JP4491449B2 - Molecular beam source cell for thin film deposition - Google Patents

Molecular beam source cell for thin film deposition Download PDF

Info

Publication number
JP4491449B2
JP4491449B2 JP2006270259A JP2006270259A JP4491449B2 JP 4491449 B2 JP4491449 B2 JP 4491449B2 JP 2006270259 A JP2006270259 A JP 2006270259A JP 2006270259 A JP2006270259 A JP 2006270259A JP 4491449 B2 JP4491449 B2 JP 4491449B2
Authority
JP
Japan
Prior art keywords
crucible
thin film
source cell
molecular beam
beam source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006270259A
Other languages
Japanese (ja)
Other versions
JP2008088496A (en
Inventor
泰平 高橋
Original Assignee
株式会社エイコー・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイコー・エンジニアリング filed Critical 株式会社エイコー・エンジニアリング
Priority to JP2006270259A priority Critical patent/JP4491449B2/en
Publication of JP2008088496A publication Critical patent/JP2008088496A/en
Application granted granted Critical
Publication of JP4491449B2 publication Critical patent/JP4491449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、成膜材料を加熱することにより、その成膜材料を昇華または溶融、蒸発して成膜材料の分子を発生し、この成膜材料の分子を固体表面に向けて放出し、その固体表面に分子を堆積させて膜を成長させるのに使用される薄膜堆積用分子線源セルとそれを使用した薄膜堆積方法に関する。   In the present invention, by heating the film forming material, the film forming material is sublimated or melted and evaporated to generate molecules of the film forming material, and the molecules of the film forming material are released toward the solid surface. The present invention relates to a molecular beam source cell for thin film deposition used for growing a film by depositing molecules on a solid surface and a thin film deposition method using the same.

分子線エピタキシ装置と呼ばれる薄膜堆積装置は、高真空に減圧可能な真空チャンバ内に基板を設置し、所要の温度に加熱すると共に、この基板の薄膜成長面に向けてクヌードセンセル等の分子線源セルを設置したものである。この分子線源セルの坩堝に収納した成膜材料をヒータにより加熱して昇華または溶融、蒸発させ、これにより発生した蒸発分子を前記基板の薄膜成長面に入射し、その面に薄膜をエピタキシャル成長させて、成膜材料の膜を形成する。   A thin film deposition apparatus called a molecular beam epitaxy apparatus installs a substrate in a vacuum chamber that can be depressurized to a high vacuum, heats it to a required temperature, and moves molecules such as Knudsen cells toward the thin film growth surface of the substrate. A source cell is installed. The film forming material stored in the crucible of the molecular beam source cell is heated by a heater to be sublimated or melted and evaporated, and the generated evaporated molecules are incident on the thin film growth surface of the substrate, and the thin film is epitaxially grown on the surface. Thus, a film of the film forming material is formed.

このような薄膜堆積装置に使用される分子線源セルは、熱的、化学的に安定性の高い、例えば石英ガラスやPBN(パイロリティック・ボロン・ナイトライド)等からなる坩堝の中に成膜材料を収納し、この成膜材料を坩堝の外側に設けた電気ヒータで加熱し、これにより成膜材料を昇華または溶融、蒸発させ、成膜分子を発生させるものである。   The molecular beam source cell used in such a thin film deposition apparatus is formed in a crucible made of, for example, quartz glass or PBN (pyrolytic boron nitride) having high thermal and chemical stability. The material is stored, and this film forming material is heated by an electric heater provided outside the crucible, whereby the film forming material is sublimated or melted and evaporated to generate film forming molecules.

近年、ディスプレイや光通信等の分野で、有機エレクトロルミネッセンス素子(有機EL素子)の研究、開発が進められている。この有機EL素子は、EL発光能を有する有機低分子または有機高分子材料で発光層を形成した素子であり、自己発光型の素子としてその特性が注目されている。例えばその基本的な構造は、ホール注入電極上にトリフェニルジアミン(TPD)等のホール輸送材料の膜を形成し、この上にアルミキノリノール錯体(Alq) 等の蛍光物質を発光層として積層し、さらにMg、Li、Ca等の仕事関数の小さな金属電極を電子注入電極として形成したものである。 In recent years, research and development of organic electroluminescence elements (organic EL elements) have been promoted in fields such as displays and optical communications. This organic EL element is an element in which a light-emitting layer is formed of an organic low-molecular or organic polymer material having EL light-emitting ability, and has attracted attention as a self-luminous element. For example, the basic structure is that a film of a hole transport material such as triphenyldiamine (TPD) is formed on a hole injection electrode, and a fluorescent material such as an aluminum quinolinol complex (Alq 3 ) is laminated thereon as a light emitting layer. Further, a metal electrode having a small work function such as Mg, Li, or Ca is formed as an electron injection electrode.

最近のディスプレイは、大画面化が時代の要請となっている。そのため、前記のような有機ELを使用したディスプレイでも、大面積の基板に有機EL膜を形成することが要請される。とりわけ、有機ELを使用したディスプレイでは、基板上に均質な有機EL膜を形成することが要請される。   As for recent displays, a large screen has become a demand of the times. Therefore, even in the display using the organic EL as described above, it is required to form an organic EL film on a large-area substrate. In particular, in a display using an organic EL, it is required to form a homogeneous organic EL film on a substrate.

このような有機EL材料は、蒸発源となる材料として粉体状のものが使用され、この粉体状の蒸発源材料を昇華し、その分子を発生させる。ところがこのとき、成膜材料の分子が互いに凝集し、クラスター化して飛散する、いわゆるスピッティング現象を起こしやすい。そして、このクラスターが成膜しようとする固体の成膜面に向けて飛散し、付着してしまう。この成膜面に付着したクラスターは、膜の不均一性や不連続性を生じさせ、膜の欠陥を生じる原因となる。そこで、このクラスタが飛来しない距離まで成膜面を離して成膜する必要があり、成膜効率が頗る悪い。   As such an organic EL material, a powdery material is used as a material serving as an evaporation source, and the powdery evaporation source material is sublimated to generate molecules thereof. However, at this time, the so-called spitting phenomenon, in which the molecules of the film forming material are aggregated, clustered and scattered, is likely to occur. Then, the clusters are scattered and attached to the solid film formation surface to be formed. The clusters adhering to the film formation surface cause non-uniformity and discontinuity of the film and cause film defects. Therefore, it is necessary to separate the film formation surfaces to such a distance that the clusters do not fly, and the film formation efficiency is poor.

そのため、例えば下記引用文献に記載されたように、坩堝の開口部から直接分子を放出せず、蓋や壁に設けた小穴である出射口から分子を成膜面に向けて放出することにより、クラスタの飛散を抑え、出射口から分子のみが成膜面に向けて放出されるような対策が図られている。   Therefore, for example, as described in the following cited document, the molecule is not released directly from the opening of the crucible, and the molecule is released toward the film formation surface from the exit port which is a small hole provided in the lid or the wall. Measures are taken to suppress scattering of the cluster and to release only molecules from the exit port toward the film formation surface.

しかしながら、このような出射口を設けた分子線源セルにおいて、成膜レートを上げようと分子の放出量を大きくすると、出射口での分子の急激な膨張により出射口の温度が下がり、一部の分子が出射口の周りで固体化して出射口が詰まり、分子の放出による成膜が続けられなくなる現象が起こる。いわゆるコールドウォールと呼ばれる現象である。この現象を防止するためには、出射口を坩堝側より或る程度高い温度、具体的には20℃程度高温に維持することが望ましい。しかしそのためには、坩堝を加熱するヒータの他に出射口の周りを加熱するヒータとその温度制御手段が必要となり、分子線源セルが複雑で且つ大型化してしまうという課題がある。
特開2004−162108号公報 特開2004−18997号公報 特開2003−301255号公報 特開2003−113465号公報
However, in such a molecular beam source cell provided with an exit port, if the amount of released molecules is increased in order to increase the film formation rate, the temperature of the exit port decreases due to rapid expansion of the molecules at the exit port. As a result, the molecules become solid around the exit port and the exit port is clogged, and the film formation due to the release of the molecule does not continue. This is a so-called cold wall phenomenon. In order to prevent this phenomenon, it is desirable to maintain the emission port at a certain temperature higher than the crucible side, specifically, at a high temperature of about 20 ° C. However, for that purpose, in addition to the heater for heating the crucible, a heater for heating the periphery of the emission port and its temperature control means are required, and there is a problem that the molecular beam source cell becomes complicated and large.
JP 2004-162108 A JP 2004-18997 A JP 2003-301255 A JP 2003-113465 A

本発明は、前記従来の薄膜堆積用分子線源セルにおける課題に鑑み、一のヒータで出射口の周りの温度を坩堝よりやや高い温度に維持することが出来、これにより、出射口での放出分子の固体化が起こりにくく、出射口が詰まりにくい薄膜堆積用分子線源セルを提供することを目的とする。 In view of the problems in the conventional thin film deposition molecular beam source cell, it is possible to maintain the temperature around the exit opening slightly higher temperature than the crucible at the same heater, thereby, at the exit port It is an object of the present invention to provide a molecular beam source cell for thin film deposition in which released molecules are hardly solidified and the exit port is not easily clogged.

本発明では、前記の目的を達成するため、ヒータ3を坩堝1に近接させる一方で、同ヒータ3から熱の伝達を直接受ける伝熱部材4と前記出射口7を設けた部材とを一体とするかまたは連結することで出射口7を設けた部材にヒータ3の熱が伝わりやすくした。他方、出射口7を設けた部材に比べて坩堝1にはやや熱が伝わりにくい構造とした。   In the present invention, in order to achieve the above object, the heater 3 is brought close to the crucible 1, while the heat transfer member 4 that directly receives heat from the heater 3 and the member provided with the outlet 7 are integrated. By doing or connecting, the heat of the heater 3 is easily transmitted to the member provided with the emission port 7. On the other hand, the crucible 1 has a structure in which heat is hardly transmitted as compared with the member provided with the emission port 7.

すなわち、本発明による薄膜堆積用分子線源セルは、成膜材料を収納する坩堝1と、この坩堝1に収納した成膜材料を加熱して昇華または蒸発させて、分子を発生させるためのヒータ3と、坩堝1の開口部側に設けられ、成膜面に向けて分子を放出する出射口7とを有する。そして、前記ヒータ3から熱の伝達を直接受ける伝熱部材4を坩堝1に近接させるが、それらの間に隙間を設けると共に、同伝熱部材4と前記出射口7を設けた遮蔽部材6とを一体とするかまたは連結している。 That is, a molecular beam source cell for thin film deposition according to the present invention includes a crucible 1 for storing a film forming material and a heater for generating molecules by heating and sublimating or evaporating the film forming material stored in the crucible 1. 3 and an emission port 7 which is provided on the opening side of the crucible 1 and emits molecules toward the film formation surface. Then, although to close the heat transfer member 4 which receives the transmission of heat directly from the heater 3 in the crucible 1, provided with a gap therebetween, the shielding member 6 provided with the exit opening 7 and the heat transfer member 4 Are integrated or connected.

このような本発明による薄膜堆積用分子線源セルでは、ヒータ3を坩堝1に近接させると共に、同ヒータ3から熱の伝達を直接受ける伝熱部材4と前記出射口7を設けた遮蔽部材6とを一体とするかまたは連結しているため、一のヒータ3で坩堝1と出射口7を設けた部材との双方を加熱することが出来る。そしてこの構造では、ヒータ3の熱は坩堝1側より出射口7を設けた遮蔽部材6側へとより大きく伝達される。これにより、出射口7から放出される分子の急激な膨張により同出射口7の温度が降下しようとしても、その分だけヒータ3から熱が伝達されるので、出射口7の温度がより高く維持される。これにより、出射口7における分子の固体化が起こらず、出射口7が固体化した成膜材料によって塞がれることが無くなる。 In such a molecular beam source cell for thin film deposition according to the present invention, the heater 3 is brought close to the crucible 1, and the heat transfer member 4 that directly receives heat from the heater 3 and the shielding member 6 provided with the emission port 7. preparative due to the linked or an integral, can be heated both the member provided with the crucible 1 and an exit port 7 in the same heater 3. In this structure, the heat of the heater 3 is transmitted more greatly from the crucible 1 side to the shielding member 6 side where the emission port 7 is provided. As a result, even if the temperature of the exit port 7 is about to drop due to the rapid expansion of the molecules emitted from the exit port 7, heat is transferred from the heater 3 accordingly, so the temperature of the exit port 7 is kept higher. Is done. Thereby, solidification of molecules at the emission port 7 does not occur, and the emission port 7 is not blocked by the solidified film forming material.

特に、伝熱部材4と坩堝1を収納した坩堝ホルダ5との間に隙間gを設け、さらに坩堝1と出射口7の間に、放出する分子の流れを整える分子通過孔11を設けたオリフィス2を配置することにより、ヒータ3の熱は伝熱部材4から坩堝ホルダ5に直接伝導されず、遮蔽部材6からオリフィス2を介して熱伝達される。そしてこのオリフィス2と伝熱部材4との接触部2aの肉厚を他の部分より薄くすることにより、遮蔽部材6からオリフィス2への熱の伝達がしにくくなり、出射口7の周りと坩堝1との温度差を形成しやすい。   In particular, an orifice provided with a gap g between the heat transfer member 4 and the crucible holder 5 containing the crucible 1, and further provided with a molecule passage hole 11 for adjusting the flow of molecules to be released between the crucible 1 and the exit port 7. By arranging 2, the heat of the heater 3 is not directly transferred from the heat transfer member 4 to the crucible holder 5 but is transferred from the shielding member 6 through the orifice 2. And by making the thickness of the contact portion 2a between the orifice 2 and the heat transfer member 4 thinner than other portions, it becomes difficult to transfer heat from the shielding member 6 to the orifice 2, and the area around the emission port 7 and the crucible 1 is easy to form a temperature difference.

以上説明した通り、本発明によれば、一のヒータ3により坩堝1を加熱した成膜材料を昇華または蒸発して分子を発生させることが出来る。さらに坩堝1側より出射口7をやや高い温度に維持して出射口7における分子の固体化による詰まりを防止出来るので、坩堝1とそのヒータ3の構造を複雑化したり大型化させず、円滑な分子の放射が可能となる。 As described above, according to the present invention, the same heater 3 makes it possible to generate a molecule with sublimation or evaporation of the film forming material was heated crucible 1. Further, since the exit port 7 can be maintained at a slightly higher temperature than the crucible 1 to prevent clogging due to solidification of molecules at the exit port 7, the structure of the crucible 1 and its heater 3 is not complicated or enlarged. Molecular radiation is possible.

本発明では、ヒータ3と坩堝1、出射口を形成した部材との伝熱経路を再検討し、坩堝1側より出射口側にヒータ3の熱がより伝熱しやすい構造を採用することで、その目的を達成したものである。
以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。
In the present invention, the heat transfer path between the heater 3 and the crucible 1 and the member forming the outlet is reexamined, and by adopting a structure in which the heat of the heater 3 is more easily transferred from the crucible 1 to the outlet. The objective has been achieved.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明による薄膜堆積用分子線源セルの一実施例を示す縦断側面図であり、図2はその平面図である。
円筒容器状の坩堝ホルダ5の中に、その内径より外形が僅かに小さい石英ガラス等からなる円筒容器状の坩堝1が嵌め込まれている。この坩堝1の中に成膜材料が収納される。
FIG. 1 is a longitudinal side view showing an embodiment of a molecular beam source cell for thin film deposition according to the present invention, and FIG. 2 is a plan view thereof.
A cylindrical container-shaped crucible 1 made of quartz glass or the like whose outer shape is slightly smaller than its inner diameter is fitted in a cylindrical container-shaped crucible holder 5. A film forming material is stored in the crucible 1.

坩堝ホルダ5の上部には、坩堝1の開口部を塞ぐように円筒カップ状のオリフィス2が嵌め込まれており、このオリフィス2の底部に小孔である分子通過孔11が開いている。このオリフィス2の底壁中央部からは、下方に軸状の部材が垂下され、その軸状部材から坩堝1の中に仕切板10が張り出している。この仕切板10は、坩堝1の底部に収納された成膜材料が昇華または蒸発することにより発生した分子の上昇流を整流すると共に、分子のみを上昇させ、クラスタが成膜面に向けて放出されるのを防止するものである。   A cylindrical cup-shaped orifice 2 is fitted on the upper part of the crucible holder 5 so as to close the opening of the crucible 1, and a molecular passage hole 11, which is a small hole, is opened at the bottom of the orifice 2. From the central part of the bottom wall of the orifice 2, a shaft-like member is suspended downward, and a partition plate 10 projects from the shaft-like member into the crucible 1. The partition plate 10 rectifies the upward flow of molecules generated by sublimation or evaporation of the film forming material stored in the bottom of the crucible 1 and raises only the molecules, and the clusters are released toward the film forming surface. It is intended to prevent this.

オリフィス2の開口部を塞ぐように、蓋状の遮蔽部材6が設けられており、この遮蔽部材6オリフィス2の開口部の中心に当たる位置に小孔である出射口7が設けられている。従って、オリフィス2の内部空間は小部屋状の小空間となっており、オリフィス2の底壁の分子通過孔11と遮蔽部材6の出射口7とは、このオリフィス2の内部空間を介して通じている。オリフィス2の遮蔽部材6と接する約上半分の接触部2aはそれより下の部分より肉厚が薄くなっている。これにより、オリフィス2の遮蔽部材6への接触面積は狭く、且つ熱伝導する接触部2aの断面積が狭くなっており、遮蔽部材6側からオリフィス2側へ熱伝達がしにくくなっている。   A lid-shaped shielding member 6 is provided so as to close the opening of the orifice 2, and an emission port 7, which is a small hole, is provided at a position corresponding to the center of the opening of the shielding member 6 orifice 2. Accordingly, the internal space of the orifice 2 is a small space, and the molecule passage hole 11 on the bottom wall of the orifice 2 and the emission port 7 of the shielding member 6 communicate with each other through the internal space of the orifice 2. ing. The contact portion 2a of the upper half that is in contact with the shielding member 6 of the orifice 2 is thinner than the portion below it. As a result, the contact area of the orifice 2 with the shielding member 6 is narrow, and the cross-sectional area of the contact portion 2a that conducts heat is narrow, so that heat transfer from the shielding member 6 side to the orifice 2 side is difficult.

坩堝ホルダ5の脇に棒状のヒータ3が設けられ、この先端部分の発熱部分に円筒形のステンレス等からなる熱伝導良好な伝熱部材4が嵌め込まれている。この伝熱部材4の上端部分は、前記遮蔽部材6と一体となっている。伝熱部材4と遮蔽部材6は必ずしも一体である必要は無いが、それらが直接接合されていたり、或いは熱伝導良好な部材を介して間接的に接合されている構造であってもよい。要はヒータ3の熱が伝熱部材4と遮蔽部材6を介して出射口7の周りに熱伝導しやすい構造とする。   A rod-shaped heater 3 is provided on the side of the crucible holder 5, and a heat transfer member 4 made of cylindrical stainless steel or the like having a good heat conductivity is fitted into the heat generating portion at the tip. The upper end portion of the heat transfer member 4 is integrated with the shielding member 6. The heat transfer member 4 and the shielding member 6 are not necessarily integrated, but they may be directly joined or indirectly joined via a member having good heat conduction. In short, the structure is such that the heat of the heater 3 easily conducts heat around the emission port 7 via the heat transfer member 4 and the shielding member 6.

他方、このヒータ3の発熱部分に嵌め込まれた伝熱部材4は、坩堝ホルダ5に近接はしているが、坩堝ホルダ5との間に隙間gが設けられており、離れている。これにより、坩堝1に加えられる熱が坩堝ホルダ5には直接伝達されない。
遮蔽部材6の上面と坩堝ホルダ5の底面には、それぞれ第一の熱電対T/C1と第二の熱電対T/C2の測温接点が取り付けられている。
なお、図1に示した膜厚計12は、後述する成膜試験を行ったときの膜厚を測定するもので、実際にはこの位置に成膜面を有する基板等が置かれる。
On the other hand, the heat transfer member 4 fitted into the heat generating portion of the heater 3 is close to the crucible holder 5, but a gap g is provided between the heat transfer member 4 and the crucible holder 5. Thereby, the heat applied to the crucible 1 is not directly transmitted to the crucible holder 5.
Temperature measuring contacts of the first thermocouple T / C1 and the second thermocouple T / C2 are attached to the upper surface of the shielding member 6 and the bottom surface of the crucible holder 5, respectively.
Note that the film thickness meter 12 shown in FIG. 1 measures the film thickness when a film formation test to be described later is performed, and a substrate having a film formation surface is actually placed at this position.

このような薄膜堆積用分子線源セルを使用し、真空チャンバ内にて坩堝の中に成膜材料として1.8ccのAlqを収納し、ヒータ3を発熱させて分子の出射試験を行った。
表1は、ヒータ3を発熱させて坩堝1と遮蔽部材6を加熱し、昇温させたときのそれぞれ第一の熱電対T/C1と第二の熱電対T/C2とで測定された温度を示す。第一の熱電対T/C1で測定された温度が100℃〜350℃となるまで50℃間隔で測定し、それぞれその時の第二の熱電対T/C2で測定された温度を右欄に示している。この表1から明らかな通り、第一の熱電対T/C1の温度が350℃の時の第二の熱電対T/C2で測定された温度は、322.3℃であり、その温度差は27.6℃であった。
Using such a molecular beam source cell for thin film deposition, 1.8 cc of Alq 3 was stored as a film forming material in a crucible in a vacuum chamber, and the heater 3 was heated to perform a molecular emission test. .
Table 1 shows the temperatures measured by the first thermocouple T / C1 and the second thermocouple T / C2, respectively, when the heater 3 is heated to heat the crucible 1 and the shielding member 6 and raise the temperature. Indicates. Measured at 50 ° C. intervals until the temperature measured by the first thermocouple T / C1 reaches 100 ° C. to 350 ° C., and the temperature measured by the second thermocouple T / C2 at that time is shown in the right column. ing. As is apparent from Table 1, the temperature measured by the second thermocouple T / C2 when the temperature of the first thermocouple T / C1 is 350 ° C. is 322.3 ° C., and the temperature difference is It was 27.6 ° C.

Figure 0004491449
Figure 0004491449

表2は、第一の熱電対T/C1で測定された温度が350℃に保持されるよう温度制御し、その温度になった時から5分後、10分後及び15分後の第二の熱電対T/C2で測定された温度、成膜レート、それぞれの時間までに累積された合計膜厚及び各時間の真空度を示している。なお、膜厚計12は、出射口7から400mmの距離に置いた。この表2から明らかな通り、第一の熱電対T/C1と第二の熱電対T/C2で測定された温度の温度差は、23℃〜20.8℃であり、成膜レートは10分後には2.7〜2.8Å/sと安定した。   Table 2 shows the temperature control so that the temperature measured by the first thermocouple T / C1 is maintained at 350 ° C., and the second after 5 minutes, 10 minutes and 15 minutes after the temperature is reached. The temperature measured by the thermocouple T / C2 and the film formation rate, the total film thickness accumulated up to each time, and the degree of vacuum at each time are shown. The film thickness meter 12 was placed at a distance of 400 mm from the emission port 7. As is apparent from Table 2, the temperature difference between the temperatures measured by the first thermocouple T / C1 and the second thermocouple T / C2 is 23 ° C. to 20.8 ° C., and the film formation rate is 10 After a minute, it became stable at 2.7 to 2.8 Å / s.

Figure 0004491449
Figure 0004491449

表3は、第一の熱電対T/C1で測定された温度が360℃に保持されるよう温度制御し、その温度になった時から5分後の第二の熱電対T/C2で測定された温度、成膜レート、それぞれの時間までの合計膜厚及び各時間の真空度を示している。出射口7から膜厚計12までの距離は400mmで、表2の場合と同じである。この表3から明らかな通り、第一の熱電対T/C1と第二の熱電対T/C2で測定された温度の温度差は、22.5℃であり、成膜レートは4Å/sと安定している。   Table 3 shows that the temperature measured by the first thermocouple T / C1 is controlled so that the temperature is maintained at 360 ° C., and measured by the second thermocouple T / C2 after 5 minutes from that temperature. Temperature, film formation rate, total film thickness up to each time, and degree of vacuum at each time are shown. The distance from the emission port 7 to the film thickness meter 12 is 400 mm, which is the same as in Table 2. As apparent from Table 3, the temperature difference between the temperatures measured by the first thermocouple T / C1 and the second thermocouple T / C2 is 22.5 ° C., and the film formation rate is 4 Å / s. stable.

Figure 0004491449
Figure 0004491449

表4は、第一の熱電対T/C1で測定された温度が370℃に保持されるよう温度制御し、その温度になった時から5分後と10分後の第二の熱電対T/C2で測定された温度、成膜レート、それぞれの時間までの合計膜厚及び各時間の真空度を示している。出射口7から膜厚計12までの距離は400mmで、表2の場合と同じである。この表4から明らかな通り、第一の熱電対T/C1と第二の熱電対T/C2で測定された温度の温度差は、約25.5℃であり、成膜レートは5分後でほぼピークに達し、最大で5.5Å/s前後と推定される。   Table 4 shows temperature control so that the temperature measured by the first thermocouple T / C1 is maintained at 370 ° C., and the second thermocouple T 5 minutes and 10 minutes after the temperature is reached. The temperature measured at / C2, the film formation rate, the total film thickness up to each time, and the degree of vacuum at each time are shown. The distance from the emission port 7 to the film thickness meter 12 is 400 mm, which is the same as in Table 2. As apparent from Table 4, the temperature difference between the temperatures measured by the first thermocouple T / C1 and the second thermocouple T / C2 is about 25.5 ° C., and the film formation rate is 5 minutes later. It is estimated that the maximum peak is reached and the maximum is around 5.5 Å / s.

Figure 0004491449
Figure 0004491449

次に比較のため、図3に示す薄膜堆積用分子線源セルを使用し、真空チャンバ内にて坩堝の中に成膜材料として1.2ccのAlqを収納し、ヒータ3を発熱させて分子の出射試験を行った。この図3に示す薄膜堆積用分子線源セルは、ヒータ3の発熱部分に嵌め込まれた伝熱部材4と遮蔽部材6とが分離されている一方で、伝熱部材4と坩堝ホルダ5との間に銅板13を挟み、伝熱部材4、銅板13及び坩堝ホルダ5を介してヒータ3の熱を坩堝1に伝達出来る構造としている。出射口7を設けた遮蔽部材6へはオリフィス2を介して伝熱される。なお、オリフィス2の上半分は肉厚を薄くしておらず、オリフィス2から遮蔽部材6へ熱が伝達出来るようにしてある。この加熱方式は従来の加熱方式と同じである。それ以外は、図1と図2により前述した本発明に係る薄膜堆積用分子線源セルと同様であり、同じ部分は同じ符合で示しているので、その説明は省略する。 Next, for comparison, a molecular beam source cell for thin film deposition shown in FIG. 3 is used, and 1.2 cc of Alq 3 is housed in a crucible as a film forming material in a vacuum chamber, and the heater 3 is heated. A molecular emission test was performed. In the molecular beam source cell for thin film deposition shown in FIG. 3, the heat transfer member 4 and the shielding member 6 fitted in the heat generating portion of the heater 3 are separated, while the heat transfer member 4 and the crucible holder 5 are separated from each other. A structure in which the copper plate 13 is sandwiched therebetween and the heat of the heater 3 can be transmitted to the crucible 1 through the heat transfer member 4, the copper plate 13, and the crucible holder 5. Heat is transferred to the shielding member 6 provided with the emission port 7 through the orifice 2. The upper half of the orifice 2 is not thinned so that heat can be transferred from the orifice 2 to the shielding member 6. This heating method is the same as the conventional heating method. The rest is the same as the molecular beam source cell for thin film deposition according to the present invention described above with reference to FIGS. 1 and 2, and the same parts are indicated by the same reference numerals, and the description thereof will be omitted.

表5は、ヒータ3を発熱させて坩堝1と遮蔽部材6を加熱し、昇温させたときの加熱開始から5分毎に45分までの第一の熱電対T/C1と第二の熱電対T/C2とで測定された温度、成膜レート、それぞれの時間までに累積された合計膜厚及び各時間の真空度を示している。出射口7から膜厚計12までの距離は400mmで、表2の場合と同じである。   Table 5 shows that the first thermocouple T / C1 and the second thermoelectric for 45 minutes every 5 minutes from the start of heating when the heater 3 is heated to heat the crucible 1 and the shielding member 6 and raise the temperature. The temperature, the film formation rate, the total film thickness accumulated until each time, and the degree of vacuum at each time are shown as measured against T / C2. The distance from the emission port 7 to the film thickness meter 12 is 400 mm, which is the same as in Table 2.

Figure 0004491449
Figure 0004491449

この表5から明らかな通り、温度上昇時は、第一の熱電対T/C1の温度が第二の熱電対T/C2で測定された温度より高いが、第一の熱電対T/C1の温度が300℃を超えた付近から第二の熱電対T/C2で測定された温度が第一の熱電対T/C1の温度とほぼ同じになり、成膜が開始されると第一の熱電対T/C1の温度が第二の熱電対T/C2で測定された温度より2℃程低くなっている。これは、出射口7から放出される分子の急激な膨張により出射口7の周りの温度が下がったためと考えられる。観察の結果、前記の温度低下により、一部の分子が固体化して出射口7が詰また状態となっていた。   As apparent from Table 5, when the temperature rises, the temperature of the first thermocouple T / C1 is higher than the temperature measured by the second thermocouple T / C2, but the temperature of the first thermocouple T / C1 When the temperature measured by the second thermocouple T / C2 from the vicinity where the temperature exceeds 300 ° C. becomes substantially the same as the temperature of the first thermocouple T / C1, and the film formation is started, the first thermocouple The temperature of the pair T / C1 is about 2 ° C. lower than the temperature measured by the second thermocouple T / C2. This is presumably because the temperature around the exit port 7 decreased due to the rapid expansion of the molecules emitted from the exit port 7. As a result of the observation, due to the temperature decrease, some of the molecules were solidified and the emission port 7 was clogged.

本発明による薄膜堆積用分子線源セルの一実施例を示す縦断側面図である。It is a vertical side view which shows one Example of the molecular beam source cell for thin film deposition by this invention. 本発明による薄膜堆積用分子線源セルの前記一実施例を示す平面図である。It is a top view which shows the said Example of the molecular beam source cell for thin film deposition by this invention. 本発明による薄膜堆積用分子線源セルの一実施例と比較するため従来の加熱方式を使用した比較例を示す縦断側面図である。It is a vertical side view which shows the comparative example which uses the conventional heating system for comparing with one Example of the molecular beam source cell for thin film deposition by this invention.

符号の説明Explanation of symbols

1 坩堝
2 オリフィス
2a オリフィスの遮蔽部材との接触部
3 ヒータ
4 伝熱部材
6 遮蔽部材
7 出射口
11 分子通過孔
g 伝熱部材と坩堝ホルダとの隙間
DESCRIPTION OF SYMBOLS 1 Crucible 2 Orifice 2a Contact part with orifice shielding member 3 Heater 4 Heat transfer member 6 Shielding member 7 Outlet 11 Molecule passage hole g Gap between heat transfer member and crucible holder

Claims (3)

成膜材料を収納する坩堝(1)と、この坩堝(1)に収納した成膜材料を加熱して昇華または蒸発させて、分子を発生させるためのヒータ(3)と、坩堝(1)の開口部側に設けられ、成膜面に向けて分子を放出する出射口(7)とを有する薄膜堆積用分子線源セルにおいて、前記ヒータ(3)から熱の伝達を直接受ける伝熱部材(4)を坩堝(1)に近接させるが、それらの間に隙間を設けると共に、同伝熱部材(4)と前記出射口(7)を設けた遮蔽部材(6)とを一体とするかまたは連結したことを特長とする薄膜堆積用分子線源セル。 A crucible (1) for storing a film forming material, a heater (3) for heating and sublimating or evaporating the film forming material stored in the crucible (1) to generate molecules, and a crucible (1) In a molecular beam source cell for thin film deposition, which is provided on the opening side and has an emission port (7) that emits molecules toward the film formation surface, a heat transfer member that directly receives heat from the heater (3) ( 4). However is closer to the crucible (1), provided with a gap therebetween, the heat transfer member (4) and said exit (7) is provided with shielding members (6) and the or an integral A molecular beam source cell for thin film deposition characterized by being connected. 伝熱部材(4)と坩堝(1)を収納した坩堝ホルダ(5)との間に隙間(g)を設けたことを特長とする請求項1に記載の薄膜堆積用分子線源セル。 The molecular beam source cell for thin film deposition according to claim 1, wherein a gap (g) is provided between the heat transfer member (4) and the crucible holder (5) containing the crucible (1). 坩堝(1)と出射口(7)の間に、放出する分子の流れを整える分子通過孔(11)を設けたオリフィス(2)を配置し、このオリフィス(2)と遮蔽部材(6)との接触部(2a)の肉厚を他の部分より薄くしたことを特長とする請求項1または2に記載の薄膜堆積用分子線源セル Between the crucible (1) and the exit port (7), an orifice (2) provided with a molecule passage hole (11) for adjusting the flow of molecules to be released is arranged. The orifice (2) and the shielding member (6) The molecular beam source cell for thin film deposition according to claim 1 or 2, characterized in that the thickness of the contact portion (2a) is made thinner than other portions .
JP2006270259A 2006-10-02 2006-10-02 Molecular beam source cell for thin film deposition Expired - Fee Related JP4491449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270259A JP4491449B2 (en) 2006-10-02 2006-10-02 Molecular beam source cell for thin film deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270259A JP4491449B2 (en) 2006-10-02 2006-10-02 Molecular beam source cell for thin film deposition

Publications (2)

Publication Number Publication Date
JP2008088496A JP2008088496A (en) 2008-04-17
JP4491449B2 true JP4491449B2 (en) 2010-06-30

Family

ID=39372955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270259A Expired - Fee Related JP4491449B2 (en) 2006-10-02 2006-10-02 Molecular beam source cell for thin film deposition

Country Status (1)

Country Link
JP (1) JP4491449B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247065A (en) * 1986-04-18 1987-10-28 Sumitomo Electric Ind Ltd Crucible type vapor deposition source
JPH05139882A (en) * 1991-11-20 1993-06-08 Hitachi Ltd Molecular beam source
JPH07157868A (en) * 1993-12-03 1995-06-20 Canon Inc Resistance-heated vaporization source and formation of thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247065A (en) * 1986-04-18 1987-10-28 Sumitomo Electric Ind Ltd Crucible type vapor deposition source
JPH05139882A (en) * 1991-11-20 1993-06-08 Hitachi Ltd Molecular beam source
JPH07157868A (en) * 1993-12-03 1995-06-20 Canon Inc Resistance-heated vaporization source and formation of thin film

Also Published As

Publication number Publication date
JP2008088496A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
KR100951493B1 (en) A morecular beam epitaxy effusion cell for use in vacuum thin film deposition and a method therefor
US20080173241A1 (en) Vapor deposition sources and methods
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
JP4041005B2 (en) Molecular beam source for thin film deposition and thin film deposition method using the same
TW200532037A (en) Vapor deposition source with minimized condensation effects
JP3754380B2 (en) Molecular beam source cell for thin film deposition and thin film deposition method
JP3684343B2 (en) Molecular beam source cell for thin film deposition
KR20070066232A (en) Evaporating apparatus
JP2003277913A (en) Molecular beam source cell for depositing thin film
JP3616586B2 (en) Molecular beam source cell for thin film deposition
KR101265067B1 (en) Linear effusion cell with side orifice array, the method of manufacturing linear effusion cell with side orifice array and evaporator
JP4491449B2 (en) Molecular beam source cell for thin film deposition
JP2011122199A (en) Apparatus for vapor deposition
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
KR101153934B1 (en) Vacuum evaporating sources with heaters deposited directly on the surface of crucible, the method of manufacturing and evaporator
JP3712646B2 (en) Molecular beam cell for thin film deposition
KR101416977B1 (en) Evaporation source and Apparatus for deposition having the same
KR101037121B1 (en) Vapor deposition system and vapor deposition method
JP4268847B2 (en) Molecular beam source cell for thin film deposition
KR100583044B1 (en) Apparatus for linearly heating deposition source material
JP4552184B2 (en) Apparatus and method for depositing organic layer on substrate for organic light emitting device
KR100685838B1 (en) Evaporating apparatus
KR100700497B1 (en) Evaporating apparatus
KR100786230B1 (en) Crucible for depositing organic thin film
KR200365703Y1 (en) Apparatus for vapor deposition of thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4491449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees