JP4490544B2 - Decomposition treatment method and apparatus for organochlorine compounds - Google Patents

Decomposition treatment method and apparatus for organochlorine compounds Download PDF

Info

Publication number
JP4490544B2
JP4490544B2 JP2000074117A JP2000074117A JP4490544B2 JP 4490544 B2 JP4490544 B2 JP 4490544B2 JP 2000074117 A JP2000074117 A JP 2000074117A JP 2000074117 A JP2000074117 A JP 2000074117A JP 4490544 B2 JP4490544 B2 JP 4490544B2
Authority
JP
Japan
Prior art keywords
treatment
liquid
reaction
tank
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000074117A
Other languages
Japanese (ja)
Other versions
JP2001261583A (en
Inventor
昌也 浦上
博史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2000074117A priority Critical patent/JP4490544B2/en
Publication of JP2001261583A publication Critical patent/JP2001261583A/en
Application granted granted Critical
Publication of JP4490544B2 publication Critical patent/JP4490544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PCB、ダイオキシン、フロン、トリクレン等含有の有機塩素化合物をアルカリ−メタノール溶媒(薬剤)反応により分解する分解処理法及びその装置に関するものである。
【0002】
【従来の技術】
従来、PCB、ダイオキシン、フロン、トリクレン等含有の有機塩素化合物を溶媒(薬剤)等の化学処理反応による分解処理装置が提案、注目されている。この溶媒(薬剤)等の化学処理反応の分解処理装置は例えば、フロンの処理の場合、先ずタンク内の被分解処理物にアルカリ−メタノール液の溶媒(薬剤)を混合し、この混合物をポンプを介して熱交換器に送り込み、この熱交換器からの処理物を溶媒(薬剤)反応器で反応させた後に更に熱交換器を介して冷却器に送り、冷却器から圧力調整バルブを経て気液分離器に送り、この気液分離器によって分離していた。
【0003】
【発明が解決しようとする課題】
しかしながら、この被分解処理物の溶媒(薬剤)反応の分解処理装置では、処理薬剤のアルカリ−メタノール液は反応後も大部分残っており、そのまま廃液とするとランニングコストが高価となるという問題があり、分解処理装置を効率的に操作することができなかった。
【0004】
そこで、本発明はこのような従来の分解処理装置が有していた課題を解決したものであって、反応後のアルカリ−メタノール液をリサイクルして新しい処理薬剤と混合して用い、反応後に廃液、排水を出さない効率的な操作をして、ランニングコストの低廉をはかることを目的とした有機塩素化合物の分解処理法及びその装置を提供するにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の有機塩素化合物の分解処理法はPCB、ダイオキシン、フロン、トリクレン等含有の有機塩素化合物と処理薬剤として、苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合液を圧力反応行程中に供給し、加熱して反応処理後、スラリー分離器にて気体の一酸化炭素、水素ガスと結晶析出物の蟻酸ソーダ、炭酸ソーダと反応処理後の処理薬剤とに分離して、この分離した反応処理後の処理薬剤を無水芒硝による脱水処理した後に処理薬剤として循環する構成としている。また有機塩素化合物の分解処理装置はタンク1からのPCB、ダイオキシン、フロン、トリクレン等含有の有機塩素化合物と処理薬剤槽3からの苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合した被処理液を予備加熱する予熱器11と、この予熱器11から配管を通し予熱した被処理液を圧力下、加温しつつ反応する反応器20と、この反応器20で反応した処理液を冷却する冷却器25と、この冷却された処理液が圧力調整バルブ24を経て常圧で蟻酸ソーダ、炭酸ソーダの結晶析出物と一酸化炭素、水素ガスの気体と反応処理後の処理薬剤とに分離するスラリー分離器22と、このスラリー分離器22からの反応処理後の処理薬剤を配管28を通し無水芒硝にて脱水する脱水槽31と、脱水槽31にて脱水されたアルカリ−メタノール液を処理薬剤槽3へ循環する配管32とを備えてなる構成としたものである。
【0006】
【発明の実施の形態】
以下、本発明の実施例について図に基づき説明する。
図中、図1は本発明の分解処理装置の一例を示す説明図である。
本発明はPCB、ダイオキシン、フロン、トリクレン等の産業廃棄物の難分解性有機塩素物質、有機塩素系溶剤(ジクロロメタン、クロロフォルム、四塩化炭素等)を処理対象物としているが、この実施例では特にトランス油(絶縁油JIS第1種2号)中のPCBの難分解性有機塩素物質を処理対象物としている。
【0007】
1はPCB含有のトランス油(絶縁油JIS第1種2号)の有機塩素化合物からなる被分解処理物を貯蔵したタンクで、配管8を通してタンク1内の被分解処理物を後述の高圧定量ポンプ4の吸引側に送っている。3は処理薬剤槽で、この処理薬剤槽3内には苛性ソーダとメタノール液とを混合したアルカリ−メタノール液を処理薬剤として貯蔵している。
【0008】
2は定量ポンプで、処理薬剤槽3内の処理薬剤を配管6を通して一旦後述の反応器下部の冷却器25の熱を利用して温め、定量ポンプ5,配管9を介して配管8中の被処理物と共に高圧定量で圧力反応行程の混合器7に導いている。このタンク1からの被分解処理物と処理薬剤槽3からの処理薬剤とが混合器7内で十分撹拌、混合される。被分解処理物と処理薬剤との混合された被処理物は配管10を通って予熱器11へと導かれる。
【0009】
この予熱器11の熱は後述の反応器20の加熱媒体の残りの熱を利用し、配管12を通して予熱器11へと導いている。この予熱器11では被処理物を約250℃〜300℃にまで加温している。この予熱器11は高周波加熱であってもよく、また、一気に加温するのではなく徐々に加温するようにしてもよい。
【0010】
予熱器11で加熱された被処理物は配管13を通って反応器20へと導かれる。この反応器20はその周面に加熱媒体を備えており、この加熱媒体にて被処理物を約300℃〜350℃に保温、保持している。反応器20の下部には冷却器25を備えている。この反応器20では圧力を約200kg/cm2以下の設定圧にして、被処理物を分解反応している。
【0011】
この反応器20はバッチ式で行っているが特にこのバッチ式に限定するものでなく、連続反応処理であっても何ら支障はない。この反応器20で分解反応して分解した処理物は冷却器25にて冷却される。この冷却器25での冷却時に発生する熱が上述の配管6を通して導かれる処理薬剤のアルカリ−メタノ−ル液を予め温めることとなる。14は反応器20を加熱する加熱媒体の吸入側配管で、15はレベル検知器である。
【0012】
この冷却器25は処理物を冷却し、液化可能にしている。この液化可能となった処理物は配管21を通り圧力調整バルブ24にて減圧されスラリー分離器22へと導かれる。冷却器25から送られ処理物はスラリー分離器22で蟻酸ソーダ、炭酸ソーダの結晶析出物と一酸化炭素、水素ガスの気体とトランス油を含んだ反応処理後の処理薬剤とに分離される。この蟻酸ソーダ、炭酸ソーダの結晶析出物はスラリー分離器22の下部よりバルブ27を介して排出され、一酸化炭素、水素ガスの気体はスラリー分離器22の上端の配管17から排出される。
【0013】
スラリー分離器22内のトランス油を含んだ反応処理後の処理薬剤は配管28を通り分離槽29内に導かれる。この分離槽29内では上層に油層を、下層にアルカリ−メタノール剤層を分離する。この分離槽29内の下層は配管28aを通して脱水槽31に導かれる。この分離槽29内の上層はトランス油として再利用される。
【0014】
この分離槽29は実施例で処理対象物をトランス油中のPCBの難分解性有機塩素物質としたために設けたもので、本発明は特にこの分離槽29に限定するものでなく、実施例がフロン、トリクレン等の有機塩素系溶剤を処理対象物とした場合には分離槽を必要とせず、スラリー分離器22からの配管28、配管28aを通り脱水槽31に直接導かれている。
【0015】
脱水槽31には無水芒硝を投入して、アルカリ−メタノール剤層を撹拌し、副生した微量の水分を無水芒硝によって脱水している。脱水槽31で脱水された液はアルカリ−メタノール液となり、定量ポンプ18を介し配管32を通り処理薬剤として処理薬剤槽3へ循環される。19はフイルタ−である。この脱水槽31はバッチ式にて行ったが、特にバッチ式に限定されるものではなく、連続処理として無水芒硝による脱水塔としてもよい。
【0016】
【実験例1】
トランス油(松村石油製、絶縁油JIS第1種2号、平均分子量270、平均沸点280℃、成分Aromatic20.6%、Naphthene18.2%、Parafin61.2%)にKC400(カネクロール400)を1000PPMに希釈したものを調合して有機塩素化合物の試料とした。処理薬剤のアルカリ−メタノールとしては苛性ソーダとメチルアルコール並びに反応助剤としてナトリウムメトキシドの和光純薬製試薬特級を使用した。この実験例の反応器はマイクロオートクレーブによるバッチ式にて行った。オートクレーブは耐圧ガラス工業製TVS−N2型、内容積120ml、SUS316製のものを使用した。
【0017】
このマイクロオートクレーブ容器に試料と撹拌用テフロン(登録商標)回転子を入れ、酸化反応防止のため窒素で充填置換し、外部よりバンドヒーターで加熱を行い、所定の温度(300℃)まで加熱して反応させた。この反応物を風ブロワーによる自然冷却した後、蟻酸ソーダ、炭酸ソーダ等の析出物を取り出した後、次にトランス油と分離した反応処理後のアルカリ−メタノール液を無水芒硝にて脱水吸着処理後、アルカリ−メタノール液を回収、この回収されたアルカリ−メタノール液に新しいアルカリ−メタノール液を追加して繰り返し反応操作をおこなった。操作条件と経過を次の表1に示す。
【0018】
【表1】

Figure 0004490544
【0019】
結果、繰り返し反応で6回目の反応でも初回とトランス油中のPCBの分解率は大差なく(初回分解率99.78%、6回目分解率99.77%)、反応処理後の処理薬剤の分解等で減量した分のみ新しい処理薬剤を追加すれば、廃液を出さずに継続処理できる。反応処理後の処理薬剤の再利用には蟻酸ソーダ、炭酸ソーダ等の析出物を分離し、副生水分の発生分を無水芒硝の脱水吸着処理にて除去してやれば十分再利用できることを確認できた。これは廃液、廃棄物をできるだけ出さない方向性から処理薬剤のリサイクルができることは大きなメリットと考えられる。
【0020】
以上本発明の代表的と思われるトランス油(絶縁油JIS第1種2号)中のPCBの難分解性有機塩素化合物の実施例について説明したが、本発明は必ずしもこれらの実施例構造のみに限定されるものではなく、本発明にいう前記の構成要件を備え、かつ、本発明にいう目的を達成し、以下にいう効果を有する範囲内において適宜改変して実施することができるものである。また難分解物質が気体、液体、混合物であっても本発明の分解処理装置を組合わせることにより具体化することができる。
【0021】
【発明の効果】
以上の説明から既に明らかなように、本発明にいうところの有機塩素化合物の分解処理法は有機塩素化合物と処理薬剤として、苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合液を圧力反応行程中に供給し、加熱して反応処理後、スラリー分離器にて気体の一酸化炭素、水素ガスと結晶析出物の蟻酸ソーダ、炭酸ソーダと反応処理後の処理薬剤とに分離して、この分離した反応処理後の処理薬剤を無水芒硝による脱水処理した後に処理薬剤として循環する構成とし、また有機塩素化合物の分解処理装置はタンクからの有機塩素化合物と処理薬剤槽からの苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合した被処理液を予備加熱する予熱器と、この予熱器から配管を通し予熱した被処理液を圧力下、加温しつつ反応する反応器と、この反応器で反応した処理液を冷却する冷却器と、この冷却された処理液が圧力調整バルブを経て常圧で蟻酸ソーダ、炭酸ソーダの結晶析出物と一酸化炭素、水素ガスの気体と反応処理後の処理薬剤とに分離するスラリー分離器と、このスラリー分離器からの反応処理後の処理薬剤を配管を通し無水芒硝にて脱水する脱水槽と、脱水槽にて脱水されたアルカリ−メタノール液を処理薬剤槽へ循環する配管とを備えてなる構成としたものであるから、反応後のアルカリ−メタノール液をリサイクルして新しい処理薬剤と混合して用い、反応後に廃液、排水を出さない効率的な操作をして、ランニングコストの低廉をはかるという顕著な効果を期待することが出来るに至ったのである。
【図面の簡単な説明】
【図1】本発明の分解処理装置の一例を示す説明図。
【符号の説明】
1 タンク
3 処理薬剤槽
11 予熱器
20 反応器
22 スラリー分離器
24 圧力調整バルブ
25 冷却器
28 配管
29 分離槽
31 脱水槽
32 配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a decomposition method and apparatus for decomposing an organic chlorine compound containing PCB, dioxin, chlorofluorocarbon, trichrene and the like by an alkali-methanol solvent (chemical) reaction.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a decomposition treatment apparatus using a chemical treatment reaction of an organic chlorine compound containing PCB, dioxin, chlorofluorocarbon, trichrene or the like with a solvent (chemical) or the like has been proposed and attracted attention. For example, in the case of chlorofluorocarbon treatment, a decomposition treatment apparatus for chemical treatment reaction of this solvent (drug) or the like first mixes a solvent (drug) in an alkali-methanol solution with a substance to be decomposed in a tank, and pumps this mixture with a pump. To the heat exchanger, the processed material from this heat exchanger is reacted in the solvent (chemical) reactor, then further sent to the cooler via the heat exchanger, and the gas-liquid is sent from the cooler through the pressure adjustment valve. It was sent to a separator and separated by this gas-liquid separator.
[0003]
[Problems to be solved by the invention]
However, in the decomposition treatment apparatus for the solvent (chemical) reaction of the substance to be decomposed, the alkali-methanol solution of the treatment chemical remains largely after the reaction, and there is a problem that the running cost becomes expensive if the waste liquid is used as it is. The decomposition processing apparatus could not be operated efficiently.
[0004]
Therefore, the present invention solves the problems of such a conventional decomposition treatment apparatus, and recycles the alkali-methanol liquid after the reaction and mixes it with a new treatment chemical, and uses the waste liquid after the reaction. Another object of the present invention is to provide an organic chlorine compound decomposition treatment method and apparatus for the purpose of reducing the running cost by performing an efficient operation without discharging drainage.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the organic chlorine compound decomposition treatment method of the present invention comprises an alkali- methanol solution in which caustic soda solution and methanol solution are mixed as an organic chlorine compound containing PCB, dioxin, chlorofluorocarbon, trichrene and the like and a treatment agent. It was mixed, and supplies the mixture in a pressure reaction process, after heating to reaction treatment, gas carbon monoxide in the slurry separator, sodium formate hydrogen gas and crystalline precipitates after reaction treatment with sodium carbonate and separated into a processing agent, it has a configuration for circulating a processing agent processing agent after the separation reaction process after dehydration with anhydrous sodium sulfate. In addition, the organic chlorine compound decomposition treatment apparatus mixes an organic chlorine compound containing PCB, dioxin, chlorofluorocarbon, trichlene, etc. from the tank 1 with an alkali- methanol liquid obtained by mixing a caustic soda liquid and a methanol liquid from the treatment chemical tank 3, The preheater 11 that preheats the mixed liquid to be processed, the reactor 20 that reacts while preheating the liquid to be preheated through the pipe from the preheater 11 while reacting under pressure, and the reactor 20 reacted. A cooler 25 that cools the treatment liquid, and the cooled treatment liquid passes through the pressure adjustment valve 24 and is treated with sodium formate, sodium carbonate crystal precipitates, carbon monoxide, and hydrogen gas at normal pressure and after the reaction treatment. slurry separator 22 for separating the drug, and dehydrating tub 31 to dehydrated over anhydrous sodium sulfate processing agent after the reaction process through a pipe 28 from the slurry separator 22, the dewatering tank 31 Alkali dehydrated Te - is obtained by a composed and a pipe 32 for circulating a methanol solution to the processing chemical tank 3 configuration.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In the figure, FIG. 1 is an explanatory view showing an example of the decomposition processing apparatus of the present invention.
The present invention treats industrial degradable organic chlorine substances such as PCB, dioxin, chlorofluorocarbon, and trichrene, and organic chlorinated solvents (dichloromethane, chloroform, carbon tetrachloride, etc.). The hard-to-decompose organochlorine substance of PCB in transformer oil (insulating oil JIS type 1 No. 2) is treated.
[0007]
Reference numeral 1 denotes a tank that stores a substance to be decomposed made of an organic chlorine compound of transformer oil (insulating oil JIS type 1 No. 2) containing PCB. 4 is sent to the suction side. Reference numeral 3 denotes a processing chemical tank. In the processing chemical tank 3, an alkali-methanol liquid obtained by mixing caustic soda and methanol liquid is stored as a processing chemical .
[0008]
2 is a metering pump, which temporarily heats the processing chemical in the processing chemical tank 3 through the pipe 6 by using the heat of the cooler 25 at the lower part of the reactor which will be described later. Together with the processed material, it is led to the mixer 7 of the pressure reaction process by high-pressure determination. The material to be decomposed from the tank 1 and the processing chemical from the processing chemical tank 3 are sufficiently stirred and mixed in the mixer 7. The object to be processed in which the object to be decomposed and the processing chemical are mixed is guided to the preheater 11 through the pipe 10.
[0009]
The heat of the preheater 11 is guided to the preheater 11 through the pipe 12 using the remaining heat of the heating medium of the reactor 20 described later. In the preheater 11, the object to be processed is heated to about 250 ° C to 300 ° C. The preheater 11 may be high frequency heating, or may be gradually heated rather than heated at once.
[0010]
The object to be processed heated by the preheater 11 is guided to the reactor 20 through the pipe 13. This reactor 20 is provided with a heating medium on its peripheral surface, and the object to be treated is kept warm and held at about 300 ° C. to 350 ° C. with this heating medium. A cooler 25 is provided at the bottom of the reactor 20. In this reactor 20, the pressure is set to a set pressure of about 200 kg / cm 2 or less to decompose the object to be treated.
[0011]
Although this reactor 20 is performed in a batch system, it is not particularly limited to this batch system, and there is no problem even if it is a continuous reaction process. The processed product decomposed by the reaction in the reactor 20 is cooled in the cooler 25. The heat generated during cooling in the cooler 25 is preliminarily warmed with the alkali-methanol solution of the treatment chemical guided through the pipe 6 described above. Reference numeral 14 denotes a heating medium suction side pipe for heating the reactor 20, and 15 denotes a level detector.
[0012]
The cooler 25 cools the processed material and makes it liquefiable. The processed product that can be liquefied is reduced in pressure by the pressure adjusting valve 24 through the pipe 21 and led to the slurry separator 22. Treated sent from the cooler 25 is separated into a slurry separator 22 in sodium formate, crystalline precipitate sodium carbonate and carbon monoxide, the process agent after the reaction process, including the gas and transformer oil of hydrogen gas . Crystalline precipitates of sodium formate and sodium carbonate are discharged from the lower portion of the slurry separator 22 through a valve 27, and carbon monoxide and hydrogen gas gases are discharged from a pipe 17 at the upper end of the slurry separator 22.
[0013]
The processing chemical after the reaction treatment including the transformer oil in the slurry separator 22 is guided into the separation tank 29 through the pipe 28. In the separation tank 29, the oil layer is separated into the upper layer and the alkali-methanol agent layer is separated into the lower layer. The lower layer in the separation tank 29 is guided to the dehydration tank 31 through the pipe 28a. The upper layer in the separation tank 29 is reused as transformer oil.
[0014]
The separation tank 29 is provided in the embodiment because the object to be treated is made of the hardly-decomposable organic chlorine substance of PCB in the transformer oil, and the present invention is not particularly limited to the separation tank 29. When an organic chlorinated solvent such as chlorofluorocarbon or trichlene is used as an object to be treated, a separation tank is not required, and is directly led to the dehydration tank 31 through the pipe 28 and the pipe 28a from the slurry separator 22.
[0015]
Anhydrous mirabilite is put into the dehydration tank 31, the alkali-methanol agent layer is stirred, and a small amount of water produced as a by-product is dehydrated by the anhydrous mirabilite. The liquid dehydrated in the dehydration tank 31 becomes an alkali-methanol liquid, and is circulated to the treatment chemical tank 3 as a treatment chemical through the pipe 32 via the metering pump 18. Reference numeral 19 denotes a filter. The dehydration tank 31 is a batch type, but is not particularly limited to a batch type, and may be a dehydration tower using anhydrous sodium sulfate as a continuous treatment.
[0016]
[Experiment 1]
Transformer oil (manufactured by Matsumura Oil, insulating oil JIS type 1 No. 2, average molecular weight 270, average boiling point 280 ° C., component Aromatic 20.6%, Naphthene 18.2%, Parafin 61.2%) and KC400 (Kanechlor 400) at 1000PPM A diluted sample was prepared as a sample of an organic chlorine compound. As the alkali-methanol solution for the treatment agent, caustic soda and methyl alcohol and sodium methoxide special grade made by Wako Pure Chemical as reaction auxiliary were used. The reactor of this experimental example was batch-type using a micro autoclave. The autoclave used was a TVS-N2 type manufactured by pressure-resistant glass industry, an internal volume of 120 ml, and made of SUS316.
[0017]
Put the sample and stirring Teflon (registered trademark) rotor in this micro autoclave container, fill and replace with nitrogen to prevent oxidation reaction, heat with a band heater from the outside, and heat to a predetermined temperature (300 ° C) Reacted. After the reaction product is naturally cooled by a wind blower, the precipitates such as sodium formate and sodium carbonate are taken out, and then the alkali-methanol liquid after the reaction treatment separated from the transformer oil is subjected to dehydration adsorption treatment with anhydrous sodium sulfate. Then, the alkali-methanol solution was recovered, and a new alkali-methanol solution was added to the recovered alkali-methanol solution to carry out the reaction operation repeatedly. The operating conditions and progress are shown in Table 1 below.
[0018]
[Table 1]
Figure 0004490544
[0019]
As a result, the decomposition rate of PCB in the first and trans oils was not much different even in the 6th reaction in the repetitive reaction (initial decomposition rate 99.78%, 6th decomposition rate 99.77%), and decomposition of the treatment chemical after the reaction treatment If new treatment chemicals are added only for the reduced amount, etc., continuous processing can be performed without producing waste liquid. It was confirmed that for the reuse of the treatment chemical after the reaction treatment, precipitates such as sodium formate and sodium carbonate were separated and the generated by-product water was removed by dehydration adsorption treatment of anhydrous sodium sulfate. . This is considered to be a great merit that processing chemicals can be recycled from the direction of not generating waste liquid and waste as much as possible.
[0020]
As mentioned above, the examples of the hardly-decomposable organochlorine compounds of PCB in the transformer oil (insulating oil JIS type 1 No. 2) considered to be representative of the present invention have been described. However, the present invention is not limited to these example structures. The present invention is not limited, and includes the above-described constituent requirements according to the present invention, achieves the object according to the present invention, and can be implemented with appropriate modifications within the scope of the following effects. . Even if the hardly decomposable substance is gas, liquid or mixture, it can be embodied by combining the decomposition treatment apparatus of the present invention.
[0021]
【The invention's effect】
As is apparent from the above description, the organic chlorine compound decomposition treatment method referred to in the present invention is a mixture of an organic chlorine compound and an alkali- methanol solution obtained by mixing a sodium hydroxide solution and a methanol solution as a treatment agent. The mixed liquid is supplied during the pressure reaction process, heated and reacted, and then in a slurry separator, gas monoxide, hydrogen gas, crystal precipitate sodium formate, sodium carbonate, and the treated chemical after the reaction treatment. The separated processing chemical after the reaction treatment is dehydrated with anhydrous sodium sulfate and then circulated as a processing chemical, and the organochlorine compound decomposition treatment device is supplied from the organic chlorine compound from the tank and from the processing chemical tank. alkali were mixed sodium hydroxide and methanol solution - of methanol was mixed, through a preheater, a pipe from the preheater to preheat the liquid to be treated and this mixture A reactor that reacts while preheating the liquid to be treated is heated under pressure, a cooler that cools the reaction liquid that has reacted in the reactor, and the cooled treatment liquid passes through a pressure adjustment valve at normal pressure and formic acid. soda, anhydrous through crystallization of sodium carbonate and carbon monoxide, and a slurry separator for separating and processing the drug after the gas reaction process of hydrogen gas, the pipe processing agent after the reaction process from the slurry separator Recycles the alkali-methanol solution after the reaction because it has a dehydration tank that dehydrates with sodium sulfate and a pipe that circulates the alkali-methanol liquid dehydrated in the dehydration tank to the treatment chemical tank. It was possible to expect a remarkable effect of reducing the running cost by using it mixed with new treatment chemicals, performing efficient operation without discharging waste liquid and waste water after the reaction.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a decomposition processing apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tank 3 Treatment chemical tank 11 Preheater 20 Reactor 22 Slurry separator 24 Pressure adjustment valve 25 Cooler 28 Pipe 29 Separation tank 31 Dehydration tank 32 Piping

Claims (2)

有機塩素化合物と処理薬剤として、苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合液を圧力反応行程中に供給し、加熱して反応処理後、スラリー分離器にて気体の一酸化炭素、水素ガスと結晶析出物の蟻酸ソーダ、炭酸ソーダと反応処理後の処理薬剤とに分離して、この分離した反応処理後の処理薬剤を無水芒硝による脱水処理した後に処理薬剤として循環することを特徴とした有機塩素化合物の分解処理法。An organochlorine compound and an alkali- methanol solution obtained by mixing a caustic soda solution and a methanol solution are mixed as a treatment agent , and the mixture solution is supplied during a pressure reaction process, heated, reacted, and then gasified in a slurry separator. Carbon monoxide, hydrogen gas, crystal precipitate sodium formate, sodium carbonate and the treatment chemical after the reaction treatment are separated, and the separated treatment chemical is dehydrated with anhydrous sodium sulfate as a treatment chemical. An organic chlorine compound decomposition process characterized by circulation. タンク(1)からの有機塩素化合物と処理薬剤槽(3)からの苛性ソーダ液とメタノール液を混合したアルカリ−メタノール液とを混合し、この混合した被処理液を予備加熱する予熱器(11)と、この予熱器(11)から配管を通し予熱した被処理液を圧力下、加温しつつ反応する反応器(20)と、この反応器(20)で反応した処理液を冷却する冷却器(25)と、この冷却された処理液が圧力調整バルブ(24)を経て常圧で蟻酸ソーダ、炭酸ソーダの結晶析出物と一酸化炭素、水素ガスの気体と反応処理後の処理薬剤とに分離するスラリー分離器(22)と、このスラリー分離器(22)からの反応処理後の処理薬剤を配管(28)を通し無水芒硝にて脱水する脱水槽(31)と、脱水槽(31)にて脱水されたアルカリ−メタノール液を処理薬剤槽(3)へ循環する配管(32)とを備えてなることを特徴とした有機塩素化合物の分解処理装置。A preheater (11) for preliminarily heating the mixed liquid to be treated by mixing an organochlorine compound from the tank (1) and an alkali- methanol liquid obtained by mixing a caustic soda liquid and a methanol liquid from the treatment chemical tank (3). And a reactor (20) that reacts while preheating the liquid to be treated that has been preheated through a pipe from the preheater (11) under pressure, and a cooler that cools the reaction liquid reacted in the reactor (20) (25), and the cooled treatment liquid is converted into sodium formate, sodium carbonate crystal precipitates, carbon monoxide, hydrogen gas, and a treatment agent after the reaction treatment at normal pressure through a pressure regulating valve (24). A slurry separator (22) to be separated, a dehydration tank (31) for dehydrating the treated chemical after the reaction treatment from the slurry separator (22) with anhydrous sodium sulfate through a pipe (28), and a dehydration tank (31) And a pipe (32) for circulating the alkali-methanol liquid dehydrated in step (3) to the treatment chemical tank (3). Cracking facility of the machine chlorine compounds.
JP2000074117A 2000-03-16 2000-03-16 Decomposition treatment method and apparatus for organochlorine compounds Expired - Lifetime JP4490544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074117A JP4490544B2 (en) 2000-03-16 2000-03-16 Decomposition treatment method and apparatus for organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074117A JP4490544B2 (en) 2000-03-16 2000-03-16 Decomposition treatment method and apparatus for organochlorine compounds

Publications (2)

Publication Number Publication Date
JP2001261583A JP2001261583A (en) 2001-09-26
JP4490544B2 true JP4490544B2 (en) 2010-06-30

Family

ID=18592222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074117A Expired - Lifetime JP4490544B2 (en) 2000-03-16 2000-03-16 Decomposition treatment method and apparatus for organochlorine compounds

Country Status (1)

Country Link
JP (1) JP4490544B2 (en)

Also Published As

Publication number Publication date
JP2001261583A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
KR101692095B1 (en) Process mixing water, oxidant and heavy oil under supercritical temperature and pressure conditions and eventually submitting the mixture to microwave treating
KR101369930B1 (en) Energy-saving sewage sludge solubilization device and method
WO2004108656A1 (en) Method for recovering toluene diamine from high boiling tar residue discharged from toluene diisocyanate preparation process
JP2002542007A (en) Method and apparatus for concentrating a slurried solid
JP4490544B2 (en) Decomposition treatment method and apparatus for organochlorine compounds
CN105392572A (en) Multi-injection steam type reactor and organic waste processing apparatus including same
US6191329B1 (en) Process for specific energy saving, especially in the oxychlorination of ethylene
JPH10328699A (en) Supercritical hydroxylation reactor
JP4857459B2 (en) Hydrothermal reaction method and apparatus
JP2001121167A (en) Batchwise supercritical water reaction apparatus
KR100912336B1 (en) Combined type supercritical water oxidation apparatus
CA2326551C (en) Apparatus for treating flora and fauna waste with hydrothermal reaction
JP2006231249A (en) Treating method and treatment apparatus of packaging material
US5681449A (en) Process for producing oil from organic material-containing sludge
KR100358206B1 (en) Dechlorination method of organic chlorine compounds
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
CN113402381A (en) Preparation method of chloroacetyl chloride
CN111268783B (en) Method for oxidative degradation of material containing organic matters by circulating water
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP3686778B2 (en) Operation method of supercritical water reactor
JP4395643B2 (en) Degradation processing equipment
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
KR100478271B1 (en) Wet oxidation process
JP2010259681A (en) Method and apparatus for detoxification treatment of pcb-containing oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4490544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term