JP4494148B2 - Digital measuring instrument - Google Patents

Digital measuring instrument Download PDF

Info

Publication number
JP4494148B2
JP4494148B2 JP2004276650A JP2004276650A JP4494148B2 JP 4494148 B2 JP4494148 B2 JP 4494148B2 JP 2004276650 A JP2004276650 A JP 2004276650A JP 2004276650 A JP2004276650 A JP 2004276650A JP 4494148 B2 JP4494148 B2 JP 4494148B2
Authority
JP
Japan
Prior art keywords
sensor
circuit
measuring instrument
capacitor
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004276650A
Other languages
Japanese (ja)
Other versions
JP2006090840A (en
Inventor
智弘 田原
聡 安達
修 川床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2004276650A priority Critical patent/JP4494148B2/en
Publication of JP2006090840A publication Critical patent/JP2006090840A/en
Application granted granted Critical
Publication of JP4494148B2 publication Critical patent/JP4494148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、ディジタル測定器に係り、特に、水に強い電磁誘導方式のセンサを用いた、クーラントプルーフのディジタルノギスやディジタルマイクロメータ等のディジタル式携帯型測定器に用いるのに好適な、クロックを用いた変圧回路の出力により充放電を繰り返すコンデンサをセンサの駆動電源とし、外部からの指令によりセンサを駆動するようにされたディジタル測定器の改良に関する。   The present invention relates to a digital measuring instrument, and in particular, a clock suitable for use in a digital portable measuring instrument such as a coolant proof digital caliper or a digital micrometer using a water-resistant electromagnetic induction sensor. The present invention relates to an improvement of a digital measuring instrument in which a capacitor that repeatedly charges and discharges according to the output of the used transformer circuit is used as a driving power source of the sensor and the sensor is driven by an external command.

ディジタル測定器の電装回路において、センサの駆動に、システムの電源電圧とは異なる電圧、例えば昇圧電圧や降圧電圧を必要とする場合、一般的に、図1に例示するような、クロックを利用した昇圧回路あるいは降圧回路(以下、変圧回路と総称する)を使用する。   In an electrical circuit of a digital measuring instrument, when a voltage different from a system power supply voltage, for example, a boosted voltage or a stepped-down voltage is required for driving a sensor, a clock as illustrated in FIG. 1 is generally used. A step-up circuit or a step-down circuit (hereinafter collectively referred to as a transformer circuit) is used.

図1の回路では、電源部20のクロック発生回路22の出力に応じて、タイミング発生回路24において図2(C)に示すようなタイミングで変圧回路(昇圧回路又は降圧回路)26を動作させ、スイッチ28を開閉して、電磁誘導式センサ10の電源となるコンデンサ12に昇圧充電(又は降圧充電)している。   In the circuit of FIG. 1, in response to the output of the clock generation circuit 22 of the power supply unit 20, the timing generation circuit 24 operates the transformer circuit (boost circuit or step-down circuit) 26 at the timing shown in FIG. The switch 28 is opened and closed, and the capacitor 12 serving as the power source of the electromagnetic induction sensor 10 is boosted (or stepped down).

一方、センサ10は、前記変圧回路26の動作とは独立したタイミングで、例えば、図2(A)に示すような、マイコン30から信号処理部40のディジタル処理回路42を介して入力される駆動指令に応じて、信号処理部40のクロック発生回路44から入力されるクロックに同期してタイミング発生回路46から発生される、図2(B)に示すような信号により駆動され、その結果が、サンプル/ホールド(S/H)回路48及びアナログ/ディジタル(A/D)変換器50を介してマイコン30に取込まれる。   On the other hand, the sensor 10 is driven at a timing independent of the operation of the transformer circuit 26, for example, input from the microcomputer 30 via the digital processing circuit 42 of the signal processing unit 40 as shown in FIG. In response to the command, it is driven by a signal as shown in FIG. 2B, which is generated from the timing generation circuit 46 in synchronization with the clock input from the clock generation circuit 44 of the signal processing unit 40, and the result is The data is taken into the microcomputer 30 via a sample / hold (S / H) circuit 48 and an analog / digital (A / D) converter 50.

このように、変圧回路26による電圧をセンサ10の駆動に使用した場合、変圧回路26の動作タイミングによって、図2(D)に示す如くセンサの駆動電圧Vにばらつきが生じ、センサの信号を変動させてしまう要因となる。   As described above, when the voltage from the transformer circuit 26 is used to drive the sensor 10, the sensor drive voltage V varies depending on the operation timing of the transformer circuit 26 as shown in FIG. It becomes a factor to let you.

即ち、図2(D)に示す如く、センサ駆動後、変圧回路26の出力であるセンサの動作電圧は、一時的に低下(ΔV)するので、次にセンサを駆動する際には、変圧回路26の動作タイミングにより動作電圧の復帰状況が異なる。そのため、センサの駆動電圧は、マイコン30の駆動指令毎にばらつきが生じることになる。このセンサの駆動電圧のばらつきにより、受信信号の大きさがばらつくことになり、センサの精度に影響を与えてしまう。   That is, as shown in FIG. 2D, after the sensor is driven, the operating voltage of the sensor, which is the output of the transformer circuit 26, temporarily decreases (ΔV). Therefore, the next time the sensor is driven, the transformer circuit Depending on the operation timing of 26, the return state of the operating voltage differs. Therefore, the sensor drive voltage varies for each drive command of the microcomputer 30. Due to the variation in the driving voltage of the sensor, the magnitude of the received signal varies, which affects the accuracy of the sensor.

この問題に対して、変圧回路26の出力に接続するコンデンサ12の容量を大きくすることで対応することが一般的である。   Generally, this problem is addressed by increasing the capacitance of the capacitor 12 connected to the output of the transformer circuit 26.

特開平4−15516号公報Japanese Patent Laid-Open No. 4-15516

しかしながら、コンデンサ12を大容量化すると、基板が大型化し、コスト高となる。又、低電力のシステムでは、起動時にコンデンサ12を充電するために大きな電流を要することになり、更に、充電時間の長期化による起動時間の延長も問題となる。又、充電開始時は電源部20でも電力が消費されているため、システムの電圧が不安定になるという問題も有る。   However, when the capacity of the capacitor 12 is increased, the substrate becomes larger and the cost is increased. Further, in a low-power system, a large current is required to charge the capacitor 12 at the time of start-up, and extension of the start-up time due to a long charge time is also a problem. In addition, since power is consumed in the power supply unit 20 at the start of charging, there is also a problem that the system voltage becomes unstable.

なお、出願人は、特許文献1で、センサ信号の非サンプリング期間にディジタル回路のディジタル信号の出力状態を変化させることで、表示ちらつきを低減させることを提案しているが、前記のようなセンサ駆動電圧のばらつきを低減することはできなかった。   The applicant has proposed in Patent Document 1 that the display flicker can be reduced by changing the output state of the digital signal of the digital circuit during the non-sampling period of the sensor signal. Variations in drive voltage could not be reduced.

本発明は、前記従来の問題点を解決するべくなされたもので、変圧回路の出力に接続するコンデンサの容量に拘わらず、センサの駆動電圧を駆動毎に一定として、安定した測定信号を得ることを課題とする。   The present invention has been made to solve the above-described conventional problems, and obtains a stable measurement signal by keeping the sensor drive voltage constant for each drive regardless of the capacitance of the capacitor connected to the output of the transformer circuit. Is an issue.

本発明は、クロックを用いた変圧回路の出力により充放電を繰り返すコンデンサをセンサの駆動電源とし、外部からの指令によりセンサを駆動するようにされたディジタル測定器において、外部からの駆動指令に応じて直ちにセンサを駆動するのではなく、前記コンデンサの充電直後の一定のタイミングでセンサを駆動するように、前記変圧回路の動作タイミングを示す出力と外部からの駆動指令を論理回路で処理するようにして、前記課題を解決したものである。 The present invention, a capacitor for repeating charge and discharge as a driving power source of the sensor by the output of the transformer circuit using a clock, the digital measuring instrument which is adapted to drive the sensor by a command from the outside, in response to a drive instruction from the outside Instead of driving the sensor immediately , the logic circuit processes the output indicating the operation timing of the transformer circuit and the drive command from the outside so that the sensor is driven at a fixed timing immediately after charging the capacitor. Thus, the above-mentioned problems are solved.

本発明によれば、コンデンサの充電直後の一定のタイミングでセンサが駆動される。従って、コンデンサを大容量化することなく、センサの駆動電圧を駆動毎に一定とすることができる。よって、基板の小型化、低価格化、及び、システムの起動短縮による使い勝手の向上を図ることができる。 According to the present invention, the sensor is driven at a constant timing immediately after the capacitor is charged. Therefore, it is possible to make the sensor drive voltage constant for each drive without increasing the capacity of the capacitor. Therefore, it is possible to improve usability by reducing the size and cost of the substrate and shortening the startup of the system.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、図1に示したと同様のディジタル測定器において、図3に示す如く、電源部20のタイミング発生回路24の出力を、信号処理部40のタイミング発生回路46に入力し、マイコン30からの駆動指令に応じて直ちにセンサ10を駆動するのではなく、センサ10の駆動が変圧回路26の動作タイミングに同期するよう論理回路を介して、図4に示す如く、変圧回路26の充電を待ってセンサ10を実際に駆動するようにしたものである。   In the present embodiment, in the same digital measuring instrument as shown in FIG. 1, the output of the timing generation circuit 24 of the power supply unit 20 is input to the timing generation circuit 46 of the signal processing unit 40 as shown in FIG. 4 is not driven immediately in response to a drive command from the controller, but charging of the transformer circuit 26 is performed via a logic circuit so that the drive of the sensor 10 is synchronized with the operation timing of the transformer circuit 26 as shown in FIG. The sensor 10 is actually driven after waiting.

これにより、センサ10の駆動電圧は、常に変圧回路26による充電直後の電圧となって、駆動毎に一定となり、ばらつきが生じない。即ち、コンデンサ12の容量が同じであれば、センサ駆動時の電圧降下の大きさ(ΔV)は従来のままであるが、この電圧降下に対して、変圧回路26による電圧復帰時間(T)が一定となるので、センサ駆動毎の駆動電圧Vのばらつきを抑制することができる。   As a result, the drive voltage of the sensor 10 is always the voltage immediately after charging by the transformer circuit 26, and is constant for each drive and does not vary. That is, if the capacitance of the capacitor 12 is the same, the magnitude (ΔV) of the voltage drop at the time of driving the sensor remains the same as before, but the voltage recovery time (T) by the transformer circuit 26 is against this voltage drop. Since it is constant, it is possible to suppress variations in the drive voltage V for each sensor drive.

更に、従来では、例えば図2のタイムチャートの左から2番目の充電に見られるように、充電の立上りと駆動の立上りが一致してしまい、スイッチ28から発生するスイッチングノイズがセンサ10の出力信号に乗ってしまうという問題があったが、本発明では、このような問題も回避されている。   Further, conventionally, as seen in the second charge from the left in the time chart of FIG. 2, for example, the rise of charge coincides with the rise of drive, and the switching noise generated from the switch 28 is the output signal of the sensor 10. However, in the present invention, such a problem is also avoided.

本実施形態においては、変圧回路26による充電直後にセンサ10を駆動するようにしているので、最も安定した駆動電圧を得ることができる In the present embodiment, since the sensor 10 is driven immediately after charging by the transformer circuit 26, the most stable driving voltage can be obtained .

又、本実施形態においては、通常メインクロックで決まり変更が困難な変圧タイミングを固定したまま、センサ10の駆動を変圧タイミングに合わせて遅らせているので、制御が容易である。なお、場合によっては、マイコン30からの駆動指令を受けて変圧回路26を作動させ、コンデンサ12の充電後にセンサ10を駆動することも可能である。又、クロック発生回路22と44を共通化することもできる。 In the present embodiment, the control of the sensor 10 is delayed according to the transformation timing while fixing the transformation timing that is normally determined by the main clock and is difficult to change, so that the control is easy. In some cases, upon receiving a drive command from the microcomputer 30 actuates the transformer circuit 26, it is also possible to drive the sensor 10 after charging straight capacitor 12. Further, the clock generation circuits 22 and 44 can be shared.

なお、図4においては、変圧回路26の出力によるスイッチ28のオン時間が比較的長い充電タイミングで図示していたが、変圧回路26の充電能力に応じてスイッチ28のオン周期を短くすることによって、センサの駆動周期を短くすることも可能である。   In FIG. 4, the on-time of the switch 28 based on the output of the transformer circuit 26 is illustrated with a relatively long charging timing. However, by shortening the on-period of the switch 28 according to the charging capacity of the transformer circuit 26. It is also possible to shorten the sensor driving cycle.

前記実施形態においては、センサ10として電磁誘導式センサが用いられていたが、本発明の適用対象はこれに限定されず、駆動電圧を必要とする他の形式のセンサにも同様に適用できる。   In the above-described embodiment, an electromagnetic induction type sensor is used as the sensor 10, but the application target of the present invention is not limited to this, and can be similarly applied to other types of sensors that require a driving voltage.

ディジタル測定器の一般的な回路構成を示すブロック図Block diagram showing the general circuit configuration of a digital measuring instrument 図1の回路の動作タイミングを示すタイムチャートTime chart showing the operation timing of the circuit of FIG. 本発明の実施形態の回路構成を示すブロック図The block diagram which shows the circuit structure of embodiment of this invention. 前記実施形態の動作タイミングを示すタイムチャートTime chart showing operation timing of the embodiment

符号の説明Explanation of symbols

10…センサ
12…コンデンサ
20…電源部
22、44…クロック発生回路
24、46…タイミング発生回路
26…変圧回路
28…スイッチ
30…マイコン
40…信号処理部
42…ディジタル信号処理回路
DESCRIPTION OF SYMBOLS 10 ... Sensor 12 ... Capacitor 20 ... Power supply part 22, 44 ... Clock generation circuit 24, 46 ... Timing generation circuit 26 ... Transformer circuit 28 ... Switch 30 ... Microcomputer 40 ... Signal processing part 42 ... Digital signal processing circuit

Claims (1)

クロックを用いた変圧回路の出力により充放電を繰り返すコンデンサをセンサの駆動電源とし、外部からの指令によりセンサを駆動するようにされたディジタル測定器において、
外部からの駆動指令に応じて直ちにセンサを駆動するのではなく、前記コンデンサの充電直後の一定のタイミングでセンサを駆動するように、前記変圧回路の動作タイミングを示す出力と外部からの駆動指令が論理回路で処理されていることを特徴とするディジタル測定器。
In a digital measuring instrument designed to drive a sensor in response to an external command, a capacitor that repeats charging / discharging by the output of a transformer circuit using a clock is used as a driving power source of the sensor.
Rather than driving the sensor immediately in response to an external drive command, an output indicating the operation timing of the transformer circuit and an external drive command are provided so that the sensor is driven at a constant timing immediately after charging the capacitor. A digital measuring instrument processed by a logic circuit .
JP2004276650A 2004-09-24 2004-09-24 Digital measuring instrument Expired - Fee Related JP4494148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276650A JP4494148B2 (en) 2004-09-24 2004-09-24 Digital measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276650A JP4494148B2 (en) 2004-09-24 2004-09-24 Digital measuring instrument

Publications (2)

Publication Number Publication Date
JP2006090840A JP2006090840A (en) 2006-04-06
JP4494148B2 true JP4494148B2 (en) 2010-06-30

Family

ID=36231975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276650A Expired - Fee Related JP4494148B2 (en) 2004-09-24 2004-09-24 Digital measuring instrument

Country Status (1)

Country Link
JP (1) JP4494148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806604B2 (en) * 2011-11-30 2015-11-10 旭化成エレクトロニクス株式会社 Magnetic field detection circuit

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159207A (en) * 1984-08-31 1986-03-26 Canon Inc Distance measuring apparatus
JPS63242147A (en) * 1987-03-28 1988-10-07 株式会社東芝 Charge control circuit
JPH05333739A (en) * 1992-06-03 1993-12-17 Nec Corp Fixing part control system
JPH06295347A (en) * 1993-04-08 1994-10-21 Nec Corp Microcomputer with built-in low voltage operation prom
JPH07229735A (en) * 1994-02-15 1995-08-29 Toshihide Miyake Active range finder
JPH0882535A (en) * 1994-09-13 1996-03-26 Mitsubishi Electric Corp Sensor apparatus
JPH09113972A (en) * 1995-10-13 1997-05-02 Nikon Corp Image reader
JPH09329738A (en) * 1996-06-10 1997-12-22 Olympus Optical Co Ltd Camera focus detector
JPH11174167A (en) * 1997-10-07 1999-07-02 Seiko Instruments Inc Electronic time piece having generator element
JPH11289659A (en) * 1998-04-03 1999-10-19 Hitachi Maxell Ltd Control system for electronic device
JP2000182373A (en) * 1998-12-15 2000-06-30 Nec Corp Charge pump circuit, boosting circuit, and semiconductor memory device
JP2000311560A (en) * 1999-04-27 2000-11-07 Toko Electric Corp Operating power supply device for switch
JP2001059785A (en) * 1999-06-18 2001-03-06 Seiko Instruments Inc Portable pressure measuring instrument

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159207A (en) * 1984-08-31 1986-03-26 Canon Inc Distance measuring apparatus
JPS63242147A (en) * 1987-03-28 1988-10-07 株式会社東芝 Charge control circuit
JPH05333739A (en) * 1992-06-03 1993-12-17 Nec Corp Fixing part control system
JPH06295347A (en) * 1993-04-08 1994-10-21 Nec Corp Microcomputer with built-in low voltage operation prom
JPH07229735A (en) * 1994-02-15 1995-08-29 Toshihide Miyake Active range finder
JPH0882535A (en) * 1994-09-13 1996-03-26 Mitsubishi Electric Corp Sensor apparatus
JPH09113972A (en) * 1995-10-13 1997-05-02 Nikon Corp Image reader
JPH09329738A (en) * 1996-06-10 1997-12-22 Olympus Optical Co Ltd Camera focus detector
JPH11174167A (en) * 1997-10-07 1999-07-02 Seiko Instruments Inc Electronic time piece having generator element
JPH11289659A (en) * 1998-04-03 1999-10-19 Hitachi Maxell Ltd Control system for electronic device
JP2000182373A (en) * 1998-12-15 2000-06-30 Nec Corp Charge pump circuit, boosting circuit, and semiconductor memory device
JP2000311560A (en) * 1999-04-27 2000-11-07 Toko Electric Corp Operating power supply device for switch
JP2001059785A (en) * 1999-06-18 2001-03-06 Seiko Instruments Inc Portable pressure measuring instrument

Also Published As

Publication number Publication date
JP2006090840A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4098533B2 (en) Control circuit for switching power supply device and switching power supply device using the same
JP6057462B2 (en) Semiconductor device
US6232543B1 (en) Thermoelectric system
KR100912865B1 (en) Switching regulator and semiconductor device using the same
JP2004085858A (en) Display device
EP1174996B1 (en) Thermoelectric system
CN101218735A (en) Step-down switching regulator, its control circuit, and electronic device using same
JP5790197B2 (en) Image forming apparatus and power supply control method
JP2015070679A (en) Semiconductor device and control method of the same
US9281743B1 (en) Charge pump power supply with output voltage sensing using residual charge on a flying capacitor
JP4494148B2 (en) Digital measuring instrument
JP2009296852A (en) Power supply unit
JP2006296118A (en) Charger
JP2008157837A (en) Battery residual capacity detector and portable terminal device
JP4756936B2 (en) Power control device
JP6019603B2 (en) Circuit device, integrated circuit, and detection device
JP2002372959A (en) Voltage generation circuit, display device driving circuit, voltage multiplier, display device, electronic device provided in the display device and starting method for voltage generation circuit
JP2010136577A (en) Start-up circuit and power supply apparatus
EP2817690B1 (en) Method and apparatus for load switch controller
JP5800126B2 (en) Pulse generation circuit, integrated circuit device, detection device
JP2009181380A (en) Semiconductor device and electronic apparatus using the same
CN112311230A (en) Integrated circuit device
JP2007236116A (en) Charger for inverter
JP2010096634A (en) Voltage detecting device
JP2007318967A (en) Semiconductor device with voltage boosting circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees