JP4493776B2 - Test equipment for integrated circuit devices - Google Patents

Test equipment for integrated circuit devices Download PDF

Info

Publication number
JP4493776B2
JP4493776B2 JP2000008378A JP2000008378A JP4493776B2 JP 4493776 B2 JP4493776 B2 JP 4493776B2 JP 2000008378 A JP2000008378 A JP 2000008378A JP 2000008378 A JP2000008378 A JP 2000008378A JP 4493776 B2 JP4493776 B2 JP 4493776B2
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
ammeter
terminals
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008378A
Other languages
Japanese (ja)
Other versions
JP2000346903A (en
Inventor
昌 鑄 崔
孝 鎭 呉
泰 植 孫
世 章 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2000346903A publication Critical patent/JP2000346903A/en
Application granted granted Critical
Publication of JP4493776B2 publication Critical patent/JP4493776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は集積回路装置用のテスト装置に係り、特に複数本の電源ピンを具備する集積回路装置において複数本の電源ピンに流れる電流を測定するための集積回路装置用のテスト装置に関する。
【0002】
【従来の技術】
集積回路装置の製造工程が完了すると集積回路装置が正常に動作するかを確認するために集積回路装置のテスト工程が実行される。このテスト工程では、テスト装置を用いて集積回路装置の様々な特性を検査することになる。この従来の集積回路装置用のテスト装置は、集積回路装置の多様な変数(parameter)を測定することによってその機能を確認することで集積回路装置の一部の機能を検出するように形成されている。図1は、このような従来の集積回路装置用のテスト装置を複数本の電源ピンを有する集積回路装置に接続した状態を示すブロック図である。
【0003】
図1に示すように、従来の集積回路装置用のテスト装置101は、電圧源121,122,123、電流計131,132,133、及び端子181,182,183を具備している。ここで、集積回路装置111、例えばメモリ及びロジックが併合された集積回路装置は、電源ピン141,142,143を具備し、この電源ピン141,142,143を介してメモリ及びロジックを動作させるための電源電圧(VCC)を外部から供給している。また、集積回路装置の接地電圧(GND)ピンは、接地されている。この集積回路装置111の電源ピン141,142,143に流れる電流を測定するために電源ピン141,142,143は、端子181,182,183を介して電流計131,132,133と接続され、この電流計131〜133は電圧源121,122,123と接続される。この際、各電源ピンには、一つの電流計及び一つの電圧源が接続されている。
【0004】
また、電源ピン141,142,143に流れる電流を測定するために電圧源121,122,123は、電源ピン141,142,143に所定の電源電圧(VCC)を供給し、電流計131,132,133は電源ピン141,142,143に流れる電流を測定する。電流計131,132,133により測定された電流がテスト規定の範囲内に含まれると、集積回路装置111は正常であり、電源ピン141、142、143に流れる電流がテスト規定の範囲内に含まれないと集積回路装置111は不良として処理される。
【0005】
このように従来の集積回路装置用のテスト装置は、電源ピン141,142,143に流れる電流を測定するために各電源ピン毎に一つの電圧源及び一つの電流計が接続されている。従って、電源ピン141,142,143の数だけ電圧源及び電流計が必要となる。図1に示した集積回路装置111では、電源ピン141,142,143の数が3本であるため、電圧源121,122,123及び電流計131,132,133の数も各々3つになる。
【0006】
【発明が解決しようとする課題】
このように従来の集積回路装置用のテスト装置によれば、一つの集積回路装置111をテストするためには、電源ピン141,142,143と同一な数の電圧源121,122,123、及び電流計131,132,133が要求される。この電圧源121,122,123及び電流計131,132,133は、値段が高く、特に電流計131,132,133は高価なので、一つのテスト装備101には限られた所定数の電流計のみを保有するしかない。このため、複数本の電源ピンを備える集積回路装置をテストするためには、複数の電圧源及び電流計が要求されるため、それだけテスト価格が上昇することになる。
【0007】
さらに、所定数の電圧源及び電流計を具備するテスト装置を用いて複数個の集積回路装置を同時にテストしようとする場合、テスト可能な集積回路装置の数は極めて制限される。例えば、テスト装置が12台の電圧源及び電流計を具備して3本の電源ピンの集積回路装置をテストする場合、テスト装置としては一回に4個の集積回路装置しかテストできない。これは、集積回路装置のテスト価格を上昇させる要因となっている。
本発明はこのような課題を解決し、少数の電圧源及び電流計で複数の集積回路装置をテストでき、テスト価格をダウンさせうる集積回路装置用のテスト装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した課題を解決するために、本発明による集積回路装置用のテスト装置は、集積回路装置の機能をテストする集積回路装置用のテスト装置において、集積回路装置と電気的に接続される複数個の端子と、電流を測り複数個の端子より少数に設けられた少なくとも一つ以上の電流計と、所定電圧を発生する電圧源と、集積回路装置のテスト時に制御信号に応答して所定電圧を少なくとも一つ以上の電流計を介して選択的に複数個の一部または全ての端子に伝達するとともにこの時電流計を介して所定電圧が伝達されない残り全ての端子に所定電圧を直接伝達する電流計接続制御部と、この電流計接続制御部に接続されて制御信号を発生して電流計接続制御部を制御する制御信号発生部と、を備え、集積回路装置をテストする時に複数個の端子は集積回路装置の電源ピンに接続され、電流計によって端子を介して集積回路装置の電源ピンのそれぞれに流れる電流が測定され、測定された電流がテスト規定内に含まれると集積回路装置は正常であり、測定された電流がテスト規定内に含まれなければ集積回路装置は不良として処理する
【0009】
ここで望ましくは、電圧源は、常に一定の電圧を供給する定電圧源であり、テスト装備には電流計接続制御部に接続されて制御信号を発生して電流計接続制御部を制御する制御信号発生部をさらに具備することが好ましい。また、電流計接続制御部は複数個のスイッチング手段を具備し、この複数個のスイッチング手段によって少なくとも一つ以上の電流計は少なくとも一つ以上の電圧源と前記複数個の端子とに選択的に接続するように設けることが好ましい。
【0010】
また、本発明による集積回路装置用のテスト装置の他の実施の形態は、複数個の集積回路装置の機能をテストする集積回路装置用のテスト装置において、集積回路装置と電気的に接続される複数個の端子と、電流を測り複数個の端子より少数に設けられた少なくとも一つ以上の電流計と、集積回路装置のテスト時に制御信号に応答して所定電圧を少なくとも一つ以上の電流計を介して選択的に複数個の一部または全ての端子に伝達するとともにこの時電流計を介して所定電圧が伝達されない残り全ての端子に所定電圧を直接伝達する電流計接続制御部と、を複数具備し、複数の電流計接続制御部に各々所定の電圧を発生させる電圧源と、複数の電流計接続制御部に各々接続されて制御信号を発生して複数の電流計接続制御部を制御する制御信号発生部と、を更に備えて数の集積回路装置を同時にテストし、この各集積回路装置をテストする時に複数個の端子は各集積回路装置の電源ピンに接続され、電流計によって端子を介して各集積回路装置の電源ピンのそれぞれに流れる電流が測定され、測定された電流がテスト規定内に含まれると集積回路装置は正常であり、測定された電流がテスト規定内に含まれなければ集積回路装置は不良として処理する
【0011】
ここで望ましくは、電圧源は常に一定の電圧を供給する定電圧源であり、複数個の電流接続制御部に接続されて制御信号を発生して複数個の電流計接続制御部を制御する制御信号発生部をさらに具備することが好ましい。また、各電流計接続制御部は複数個のスイッチング手段を具備し、この複数個のスイッチング手段によって少なくとも一つの電流計は前記少なくとも一つ以上の電圧源と所定の端子とに選択的に接続するように設けることが好ましい。
【0012】
【発明の実施の形態】
以下、添付図面を参照して本発明による集積回路装置用のテスト装置の実施の形態を詳細に説明する。図2は、本発明による集積回路装置用のテスト装置の第1の実施の形態を示すブロック図である。また、図3は、図2に示した電流計接続制御部231の内部構造を示す回路図である。
【0013】
図2に示すように、本発明による集積回路装置用のテスト装置201の第1の実施の形態は、電圧源221、電流計接続制御部261、電流計231、制御信号発生部271、及び端子281,282,283を具備している。図2において、3本の電源ピン241,242,243を備える集積回路装置211を例として説明しているが、これに限定されるものではなく、例えば、電源ピン241,242,243の数を集積回路装置211の特性に応じて減少及び増加することも可能である。
また、図2において、メモリ及びロジックを内蔵する集積回路装置211を例として説明しているが、このメモリ及びロジックを内蔵する集積回路装置としては、例えば、DRAMロジック複合集積回路装置、メモリ内蔵MPU(Micro Processor Unit)集積回路装置、ラムバス(Rambus)DRAM集積回路装置などの集積回路装置がある。
【0014】
また、集積回路装置211は、メモリ及びロジックを動作させるための電源電圧(VCC)を外部から供給し、接地電圧(GND)ピンを接地している。この電圧源221は、常に一定の電圧を出力する定電圧源である。また、電流計231は、電源ピン241,242,243に流れる電流を測定し、端子より少なく設けた少なくとも1つ以上が備えられている。また、制御信号発生部271は、制御信号PSW1乃至PSW12を発生して電流計接続制御部261に提供するように形成している。
【0015】
また、電流計接続制御部261は、電気線L1,L2,L3を介して電圧源221と接続され、電気線L4,L5,L6を介して端子281,282,283に接続される。集積回路装置211のテスト時に端子281,282,283は、集積回路装置211の電源ピン241,242,243に1:1に接続される。また、電流計接続制御部261は、制御信号PSW1乃至PSW12に応答して電圧源221が選択的に電流計231に接続され、この電流計231を選択的に端子281,282,283に電気的に接続する。即ち、制御信号PSW1乃至PSW12の活性化の成否に応じて電圧源221は、電流計231を介して端子281,282,283のうち一部の端子に接続され、電流計231に接続されない端子は直接電圧源221に接続される。こうして電圧源221と電流計231とが端子281,282,283に接続されると、電圧源221は電源電圧(VCC)を端子281,282,283に供給する。電流計231は、端子281,282,283を介して電源ピン241,242,243に流れる電流を測定する。電流計231により測定された電流がテスト規定内に含まれると集積回路装置211は正常であり、電流計231により測定された電流がテスト規定内に含まれないと集積回路装置211は不良として処理される。
【0016】
また、図3に示すように電流計接続制御部261は、複数個のスイッチング手段、例えば第1乃至第12スイッチ311〜322を備えている。この第1乃至第12スイッチ311〜322は、制御信号PSW1乃至PSW12により各々制御されている。即ち、制御信号PSW1乃至PSW12が活性化すると、対応するスイッチがターンオンされる。例えば、制御信号PSW1,PSW7,PWS10が活性化すると、第1スイッチ311、第7スイッチ317、及び第10スイッチ320がターンオンされ、それによって電気線L1は電流計231を介して電気線L4と接続される。この場合、第2及び第5スイッチ312,315と第3及び第6スイッチ313,316とが共にターンオンされ、電気線L2と電気線L5、及び電気線L3と電気線L6の各々が相互に接続される。
【0017】
このように、電流計接続制御部261により電圧源(図2の221)と電流計231とが端子281,282,283に接続される様々な状態を図4乃至図10に示す。図4は、図3に示した電気線L1が電流計231を介して電気線L4に接続された状態を示す図である。また、図5は、図3に示した電気線L2が電流計231を介して電気線L5に接続された状態を示す図である。また、図6は、図3に示した電気線L3が電流計231を介して電気線L6に接続された状態を示す図である。また、図7は、図3に示した電気線L1が電流計231を介して電気線L4,L5に接続された状態を示す図である。また、図8は、図3に示した電気線L1が電流計231を介して電気線L4,L6に接続された状態を示す図である。また、図9は、図3に示した電気線L3が電流計231を介して電気線L5,L6に接続された状態を示す図である。また、図10は、図3に示した電気線L1が電流計231を介して電気線L4,L5,L6に接続された状態を示す図である。
【0018】
図4乃至図10に示すように、電流計231は、一つの端子に接続したり、2つまたは3つの端子に同時に接続したりすることもある。電流計231が図4乃至図6に示したように接続された場合、テスト装備201(図2参照)は一つの電源ピンに流れる電流のみ測定することになる。また、電流計231が図7乃至図10示したように接続された場合、テスト装備201は2本以上の電源ピンに流れる電流を測定することになる。
図4乃至図10に示したスイッチ311乃至322のオン/オフ状態を下記の表1に示す。
【0019】
【表1】

Figure 0004493776
【0020】
集積回路装置211が3本の電源ピン241,242,243のみを具備する場合、電流計231が電源ピン241,242,243に接続される方法は図4乃至図10に示した方法に限定される。しかし、集積回路装置211が4本以上の電源ピンを具備する場合は、電流計231が電源ピンに接続されうる方法はさらに多くなる。
このように第1の実施の形態によれば、複数のスイッチ311乃至322を備える電流計接続制御部261を設けることで、一つの電圧源221及び一つの電流計231により集積回路装置211の複数の電源ピン241,242,243に流れる電流を測定することが可能になる。従って、テスト価格のコストダウンを実現できる。
【0021】
次に、図11を参照して本発明による集積回路装置用のテスト装置の第2の実施の形態を詳細に説明する。図11は、本発明による集積回路装置用のテスト装置の第2の実施の形態を示すブロック図である。ここで第2の実施の形態において、第1の実施の形態と同じ構成要素には同一の符号を記載している。
図11に示すように、本発明による集積回路装置用のテスト装置の第2の実施の形態は、一つの電圧源521、及び2つの電流計531,532、並びに端子281,282,283を具備している。電圧源521は、電流計531,532と端子281,282,283とを介して集積回路装置211の電源ピン241,242,243に接続される。この際、電流計531,532は、電源ピン241,242に流れる電流を測定する。また、電圧源521は、再び端子283を介して電源ピン243に直接接続されて電源ピン243に電源電圧(VCC)を供給する。図11は、電源ピン241,242,243のうち2本の電源ピン241,242にのみ流れる電流を測定しようとする場合に適用しうる方法である。例えば、集積回路装置211にメモリ及びロジックを備えている場合、メモリに電源電圧(VCC)を供給する電源ピン241,242にのみ流れる電流を測定する場合に図11に示した方法が適用できる。
このように第2の実施の形態によると、図11に示したように、一つの電圧源521と2つの電流計531,532とを用いて電源ピン241,242に流れる電流を測定することによって従来の技術に比べて、よりテスト価格のコストダウンが可能になる。
【0022】
次に、図12を参照して本発明による集積回路装置用のテスト装置の第3の実施の形態を詳細に説明する。図12は、本発明による集積回路装置用のテスト装置の第3の実施の形態を示すブロック図である。ここで第3の実施の形態において、第1及び2の実施の形態と同じ構成要素には同一の符号を記載している。
図12に示すように、本発明による集積回路装置用のテスト装置の第3の実施は、電圧源221、制御信号発生部671、第1乃至第4電流測定部611,612,613,614、及び端子281乃至292を備えている。
第1乃至第4電流測定部611,612,613,614は、第1乃至第4電流計接続制御部261,262,263,264と第1乃至第4電流計231,232,233,234とを備えている。また、第1乃至第4電流計接続制御部261,262,263,264は、端子281乃至292を介して集積回路装置211,212,213,214の電源ピン241乃至252に接続される。制御信号発生部671は、制御信号PSW1乃至PSW48を発生して第1乃至第4電流計接続制御部261,262,263,264を制御する。ここで、第1乃至第4電流計接続制御部261,262,263,264の回路は、図3に示した電流計接続制御部261と同一であり、その回路構成のスイッチにより接続される種類も図4乃至図10と同一なのでその説明を省略する。
【0023】
従って、テスト装備601と集積回路装置211,212,213,214とを図12に示したように接続することによってテスト装備601は、一つの電圧源221及び4つの電流計231,232,233,234のみで4つの集積回路装置211,212,213,214の電源ピン241乃至252に流れる電流を同時に測定することができる。ここで、テスト装備601は、電流計を多く設けるほどさらに多くの集積回路装置を同時にテストできる。
また、電圧源221は、その出力端に接続される負荷の数に関係なく常に一定の電圧を供給しうる定電圧源である。場合に応じて、電圧源221の出力端には、多くの負荷が加わるので、この際に電圧源221の電圧容量がさらに大きくなる。このように負荷が大きくなる場合、電圧源221を2つ以上に追加して構成することもある。
また、制御信号発生部671と第1乃至第4電流計接続制御部261,262,263,264とを用いて集積回路装置211,212,213,214の電源ピン241乃至252に流れる電流を測定する方法は、図3に示した方法と同じであるため、説明を省略する。
【0024】
このように第3の実施の形態によると、集積回路装置の電流ピンに流れる電流を電流計接続制御部により種々の方法で測定できるため、第1の実施の形態と同様の効果を得ることができるとともに、複数の電流計接続制御部を設けることで一度の多くの集積回路装置を測定することが可能になる。
以上、本発明による集積回路装置用のテスト装置の実施の形態を詳細に説明したが、本発明は前述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。例えば、4つの電流計接続制御部を備えた第3の実施の形態を説明したが、これに限定されるものではなく、4つ以上、または2つ、或いは3つのいずれかの数だけ電流計接続制御部を設けて測定することも可能である。
【0025】
【発明の効果】
このように本発明による集積回路装置用のテスト装置によれば、端子より少数に設けられた電流計と電圧源とを用いることで、集積回路装置の複数本の電源ピンに流れる電流を測定できるため、集積回路装置のテスト時にかかるテスト価格のコストダウンを実現することができる。
【図面の簡単な説明】
【図1】従来の集積回路装置用のテスト装置を複数本の電源ピンを有する集積回路装置に接続した状態を示すブロック図。
【図2】本発明による集積回路装置用のテスト装置の第1の実施の形態を示すブロック図。
【図3】図2に示した電流計接続制御部の内部構造を示す回路図。
【図4】図3に示した電気線L1が電流計を介して電気線L4に接続された状態を示す図。
【図5】図3に示した電気線L2が電流計を介して電気線L5に接続された状態を示す図。
【図6】図3に示した電気線L3が電流計を介して電気線L6に接続された状態を示す図。
【図7】図3に示した電気線L1が電流計を介して電気線L4,L5に接続された状態を示す図。
【図8】図3に示した電気線L1が電流計を介して電気線L4,L6に接続された状態を示す図。
【図9】図3に示した電気線L3が電流計を介して電気線L5,L6に接続された状態を示す図。
【図10】図3に示した電気線L1が電流計を介して電気線L4,L5,L6に接続された状態を示す図。
【図11】本発明による集積回路装置用のテスト装置の第2の実施の形態を示すブロック図。
【図12】本発明による集積回路装置用のテスト装置の第3の実施の形態を示すブロック図。
【符号の説明】
201 テスト装備
211 集積回路装置
221 電圧源
231 電流計
241,242,243 電源ピン
261 電流計接続制御部
271 制御信号発生部
281,282,283 端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a test apparatus for an integrated circuit device, and more particularly to a test apparatus for an integrated circuit device for measuring a current flowing through a plurality of power supply pins in an integrated circuit device having a plurality of power supply pins.
[0002]
[Prior art]
When the manufacturing process of the integrated circuit device is completed, a test process of the integrated circuit device is executed to confirm whether the integrated circuit device operates normally. In this test process, various characteristics of the integrated circuit device are inspected using the test device. The conventional test apparatus for an integrated circuit device is configured to detect a part of the function of the integrated circuit device by confirming its function by measuring various parameters of the integrated circuit device. Yes. FIG. 1 is a block diagram showing a state in which such a conventional test apparatus for an integrated circuit device is connected to an integrated circuit device having a plurality of power supply pins.
[0003]
As shown in FIG. 1, a conventional test apparatus 101 for an integrated circuit device includes voltage sources 121, 122, 123, ammeters 131, 132, 133, and terminals 181, 182, 183. Here, the integrated circuit device 111, for example, an integrated circuit device in which the memory and the logic are merged, includes the power pins 141, 142, and 143, and operates the memory and the logic via the power pins 141, 142, and 143. Power supply voltage (VCC) is supplied from the outside. The ground voltage (GND) pin of the integrated circuit device is grounded. In order to measure the current flowing through the power supply pins 141, 142, 143 of the integrated circuit device 111, the power supply pins 141, 142, 143 are connected to ammeters 131, 132, 133 via terminals 181, 182, 183, The ammeters 131 to 133 are connected to voltage sources 121, 122, and 123. At this time, one ammeter and one voltage source are connected to each power supply pin.
[0004]
Further, in order to measure the current flowing through the power supply pins 141, 142, 143, the voltage sources 121, 122, 123 supply a predetermined power supply voltage (VCC) to the power supply pins 141, 142, 143, and the ammeters 131, 132. , 133 measure the current flowing through the power pins 141, 142, 143. If the currents measured by the ammeters 131, 132, and 133 are included in the test specified range, the integrated circuit device 111 is normal, and the currents flowing through the power supply pins 141, 142, and 143 are included in the test specified range. Otherwise, the integrated circuit device 111 is treated as defective.
[0005]
As described above, in the conventional test apparatus for an integrated circuit device, one voltage source and one ammeter are connected to each power supply pin in order to measure the current flowing through the power supply pins 141, 142, and 143. Accordingly, as many voltage sources and ammeters as the number of power supply pins 141, 142, and 143 are required. In the integrated circuit device 111 shown in FIG. 1, since the number of power supply pins 141, 142, and 143 is three, the number of voltage sources 121, 122, and 123 and ammeters 131, 132, and 133 is also three. .
[0006]
[Problems to be solved by the invention]
As described above, according to the conventional test apparatus for an integrated circuit device, in order to test one integrated circuit device 111, the same number of voltage sources 121, 122, 123 as the power pins 141, 142, 143, and Ammeters 131, 132, 133 are required. Since the voltage sources 121, 122, 123 and the ammeters 131, 132, 133 are expensive, and the ammeters 131, 132, 133 are particularly expensive, only a predetermined number of ammeters are included in one test equipment 101. There is no choice but to own. For this reason, in order to test an integrated circuit device having a plurality of power supply pins, a plurality of voltage sources and ammeters are required, so that the test price increases accordingly.
[0007]
Furthermore, when a plurality of integrated circuit devices are to be tested simultaneously using a test device having a predetermined number of voltage sources and ammeters, the number of integrated circuit devices that can be tested is extremely limited. For example, when a test apparatus includes 12 voltage sources and ammeters to test an integrated circuit device having three power pins, only four integrated circuit devices can be tested at a time. This is a factor that raises the test price of the integrated circuit device.
An object of the present invention is to solve such a problem, and to provide a test apparatus for an integrated circuit device that can test a plurality of integrated circuit devices with a small number of voltage sources and ammeters and can reduce the test cost.
[0008]
[Means for Solving the Problems]
To solve the problem described above, the test apparatus for integrated circuit device according to the invention, in a test apparatus for integrated circuit devices to test the functionality of the integrated circuit device, Ru integrated circuit device electrically connected to a plurality A plurality of terminals, at least one ammeter provided in a smaller number than a plurality of terminals, a voltage source for generating a predetermined voltage, and a predetermined voltage in response to a control signal when testing the integrated circuit device. directly transmitting a predetermined voltage to all remaining terminals the predetermined voltage is not transmitted through the time ammeter with selectively transmitting a plurality of some or all of the terminal through the at least one current meter An ammeter connection control unit, and a control signal generation unit connected to the ammeter connection control unit to generate a control signal and control the ammeter connection control unit, and when testing the integrated circuit device, a plurality of end Is connected to the power supply pin of the integrated circuit device, the current flowing through each of the power supply pin of the integrated circuit device is measured by the ammeter via the terminal, and if the measured current is included in the test specification, the integrated circuit device is normal If the measured current is not included in the test specification, the integrated circuit device is treated as defective .
[0009]
Preferably, the voltage source is a constant voltage source that always supplies a constant voltage, and the test equipment is connected to an ammeter connection control unit and generates a control signal to control the ammeter connection control unit. It is preferable to further include a signal generator. Further, ammeter connection control unit comprises a plurality of switching means, selectively to the at least one current meter of the plurality with at least one voltage source terminal by the plurality of switching means It is preferable to provide it so that it may be connected to.
[0010]
Another embodiment of a test apparatus for integrated circuit device according to the invention, in a test apparatus for testing an integrated circuit device the functions of the plurality of integrated circuit devices, the Integrated Circuit device electrically connected A plurality of terminals for measuring current, at least one ammeter provided in a smaller number than the plurality of terminals, and at least one current corresponding to a control signal when testing the integrated circuit device. An ammeter connection control section for selectively transmitting a predetermined voltage to all or some of a plurality of terminals via a meter and transmitting a predetermined voltage directly to all the remaining terminals through which the predetermined voltage is not transmitted via the ammeter; the plurality comprises, each voltage Ru generates a predetermined voltage source and, by generating each connected to the control signal a plurality of ammeters connection control unit to a plurality of ammeters connection control unit to a plurality of ammeters connection control unit Control signal to control Simultaneously test multiple integrated circuit device further includes a generating unit, a plurality of terminals when testing the respective integrated circuit device is connected to the power pins of the integrated circuit device via the terminal by the current meter If the current flowing through each power supply pin of each integrated circuit device is measured and the measured current is included in the test specification, the integrated circuit device is normal and the measured current must be included in the test specification. The integrated circuit device is treated as defective .
[0011]
Preferably, the voltage source is a constant voltage source that always supplies a constant voltage, and is connected to a plurality of current connection control units to generate a control signal to control the plurality of ammeter connection control units. It is preferable to further include a signal generator. Each ammeter connection control unit includes a plurality of switching means, and at least one ammeter is selectively connected to the at least one voltage source and a predetermined terminal by the plurality of switching means. It is preferable to provide as described above.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a test apparatus for an integrated circuit device according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 2 is a block diagram showing a first embodiment of a test apparatus for an integrated circuit device according to the present invention. FIG. 3 is a circuit diagram showing an internal structure of the ammeter connection control unit 231 shown in FIG.
[0013]
As shown in FIG. 2, a first embodiment of a test apparatus 201 for an integrated circuit device according to the present invention includes a voltage source 221, an ammeter connection control unit 261, an ammeter 231, a control signal generation unit 271, and a terminal. 281, 282, and 283. In FIG. 2, the integrated circuit device 211 including three power supply pins 241, 242, and 243 is described as an example. However, the present invention is not limited to this. For example, the number of power supply pins 241, 242, and 243 is the same. It is possible to decrease and increase according to the characteristics of the integrated circuit device 211.
In FIG. 2, the integrated circuit device 211 incorporating the memory and logic is described as an example. Examples of the integrated circuit device incorporating the memory and logic include, for example, a DRAM logic composite integrated circuit device and a memory built-in MPU. There are integrated circuit devices such as a (Micro Processor Unit) integrated circuit device and a Rambus DRAM integrated circuit device.
[0014]
Further, the integrated circuit device 211 supplies a power supply voltage (VCC) for operating the memory and logic from the outside, and grounds a ground voltage (GND) pin. The voltage source 221 is a constant voltage source that always outputs a constant voltage. The ammeter 231 measures at least the current flowing through the power pins 241, 242, and 243, and is provided with at least one provided less than the terminals. The control signal generator 271 is configured to generate control signals PSW1 to PSW12 and provide them to the ammeter connection controller 261.
[0015]
The ammeter connection control unit 261 is connected to the voltage source 221 via electric lines L1, L2, and L3, and is connected to terminals 281, 282, and 283 via electric lines L4, L5, and L6. When testing the integrated circuit device 211, the terminals 281, 282, and 283 are connected 1: 1 to the power supply pins 241, 242, and 243 of the integrated circuit device 211. The ammeter connection control unit 261 selectively connects the voltage source 221 to the ammeter 231 in response to the control signals PSW1 to PSW12, and selectively connects the ammeter 231 to the terminals 281, 282, and 283. Connect to. That is, the voltage source 221 is connected to some of the terminals 281, 282, and 283 via the ammeter 231 depending on whether the control signals PSW 1 to PSW 12 are activated or not. Directly connected to the voltage source 221. When the voltage source 221 and the ammeter 231 are thus connected to the terminals 281, 282, 283, the voltage source 221 supplies the power supply voltage (VCC) to the terminals 281, 282, 283. The ammeter 231 measures the current flowing through the power supply pins 241, 242 and 243 via the terminals 281, 282 and 283. If the current measured by the ammeter 231 is included in the test rule, the integrated circuit device 211 is normal. If the current measured by the ammeter 231 is not included in the test rule, the integrated circuit device 211 is treated as defective. Is done.
[0016]
As shown in FIG. 3, the ammeter connection control unit 261 includes a plurality of switching means, for example, first to twelfth switches 311 to 322. The first to twelfth switches 311 to 322 are controlled by control signals PSW1 to PSW12, respectively. That is, when the control signals PSW1 to PSW12 are activated, the corresponding switch is turned on. For example, when the control signals PSW1, PSW7, and PWS10 are activated, the first switch 311, the seventh switch 317, and the tenth switch 320 are turned on, whereby the electric line L1 is connected to the electric line L4 via the ammeter 231. Is done. In this case, both the second and fifth switches 312 and 315 and the third and sixth switches 313 and 316 are turned on, and the electric lines L2 and L5, and the electric lines L3 and L6 are connected to each other. Is done.
[0017]
Various states in which the voltage source (221 in FIG. 2) and the ammeter 231 are connected to the terminals 281, 282, and 283 by the ammeter connection control unit 261 are shown in FIGS. FIG. 4 is a diagram illustrating a state in which the electric line L1 illustrated in FIG. 3 is connected to the electric line L4 via the ammeter 231. FIG. 5 is a diagram illustrating a state in which the electric line L2 illustrated in FIG. 3 is connected to the electric line L5 via the ammeter 231. FIG. 6 is a diagram illustrating a state in which the electrical line L3 illustrated in FIG. 3 is connected to the electrical line L6 via the ammeter 231. FIG. 7 is a diagram illustrating a state in which the electric line L1 illustrated in FIG. 3 is connected to the electric lines L4 and L5 via the ammeter 231. FIG. 8 is a diagram illustrating a state in which the electric line L1 illustrated in FIG. 3 is connected to the electric lines L4 and L6 via the ammeter 231. FIG. 9 is a diagram illustrating a state in which the electric line L3 illustrated in FIG. 3 is connected to the electric lines L5 and L6 via the ammeter 231. FIG. 10 is a diagram illustrating a state in which the electrical line L1 illustrated in FIG. 3 is connected to the electrical lines L4, L5, and L6 via the ammeter 231.
[0018]
As shown in FIGS. 4 to 10, the ammeter 231 may be connected to one terminal or may be connected to two or three terminals simultaneously. When the ammeter 231 is connected as shown in FIGS. 4 to 6, the test equipment 201 (see FIG. 2) measures only the current flowing through one power supply pin. When the ammeter 231 is connected as shown in FIGS. 7 to 10, the test equipment 201 measures the current flowing through two or more power supply pins.
The on / off states of the switches 311 to 322 shown in FIGS. 4 to 10 are shown in Table 1 below.
[0019]
[Table 1]
Figure 0004493776
[0020]
When the integrated circuit device 211 has only three power supply pins 241, 242, and 243, the method of connecting the ammeter 231 to the power supply pins 241, 242, and 243 is limited to the method shown in FIGS. The However, when the integrated circuit device 211 has four or more power supply pins, there are more ways in which the ammeter 231 can be connected to the power supply pins.
As described above, according to the first embodiment, by providing the ammeter connection control unit 261 including the plurality of switches 311 to 322, a plurality of integrated circuit devices 211 are formed by one voltage source 221 and one ammeter 231. It is possible to measure the current flowing through the power supply pins 241, 242, and 243. Therefore, the test price can be reduced.
[0021]
Next, a second embodiment of a test apparatus for an integrated circuit device according to the present invention will be described in detail with reference to FIG. FIG. 11 is a block diagram showing a second embodiment of a test apparatus for an integrated circuit device according to the present invention. Here, in the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals.
As shown in FIG. 11, the second embodiment of the test apparatus for an integrated circuit device according to the present invention includes one voltage source 521, two ammeters 531, 532, and terminals 281, 282, 283. is doing. The voltage source 521 is connected to the power supply pins 241, 242 and 243 of the integrated circuit device 211 via ammeters 531 and 532 and terminals 281, 282 and 283. At this time, the ammeters 531 and 532 measure the current flowing through the power supply pins 241 and 242. The voltage source 521 is directly connected to the power supply pin 243 again via the terminal 283 and supplies the power supply voltage (VCC) to the power supply pin 243. FIG. 11 shows a method that can be applied to the case where the current flowing through only two power supply pins 241 and 242 out of the power supply pins 241, 242, and 243 is to be measured. For example, when the integrated circuit device 211 includes a memory and a logic, the method shown in FIG. 11 can be applied to the case where the current flowing only through the power supply pins 241 and 242 that supply the power supply voltage (VCC) to the memory is measured.
In this way, according to the second embodiment, as shown in FIG. 11, by measuring the current flowing through the power supply pins 241 and 242 using one voltage source 521 and two ammeters 531 and 532, Compared to the conventional technology, the test price can be further reduced.
[0022]
Next, a third embodiment of the test apparatus for an integrated circuit device according to the present invention will be described in detail with reference to FIG. FIG. 12 is a block diagram showing a third embodiment of a test apparatus for an integrated circuit device according to the present invention. Here, in the third embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals.
As shown in FIG. 12, the third embodiment of the test apparatus for an integrated circuit device according to the present invention includes a voltage source 221, a control signal generator 671, first to fourth current measuring units 611, 612, 613, 614, And terminals 281 to 292.
The first to fourth current measuring units 611, 612, 613, and 614 include first to fourth ammeter connection control units 261, 262, 263, and 264 and first to fourth ammeters 231, 232, 233, and 234, respectively. It has. The first to fourth ammeter connection control units 261, 262, 263, and 264 are connected to power supply pins 241 to 252 of the integrated circuit devices 211, 212, 213, and 214 via terminals 281 to 292. The control signal generator 671 generates control signals PSW1 to PSW48 to control the first to fourth ammeter connection controllers 261, 262, 263, and 264. Here, the circuits of the first to fourth ammeter connection control units 261, 262, 263, and 264 are the same as the ammeter connection control unit 261 shown in FIG. 3, and are connected by switches having the circuit configuration. 4 is the same as FIG. 4 to FIG.
[0023]
Therefore, by connecting the test equipment 601 and the integrated circuit devices 211, 212, 213, and 214 as shown in FIG. 12, the test equipment 601 has one voltage source 221 and four ammeters 231, 232, 233, and 233. The current flowing through the power supply pins 241 to 252 of the four integrated circuit devices 211, 212, 213, and 214 can be measured at the same time only by H.234. Here, the test equipment 601 can simultaneously test more integrated circuit devices as more ammeters are provided.
The voltage source 221 is a constant voltage source that can always supply a constant voltage regardless of the number of loads connected to the output terminal. Depending on the case, a lot of load is applied to the output terminal of the voltage source 221, so that the voltage capacity of the voltage source 221 further increases at this time. When the load increases in this way, the voltage source 221 may be added to two or more.
Further, the current flowing through the power supply pins 241 to 252 of the integrated circuit devices 211, 212, 213, and 214 is measured using the control signal generator 671 and the first to fourth ammeter connection controllers 261, 262, 263, and 264. The method to do is the same as the method shown in FIG.
[0024]
As described above, according to the third embodiment, since the current flowing through the current pin of the integrated circuit device can be measured by the ammeter connection control unit by various methods, the same effects as those of the first embodiment can be obtained. In addition, it is possible to measure many integrated circuit devices at once by providing a plurality of ammeter connection control units.
As mentioned above, although the embodiment of the test apparatus for the integrated circuit device according to the present invention has been described in detail, the present invention is not limited to the embodiment described above, and can be modified without departing from the gist thereof. . For example, although the third embodiment including four ammeter connection control units has been described, the present invention is not limited to this, and the number of ammeters is any number of four or more, two, or three. It is also possible to measure by providing a connection control unit.
[0025]
【The invention's effect】
As described above, according to the test apparatus for an integrated circuit device according to the present invention, it is possible to measure the current flowing through the plurality of power supply pins of the integrated circuit device by using the ammeter and the voltage source provided in a smaller number than the terminals. Therefore, it is possible to reduce the cost of the test price required for testing the integrated circuit device.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a state in which a conventional test apparatus for an integrated circuit device is connected to an integrated circuit device having a plurality of power supply pins.
FIG. 2 is a block diagram showing a first embodiment of a test apparatus for an integrated circuit device according to the present invention.
3 is a circuit diagram showing an internal structure of an ammeter connection control unit shown in FIG. 2;
4 is a diagram showing a state in which the electric line L1 shown in FIG. 3 is connected to the electric line L4 through an ammeter.
5 is a diagram showing a state in which the electric line L2 shown in FIG. 3 is connected to the electric line L5 through an ammeter.
6 is a diagram showing a state in which the electric line L3 shown in FIG. 3 is connected to the electric line L6 through an ammeter.
7 is a diagram showing a state in which the electric line L1 shown in FIG. 3 is connected to the electric lines L4 and L5 through an ammeter.
FIG. 8 is a diagram showing a state in which the electric line L1 shown in FIG. 3 is connected to the electric lines L4 and L6 through an ammeter.
9 is a diagram showing a state in which the electric line L3 shown in FIG. 3 is connected to the electric lines L5 and L6 through an ammeter.
10 is a diagram showing a state in which the electric line L1 shown in FIG. 3 is connected to the electric lines L4, L5, and L6 via an ammeter.
FIG. 11 is a block diagram showing a second embodiment of a test apparatus for an integrated circuit device according to the present invention.
FIG. 12 is a block diagram showing a third embodiment of a test apparatus for an integrated circuit device according to the present invention.
[Explanation of symbols]
201 Test Equipment 211 Integrated Circuit Device 221 Voltage Source 231 Ammeter 241, 242, 243 Power Pin 261 Ammeter Connection Control Unit 271 Control Signal Generator 281, 282, 283 Terminal

Claims (8)

集積回路装置の機能をテストする集積回路装置用のテスト装置において、
前記集積回路装置と電気的に接続される複数個の端子と、
電流を測り、前記複数個の端子より少数に設けられた少なくとも一つ以上の電流計と、
所定電圧を発生する電圧源と、
前記集積回路装置のテスト時に制御信号に応答して、前記所定電圧を前記少なくとも一つ以上の電流計を介して選択的に前記複数個の一部または全ての端子に伝達するとともに、この時前記電流計を介して前記所定電圧が伝達されない残り全ての端子に前記所定電圧を直接伝達する電流計接続制御部と
前記電流計接続制御部に接続され、前記制御信号を発生して前記電流計接続制御部を制御する制御信号発生部と、を備え、
前記集積回路装置をテストする時に前記複数個の端子は前記集積回路装置の電源ピンに接続され、前記電流計によって前記端子を介して前記集積回路装置の前記電源ピンのそれぞれに流れる電流が測定され、前記測定された電流がテスト規定内に含まれると前記集積回路装置は正常であり、前記測定された電流がテスト規定内に含まれなければ前記集積回路装置は不良として処理する
ことを特徴とする集積回路装置用のテスト装置。
In a test apparatus for an integrated circuit device for testing the function of the integrated circuit device,
A plurality of terminals that will be the integrated circuit device and electrically connected,
Measuring the current, at least one ammeter provided in a smaller number than the plurality of terminals; and
A voltage source for generating a predetermined voltage;
In response to a control signal during testing of the integrated circuit device, the predetermined voltage is selectively transmitted to some or all of the plurality of terminals via the at least one ammeter. and ammeter connection control unit that the predetermined voltage via the serial current meter communicating said predetermined voltage on the transmitted such have all remaining pin directly,
A control signal generator connected to the ammeter connection control unit and generating the control signal to control the ammeter connection control unit,
When testing the integrated circuit device, the plurality of terminals are connected to power pins of the integrated circuit device, and the current flowing through each of the power pins of the integrated circuit device through the terminals is measured by the ammeter. The integrated circuit device is normal if the measured current is included in a test rule, and the integrated circuit device is treated as defective if the measured current is not included in the test rule. Test equipment for integrated circuit devices.
前記電圧源は、常に一定の電圧を供給する定電圧源であることを特徴とする請求項1に記載の集積回路装置用のテスト装置。  2. The test apparatus for an integrated circuit device according to claim 1, wherein the voltage source is a constant voltage source that always supplies a constant voltage. 前記電流計接続制御部に接続され、制御信号を発生して前記電流計接続制御部を制御する制御信号発生部をさらに具備することを特徴とする請求項1に記載の集積回路装置用のテスト装置。  The test for an integrated circuit device according to claim 1, further comprising a control signal generator connected to the ammeter connection controller and generating a control signal to control the ammeter connection controller. apparatus. 前記電流計接続制御部は、複数個のスイッチング手段を具備し、前記複数個のスイッチング手段によって前記少なくとも一つ以上の電流計が前記少なくとも一つ以上の電圧源と前記複数個の端子とに選択的に接続されることを特徴とする請求項1に記載の集積回路装置用のテスト装置。  The ammeter connection control unit includes a plurality of switching means, and the at least one ammeter is selected as the at least one voltage source and the plurality of terminals by the plurality of switching means. The test apparatus for an integrated circuit device according to claim 1, wherein the test apparatus is connected to each other. 複数個の集積回路装置の機能をテストする集積回路装置用のテスト装置において、
記集積回路装置と電気的に接続される複数個の端子と、
電流を測り、前記複数個の端子より少数に設けられた少なくとも一つ以上の電流計と、
前記集積回路装置のテスト時に制御信号に応答して、所定電圧を前記少なくとも一つ以上の電流計を介して選択的に前記複数個の一部または全ての端子に伝達するとともに、この時前記電流計を介して前記所定電圧が伝達されない残り全ての端子に前記所定電圧を直接伝達する電流計接続制御部と、を複数具備し、
前記複数の電流計接続制御部に各々前記所定の電圧を発生させる電圧源と、
前記複数の電流計接続制御部に各々接続され、前記制御信号を発生して前記複数の電流計接続制御部を制御する制御信号発生部と、を更に備えて前記複数の集積回路装置を同時にテストし、
前記各集積回路装置をテストする時に前記複数個の端子は前記各集積回路装置の電源ピンに接続され、前記電流計によって前記端子を介して前記各集積回路装置の前記電源ピンのそれぞれに流れる電流が測定され、前記測定された電流がテスト規定内に含まれると集積回路装置は正常であり、前記測定された電流がテスト規定内に含まれなければ集積回路装置は不良として処理する
ことを特徴とする集積回路装置用のテスト装置。
In a test apparatus for an integrated circuit device for testing the functions of a plurality of integrated circuit devices,
A plurality of terminals that will be pre-SL current product circuit device electrically connected,
Measuring the current, at least one ammeter provided in a smaller number than the plurality of terminals; and
In response to a control signal during the testing of the integrated circuit device, a predetermined voltage is selectively transmitted to some or all of the plurality of terminals via the at least one ammeter, and at this time, the current A plurality of ammeter connection control units that directly transmit the predetermined voltage to all remaining terminals through which the predetermined voltage is not transmitted,
A voltage source Ru to generate each said predetermined voltage to said plurality of ammeter connection control unit,
Wherein are respectively connected to a plurality of ammeters connection control unit, the control signal to generate said plurality of control signal generator for controlling the ammeter connection control unit, further wherein the multiple integrated circuit device provided with a simultaneously Test
When testing each of the integrated circuit devices, the plurality of terminals are connected to power pins of the integrated circuit devices, and currents flowing to the power pins of the integrated circuit devices through the terminals by the ammeter. When the measured current is included in the test specification, the integrated circuit device is normal, and if the measured current is not included in the test specification, the integrated circuit device is treated as defective. Test equipment for integrated circuit devices.
前記電圧源は、常に一定の電圧を供給する定電圧源であることを特徴とする請求項に記載の集積回路装置用のテスト装置。6. The test apparatus for an integrated circuit device according to claim 5 , wherein the voltage source is a constant voltage source that always supplies a constant voltage. 前記複数個の電流接続制御部に接続され、制御信号を発生して前記複数個の電流計接続制御部を制御する制御信号発生部をさらに具備することを特徴とする請求項に記載の集積回路装置用のテスト装置。6. The integrated circuit according to claim 5 , further comprising a control signal generating unit connected to the plurality of current connection control units and generating a control signal to control the plurality of ammeter connection control units. Test equipment for circuit equipment. 前記各電流計接続制御部は、複数個のスイッチング手段を具備し、前記複数個のスイッチング手段によって前記少なくとも一つの電流計が前記少なくとも一つの電圧源と前記所定の端子とに選択的に接続されることを特徴とする請求項に記載の集積回路装置用のテスト装置。Each of the ammeter connection control units includes a plurality of switching means, and the at least one ammeter is selectively connected to the at least one voltage source and the predetermined terminal by the plurality of switching means. 6. The test apparatus for an integrated circuit device according to claim 5 , wherein:
JP2000008378A 1999-06-08 2000-01-17 Test equipment for integrated circuit devices Expired - Fee Related JP4493776B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990021150A KR100327333B1 (en) 1999-06-08 1999-06-08 Test Equipment for Testing Integrated Circuit Device Having a Plurality of Power Pins
KR1999P-21150 1999-06-08

Publications (2)

Publication Number Publication Date
JP2000346903A JP2000346903A (en) 2000-12-15
JP4493776B2 true JP4493776B2 (en) 2010-06-30

Family

ID=19590772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008378A Expired - Fee Related JP4493776B2 (en) 1999-06-08 2000-01-17 Test equipment for integrated circuit devices

Country Status (2)

Country Link
JP (1) JP4493776B2 (en)
KR (1) KR100327333B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155036A (en) * 1977-11-04 1979-05-15 General Connector Corp. Apparatus for testing cooking range electrical circuitry
JPS5923676U (en) * 1982-08-04 1984-02-14 株式会社アドバンテスト IC test equipment with self-diagnosis function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155036A (en) * 1977-11-04 1979-05-15 General Connector Corp. Apparatus for testing cooking range electrical circuitry
JPS5923676U (en) * 1982-08-04 1984-02-14 株式会社アドバンテスト IC test equipment with self-diagnosis function

Also Published As

Publication number Publication date
KR100327333B1 (en) 2002-03-06
JP2000346903A (en) 2000-12-15
KR20010001733A (en) 2001-01-05

Similar Documents

Publication Publication Date Title
US5101153A (en) Pin electronics test circuit for IC device testing
US7109736B2 (en) System for measuring signal path resistance for an integrated circuit tester interconnect structure
US9885746B2 (en) Switching matrix and testing system for semiconductor characteristic measurement using the same
JP4842823B2 (en) Test apparatus, configuration method, and device interface
TW200411199A (en) Interface circuit
JPH08304515A (en) Semiconductor memory device capable of dc voltage test underpackaged state
JP2008538863A (en) Supply voltage monitoring
CN102435937A (en) Method and Apparatus for Testing Integrated Circuits
CN101315411A (en) System, method and apparatus for testing circuit combination
JP2003532082A (en) Electronic circuit device with short-circuit switch and method for testing the device
JP4493776B2 (en) Test equipment for integrated circuit devices
JP2000243795A (en) Power supply current measurement circuit of burn-in tester
JP3191791B2 (en) Probe card
US7138792B2 (en) Programmable power personality card
JP3483130B2 (en) Inspection method for integrated circuits
JP6143617B2 (en) Circuit board inspection equipment
JP2002168914A (en) Stabilized electric power source unit
JP3239864B2 (en) Test board for power / GND terminal continuity test
US6031370A (en) Semiconductor testing apparatus
JPH10253714A (en) Method and apparatus for measuring electronic device
JP3979619B2 (en) Method for detecting disconnection of internal wiring of semiconductor device
KR102563797B1 (en) Quality measuring device, measuring method thereof and recording medium thereof
JP2624129B2 (en) Inspection system for multi-pin semiconductor integrated circuits
US20100052767A1 (en) Semiconductor module
JP3053012B2 (en) Test circuit and test method for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees