JP4491391B2 - Defect inspection apparatus and defect inspection method - Google Patents

Defect inspection apparatus and defect inspection method Download PDF

Info

Publication number
JP4491391B2
JP4491391B2 JP2005227357A JP2005227357A JP4491391B2 JP 4491391 B2 JP4491391 B2 JP 4491391B2 JP 2005227357 A JP2005227357 A JP 2005227357A JP 2005227357 A JP2005227357 A JP 2005227357A JP 4491391 B2 JP4491391 B2 JP 4491391B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
detector
image sensor
output signal
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005227357A
Other languages
Japanese (ja)
Other versions
JP2007040909A (en
Inventor
広志 川口
稔 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005227357A priority Critical patent/JP4491391B2/en
Publication of JP2007040909A publication Critical patent/JP2007040909A/en
Application granted granted Critical
Publication of JP4491391B2 publication Critical patent/JP4491391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体ウェハ等の被検査物に形成されたパターンの欠陥(ショートや断線など)や被検査物表面の異物を検出するパターン検査,異物検査装置及び検査方法に係り、特に検出器として一次元もしくは二次元のイメージセンサを用いた検査装置及び検査方法に関する。   The present invention relates to a pattern inspection, a foreign matter inspection apparatus, and an inspection method for detecting a defect (such as a short circuit or disconnection) of a pattern formed on an inspection object such as a semiconductor wafer or a foreign matter on the surface of the inspection object, and particularly as a primary detector. The present invention relates to an inspection apparatus and an inspection method using an original or two-dimensional image sensor.

半導体ウェハ等に形成されたパターンの欠陥(ショートや断線など)や被検査物表面の異物を検出する欠陥検査装置は、半導体パターンの微細化により、より高い分解能が求められるとともに、スループットの向上も求められている。その要求を満たすためには、検出器の感度向上が必須である。この技術に関し、従来は、特許文献1に記載のように検出器に時間遅延積分型イメージセンサであるTDI(Time Delay & Integration)イメージセンサを使用することで蓄積電荷量を増やす方法や特許文献2に記載のように裏面照射型
TDIイメージセンサを使用することで、光電変換の量子効率を向上させ検出光量を増加させる方法などが提案されている。
Defect inspection equipment that detects defects (shorts, breaks, etc.) in patterns formed on semiconductor wafers, etc. and foreign matter on the surface of the object to be inspected require higher resolution and improve throughput by miniaturizing semiconductor patterns. It has been demanded. In order to satisfy this requirement, it is essential to improve the sensitivity of the detector. With respect to this technology, conventionally, as described in Patent Document 1, a method of increasing the amount of accumulated charges by using a TDI (Time Delay & Integration) image sensor, which is a time delay integration type image sensor, as a detector, or Patent Document 2 As described above, a method of improving the quantum efficiency of photoelectric conversion and increasing the amount of detected light by using a back-illuminated TDI image sensor has been proposed.

特開2004−301847号公報JP 2004-301847 A 特開2001−194323号公報JP 2001-194323 A

光電変換型のイメージセンサを検出器として用いた検査装置において、検出器の感度を数倍以上向上させるためには、イメージセンサの受光構造が表面照射型,裏面照射型何れの場合でも、1画素当りの感度は変わらないため、画素サイズを大きくするかTDIの段数を増やすしかない。この場合、装置スループットを落とさず検査対象を検査するためには、イメージセンサのサイズが感度向上分に比例して大きくなるため、大面積イメージセンサ製造に伴う画素欠陥発生頻度増加などによる歩留まり低下への危惧,照明及び検出光学系の大幅な変更に伴うレンズ開発などの技術的リスク及び開発期間やコストの増大などの問題があった。   In an inspection apparatus using a photoelectric conversion type image sensor as a detector, in order to improve the sensitivity of the detector several times or more, one pixel is used regardless of whether the light receiving structure of the image sensor is a front side illumination type or a back side illumination type. Since the hit sensitivity does not change, there is no choice but to increase the pixel size or increase the number of TDI stages. In this case, in order to inspect the inspection object without reducing the apparatus throughput, the size of the image sensor increases in proportion to the sensitivity improvement, so that the yield decreases due to the increase in the frequency of pixel defects due to the manufacture of large area image sensors. There were problems such as technical risks such as lens development due to significant changes in illumination and detection optical system, and development period and cost increase.

本発明の目的は、上記課題を解決するために、暗視野照明・反射散乱光検出を備えた欠陥検査装置において、検出器の変更のみで検査装置の感度を向上させる方法を提供することにある。   In order to solve the above problems, an object of the present invention is to provide a method for improving the sensitivity of an inspection apparatus only by changing a detector in a defect inspection apparatus equipped with dark field illumination / reflected scattered light detection. .

本発明は、上記目的を達成するために、一次元もしくは二次元の光電変換イメージセンサの前段もしくは後段に電子増倍手段を有する検出器を有し、照明光を検査対象の斜方より照明する照明手段と検査対象からの反射散乱光を斜方もしくは上方に配した検出器で受光する検出手段を有し、検査対象を搭載したステージを走査するかもしくは検出器を走査することにより光学的に画像を取得し、画像処理等により検査対象の欠陥等を検査することを特徴とする欠陥検査方法である。   In order to achieve the above object, the present invention has a detector having an electron multiplying means at the front stage or the rear stage of a one-dimensional or two-dimensional photoelectric conversion image sensor, and illuminates illumination light from an oblique direction to be inspected. Illumination means and detection means for receiving reflected and scattered light from the inspection object obliquely or with a detector arranged above, and optically by scanning the stage on which the inspection object is mounted or scanning the detector A defect inspection method characterized by acquiring an image and inspecting a defect to be inspected by image processing or the like.

本発明によれば、照明光を検査対象の斜方より照明する照明手段と検査対象からの反射散乱光を斜方もしくは上方に配した検出器で受光する検出手段を有し、検査対象を搭載したステージを走査するかもしくは検出器を走査することにより光学的に画像を取得し、画像処理等により検査対象の欠陥等を検査する暗視野照明・反射散乱光検出の検査装置において、一次元もしくは二次元の光電変換イメージセンサの前段もしくは後段に電子増倍手段を有する検出器を用いることにより、入射フォトン数が少なくてもSN比が格段に向上するため、入射フォトン数が少ない微小な欠陥や異物を検出可能となり、高感度な欠陥検査装置を提供することができる。   According to the present invention, there is provided an illuminating means for illuminating illumination light from an oblique direction of the inspection object and a detecting means for receiving reflected and scattered light from the inspection object obliquely or upwardly, and mounted on the inspection object. In the inspection apparatus for dark field illumination / reflected scattered light detection that optically acquires an image by scanning the stage or scanning a detector and inspects a defect to be inspected by image processing or the like, one-dimensional or By using a detector having an electron multiplying means at the front stage or the rear stage of a two-dimensional photoelectric conversion image sensor, the SN ratio is greatly improved even if the number of incident photons is small. A foreign object can be detected, and a highly sensitive defect inspection apparatus can be provided.

以下、本発明を図面を用いて説明する。図1は、本発明の欠陥検査装置の一実施例を示す図である。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the defect inspection apparatus of the present invention.

ステージ6は、X,Y,Z,θ(回転)ステージから構成され、被検査パターンの一例である半導体ウェハ(試料)7を載置するものである。照明光源1は、例えば波長266nmや波長355nmの紫外あるいは遠紫外レーザ光源から構成され、試料7を照明する光源である。紫外レーザ光源としては、固体のYAGレーザを非線形光学結晶等で波長変換して基本波の第3高調波(355nm)や、第4高調波(266nm)を発生する装置で構成される。また、波長193nm,波長195nmあるいは波長248nmなどのレーザ光源を使用してもかまわない。さらに、レーザ光源として存在するならば100nm以下の波長でも良く、解像度が益々向上することになる。また、レーザの発振形態は、連続発振でも、パルス発振でも構わないが、ステージを連続走行させて被対象物7からの画像を検出する関係で、連続発振が好ましい。ステージ6は、制御CPU14によって図示しない方法によりX,Y,Z,θ方向の制御が可能である。光源1からの照明光は光量を制限するNDフィルタ2により、検査に必要な光量に制御する。NDフィルタ2は図示しない方法によりNDフィルタ制御回路3の指令により駆動可能である。ビームエキスパンダ4により光源1からの光束を拡大し、拡大された光束は、照明光学系5によりステージ6に搭載された試料7上の照明範囲を設定し、試料7に対して斜方より照射し、暗視野照明を施すように構成している。試料7からの反射散乱光は対物レンズ8,空間フィルタ9,結像レンズ11等を介して検出器12にて検出し、画像処理部13にて2値化処理などを行い、欠陥を検出する。空間フィルタ9は図示しない方法により空間フィルタ制御回路10の指令により駆動可能であり、試料7上の繰返しパターンからの回折光を遮光可能である。また、画像処理結果等は表示部16に表示し、入力部15にて入力した情報や画像処理部13,検出器12,ステージ6のデータや情報を制御する制御CPU14を有する。ここで、検出器12には電子増倍手段をイメージセンサの前段もしくは後段に有する電子増倍型のイメージセンサを用いる。図2は、本発明の欠陥検査装置での検出器の構成の一実施例を示す図である。同図(a)に示すようにセンサパッケージ100内部は真空
105状態とし、イメージセンサである裏面照射型CCD(Charge Coupled Device)104を収納する。検出器12に入射する光子101は光電面102で電子103に変換される。電子103には電圧を印加することで加速し、裏面照射型CCDに打ち込む。このとき、二次電子が発生し、電荷が増幅される。増幅後の電荷は電圧に変換され、出力ピン107より出力される。ここで、イメージセンサは表面照射型CCDでも表面照射型TDIでも裏面照射型TDIでも良く、また、アンチブルーミング機能を有していても良く、更に、マルチタップ型であっても良い。同図(a)に示すセンサ構造は一般的にEBCCD
(Electron Bombarded Charge Coupled Device)と呼ばれるイメージセンサの構造であり、イメージセンサの前段に電子増倍手段を有する。EBCCDのゲイン特性は同図(b)に示すように印加電圧と電子増倍ゲインとの間には比例関係がある。図3は、本発明の欠陥検査装置での検出器の構成の他の一実施例を示す図である。同図(a)に示すように複数のセンサ画素402から成るセンサアレイ401で受光した光子を電荷に変換し、電荷の蓄積時間の周期で開閉するシフトゲート403が閉じている間は電荷を蓄積し、開くと各センサ画素402に対応したシフトレジスタ404に電荷を転送する。シフトレジスタ
404に転送された電荷はシフトゲート403が閉じている間に順次シフトレジスタ404間で転送され、電子増倍レジスタ405に送られる。電子増倍レジスタ405は複数あり、各電子増倍レジスタ405内での電荷転送時に電子増倍レジスタ制御部406で電圧を印加し、電子増倍レジスタ405内部で二次電子を発生させることで電子増倍を行い、電子増倍した電荷を次の電子増倍レジスタ405に転送する電子増倍を電子増倍レジスタ
405の数だけ繰返した後に、出力アンプ407に電荷を送る。ここで、イメージセンサは裏面照射型CCDでも表面照射型CCDでも表面照射型TDIでも裏面照射型TDIでも良く、また、アンチブルーミング機能を有していても良く、更に、マルチタップ型であっても良い。同図(a)に示すセンサ構造は一般的にEMCCD(Electron Multiplying Charge Coupled Device)と呼ばれるイメージセンサの構造であり、イメージセンサの後段に電子増倍手段を有する。EMCCDのゲイン特性は同図(b)に示すように印加電圧と電子増倍ゲインの対数値との間はほぼ比例関係がある。上述の如き、電子増倍手段を有する検出器12を用いることにより、光源を含む照明光学系や検出光学系を変更することなく、欠陥検出感度を向上させることができるため、低コストで開発リスクが少なく、かつ、高い検出感度を有する良好な検出結果を得ることが可能な検査装置を提供することができる。
The stage 6 is composed of X, Y, Z, and θ (rotation) stages, on which a semiconductor wafer (sample) 7 that is an example of a pattern to be inspected is placed. The illumination light source 1 is composed of, for example, an ultraviolet or far ultraviolet laser light source having a wavelength of 266 nm or a wavelength of 355 nm, and is a light source that illuminates the sample 7. The ultraviolet laser light source is composed of a device that generates a third harmonic (355 nm) or a fourth harmonic (266 nm) of the fundamental wave by converting the wavelength of a solid YAG laser with a nonlinear optical crystal or the like. A laser light source having a wavelength of 193 nm, a wavelength of 195 nm, a wavelength of 248 nm, or the like may be used. Furthermore, if it exists as a laser light source, a wavelength of 100 nm or less may be used, and the resolution will be further improved. The laser oscillation mode may be continuous oscillation or pulse oscillation, but continuous oscillation is preferable because the stage is continuously run to detect an image from the object 7. The stage 6 can be controlled in the X, Y, Z, and θ directions by the control CPU 14 by a method not shown. Illumination light from the light source 1 is controlled to a light amount necessary for inspection by an ND filter 2 that restricts the light amount. The ND filter 2 can be driven by a command from the ND filter control circuit 3 by a method not shown. The beam expander 4 expands the light beam from the light source 1, and the expanded light beam sets the illumination range on the sample 7 mounted on the stage 6 by the illumination optical system 5, and irradiates the sample 7 obliquely. In addition, dark field illumination is applied. Reflected and scattered light from the sample 7 is detected by the detector 12 through the objective lens 8, the spatial filter 9, the imaging lens 11, and the like, and binarized by the image processing unit 13 to detect defects. . The spatial filter 9 can be driven by a command from the spatial filter control circuit 10 by a method not shown, and can block diffracted light from a repetitive pattern on the sample 7. The image processing result and the like are displayed on the display unit 16, and the control CPU 14 controls the information input from the input unit 15 and the data and information of the image processing unit 13, the detector 12, and the stage 6. Here, the detector 12 uses an electron multiplication type image sensor having electron multiplication means at the front stage or the rear stage of the image sensor. FIG. 2 is a diagram showing an embodiment of the configuration of the detector in the defect inspection apparatus of the present invention. As shown in FIG. 2A, the inside of the sensor package 100 is in a vacuum 105 state, and a back-illuminated CCD (Charge Coupled Device) 104 that is an image sensor is accommodated. Photons 101 incident on the detector 12 are converted to electrons 103 by the photocathode 102. The electrons 103 are accelerated by applying a voltage, and are driven into the back-illuminated CCD. At this time, secondary electrons are generated and the charge is amplified. The amplified charge is converted into a voltage and output from the output pin 107. Here, the image sensor may be a front-illuminated CCD, a front-illuminated TDI, or a back-illuminated TDI, may have an anti-blooming function, and may be a multi-tap type. The sensor structure shown in FIG.
This is a structure of an image sensor called (Electron Bombarded Charge Coupled Device), and has electron multiplying means in the front stage of the image sensor. The gain characteristic of EBCCD has a proportional relationship between the applied voltage and the electron multiplication gain as shown in FIG. FIG. 3 is a diagram showing another embodiment of the configuration of the detector in the defect inspection apparatus of the present invention. As shown in FIG. 6A, photons received by a sensor array 401 including a plurality of sensor pixels 402 are converted into electric charges, and electric charges are accumulated while a shift gate 403 that opens and closes at a period of electric charge accumulation time is closed. When opened, the charge is transferred to the shift register 404 corresponding to each sensor pixel 402. The charges transferred to the shift register 404 are sequentially transferred between the shift registers 404 while the shift gate 403 is closed, and are sent to the electron multiplication register 405. There are a plurality of electron multiplication registers 405, and a voltage is applied by the electron multiplication register control unit 406 at the time of charge transfer in each electron multiplication register 405 to generate secondary electrons inside the electron multiplication register 405. After multiplying and repeating the electron multiplication for transferring the electron-multiplied charge to the next electron multiplication register 405, the charge is sent to the output amplifier 407. Here, the image sensor may be a back-illuminated CCD, a front-illuminated CCD, a front-illuminated TDI, a back-illuminated TDI, may have an anti-blooming function, and may be a multi-tap type. good. The sensor structure shown in FIG. 1A is an image sensor structure generally called an EMCD (Electron Multiplying Charge Coupled Device), and has an electron multiplying means at the subsequent stage of the image sensor. The gain characteristic of the EMCCD has a substantially proportional relationship between the applied voltage and the logarithmic value of the electron multiplication gain as shown in FIG. By using the detector 12 having the electron multiplying means as described above, the defect detection sensitivity can be improved without changing the illumination optical system and the detection optical system including the light source. Therefore, it is possible to provide an inspection apparatus that can obtain a good detection result with a small amount and high detection sensitivity.

図4はCCDセンサとEBCCDセンサの出力信号(S)とノイズ(N)の関係を示す図である。出力信号とノイズを算出する際の条件としては、CCDセンサの量子効率(QE)を50%、CCDセンサの読み出しノイズを80e、EBCCDの前段の光電変換面の量子効率(η)を20%、電子増倍ゲイン(GEB)を1000倍、EBCCDの前段の光電変換面の暗電流(ND )を300e、CCDセンサの飽和電子数を100000eとした。また、電子増倍ゲインに対するノイズ増加比率(NF)とCCDセンサの出力信号及びノイズとEBCCDの出力信号及びノイズは(数1)〜(数5)式により算出した。 FIG. 4 is a diagram showing the relationship between the output signal (S) and noise (N) of the CCD sensor and EBCCD sensor. As conditions for calculating the output signal and noise, the quantum efficiency (QE) of the CCD sensor is 50%, the readout noise of the CCD sensor is 80e, the quantum efficiency (η) of the photoelectric conversion surface in the previous stage of EBCCD is 20%, The electron multiplication gain (G EB ) was set to 1000 times, the dark current (N D ) of the photoelectric conversion surface in front of EBCCD was set to 300e, and the number of saturated electrons of the CCD sensor was set to 100000e. Further, the noise increase ratio (NF) with respect to the electron multiplication gain, the output signal and noise of the CCD sensor, and the output signal and noise of the EBCCD were calculated by the equations (1) to (5).

Figure 0004491391
Figure 0004491391

Figure 0004491391
Figure 0004491391

Figure 0004491391
Figure 0004491391

Figure 0004491391
Figure 0004491391

Figure 0004491391
Figure 0004491391

同図に示すグラフの横軸は入射フォトン(光子)数(NS )であり、縦軸は左側が各センサの出力信号とノイズの出力電子数であり、右側が各センサの出力信号とノイズの比率であるSN比(S/N)である。同図に示すように、EBCCDの出力信号はCCDの出力信号に比べ、電子増倍により格段に大きくなるが、ノイズの一部であり、電子が発生する際に出力信号の平方根で生じるショットノイズも電子増倍により増加するため、出力信号とノイズの比率であり、欠陥検出に大きく係わるSN比は、入射フォトン数が少ない場合には大差が無く、入射フォトン数が多い場合には感度が高いEBCCDの方が早く飽和レベルに達するため、CCDの方がSN比は良くなる。このため、電子増倍機能を有し、感度の高いEBCCDを検出器として用いても、一見、欠陥検査装置の検出感度向上への効果は薄いように見受けられる。しかし、このSN比は、検査方式によっては大きく異なってくる。以下、図5〜図7を使って、検出方式とSN比の関係について説明する。図5は明視野照明・反射光検出による欠陥検出方法の実施例を示す図である。検査対象が例えば半導体ウェハの場合には、パターンの欠陥(ショートや断線など)や異物を検出するパターン検査,異物検査において、検査対象チップと隣接するチップとを比較することで、パターンの影響を除去してパターンの欠陥や異物を検出する。このとき、明視野照明・反射光検出による欠陥検出方式では、基本的に多くの反射光を検出器で受光するため、図5(a)に示すように全体的に明るい出力信号が得られる。同図は、欠陥が存在した場合の出力信号であり、横軸が検査対象を搭載したステージを走査したときの検査対象上のスキャン位置、縦軸が検出器の出力信号である。同図に示す全体の明るさS1 に対してδだけ出力信号の異なる欠陥をパターンの影響を受けず、ショットノイズ(S1 の平方根)と弁別して検出するために、同図(b)に示すような隣接チップの出力信号と比較(差分)する。差分後の信号を同図(c)に示す。同図に示すように差分後の信号から欠陥の出力
(S)とノイズ(N)を弁別して欠陥のみを検出するには、S>Nである必要があり、これは(数6)式に示すような条件が必要であることを示す。
The horizontal axis of the graph shown in the figure is the number of incident photons (photons) (N S ), the vertical axis is the number of output signals and noise output electrons from each sensor, and the right side is the output signal and noise of each sensor. This is the S / N ratio (S / N). As shown in the figure, the output signal of EBCCD is much larger than the output signal of CCD due to electron multiplication, but it is a part of noise, and shot noise generated at the square root of the output signal when electrons are generated. Is also a ratio between the output signal and noise, and the signal-to-noise ratio, which is greatly involved in defect detection, does not differ greatly when the number of incident photons is small, and is highly sensitive when the number of incident photons is large. Since the EBCCD reaches the saturation level earlier, the CCD has a better SN ratio. For this reason, even if an EBCCD having an electron multiplication function and high sensitivity is used as a detector, it seems that the effect of improving the detection sensitivity of the defect inspection apparatus is thin. However, this SN ratio varies greatly depending on the inspection method. Hereinafter, the relationship between the detection method and the SN ratio will be described with reference to FIGS. FIG. 5 is a diagram showing an embodiment of a defect detection method by bright field illumination / reflected light detection. When the inspection target is, for example, a semiconductor wafer, the pattern influence can be reduced by comparing the inspection target chip with the adjacent chip in pattern inspection for detecting pattern defects (short circuit, disconnection, etc.) and foreign matters. Remove and detect pattern defects and foreign matter. At this time, in the defect detection method based on bright field illumination / reflected light detection, basically a lot of reflected light is received by the detector, so that an overall bright output signal can be obtained as shown in FIG. This figure is an output signal when a defect is present, the horizontal axis is the scan position on the inspection target when the stage carrying the inspection target is scanned, and the vertical axis is the output signal of the detector. In order to detect a defect whose output signal is different by δ with respect to the overall brightness S 1 shown in the figure without being influenced by the pattern and discriminate it from shot noise (the square root of S 1 ), FIG. Compare (differ) with the output signal of the adjacent chip as shown. The signal after the difference is shown in FIG. As shown in the figure, in order to discriminate the defect output (S) and the noise (N) from the signal after the difference and detect only the defect, it is necessary that S> N. Indicates that the conditions shown are necessary.

Figure 0004491391
Figure 0004491391

すなわち、欠陥による出力信号の増加量は出力信号の高い(入射フォトン数の多い)時のショットノイズよりも大きい必要が有り、これは同一入力フォトン数のときの出力信号(S)とノイズ(N)の比率であるSN比(ダイナミックレンジ)が大きくなければならないことを意味する。   That is, the increase amount of the output signal due to the defect needs to be larger than the shot noise when the output signal is high (the number of incident photons is large), which is the same as the output signal (S) and noise (N ) Means that the S / N ratio (dynamic range) must be large.

一方、暗視野照明・反射散乱光検出により、検査対象が例えば半導体ウェハの場合には、パターンの欠陥(ショートや断線など)や異物を検出するパターン検査,異物検査においては、空間フィルタにより検査対象上の繰返しパターンからの回折光を遮光し、欠陥や異物からの反射散乱光のみ検出器で検出するため、図6(a)に示すように全体的に暗い出力信号が得られる。同図は、欠陥が存在した場合の出力信号であり、横軸が検査対象を搭載したステージを走査したときの検査対象上のスキャン位置、縦軸が検出器の出力信号である。同図に示す全体の明るさS1 に対してδだけ出力信号の異なる欠陥を、ショットノイズ(S1 の平方根)と弁別して検出するために、同図(b)に示すような隣接チップの出力信号と比較(差分)する。差分後の信号を同図(c)に示す。同図に示すように差分後の信号から欠陥の出力(S)とノイズ(N)を弁別して欠陥のみを検出するには、S>Nである必要があり、これは(数7)式に示すような条件が必要であることを示す。 On the other hand, when the inspection object is, for example, a semiconductor wafer by dark-field illumination / reflected scattered light detection, a pattern filter that detects pattern defects (such as short-circuits and disconnections) and foreign objects, and foreign object inspection are performed using a spatial filter. Since the diffracted light from the upper repetitive pattern is shielded and only the reflected scattered light from the defect or foreign matter is detected by the detector, an overall dark output signal is obtained as shown in FIG. This figure is an output signal when a defect is present, the horizontal axis is the scan position on the inspection target when the stage carrying the inspection target is scanned, and the vertical axis is the output signal of the detector. In order to detect a defect whose output signal is different by δ with respect to the overall brightness S 1 shown in the figure by distinguishing it from shot noise (the square root of S 1 ), the adjacent chip as shown in FIG. Compare (differ) with the output signal. The signal after the difference is shown in FIG. As shown in the figure, in order to discriminate the defect output (S) and the noise (N) from the signal after the difference and detect only the defect, it is necessary that S> N. Indicates that the conditions shown are necessary.

Figure 0004491391
Figure 0004491391

すなわち、欠陥による出力信号の増加量は出力信号の低い(入射フォトン数の少ない)時のショットノイズよりも大きい必要が有り、これは同一入力フォトン数のときの出力信号(S)とノイズ(N)の比率であるSN比(ダイナミックレンジ)が大きくなくても良いことを意味する。   That is, the increase amount of the output signal due to the defect needs to be larger than the shot noise when the output signal is low (the number of incident photons is small), which is equal to the output signal (S) and noise (N ) Means that the S / N ratio (dynamic range) need not be large.

図7は明視野照明・反射光検出と暗視野照明・反射散乱光検出との場合での検出器の出力信号(S)とノイズ(N)の比率(SN比)の例を示す図である。検出器にはCCDセンサ及びEBCCDセンサを使用し、出力信号とノイズを算出する際の条件としては、CCDセンサの量子効率(QE)を50%、CCDセンサの読み出しノイズを80e、EBCCDの前段の光電変換面の量子効率(η)を20%、電子増倍ゲイン(GEB)を1000倍、
EBCCDの前段の光電変換面の暗電流(ND )を300e、CCDセンサの飽和電子数を100000eとした。ここで、明視野照明・反射光検出でのSN比は、(数1)〜
(数5)式により算出したCCD及びEBCCDの出力信号(S)とノイズ(N)から、SN比(S/N)を算出し、暗視野照明・反射散乱光検出でのSN比の出力信号(S)は(数2)及び(数4)式により算出し、ノイズ(N)は暗レベルでの光ショットノイズは無視できるため、CCDセンサの読み出しノイズと同一とし、SN比を算出した。同図より明視野照明・反射光検出では、検出器にCCDを用いた場合(CCD(S/N))と
EBCCDを用いた場合(EBCCD(S/N))ではSN比に大差がないため、格段の感度向上を図ることはできない。一方、暗視野照明・反射散乱光検出では、検出器にCCDを用いた場合(CCD (S/NR))では明視野照明・反射光検出でのSN比と大差はないが、EBCCDを用いた場合(EBCCD (S/NR)))では入射フォトン数が少なくてもSN比が高く、SN比が格段に向上する。このため、入射フォトン数が少ない微小な欠陥や異物を検出可能となり、高感度な欠陥検査装置を提供することができる。
FIG. 7 is a diagram showing an example of the ratio (SN ratio) between the output signal (S) and noise (N) of the detector in the case of bright field illumination / reflected light detection and dark field illumination / reflected scattered light detection. . A CCD sensor and an EBCCD sensor are used as detectors, and the conditions for calculating the output signal and noise are as follows: the quantum efficiency (QE) of the CCD sensor is 50%, the readout noise of the CCD sensor is 80e, and the preceding stage of EBCCD. The quantum efficiency (η) of the photoelectric conversion surface is 20%, the electron multiplication gain (G EB ) is 1000 times,
The dark current (N D ) on the photoelectric conversion surface in the previous stage of EBCCD was 300e, and the number of saturated electrons of the CCD sensor was 100,000e. Here, the SN ratio in the bright field illumination / reflected light detection is (Equation 1) to
The SN ratio (S / N) is calculated from the output signal (S) and noise (N) of the CCD and EBCCD calculated by the equation (5), and the output signal of the SN ratio in the dark field illumination / reflected scattered light detection. (S) is calculated by the equations (2) and (4), and the noise (N) is the same as the readout noise of the CCD sensor because the light shot noise at the dark level can be ignored, and the SN ratio is calculated. From the figure, in bright field illumination / reflected light detection, there is no significant difference in the signal-to-noise ratio between the case where CCD is used as the detector (CCD (S / N)) and the case where EBCCD is used (EBCCD (S / N)). However, the sensitivity cannot be significantly improved. On the other hand, in the case of using a CCD as a detector (CCD (S / N R )), the SN ratio in bright field illumination / reflected light detection is not much different in dark field illumination / reflected scattered light detection, but EBCCD is used. (EBCCD (S / N R )), the SN ratio is high even if the number of incident photons is small, and the SN ratio is remarkably improved. For this reason, it becomes possible to detect minute defects and foreign matters having a small number of incident photons, and it is possible to provide a highly sensitive defect inspection apparatus.

図8は、本発明の欠陥検査装置での検出器の電子増倍ゲイン算出方法の一実施例を示す図である。同図は検出器としてEBCCDを用いた場合のSN特性を示し、横軸に電子増倍ゲイン、縦軸の左側が入射フォトン(NS )が300eの時の出力信号(S)とノイズ(N)の出力電子数、右側が出力信号(S)とノイズ(N)の比率であるSN比(S/N)である。出力信号とノイズを算出する際の条件としては、入射フォトン(NS )を300e、CCDセンサの量子効率(QE)を50%、CCDセンサの読出しノイズを80e、EBCCDの前段の光電変換面の量子効率(η)を20%、電子増倍ゲイン(GEB)を1〜1000倍、EBCCDの前段の光電変換面の暗電流(ND )を300e、CCDセンサの飽和電子数を100000eとした。また、電子増倍ゲインに対するノイズ増加比率(NF)と出力信号及びノイズは(数1),(数4),(数5)式により算出した。同図に示すように、例えば、入射フォトン数が300eであるような欠陥を検出するために必要なSN比が400であった場合には、(数8)式により必要電子増倍ゲインを算出する。 FIG. 8 is a diagram showing an embodiment of a method for calculating the electron multiplication gain of the detector in the defect inspection apparatus of the present invention. This figure shows SN characteristics when EBCCD is used as a detector. The horizontal axis represents the electron multiplication gain, and the left side of the vertical axis represents the output signal (S) and noise (N) when the incident photon (N S ) is 300e. ) And the right side is the SN ratio (S / N), which is the ratio of the output signal (S) and noise (N). As conditions for calculating the output signal and noise, the incident photon (N s ) is 300e, the quantum efficiency (QE) of the CCD sensor is 50%, the readout noise of the CCD sensor is 80e, the photoelectric conversion surface of the front stage of the EBCCD is The quantum efficiency (η) is 20%, the electron multiplication gain (G EB ) is 1 to 1000 times, the dark current (N D ) of the photoelectric conversion surface in front of EBCCD is 300e, and the saturation electron number of the CCD sensor is 100000e. . Further, the noise increase ratio (NF) with respect to the electron multiplication gain, the output signal, and the noise were calculated by the equations (Equation 1), (Equation 4), and (Equation 5). As shown in the figure, for example, when the SN ratio necessary for detecting a defect having an incident photon number of 300e is 400, the necessary electron multiplication gain is calculated by the equation (8). To do.

Figure 0004491391
Figure 0004491391

必要な電子増倍ゲイン算出後は、印加電圧に換算し、EBCCDの印加電圧を換算後の電圧に調整する。これにより、所望の欠陥サイズの欠陥を検出可能な検出感度を得ることができる欠陥検査装置を提供することができる。図9は、本発明の欠陥検査装置の構成の一実施例を示す図である。ステージ6は、X,Y,Z,θ(回転)ステージから構成され、被検査パターンの一例である半導体ウェハ(試料)7を載置するものである。照明光源1は、例えば波長266nmや波長355nmの紫外あるいは遠紫外レーザ光源から構成され、試料7を照明する光源である。紫外レーザ光源としては、固体のYAGレーザを非線形光学結晶等で波長変換して基本波の第3高調波(355nm)や、第4高調波(266nm)を発生する装置で構成される。また、波長193nm,波長195nmあるいは波長248nmなどのレーザ光源を使用してもかまわない。さらに、レーザ光源として存在するならば100nm以下の波長でも良く、解像度が益々向上することになる。また、レーザの発振形態は、連続発振でも、パルス発振でも構わないが、ステージを連続走行させて被対象物7からの画像を検出する関係で、連続発振が好ましい。ステージ6は、制御
CPU14によって図示しない方法によりX,Y,Z,θ方向の制御が可能である。光源1からの照明光は光量を制限するNDフィルタ2により、検査に必要な光量に制御する。NDフィルタ2は図示しない方法によりNDフィルタ制御回路3の指令により駆動可能である。ビームエキスパンダ4により光源1からの光束を拡大し、拡大された光束は、照明光学系5によりステージ6に搭載された試料7上の照明範囲を設定し、試料7に対して斜方より照射し、暗視野照明を施すように構成している。試料7からの反射散乱光は対物レンズ8,空間フィルタ9,結像レンズ11等を介して、電子増倍手段をイメージセンサの前段もしくは後段に有する電子増倍型のイメージセンサから成る検出器12にて検出し、画像処理部13にて2値化処理などを行い、欠陥を検出する。空間フィルタ9は図示しない方法により空間フィルタ制御回路10の指令により駆動可能であり、試料7上の繰り返しパターンからの回折光を遮光可能である。また、画像処理結果等は表示部16に表示し、入力部15にて入力した情報や画像処理部13,検出器12,ステージ6のデータや情報を制御する制御CPU14を有する。検出器12の電子増倍ゲインを決定する印加電圧を所望の値に設定する際には、SN比算出部17にて所望の欠陥を検出するためのSN比を算出し、制御CPU14を介して電子増倍ゲイン制御部18に算出したSN比を送り、電子増倍ゲイン制御部18にてSN比から必要な印加電圧を算出し、印加電圧を制御する。ここで、印加電圧算出機能は制御CPU14にて行い、制御CPU14で直接、検出器
12の印加電圧を制御しても良く、SN比の算出も制御CPU14で直接行っても良い。また、SN比算出時の欠陥出力信号(S)とノイズ(N)は、図8に示すように、入射フォトン数から算出しても良いし、本装置での実測値を使用しても良い。更に、上述した何れかの方法でSN比と必要電子増倍ゲインもしくは印加電圧を欠陥サイズ毎に算出した結果を予め、制御CPU14内部のメモリなどに格納しておいても良い。なお、SN比の算出や必要電子増倍ゲイン、印加電圧の算出に必要な欠陥サイズなどのパラメータは入力部15を介して入力すれば良い。また、検出器12に使用するイメージセンサは裏面照射型CCDでも表面照射型CCDでも表面照射型TDIでも裏面照射型TDIでも良く、また、アンチブルーミング機能を有していても良く、更に、マルチタップ型であっても良い。以上の構成により、本発明の欠陥検査装置においては所望の欠陥サイズもしくは入射フォトン数の欠陥を検出可能な検出感度を得ることができ、また、イメージセンサがマルチタップ型の検出器を用いることで、検出器の動作速度を向上することができるため、高速な検査が可能な欠陥検査装置を提供することができる。
After calculating the necessary electron multiplication gain, it is converted into an applied voltage, and the applied voltage of EBCCD is adjusted to the converted voltage. Thereby, the defect inspection apparatus which can obtain the detection sensitivity which can detect the defect of a desired defect size can be provided. FIG. 9 is a diagram showing an embodiment of the configuration of the defect inspection apparatus of the present invention. The stage 6 is composed of X, Y, Z, and θ (rotation) stages, on which a semiconductor wafer (sample) 7 that is an example of a pattern to be inspected is placed. The illumination light source 1 is composed of, for example, an ultraviolet or far ultraviolet laser light source having a wavelength of 266 nm or a wavelength of 355 nm, and is a light source that illuminates the sample 7. The ultraviolet laser light source is composed of a device that generates a third harmonic (355 nm) or a fourth harmonic (266 nm) of a fundamental wave by converting the wavelength of a solid YAG laser with a nonlinear optical crystal or the like. A laser light source having a wavelength of 193 nm, a wavelength of 195 nm, a wavelength of 248 nm, or the like may be used. Furthermore, if it exists as a laser light source, a wavelength of 100 nm or less may be used, and the resolution will be further improved. The laser oscillation mode may be continuous oscillation or pulse oscillation, but continuous oscillation is preferable because the stage is continuously run to detect an image from the object 7. The stage 6 can be controlled in the X, Y, Z, and θ directions by the control CPU 14 by a method not shown. Illumination light from the light source 1 is controlled to a light amount necessary for inspection by an ND filter 2 that restricts the light amount. The ND filter 2 can be driven by a command from the ND filter control circuit 3 by a method not shown. The beam expander 4 expands the light beam from the light source 1, and the expanded light beam sets the illumination range on the sample 7 mounted on the stage 6 by the illumination optical system 5, and irradiates the sample 7 obliquely. In addition, dark field illumination is applied. Reflected and scattered light from the sample 7 passes through an objective lens 8, a spatial filter 9, an imaging lens 11, and the like, and a detector 12 comprising an electron multiplication type image sensor having electron multiplication means at the front stage or the rear stage of the image sensor. The image processing unit 13 performs binarization processing and the like to detect defects. The spatial filter 9 can be driven by a command from the spatial filter control circuit 10 by a method not shown, and can block diffracted light from a repetitive pattern on the sample 7. The image processing result and the like are displayed on the display unit 16, and the control CPU 14 controls the information input from the input unit 15 and the data and information of the image processing unit 13, the detector 12, and the stage 6. When the applied voltage for determining the electron multiplication gain of the detector 12 is set to a desired value, the SN ratio calculation unit 17 calculates an SN ratio for detecting a desired defect, via the control CPU 14. The calculated S / N ratio is sent to the electron multiplication gain control unit 18, and the electron multiplication gain control unit 18 calculates a necessary applied voltage from the S / N ratio to control the applied voltage. Here, the applied voltage calculation function is performed by the control CPU 14, and the applied voltage of the detector 12 may be directly controlled by the control CPU 14, and the SN ratio may be directly calculated by the control CPU 14. Further, the defect output signal (S) and noise (N) at the time of calculating the S / N ratio may be calculated from the number of incident photons as shown in FIG. 8, or measured values in this apparatus may be used. . Further, the result of calculating the SN ratio and the necessary electron multiplication gain or applied voltage for each defect size by any of the methods described above may be stored in advance in a memory or the like in the control CPU 14. It should be noted that parameters such as the calculation of the SN ratio, the necessary electron multiplication gain, and the defect size necessary for calculating the applied voltage may be input via the input unit 15. The image sensor used for the detector 12 may be a back-illuminated CCD, a front-illuminated CCD, a front-illuminated TDI, or a back-illuminated TDI, and may have an anti-blooming function. It may be a mold. With the above configuration, the defect inspection apparatus of the present invention can obtain detection sensitivity capable of detecting a defect having a desired defect size or the number of incident photons, and the image sensor can use a multi-tap detector. Since the operation speed of the detector can be improved, a defect inspection apparatus capable of high-speed inspection can be provided.

本発明の欠陥検査装置の一実施例を示す図である。It is a figure which shows one Example of the defect inspection apparatus of this invention. 本発明の欠陥検査装置の検出器の構成の一実施例を示す図である。It is a figure which shows one Example of a structure of the detector of the defect inspection apparatus of this invention. 本発明の欠陥検査装置の検出器の構成の他の実施例を示す図である。It is a figure which shows the other Example of a structure of the detector of the defect inspection apparatus of this invention. 本発明の欠陥検査装置の検出器の信号特性の一実施例を示す図である。It is a figure which shows one Example of the signal characteristic of the detector of the defect inspection apparatus of this invention. 明視野照明・反射光検出を行う装置の欠陥検出条件を示す図である。It is a figure which shows the defect detection conditions of the apparatus which performs bright field illumination and reflected light detection. 本発明の暗視野照明・反射散乱光検出を行う装置の欠陥検出条件を示す図である。It is a figure which shows the defect detection conditions of the apparatus which performs the dark field illumination and reflected scattered light detection of this invention. 検出方式の違いによる検出器の信号特性の一実施例を示す図である。It is a figure which shows one Example of the signal characteristic of the detector by the difference in a detection system. 本発明の電子増倍ゲイン設定方法の一実施例を示す図である。It is a figure which shows one Example of the electron multiplication gain setting method of this invention. 本発明の欠陥検査装置の他の実施例を示す図である。It is a figure which shows the other Example of the defect inspection apparatus of this invention.

符号の説明Explanation of symbols

1…光源、2…NDフィルタ、3…NDフィルタ制御回路、4…ビームエキスパンダ、5…照明光学系、6…ステージ、7…試料、8…対物レンズ、9…空間フィルタ、10…空間フィルタ制御回路、11…結像レンズ、12…検出器、13…画像処理部、14…制御CPU、15…入力部、16…表示部、17…SN比算出部、18…電子増倍ゲイン制御部、100…センサパッケージ、101…光子、102…光電面、103…電子、104…裏面照射型CCD、105…真空、106…印加電圧、107…出力ピン、401…センサアレイ、402…センサ画素、403…シフトゲート、404…シフトレジスタ、
405…電子増倍レジスタ、406…電子増倍レジスタ制御部、407…出力アンプ。
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... ND filter, 3 ... ND filter control circuit, 4 ... Beam expander, 5 ... Illumination optical system, 6 ... Stage, 7 ... Sample, 8 ... Objective lens, 9 ... Spatial filter, 10 ... Spatial filter Control circuit, 11 ... imaging lens, 12 ... detector, 13 ... image processing unit, 14 ... control CPU, 15 ... input unit, 16 ... display unit, 17 ... SN ratio calculation unit, 18 ... electron multiplication gain control unit DESCRIPTION OF SYMBOLS 100 ... Sensor package 101 ... Photon 102 ... Photoelectric surface 103 ... Electron 104 ... Back side illumination type CCD 105 ... Vacuum 106 ... Applied voltage 107 ... Output pin 401 ... Sensor array 402 ... Sensor pixel 403 ... shift gate, 404 ... shift register,
405: Electron multiplication register, 406: Electron multiplication register controller, 407: Output amplifier.

Claims (8)

電子増倍手段を有する光電変換イメージセンサを備えた検出器と、
照明光を検査対象の斜方より照明する照明手段と、
前記検査対象からの反射散乱光を斜方もしくは上方に配した前記検出器で受光する検出
手段と、
前記検査対象を走査することにより前記検出器で光学的に画像を取得する走査手段と、
前記光電変換イメージセンサの前段に光電変換部を有し、前記光電変換イメージセンサ
と前記光電変換部との間を真空状態に維持する構造を有し、前記光電変換部にて変換した電子に電圧を印加する電圧印加部を有する検出器と、
前記電圧印加部の印加電圧を制御する印加電圧制御部と、
前記検出器に入射する光子数と前記印加電圧により制御可能な電子増倍ゲインから前記検出器の出力信号,ノイズ、前記出力信号と前記ノイズの比率を算出するSN比算出部と、
外部入力手段により入力した出力信号とノイズの比率の目標値とを比較し、前記目標値以上の出力信号とノイズの比率となるように前記印加電圧制御部を制御して該電子増倍ゲインを調整する電子増倍ゲイン制御部と、を備えたことを特徴とする欠陥検査装置。
A detector including a photoelectric conversion image sensor having electron multiplying means;
Illuminating means for illuminating illumination light from an oblique direction to be inspected;
Detecting means for receiving reflected and scattered light from the inspection object obliquely or above with the detector disposed above,
Scanning means for optically acquiring an image with the detector by scanning the inspection object;
The photoelectric conversion image sensor has a photoelectric conversion unit in the preceding stage, and the photoelectric conversion image sensor
And a detector having a voltage application unit that applies a voltage to electrons converted by the photoelectric conversion unit, and a structure that maintains a vacuum state between the photoelectric conversion unit, and
An applied voltage control unit for controlling an applied voltage of the voltage applying unit;
An SN ratio calculation unit for calculating the output signal of the detector, noise, and the ratio of the output signal to the noise from the number of photons incident on the detector and the electron multiplication gain controllable by the applied voltage;
The output signal input by the external input means is compared with the target value of the noise ratio, and the applied voltage control unit is controlled so that the ratio of the output signal and noise is equal to or higher than the target value, and the electron multiplication gain is set. A defect inspection apparatus comprising: an electron multiplication gain control unit for adjustment.
電子増倍手段を有する光電変換イメージセンサを備えた検出器と、
照明光を検査対象の斜方より照明する照明手段と、
前記検査対象からの反射散乱光を斜方もしくは上方に配した前記検出器で受光する検出
手段と、
前記検査対象を走査することにより前記検出器で光学的に画像を取得する走査手段と、
前記光電変換イメージセンサの前段に光電変換部を有し、前記光電変換イメージセンサと前記光電変換部との間を真空状態に維持する構造を有し、前記光電変換部にて変換した電子に電圧を印加する電圧印加部を有する検出器と、
前記光電変換イメージセンサの電荷転送部と読み出しレジスタの間に直列に配した複数
の電子増倍レジスタと、
該電子増倍レジスタに電圧を印加する電圧印加部と、
前記電圧印加部の印加電圧を制御する印加電圧制御部と、
前記検出器に入射する光子数と前記印加電圧により制御可能な電子増倍ゲインから前記検出器の出力信号,ノイズ、前記出力信号と前記ノイズの比率を算出するSN比算出部と、外部入力手段により入力した出力信号とノイズの比率の目標値とを比較し、前記目標値以上の出力信号とノイズの比率となるように前記印加電圧制御部を制御して該電子増倍ゲインを調整する電子増倍ゲイン制御部と、を備えたことを特徴とする欠陥検査装置。
A detector including a photoelectric conversion image sensor having electron multiplying means;
Illuminating means for illuminating illumination light from an oblique direction to be inspected;
Detection in which reflected and scattered light from the inspection object is received by the detector arranged obliquely or above
Means,
Scanning means for optically acquiring an image with the detector by scanning the inspection object;
It has a photoelectric conversion part in the front | former stage of the said photoelectric conversion image sensor, it has a structure which maintains between the said photoelectric conversion image sensor and the said photoelectric conversion part in a vacuum state, and it is voltage to the electron converted in the said photoelectric conversion part a detector having a voltage application unit for applying a
A plurality of units arranged in series between the charge transfer unit and the readout register of the photoelectric conversion image sensor
With an electronic multiplication register
A voltage application unit for applying a voltage to the electron multiplier register;
An applied voltage control unit for controlling an applied voltage of the voltage applying unit;
An SN ratio calculating section for calculating the output signal of the detector, the noise, and the ratio of the output signal to the noise from the number of photons incident on the detector and the electron multiplication gain controllable by the applied voltage; and an external input means An electron that compares the output signal input by the target value of the noise ratio and controls the applied voltage control unit to adjust the electron multiplication gain so that the ratio of the output signal and noise is equal to or greater than the target value. A defect inspection apparatus comprising a multiplication gain control unit.
電子増倍手段を有する光電変換イメージセンサを備えた検出器と、A detector including a photoelectric conversion image sensor having electron multiplying means;
照明光を検査対象の斜方より照明する照明手段と、Illuminating means for illuminating illumination light from an oblique direction to be inspected;
前記検査対象からの反射散乱光を斜方もしくは上方に配した前記検出器で受光する検出Detection in which reflected and scattered light from the inspection object is received by the detector arranged obliquely or above
手段と、Means,
前記検査対象を走査することにより前記検出器で光学的に画像を取得する走査手段と、Scanning means for optically acquiring an image with the detector by scanning the inspection object;
前記光電変換イメージセンサの前段に光電変換部を有し、前記光電変換イメージセンサThe photoelectric conversion image sensor has a photoelectric conversion unit in the preceding stage, and the photoelectric conversion image sensor
と前記光電変換部との間を真空状態に維持する構造を有し、前記光電変換部にて変換した電子に電圧を印加する電圧印加部を有する検出器と、And a detector having a voltage application unit that applies a voltage to electrons converted by the photoelectric conversion unit, and a structure that maintains a vacuum state between the photoelectric conversion unit, and
前記電圧印加部の印加電圧を制御する印加電圧制御部と、An applied voltage control unit for controlling an applied voltage of the voltage applying unit;
検査対象に付着させた標準粒子等の大きさの判明している粒子を前記検出器で検出した際の出力信号とこの時のノイズから出力信号とノイズの比率を算出するSN比算出部と、An SN ratio calculation unit for calculating the ratio of the output signal and the noise from the output signal when the particle having a known size such as the standard particle attached to the inspection object is detected by the detector and the noise at this time;
外部入力手段により入力した出力信号とノイズの比率の目標値とを比較し、前記目標値以上の出力信号とノイズの比率となるように前記印加電圧制御部を制御して該電子増倍ゲインを調整する電子増倍ゲイン制御部と、を備えたことを特徴とする欠陥検査装置。The output signal input by the external input means is compared with the target value of the noise ratio, and the applied voltage control unit is controlled so that the ratio of the output signal and noise is equal to or higher than the target value, and the electron multiplication gain is set. A defect inspection apparatus comprising: an electron multiplication gain control unit for adjustment.
電子増倍手段を有する光電変換イメージセンサを備えた検出器と、A detector including a photoelectric conversion image sensor having electron multiplying means;
照明光を検査対象の斜方より照明する照明手段と、Illuminating means for illuminating illumination light from an oblique direction to be inspected;
前記検査対象からの反射散乱光を斜方もしくは上方に配した前記検出器で受光する検出Detection in which reflected and scattered light from the inspection object is received by the detector arranged obliquely or above
手段と、Means,
前記検査対象を走査することにより前記検出器で光学的に画像を取得する走査手段と、Scanning means for optically acquiring an image with the detector by scanning the inspection object;
前記光電変換イメージセンサの前段に光電変換部を有し、前記光電変換イメージセンサThe photoelectric conversion image sensor has a photoelectric conversion unit in the previous stage, and the photoelectric conversion image sensor
と前記光電変換部との間を真空状態に維持する構造を有し、前記光電変換部にて変換した電子に電圧を印加する電圧印加部を有する検出器と、And a detector having a voltage application unit that applies a voltage to electrons converted by the photoelectric conversion unit, and a structure that maintains a vacuum state between the photoelectric conversion unit, and
前記光電変換イメージセンサの電荷転送部と読み出しレジスタの間に直列に配した複数A plurality of units arranged in series between the charge transfer unit and the readout register of the photoelectric conversion image sensor
の電子増倍レジスタと、The electronic multiplication register
該電子増倍レジスタに電圧を印加する電圧印加部と、A voltage application unit for applying a voltage to the electron multiplier register;
前記電圧印加部の印加電圧を制御する印加電圧制御部と、An applied voltage control unit for controlling an applied voltage of the voltage applying unit;
検査対象に付着させた標準粒子等の大きさの判明している粒子を前記検出器で検出した際の出力信号とこの時のノイズから出力信号とノイズの比率を算出するSN比算出部と、An SN ratio calculation unit for calculating the ratio of the output signal and the noise from the output signal when the particle having a known size such as the standard particle attached to the inspection object is detected by the detector and the noise at this time;
外部入力手段により入力した出力信号とノイズの比率の目標値とを比較し、前記目標値以上の出力信号とノイズの比率となるように前記印加電圧制御部を制御して該電子増倍ゲインを調整する電子増倍ゲイン制御部と、を備えたことを特徴とする欠陥検査装置。The output signal input by the external input means is compared with the target value of the noise ratio, and the applied voltage control unit is controlled so that the ratio of the output signal and noise is equal to or higher than the target value, and the electron multiplication gain is set. A defect inspection apparatus comprising: an electron multiplication gain control unit for adjustment.
請求項1〜のいずれかに記載の欠陥検査装置において、
前記光電変換イメージセンサは時間遅延積分型(TDI)イメージセンサであることを特徴とする欠陥検査装置。
In the defect inspection apparatus in any one of Claims 1-4 ,
The defect inspection apparatus, wherein the photoelectric conversion image sensor is a time delay integration type (TDI) image sensor.
請求項記載の時間遅延積分型(TDI)イメージセンサは、アンチブルーミングTDIイメージセンサであることを特徴とする欠陥検査装置。 6. The defect inspection apparatus according to claim 5, wherein the time delay integration (TDI) image sensor is an anti-blooming TDI image sensor. 請求項または記載の時間遅延積分型(TDI)イメージセンサは裏面照射型TDIイメージセンサであることを特徴とする欠陥検査装置。 TDI type (TDI) image sensor according to claim 5 or 6, wherein the defect inspection apparatus which is a back-illuminated TDI image sensor. 請求項のいずれかに記載のイメージセンサは画素方向で複数に分割され、分割した数画素の単位(タップ)毎に並列に読み出し可能なマルチタップ型イメージセンサであることを特徴とする欠陥検査装置。 The image sensor according to any one of claims 5 to 7 , wherein the image sensor is a multi-tap image sensor that is divided into a plurality of pixels in the pixel direction and that can be read in parallel for each of the divided several pixel units (taps). Defect inspection equipment.
JP2005227357A 2005-08-05 2005-08-05 Defect inspection apparatus and defect inspection method Expired - Fee Related JP4491391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227357A JP4491391B2 (en) 2005-08-05 2005-08-05 Defect inspection apparatus and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227357A JP4491391B2 (en) 2005-08-05 2005-08-05 Defect inspection apparatus and defect inspection method

Publications (2)

Publication Number Publication Date
JP2007040909A JP2007040909A (en) 2007-02-15
JP4491391B2 true JP4491391B2 (en) 2010-06-30

Family

ID=37799017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227357A Expired - Fee Related JP4491391B2 (en) 2005-08-05 2005-08-05 Defect inspection apparatus and defect inspection method

Country Status (1)

Country Link
JP (1) JP4491391B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222611A (en) * 2008-03-18 2009-10-01 Hitachi High-Technologies Corp Inspection apparatus and inspection method
US10197501B2 (en) * 2011-12-12 2019-02-05 Kla-Tencor Corporation Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors
US9091666B2 (en) * 2012-02-09 2015-07-28 Kla-Tencor Corp. Extended defect sizing range for wafer inspection
US9496425B2 (en) 2012-04-10 2016-11-15 Kla-Tencor Corporation Back-illuminated sensor with boron layer
US9601299B2 (en) 2012-08-03 2017-03-21 Kla-Tencor Corporation Photocathode including silicon substrate with boron layer
US10748730B2 (en) 2015-05-21 2020-08-18 Kla-Tencor Corporation Photocathode including field emitter array on a silicon substrate with boron layer
CN107807315B (en) * 2017-10-31 2023-12-19 国网安徽省电力公司电力科学研究院 Method for detecting insulation defects of electrical equipment
US11114489B2 (en) 2018-06-18 2021-09-07 Kla-Tencor Corporation Back-illuminated sensor and a method of manufacturing a sensor
US10943760B2 (en) 2018-10-12 2021-03-09 Kla Corporation Electron gun and electron microscope
US11114491B2 (en) 2018-12-12 2021-09-07 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor
CN111326433B (en) * 2018-12-17 2024-01-19 紫创(南京)科技有限公司 Semiconductor inspection apparatus and inspection method
CN109839387A (en) * 2019-03-25 2019-06-04 中国工程物理研究院激光聚变研究中心 The method of the surface contamination of express statistic optical elements of large caliber and damage
US11848350B2 (en) 2020-04-08 2023-12-19 Kla Corporation Back-illuminated sensor and a method of manufacturing a sensor using a silicon on insulator wafer
US11448603B1 (en) * 2021-09-02 2022-09-20 Axiomatique Technologies, Inc. Methods and apparatuses for microscopy and spectroscopy in semiconductor systems
CN115684015A (en) * 2022-11-01 2023-02-03 江苏芯缘半导体有限公司 Chip appearance detection mechanism

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135003A (en) * 1997-10-28 1999-05-21 Hamamatsu Photonics Kk Photoelectric surface and electron tube using it
JPH11204072A (en) * 1998-01-16 1999-07-30 Hamamatsu Photonics Kk Camera apparatus
JPH11225286A (en) * 1997-11-07 1999-08-17 Matsushita Electric Ind Co Ltd Photoelectric converter and solid-state image pickup element
JP2000228514A (en) * 1998-12-22 2000-08-15 Marconi Applied Technologies Ltd Image formation device
JP2002039960A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Method for inspecting pattern defect and apparatus therefor
JP2002181725A (en) * 2000-12-11 2002-06-26 Mitsubishi Electric Corp Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
JP2004301847A (en) * 1998-07-28 2004-10-28 Hitachi Ltd Defects inspection apparatus and method
JP2005506657A (en) * 2001-10-09 2005-03-03 アイティーティー マニュファクチュアリング エンタープライズィズ インコーポレイテッド Intensify hybrid solid state sensor
JP2007502419A (en) * 2003-08-11 2007-02-08 イムニベスト・コーポレイション Apparatus and method for imaging an object by time delay integration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135003A (en) * 1997-10-28 1999-05-21 Hamamatsu Photonics Kk Photoelectric surface and electron tube using it
JPH11225286A (en) * 1997-11-07 1999-08-17 Matsushita Electric Ind Co Ltd Photoelectric converter and solid-state image pickup element
JPH11204072A (en) * 1998-01-16 1999-07-30 Hamamatsu Photonics Kk Camera apparatus
JP2004301847A (en) * 1998-07-28 2004-10-28 Hitachi Ltd Defects inspection apparatus and method
JP2000228514A (en) * 1998-12-22 2000-08-15 Marconi Applied Technologies Ltd Image formation device
JP2002039960A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Method for inspecting pattern defect and apparatus therefor
JP2002181725A (en) * 2000-12-11 2002-06-26 Mitsubishi Electric Corp Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
JP2005506657A (en) * 2001-10-09 2005-03-03 アイティーティー マニュファクチュアリング エンタープライズィズ インコーポレイテッド Intensify hybrid solid state sensor
JP2007502419A (en) * 2003-08-11 2007-02-08 イムニベスト・コーポレイション Apparatus and method for imaging an object by time delay integration

Also Published As

Publication number Publication date
JP2007040909A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4491391B2 (en) Defect inspection apparatus and defect inspection method
US7465935B2 (en) Method for inspecting pattern defect and device for realizing the same
US8077306B2 (en) Defect inspection apparatus
US20130294677A1 (en) Defect inspection method and defect inspection device
US20130035876A1 (en) Detecting defects on a wafer
WO2011016420A1 (en) Solar cell defect inspection apparatus, defect inspection method and program
US11798153B2 (en) Frequency domain enhancement of low-SNR flat residue/stain defects for effective detection
JP2011010300A (en) Method, system and program for creating emission image of integrated circuit
US11138722B2 (en) Differential imaging for single-path optical wafer inspection
US10373797B2 (en) Charged particle beam device and image forming method using same
JP4024381B2 (en) Defect inspection method and apparatus
JP2010043941A (en) Image inspection apparatus and image inspection method
JPH095058A (en) Defect inspection device for regular pattern
KR20200141524A (en) Capturing repeater defects on semiconductor wafers
US7697130B2 (en) Apparatus and method for inspecting a surface of a wafer
JP2009097928A (en) Defect inspecting device and defect inspection method
JP2009097959A (en) Defect detecting device and defect detection method
JP2533610B2 (en) Foreign matter inspection device
JP2017130334A (en) Charged particle beam device and image forming method of charged particle beam device
TW202125760A (en) Pattern-to-design alignment for one-dimensional unique structures
KR20090039490A (en) Camera for a wafer detection
JP5074058B2 (en) Foreign matter inspection method and foreign matter inspection device
WO2023105849A1 (en) Inspecting method and inspecting device
TWI702569B (en) Method for enhancing instant image sharpness
US20110090489A1 (en) Method and Apparatus for Detecting Small Reflectivity Variations in Electronic Parts at High Speed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees