Battery pack
KR20150059179A (en) Battery Module For an Electric Vehicle
US20210296715A1 (en) Battery cooling systems and methods
JP4534268B2 (en) Battery cooling plate and battery system
CN212209700U (en) High-stability nickel-hydrogen battery pack
CN111477996A (en) Battery pack and dual-mode hybrid power aircraft battery thermal management system
CN108172929B (en) Battery core heat radiation structure and battery pack with air cooling heat radiation device
CN218548614U (en) Battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4494719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4