JP4488305B2 - Fluorine elution suppression method for electric furnace slag - Google Patents

Fluorine elution suppression method for electric furnace slag Download PDF

Info

Publication number
JP4488305B2
JP4488305B2 JP2004292570A JP2004292570A JP4488305B2 JP 4488305 B2 JP4488305 B2 JP 4488305B2 JP 2004292570 A JP2004292570 A JP 2004292570A JP 2004292570 A JP2004292570 A JP 2004292570A JP 4488305 B2 JP4488305 B2 JP 4488305B2
Authority
JP
Japan
Prior art keywords
slag
mixed
refining
fluorine
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004292570A
Other languages
Japanese (ja)
Other versions
JP2006104517A (en
Inventor
明恵 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2004292570A priority Critical patent/JP4488305B2/en
Publication of JP2006104517A publication Critical patent/JP2006104517A/en
Application granted granted Critical
Publication of JP4488305B2 publication Critical patent/JP4488305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、電気炉と取鍋精錬炉を用いる鋼の溶解精錬方法において、発生する電気炉スラグのフッ素の溶出を抑制する方法に関するものである。   The present invention relates to a method for suppressing the elution of fluorine from electric furnace slag generated in a steel melting and refining method using an electric furnace and a ladle refining furnace.

電気炉における鋼の溶解精錬方法は、一般に電気炉でスクラップの溶解と酸化精錬のみを行い、還元精錬は、取鍋精錬炉(取鍋を加熱用電極を備えた蓋の下に持って行き、蓋を被せて一体化することで、精錬炉の役割をさせる。以下、一体化した場合を「精錬炉」といい、一体化していない場合を単に「取鍋」という。)で行う分離精錬方法が行われている。この中でスラグの処理に関する従来の方法は、およそ次の通りである。   The steel melting and refining method in the electric furnace is generally only scrap melting and oxidation refining in the electric furnace, and the reductive refining takes the ladle refining furnace (the ladle under the lid with the heating electrode, The refining furnace is made to function as a refining furnace by covering with a lid.Hereafter, the integrated refining method is called “smelting furnace”, and the unintegrated case is simply called “ladder”) Has been done. Among them, the conventional method relating to slag processing is as follows.

(1)電気炉で酸化精錬用の酸化性スラグを作り、酸化精錬を終えると、酸化性スラグはスラグ鍋へ、溶鋼は取鍋へ分離移注する。この際、溶鋼に伴って取鍋へ出鋼された酸化性スラグは、取鍋精錬前にスラグ鍋へ掻き出し、除滓することが望ましい。   (1) Make an oxidizing slag for oxidation refining in an electric furnace. When the oxidation refining is finished, the oxidizing slag is separated and transferred to the slag pan and the molten steel is transferred to the ladle. At this time, it is desirable that the oxidizing slag that has been discharged to the ladle along with the molten steel is scraped and removed from the slag pan before the ladle refining.

(2)取鍋精錬炉では、新しく造滓剤を溶鋼面に投入・加熱し、還元性スラグを作り、還元精錬を行う。   (2) In the ladle refining furnace, a new slagging agent is added to the molten steel surface and heated to produce reducing slag and reductive refining.

(3)還元精錬後、環流式真空脱ガス精錬を行う場合は、取鍋を環流式真空脱ガス装置(RH脱ガス装置)の下に移動し、環流式真空脱ガス精錬を経て、連続鋳造用タンディッシュ又は鋼塊鋳型へ取鍋底のノズルから移注する。   (3) After reductive refining, when recirculating vacuum degassing is performed, the ladle is moved under a recirculating vacuum degassing device (RH degassing device), and after continuous recirculation vacuum degassing refining, continuous casting Transfer from the bottom nozzle to the tundish or ingot mold.

(4)溶鋼をタンディッシュ又は鋼塊鋳型へ出鋼した後、取鍋に残る還元性スラグをスラグ鍋に傾転移注し、廃棄に係る処理を行う。ここで、残湯(残溶鋼)は、分離して電気炉あるいは取鍋に移注するか、同時移注後に分離する。   (4) After the molten steel is put out into a tundish or a steel ingot mold, the reducing slag remaining in the ladle is tilted and poured into the slag pan, and the disposal is performed. Here, the remaining hot water (residual molten steel) is separated and transferred to an electric furnace or ladle, or separated after simultaneous transfer.

(5)還元性スラグの再利用を行う場合は、還元性スラグを取鍋に移注後あるいは取鍋のまま残湯(残溶鋼)を伴って、酸化精錬前の電気炉あるいは還元精錬前の取鍋に移注することが多く、スラグ鍋に還元性スラグを移注時、あるいは移注後に、還元性スラグの流動性を向上させる為の改質処理を行うこともある。   (5) When reusing reducible slag, after transferring the reducible slag to the ladle or with the remaining hot water (residual molten steel) in the ladle, before the electric furnace before oxidation refining or before refining In many cases, the slag is transferred to the ladle, and at the time of or after the transfer of the reducing slag to the slag pot, a reforming treatment for improving the fluidity of the reducing slag may be performed.

従来、鉄鋼精錬においては、スラグの融点を低下し、スラグの流動性を向上させ、溶鋼との反応性を高めるために造滓剤として蛍石が使用されており、精錬によって生成されるスラグには、フッ素が混入していた。このフッ素が混入したスラグからは、土壌の環境基準値を超えるフッ素が溶出することがあった。   Conventionally, in steel refining, fluorite has been used as a slagging agent in order to lower the melting point of slag, improve the fluidity of slag, and increase the reactivity with molten steel. Was contaminated with fluorine. From the slag mixed with fluorine, fluorine exceeding the environmental standard value of the soil sometimes eluted.

そこで、従来は、スラグからのフッ素溶出を抑制するために石膏、アルミニウムの含有物質やクロム等の固定剤、および増容材が使用されていた。   Therefore, in the past, in order to suppress the elution of fluorine from the slag, a fixing agent such as gypsum, an aluminum-containing material, chromium, and a bulking agent have been used.

また、凝固したフッ素を含む鉄鋼スラグから溶出するフッ素を抑制する方法として、フッ素を含む鉄鋼スラグに12CaO・7Al23および3CaO・Al23を添加することが開示されている(例えば、特許文献1参照)。 Further, as a method for suppressing fluorine eluted from steel slag containing solidified fluorine, it has been disclosed to add 12CaO · 7Al 2 O 3 and 3CaO · Al 2 O 3 to steel slag containing fluorine (for example, Patent Document 1).

さらに、フッ素を含むスラグからのフッ素の溶出防止方法として、フッ素を含む酸化スラグをエージングしたものと、フッ素を含む還元スラグをエージングしたものと、石膏とを混合することが開示されている(例えば、特許文献2参照)。   Further, as a method for preventing the elution of fluorine from slag containing fluorine, it is disclosed to mix aged slag containing fluorine, aged reduced slag containing fluorine, and gypsum (for example, , See Patent Document 2).

その上、還元スラグを有効利用を図る方法として、溶融状態の還元スラグを酸化スラグと混合した後、混合溶融スラグを結粒化し、急冷却する方法が開示されている(例えば、特許文献3参照)。
特開2003−211118号公報 特開2004−123476号公報 特開2001−262217号公報
In addition, as a method for effectively using the reduced slag, a method is disclosed in which the molten slag is mixed with the oxidized slag, and then the mixed molten slag is granulated and rapidly cooled (see, for example, Patent Document 3). ).
Japanese Patent Laid-Open No. 2003-211118 JP 2004-123476 A JP 2001-262217 A

しかしながら、上述のようなスラグのフッ素の溶出抑制において、スラグの調質を目的とした物質を投入する、あるいは、安定化剤を投入する等の処理を行っており、フッ素の固定化処理に際し、多大な費用を要している。また、スラグの組成を変更するにあたり、耐火物の磨耗を促進させ、炉寿命を低下させる副次的なデメリットが発生したり、また、溶鋼生産工程において、溶鋼生産の歩留りに影響を及ぼすという問題があった。   However, in the slag fluorine elution suppression as described above, a substance such as slag tempering is added, or a stabilizer is added. It is very expensive. In addition, when changing the composition of the slag, there is a secondary demerit that promotes the wear of refractories and reduces the life of the furnace, and also affects the yield of molten steel in the molten steel production process. was there.

本発明の方法は、従来の生産工程に、先行ヒートの取鍋からタンディシュへ出鋼後に残る還元性スラグ(排滓)と残湯の全部を、先行チャージにて製造された酸化性スラグと混合する工程を増やすことにより、電気炉スラグからのフッ素の溶出が抑制されることが判明したことに基づく。   In the method of the present invention, in the conventional production process, all of the reducing slag (exhaust) and remaining hot water remaining after the steel is discharged from the ladle of the preceding heat to the tundish are mixed with the oxidizing slag produced by the preceding charge. It is based on the fact that elution of fluorine from the electric furnace slag is suppressed by increasing the number of processes to be performed.

電気炉と取鍋精錬炉を用いる鋼の溶解精錬にて発生する、電気炉スラグからのフッ素の溶出抑制に関して、処理費用が僅かであり、かつ、鉄鋼製品の品質を損なうことが無く、従来の生産工程を準用することにより、新規設備が不要となり、これにより発生する電気炉スラグからのフッ素の溶出を抑制する方法を提供するものである。   With regard to the suppression of fluorine elution from electric furnace slag, which occurs in steel melting and refining using an electric furnace and ladle refining furnace, the processing costs are small and the quality of steel products is not impaired. By applying the production process mutatis mutandis, new equipment is not required, and a method for suppressing the elution of fluorine from the electric furnace slag generated thereby is provided.

すなわち、上記の課題を解決するための本発明における第一の発明の電気炉スラグのフッ素溶出抑制方法は、電気炉において溶解と酸化精錬を行い、取鍋において還元精錬を行う鋼の溶解精錬方法において、
電気炉の酸化精錬後に一定量の酸化性スラグを伴って出鋼された溶鋼を取鍋に移注するに際し、先行チャージにて、先行ヒートの取鍋からタンディシュへ出鋼後に残る還元性スラグと残湯の全部を先行チャージにて製造された酸化性スラグと混合する第1の混合工程と、実施チャージにて、先行チャージにて製造された混合スラグからの還元性スラグと残湯の全部を実施チャージにて製造された酸化性スラグと混合する第2の混合工程とからなることを特徴とする。
That is, the method for suppressing fluorine elution of the electric furnace slag of the first invention in the present invention for solving the above problems is a method for melting and refining steel in which melting and oxidation refining are performed in an electric furnace and reduction refining is performed in a ladle In
Reductive slag remaining after steel is discharged from the ladle of the preceding heat to the tundish at the preceding charge when transferring the molten steel with a certain amount of oxidizing slag after oxidation refining in the electric furnace to the ladle. The first mixing step of mixing all of the remaining hot water with the oxidizing slag produced by the preceding charge, and the reducing charge from the mixed slag produced by the preceding charge and all of the remaining hot water at the implementation charge. It consists of the 2nd mixing process mixed with the oxidizing slag manufactured by the implementation charge.

本発明の第二の発明は、第一の発明において、前記酸化性スラグ中の主要化合物形態が2CaO・SiO2であり、前記還元性スラグ中の主要化合物形態が3CaO・Al23であって、これらの混合によって、混合スラグに12CaO・7Al23を生成せしめることを特徴とする。 According to a second aspect of the present invention, in the first aspect, the main compound form in the oxidizing slag is 2CaO · SiO 2 , and the main compound form in the reducing slag is 3CaO · Al 2 O 3. By mixing these, 12CaO · 7Al 2 O 3 is produced in the mixed slag.

本発明の第三の発明は、第一又は第二の発明において、混合源である先行チャージの前記還元性スラグが、その還元精錬初期において、先行チャージにて製造された前記酸化性スラグと熱間混合によって混合スラグとなり、次いで、直ちにこの混合スラグをスラグ鍋にて移注混合した状態より還元精錬が行われることを特徴とする。   According to a third invention of the present invention, in the first or second invention, the reducing slag of the preceding charge which is a mixed source is heated in the initial stage of the reduction refining and the oxidizing slag produced by the preceding charge. Mixed slag is obtained by intermixing, and then reductive refining is performed immediately after the mixed slag is transferred and mixed in a slag pan.

以上、本発明の方法の実施により、電気炉と取鍋精錬炉を用いる溶解精錬方法において、従来の生産工程を活かしながら、安定化剤等のコストをかけることなく、発生する電気炉スラグからのフッ素の溶出を極めて効果的に抑制することができた。   As described above, in the melting and refining method using an electric furnace and a ladle smelting furnace, by implementing the method of the present invention, while taking advantage of the conventional production process, the cost from the generated electric furnace slag can be reduced without incurring costs such as a stabilizer. Fluorine elution could be suppressed very effectively.

(作用)
(1)電気炉から取鍋へ移注した直後の高温の溶鋼の上で、充分に高温の酸化性スラグに先行ヒートの還元性スラグ(排滓)と残湯の全部を混合させるので、たとえ先行ヒートの還元性スラグの温度が下がっていても何ら差し支えなく充分な反応温度が得られて混合される。
(Function)
(1) On the high-temperature molten steel immediately after being transferred from the electric furnace to the ladle, the reductive slag (exhaust) of the preceding heat and the remaining hot water are mixed with the sufficiently high-temperature oxidizing slag. Even if the temperature of the reducing slag of the preceding heat is lowered, a sufficient reaction temperature is obtained and mixed.

(2)混合・攪拌が、先行ヒートの取鍋からタンディッシュへ出鋼後に残る還元性スラグ(排滓)と残湯の全部を、電気炉精錬終了後に一定量の酸化性スラグを伴って取鍋に移注する時と、排滓を受けた後に攪拌・除滓を行う時の2度行われるため、十分な混合が行われる。そして、2度混合・攪拌が行われた混合スラグには、12CaO・7Al23が生成され、フッ素を多く含有する還元スラグ中のフッ素は、固定化される。 (2) Mixing / stirring takes all the reducing slag (exhaust) and remaining hot water remaining after steel is discharged from the ladle of the preceding heat to the tundish with a certain amount of oxidizing slag after the electric furnace refining. Since it is performed twice, when it is transferred to the pan and when it is stirred and removed after receiving waste, sufficient mixing is performed. Then, 12CaO · 7Al 2 O 3 is generated in the mixed slag that has been mixed and stirred twice, and the fluorine in the reduced slag containing a large amount of fluorine is fixed.

(3)すなわち、酸化性スラグと還元性スラグの混合時の温度が高温であるため、酸化性スラグ中の主要化合物形態である2CaO・SiO2と、還元性スラグ中の主要化合物形態である3CaO・Al23及び未反応のCaO等が反応し、混合スラグには、12CaO・7Al23が生成される。 (3) That is, since the temperature at the time of mixing of the oxidizing slag and the reducing slag is high, 2CaO · SiO 2 which is the main compound form in the oxidizing slag and 3CaO which is the main compound form in the reducing slag · Al 2 O 3 and then CaO or the like reaction unreacted, the mixing slag, the 12CaO · 7Al 2 O 3 is generated.

(4)スラグ中において、フッ素は、カルシウムが配位する形態で存在しており、フッ素の固定化においては、固定化されていないフッ素へ配位可能なCaOの存在が重要となる。   (4) In the slag, fluorine exists in a form in which calcium is coordinated. In the fixation of fluorine, the presence of CaO capable of coordinating to non-immobilized fluorine is important.

(5)したがって、スラグの混合に際して、混合源となる先行チャージの還元性スラグは、その還元精錬初期において、先行チャージにて製造された酸化性スラグと熱間混合によって混合スラグとなり、次いで、直ちにこの混合スラグを除滓し、若干量の混合スラグを湯面に有した状態より還元精錬が行われることが必要になる。   (5) Therefore, at the time of mixing slag, the reducing slag of the preceding charge that becomes the mixing source becomes a mixed slag by hot mixing with the oxidizing slag produced by the preceding charging at the initial stage of the reduction refining, and then immediately It is necessary to remove the mixed slag and perform refining from a state in which a certain amount of mixed slag is provided on the surface of the molten metal.

(6)その理由として、混合源となる先行チャージの還元性スラグが、還元精錬初期にスラグの混合が行われていない場合、還元精錬時に投入されるCaO源が、酸化精錬後の溶鋼を取鍋に移注する際に、溶鋼に伴って移注された若干量の酸化性スラグの改質等に使用されてしまい、還元精錬終了後に後続ヒートの電気炉出鋼後の取鍋に移注し、スラグの混合を行っても、フッ素へ配位可能なCaO量が十分でなく、有効なフッ素の溶出抑制効果を得ることができない。   (6) The reason for this is that if the reducing slag of the preceding charge as the mixing source is not mixed with slag in the early stage of refining refining, the CaO source input during reductive refining takes the molten steel after oxidation refining. When transferred to the ladle, it was used to reform a small amount of oxidizing slag that was transferred along with the molten steel. However, even if slag is mixed, the amount of CaO that can be coordinated to fluorine is not sufficient, and an effective fluorine elution suppression effect cannot be obtained.

(7)このフッ素の溶出抑制方法においては、カルシウムシリケートを主成分とする酸化性スラグと、CaO及びAl23あるいは3CaO・Al23といった、CaO源とAl23源となりうる物質及びフッ素源を、カルシウムアルミネートが生成可能な温度域に保持した溶融状態で混合することによって成立する。しかしながら、改質剤を使用する場合、改質剤の費用およびこれを反応温度域まで加熱するエネルギーコストなどの処理費用が新たに発生するため、十分な高温状態にある酸化性スラグと還元性スラグを使用し、混合することが望ましい。 (7) In the elution suppressing method of the fluorine, the oxidizing slag mainly comprising calcium silicate, such CaO and Al 2 O 3 or 3CaO · Al 2 O 3, can be a CaO source and Al 2 O 3 source material And a fluorine source are mixed in a molten state maintained in a temperature range where calcium aluminate can be generated. However, when the modifier is used, the cost of the modifier and the processing cost such as the energy cost for heating it to the reaction temperature range are newly generated. Therefore, the oxidizing slag and the reducing slag in a sufficiently high temperature state are generated. It is desirable to use and mix.

(8)改質剤として、酸化性スラグを使用するので、改質剤の費用は全くかからない。   (8) Since oxidizing slag is used as a modifier, the cost of the modifier is not incurred at all.

(9)作業は、従来の生産工程である取鍋へ移注した直後の高温の溶鋼の上で、充分に高温の酸化性スラグに先行ヒートの還元性スラグ(排滓)と残湯の全部を移注・混合させ、製造された混合スラグをスラグ鍋へ排出する工程が一つ増えるだけで工程費用が殆どかからない。   (9) The work is performed on the hot molten steel immediately after being transferred to the ladle, which is a conventional production process, to the fully heated reducing slag (exhaust) and all remaining hot water. The process cost is almost insignificant with only one additional process of transferring and mixing the slag and discharging the produced mixed slag to the slag pan.

(10)従来、取鍋で発生していた残湯(残溶鋼)が、本発明の方法では、操業上可能な限り後続ヒートに返されるので、その分溶鋼の歩留りが向上し、更に、残溶鋼処理の為のコストが不要になった。   (10) Conventionally, the remaining hot water (residual molten steel) generated in the ladle is returned to the subsequent heat as much as possible in the operation of the method of the present invention. Costs for processing molten steel are no longer necessary.

本発明においては、肌焼鋼を溶解精錬する場合の一実施例を示す。   In the present invention, an example in the case of melting and refining case-hardened steel will be shown.

図1は、実施例であるフッ素の溶出抑制方法を模式的に示す説明図であり、先行チャージにて、スラグ混合を行っている還元性スラグ(以下、取鍋から出鋼後に排滓を受けた還元滓を「排受還元スラグ」または「排受還元滓」という。)を、実施チャージにて、酸化性スラグと混合したフッ素の溶出抑制方法を模式的に示す説明図である。   FIG. 1 is an explanatory view schematically showing a method for suppressing fluorine elution according to an embodiment. Reducing slag (hereinafter referred to as waste slag mixed with slag by pre-charging) The reduced soot is referred to as “exhaust / reduced slag” or “exhaust / reduced slag”). FIG.

90トン電気炉で、酸化精錬を終了した後、電気炉から溶鋼を取鍋に移注する。この時、酸化性スラグ約1トンを同時に移注する。これとほぼ前後して、2ヒート先行する取鍋では、タンディッシュへの移注が終る。取鍋には、還元性スラグ約4トンと残溶鋼約1トンが残っており、これを電気炉出鋼後の取鍋の上に持っていき、内容物計約5トン全量を取鍋に傾転移注する。移注完了後、移注により混合されたスラグをスラグ鍋に掻き出す。この際、スラグドラッカー(スラグを掻き出す装置)にてスラグ面を掻き混ぜ、酸化性スラグと還元性スラグを十分混合させてから、スラグ鍋への掻き出しを行い、第一の混合工程とする。   After oxidative refining is completed in a 90-ton electric furnace, molten steel is transferred from the electric furnace to a ladle. At this time, about 1 ton of oxidizing slag is simultaneously transferred. Almost before and after this, the transfer to the tundish is completed in the ladle that precedes two heats. About 4 tons of reducing slag and about 1 ton of residual molten steel remain in the ladle. Bring this over the ladle after steel is discharged from the electric furnace, and take the total amount of about 5 tons into the ladle. Note the tilt transition. After the transfer is completed, the slag mixed by the transfer is scraped into a slag pan. At this time, the slag surface is agitated with a slag drafter (a device that scrapes out the slag), the oxidizing slag and the reducing slag are sufficiently mixed, and then scraped out into the slag pan to form the first mixing step.

スラグを掻き出し後、僅かな混合スラグを有した状態から造滓材を投入して、還元精錬を開始する。この還元精錬終了時に生成している、混合スラグから還元精錬を開始した還元性スラグが排受還元スラグである。排受還元スラグのチャージにおいて、還元精錬が終了し、タンディッシュへ出鋼するのに前後して、およそ2チャージ後の実施チャージにて電気炉酸化精錬が終了する。   After scraping out the slag, the slagging material is introduced from the state having a slight mixed slag, and the reduction refining is started. The reducing slag generated at the end of the refining and refining from the mixed slag is the reductive slag. In the charge of the waste reduction slag, the reduction smelting is finished, and before and after the steel is tapped into the tundish, the electric furnace oxidation smelting is finished with an implementation charge after about 2 charges.

実施チャージにおいても、酸化性スラグを約1トン伴って取鍋へ出鋼し、ここへ先行チャージの排受還元スラグ約4トンを移注・混合し、第2の混合工程を行う。第2の混合工程によって、生成されたフッ素溶出抑制能を有する混合スラグはスラグ鍋に排出後、スラグ処理場で緩冷却を行い、路盤材などに利用する。   Also in the implementation charge, about 1 ton of oxidizing slag is put out to the ladle, and about 4 tons of exhaust charge reduction slag of the preceding charge is transferred and mixed here, and the second mixing step is performed. In the second mixing step, the generated mixed slag having the ability to suppress fluorine elution is discharged into a slag pan, and then slowly cooled in a slag treatment plant and used for roadbed materials.

この時の混合源である酸化性スラグ、還元性スラグおよび混合スラグについて、組成およびフッ素の溶出量、含有量の測定を行った。スラグの組成は、溶融ガラスビート法にて、また、平成3年環境庁告示第46号の規定に従い、フッ素含有量については、アルカリ融解−吸光光度法を用い、フッ素の溶出試験については、JIS K0102・34.1を用いて測定した。   With respect to the oxidizing slag, reducing slag, and mixed slag as the mixing source at this time, the composition, the amount of fluorine eluted, and the content were measured. The composition of the slag was determined by the molten glass beet method and in accordance with the provisions of Notification No. 46 of the Environment Agency in 1991. For the fluorine content, the alkali melting-absorptiometry method was used. It measured using K0102 * 34.1.

表1は、還元性スラグに排受還元滓を使用した混合スラグ、およびその混合源である酸化性スラグと還元性スラグの組成(質量%)およびフッ素含有量(%)とフッ素溶出量(mg/l)の一例である。   Table 1 shows mixed slag using reducing / reducing soot for reducing slag, and the composition (mass%) of the oxidizing slag and reducing slag as the mixing source, fluorine content (%), and fluorine elution amount (mg / L).

混合スラグの実施(1)は、酸化性スラグの実施(1)と還元性スラグの実施(1)を混合して製造されたものである。同様に、混合スラグの実施(2)は、酸化性スラグの実施(2)と還元性スラグの実施(2)を混合して製造されたものである。以下同様に、混合スラグの実施(3)、(4)、(5)は、酸化性スラグの実施の同じ番号のものと還元性スラグの実施の同じ番号のものを混合して製造されたものである。   The implementation (1) of the mixed slag is produced by mixing the implementation (1) of the oxidizing slag and the implementation (1) of the reducing slag. Similarly, the implementation (2) of the mixed slag is produced by mixing the implementation (2) of the oxidizing slag and the implementation (2) of the reducing slag. Similarly, the mixed slag implementations (3), (4) and (5) were produced by mixing the same number of oxidizing slag implementations and the same number of reducing slag implementations. It is.

Figure 0004488305
Figure 0004488305

表1に示すとおり、実施(1)〜(5)の5種類の混合スラグのフッ素溶出量は、0.4〜0.8mg/lの範囲内で、いずれも0.8mg/l以下の、土壌環境基準値(0.8mg/l)を満足する数値であり、土壌環境基準の適応外である路盤材だけでなく、土壌改良剤等各種の土木用途に適応できる。   As shown in Table 1, the fluorine elution amounts of the five types of mixed slags of the implementations (1) to (5) are within the range of 0.4 to 0.8 mg / l, all of 0.8 mg / l or less. It is a numerical value that satisfies the soil environment standard value (0.8 mg / l), and can be applied not only to roadbed materials that are outside the scope of the soil environment standard but also to various civil engineering applications such as a soil conditioner.

(比較例)
次に、図2は、比較例であるフッ素の溶出抑制方法を模式的に示す説明図である。
(Comparative example)
Next, FIG. 2 is an explanatory view schematically showing a fluorine elution suppression method as a comparative example.

すなわち、先行チャージにて、スラグ混合が行われていない還元性スラグ(以下、混合源である取鍋から出鋼後に排滓を受けていない、新規に生成された「新規還元スラグ」または「新規還元滓」という。)を、実施チャージにて、この新規還元スラグと酸化性スラグを混合したフッ素の溶出抑制方法を模式的に示す説明図である。   In other words, reductive slag that has not been mixed with slag in the preceding charge (hereinafter referred to as “new reduced slag” or “newly generated, which has not been subjected to waste after being tapped from the ladle as the mixing source) It is referred to as “reduced soot”.) Is an explanatory view schematically showing a method for suppressing elution of fluorine in which the new reduced slag and the oxidizing slag are mixed in the actual charge.

まず、先行チャージにおいて、90トン電気炉から取鍋に出鋼後、還元性スラグを受けることなく直ちに還元精錬を行う。この出鋼直後の還元精錬初期の溶鋼面においては、溶鋼の酸化を防ぐため若干量の酸化スラグを有しており、ここへ新たに造滓剤を投入・加熱し、還元性スラグを生成する。このスラグ混合を行っていない、新規に生成された還元性スラグが新規還元スラグである。このチャージにおけるタンディッシュへの出鋼と前後して、2ヒート後の実施チャージにおいて、電気炉精錬が終了する。   First, in the preceding charge, after the steel is discharged from the 90-ton electric furnace to the ladle, reduction refining is performed immediately without receiving reducing slag. The molten steel surface in the initial stage of reduction refining immediately after steelmaking has a small amount of oxidized slag to prevent oxidation of the molten steel, and a reductive slag is generated by adding and heating a new slagging agent here. . A newly generated reducing slag that is not mixed with slag is a new reduced slag. The electric furnace refining is completed in the charge after 2 heats before and after the tundish is discharged in this charge.

実施チャージにおいて、実施例と同様に電気炉から酸化性スラグ約1トンを伴って溶鋼を取鍋に出鋼する。この取鍋へ先行チャージにてタンディッシュ出鋼後の残溶鋼1トンおよび新規還元スラグ4トンを傾倒し、移注混合する。混合後のスラグは、スラグドラッカーにて攪拌後、スラグ鍋へ掻き出し、スラグ処理場で通常の処理を行なって、緩冷スラグにする。   In the implementation charge, the molten steel is discharged from the electric furnace to the ladle with about 1 ton of oxidizing slag as in the embodiment. In this ladle, 1 ton of residual molten steel and 4 ton of new reduced slag after tundish steel are added to the ladle and transferred and mixed. The slag after mixing is stirred with a slag draker, scraped out into a slag pan, and subjected to normal treatment at a slag treatment plant to form a slowly cooled slag.

表2は、還元性スラグに新規還元滓を使用した、混合スラグおよびその混合源である酸化性スラグと還元性スラグの組成(質量%)およびフッ素含有量(%)とフッ素溶出量(mg/l)の一例である。   Table 2 shows the composition (mass%), fluorine content (%), and fluorine elution amount (mg / mg) of mixed slag and its source, oxidizing slag and reducing slag, using new reduced soot as reducing slag. l) is an example.

混合スラグの比較(1)は、酸化性スラグの比較(1)と還元性スラグの比較(1)を混合して製造されたものである。同様に、混合スラグの比較(2)は、酸化性スラグの比較(2)と還元性スラグの比較(2)を混合して製造されたものである。   The mixed slag comparison (1) is produced by mixing the oxidizing slag comparison (1) and the reducing slag comparison (1). Similarly, the mixed slag comparison (2) is produced by mixing the oxidizing slag comparison (2) and the reducing slag comparison (2).

Figure 0004488305
Figure 0004488305

表2に示すとおり、還元性スラグとして、新規還元滓を使用した比較(1)と比較(2)の2種類の混合スラグのフッ素の溶出量は、2.1mg/lと13.0mg/lで、いずれも土壌環境基準値の0.8mg/lを大幅に超えるものであった。   As shown in Table 2, the elution amounts of fluorine in the two types of mixed slags of comparison (1) and comparison (2) using new reduced soot as reducing slag were 2.1 mg / l and 13.0 mg / l. In both cases, the soil environmental standard value was greatly exceeded 0.8 mg / l.

次に、フッ素溶出挙動に関する因子を特定するために、混合スラグおよびその混合源である酸化性スラグと還元性スラグについて、X線回折とEPMAマッピング分析を行い、各々のスラグ中の主要な鉱物層とフッ素濃化部位の組成を特定した。   Next, X-ray diffraction and EPMA mapping analysis were performed on the mixed slag and its oxidizing slag and reducing slag to identify the factors related to the elution behavior of fluorine, and the main mineral layers in each slag And the composition of the fluorine-concentrated site.

図3に示すとおり、X線回折で酸化性スラグを調べた結果、酸化性スラグには、特に、2CaO・SiO2及びFeOの強い回折パターンが確認された。 As shown in FIG. 3, as a result of investigating the oxidizing slag by X-ray diffraction, strong diffraction patterns of 2CaO.SiO 2 and FeO were particularly confirmed in the oxidizing slag.

また、図4に示すとおり、X線回折で還元性スラグを調べた結果、還元性スラグには、特に、3CaO・Al23、CaOの強い回折パターンが確認できた。 Further, as shown in FIG. 4, as a result of examining the reducing slag by X-ray diffraction, a strong diffraction pattern of 3CaO.Al 2 O 3 and CaO could be confirmed particularly in the reducing slag.

さらに、図5に示すとおり、X線回折で混合スラグを調べた結果、混合スラグには、12CaO・7Al23,2CaO・SiO2,FeO,MgOのピークが確認され、特に、12CaO・7Al23の強い回折パターンが確認できた。混合スラグには、酸化性スラグと還元性スラグのいずれにも存在しない12CaO・7Al23の結晶が検出された。これより、混合スラグは、酸化性スラグと還元性スラグが単に物理的な混在状態にあるのではなく、熱間混合により、12CaO・7Al23の結晶が生成されたことが確認された。 Furthermore, as shown in FIG. 5, as a result of examining mixed slag by X-ray diffraction, the mixed slag was confirmed to have peaks of 12CaO · 7Al 2 O 3 , 2CaO · SiO 2 , FeO, and MgO, and in particular, 12CaO · 7Al A strong diffraction pattern of 2 O 3 was confirmed. In the mixed slag, 12CaO · 7Al 2 O 3 crystals that were not present in either the oxidizing slag or the reducing slag were detected. From this, it was confirmed that in the mixed slag, 12CaO · 7Al 2 O 3 crystals were generated by hot mixing, not simply in the physical mixed state of oxidizing slag and reducing slag.

EPMAマッピング分析による結果とX線回折により、特定した化合物に照らし合わせ、各スラグ中でフッ素が存在する組成を特定したところ、還元性スラグは、3CaO・Al23層に、混合スラグは、12CaO・7Al23層にフッ素の濃化が確認された。 Based on the results of EPMA mapping analysis and X-ray diffraction, the composition in which fluorine is present in each slag was identified by comparing with the identified compound. As a result, the reducing slag was in the 3CaO · Al 2 O 3 layer, and the mixed slag was Concentration of fluorine was confirmed in the 12CaO · 7Al 2 O 3 layer.

また、溶融スラグ中でフッ素は周りにCaが配意した状態で存在しているという知見がある。酸化性スラグと還元性スラグの混合により、12CaO・7Al23が生成すること、およびこの12CaO・7Al23にフッ素が濃化していることから、スラグ混合時にフッ素へ配位したCaOから12CaO・7Al23が生成、フッ素が固定化されていると考えられる。 Further, there is a knowledge that fluorine exists in molten slag in a state where Ca is arranged around. From mixing of oxidizing slag and reducing slag, 12CaO · 7Al 2 O 3 is produced, and since fluorine is concentrated in this 12CaO · 7Al 2 O 3 , from CaO coordinated to fluorine during slag mixing It is thought that 12CaO · 7Al 2 O 3 is formed and fluorine is immobilized.

すなわち、フッ素へのCaの配位を含む12CaO・7Al23の生成過程において、フッ素溶出抑制挙動に影響を及ぼす要因は、フッ素への配意が可能な活性なCaOの存在であると推察される。 That is, in the process of producing 12CaO · 7Al 2 O 3 including the coordination of Ca to fluorine, it is presumed that the factor affecting the fluorine elution suppression behavior is the presence of active CaO capable of giving consideration to fluorine. Is done.

CaOの影響について、CaO源である排受還元スラグのX線回折パターンとその混合スラグのフッ素含有量および溶出量から検討する。まず、排受還元スラグのX線回折パターンについて着目すると、図6に示すX線のピーク強度の比率が3CaO・Al23:CaO=4:6とCaO割合が多いものと、図7に示す3CaO・Al23:CaO=9:1とCaO割合が少ないものに大別できる。ここで、3CaO・Al23:CaOの比率は、X線回折におけるピーク強度の比率であり、化学成分の含有量の比率とは異なる。 The influence of CaO will be examined from the X-ray diffraction pattern of the exhaust reduction slag, which is the CaO source, and the fluorine content and elution amount of the mixed slag. First, focusing on the X-ray diffraction pattern of the exhaust reduction slag, the ratio of the X-ray peak intensity shown in FIG. 6 is 3CaO.Al 2 O 3 : CaO = 4: 6 and the ratio of CaO is large, and FIG. 3CaO.Al 2 O 3 : CaO = 9: 1, which is shown, can be roughly divided into those having a small CaO ratio. Here, the ratio of 3CaO.Al 2 O 3 : CaO is a ratio of peak intensity in X-ray diffraction, and is different from the ratio of the content of chemical components.

実施例中で、CaO割合の多い還元性スラグは実施(1)、(2)、(5)であり、CaO割合の少ない還元性スラグは実施(3)、(4)である。これらを混合源とする混合スラグはいずれもフッ素溶出抑制能を示すが、CaO割合の少ない還元性スラグの実施(3)、(4)は、フッ素の含有量が他に比べて少ないにも関わらず溶出量が高く、フッ素へ配位可能なCaOが混合スラグのフッ素溶出抑制挙動に影響していることが推察される。   In Examples, the reducing slag having a high CaO ratio is executions (1), (2), and (5), and the reducing slag having a low CaO ratio is executions (3) and (4). All of the mixed slags that use these as a mixing source exhibit the ability to suppress fluorine elution, but the implementation of reducing slag with a low CaO ratio (3) and (4) is related to the fact that the content of fluorine is smaller than the others. It is presumed that CaO that has a high elution amount and can be coordinated to fluorine affects the fluorine elution suppression behavior of the mixed slag.

次に、混合源となる還元性スラグの生成工程に着目すると、排滓が排受還元滓であるか新規還元滓であるかによって、還元精錬初期のスラグの状態が異なる。すなわち、排受還元スラグは、還元精錬前にスラグ混合が行われており、フッ素の固定化が行われた12CaO・7Al23を主鉱物層とする混合スラグから還元精錬が開始されるが、新規還元スラグは、電気炉出鋼時に伴って取鍋に移注された、2CaO・SiO2を主鉱物層とする酸化性スラグから還元精錬が開始される。 Next, paying attention to the production process of reducing slag as a mixing source, the state of slag at the initial stage of refining and refining differs depending on whether the waste is a reductive reduction reed or a new reductive reed. That is, the waste reduction slag is mixed with slag before reductive refining, and reductive refining is started from the mixed slag having 12CaO · 7Al 2 O 3 in which the fluorine is fixed and the main mineral layer. The reductive slag is started from the oxidizing slag having 2CaO · SiO 2 as the main mineral layer, which was transferred to the ladle along with the steel from the electric furnace.

排受還元スラグおよび新規還元スラグのいずれも、造滓剤の投入により、還元精錬終了時には、化学組成や主要な鉱物層は、判別不可能な、ほぼ同一の状態となるが、これらを酸化性スラグと混合して生成される混合スラグのフッ素溶出抑制能は、混合源が排受還元スラグ、新規還元スラグかによって全く異なる。   Both the waste reduction slag and the new reduction slag are put into the almost same state where the chemical composition and the main mineral layer are indistinguishable at the end of the reduction refining by the introduction of the slagging agent. The ability to suppress fluorine elution of mixed slag produced by mixing with slag is completely different depending on whether the mixing source is exhaust reduction slag or new reduced slag.

すなわち、新規還元滓においては、還元精錬時に投入されるCaO源が酸化精錬後に溶鋼伴って移注された酸化性スラグの改質等に使用されてしまい、還元精錬終了後にはフッ素へ配位可能なCaO量が十分でなく、有効な溶出抑制効果を得ることができない。   In other words, in the new reduced dredger, the CaO source input during refining and refining is used for reforming the oxidizing slag transferred with molten steel after refining refining, and can be coordinated to fluorine after reductive refining. The amount of CaO is not sufficient, and an effective elution suppression effect cannot be obtained.

以上総合的に判断すると、酸化性スラグと還元性スラグの混合によって、フッ素に配位したCaから12CaO・7Al23が生成し、このフッ素を取り込む12CaO・7Al23の生成過程が混合スラグのフッ素の溶出抑制挙動に影響していること、さらに混合源である還元性スラグが、還元精錬初期において、第一のスラグ混合過程を経た排受還元滓でなければ、十分なフッ素溶出抑制効果が得られないことが推察される。 Judging from the above comprehensive judgment, 12CaO · 7Al 2 O 3 is produced from Ca coordinated to fluorine by mixing of oxidizing slag and reducing slag, and the production process of 12CaO · 7Al 2 O 3 taking in this fluorine is mixed. Sufficient suppression of fluorine elution if it affects the slag fluorine elution suppression behavior and if the reducing slag, which is the mixing source, is not the reductive soot that has undergone the first slag mixing process at the initial stage of refining refining It is inferred that the effect cannot be obtained.

本発明の方法で製造される混合スラグは、従来の生産工程を活かしながら、安定化剤等のコストをかけることなく、フッ素の溶出を極めて効果的に抑制することができた。また、路盤材だけでなく、土壌改良材など様々な土木用材料として実用化することができる。   The mixed slag produced by the method of the present invention was able to suppress the elution of fluorine very effectively without taking the cost of a stabilizer and the like while utilizing the conventional production process. Moreover, it can be put to practical use as various civil engineering materials such as soil improvement materials as well as roadbed materials.

排受還元滓を使用したフッ素の溶出抑制方法を模式的に示す説明図である。It is explanatory drawing which shows typically the elution suppression method of the fluorine which uses a waste reduction cake. 新規還元滓を使用したフッ素の溶出抑制方法を模式的に示す説明図である。It is explanatory drawing which shows typically the elution suppression method of the fluorine which uses a novel reducing soot. 酸化性スラグのX線回折のピークパターン図である。It is a peak pattern figure of X-ray diffraction of oxidizing slag. 還元性スラグのX線回折のピークパターン図である。It is a peak pattern figure of X-ray diffraction of reducing slag. 混合スラグのX線回折のピークパターン図である。It is a peak pattern figure of X-ray diffraction of mixed slag. 高CaOの排受還元滓のX線回折のピークパターン図である。It is a peak pattern figure of the X-ray diffraction of the high CaO receiving / reducing soot. 低CaOの排受還元滓のX線回折のピークパターン図である。It is a peak pattern figure of the X-ray diffraction of the low CaO receiving / reducing soot.

Claims (3)

電気炉において溶解と酸化精錬を行い、取鍋において還元精錬を行う鋼の溶解精錬方法において、
電気炉の酸化精錬後に一定量の酸化性スラグを伴って出鋼された溶鋼を取鍋に移注するに際し、先行チャージにて、先行ヒートの取鍋からタンディシュへ出鋼後に残る還元性スラグと残湯の全部を先行チャージにて製造された酸化性スラグと混合する第1の混合工程と、実施チャージにて、先行チャージにて製造された混合スラグからの還元性スラグと残湯の全部を実施チャージにて製造された酸化性スラグと混合する第2の混合工程とからなることを特徴とする電気炉スラグのフッ素溶出抑制方法。
In the melting and refining method of steel, which performs melting and oxidation refining in an electric furnace and reducing refining in a ladle,
Reductive slag remaining after the steel is discharged from the ladle of the preceding heat to the tundish in the preceding charge when transferring the molten steel with a certain amount of oxidizing slag after the smelting of the electric furnace to the ladle. The first mixing step of mixing all of the remaining hot water with the oxidizing slag produced by the preceding charge, and the reducing charge from the mixed slag produced by the preceding charge and all of the remaining hot water at the implementation charge. A method for suppressing fluorine elution of an electric furnace slag, comprising a second mixing step of mixing with oxidizing slag produced by an implementation charge.
前記酸化性スラグの主要化合物形態が2CaO・SiO2であり、前記還元性スラグの主要化合物形態が3CaO・Al23であって、これらの混合によって、混合スラグに12CaO・7Al23を生成せしめることを特徴とする請求項1に記載の電気炉スラグのフッ素溶出抑制方法。 The major compound form of the oxidizing slag is 2CaO · SiO 2, wherein the main compound form of the reducing slag a 3CaO · Al 2 O 3, by these mixtures, the 12CaO · 7Al 2 O 3 to the mixed slag The method for suppressing fluorine elution of an electric furnace slag according to claim 1, characterized in that it is generated. 混合源である先行チャージの前記還元性スラグが、その還元精錬初期において、先行チャージにて製造された前記酸化性スラグと熱間混合によって混合スラグとなり、次いで、直ちにこの混合スラグをスラグ鍋にて移注混合した状態より還元精錬が行われることを特徴とする請求項1又は2に記載の電気炉スラグのフッ素溶出抑制方法。
The reductive slag of the preceding charge which is the mixing source becomes a mixed slag by hot mixing with the oxidizing slag produced by the preceding charge in the early stage of reductive refining, and then this mixed slag is immediately used in a slag pan. The method for suppressing fluorine elution of electric furnace slag according to claim 1 or 2, wherein reductive refining is performed from a state where the mixture is transferred and mixed.
JP2004292570A 2004-10-05 2004-10-05 Fluorine elution suppression method for electric furnace slag Active JP4488305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292570A JP4488305B2 (en) 2004-10-05 2004-10-05 Fluorine elution suppression method for electric furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292570A JP4488305B2 (en) 2004-10-05 2004-10-05 Fluorine elution suppression method for electric furnace slag

Publications (2)

Publication Number Publication Date
JP2006104517A JP2006104517A (en) 2006-04-20
JP4488305B2 true JP4488305B2 (en) 2010-06-23

Family

ID=36374589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292570A Active JP4488305B2 (en) 2004-10-05 2004-10-05 Fluorine elution suppression method for electric furnace slag

Country Status (1)

Country Link
JP (1) JP4488305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062225A (en) * 2010-09-16 2012-03-29 Kobe Steel Ltd Method for producing recycled slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062225A (en) * 2010-09-16 2012-03-29 Kobe Steel Ltd Method for producing recycled slag

Also Published As

Publication number Publication date
JP2006104517A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4488305B2 (en) Fluorine elution suppression method for electric furnace slag
JP5473815B2 (en) Method for recycling oxidized slag and recycled slag
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
KR20170106597A (en) Desulfurizer for molten iron
JP5341849B2 (en) Manufacturing method of recycled slag
EP4363621A1 (en) Process for treating and valorizing ladle furnace slag
JP5322860B2 (en) Recycled slag generation method and recycled slag
JP2872586B2 (en) Reforming method of stainless steel slag
JP3704267B2 (en) Method for refining molten steel
JP4388845B2 (en) Detoxification method for chromium-containing steel slag
JP2001335823A (en) Method for detoxifying slag of stainless steel
JP4822902B2 (en) Method for reforming electric furnace reducing slag
JP2004011970A (en) Pig iron retainer
JP3606107B2 (en) Method for producing stabilizer
JP3598843B2 (en) Method for reducing unslagged CaO and MgO in slag
JP7244803B2 (en) Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag
JP3756904B2 (en) Treatment method of chromium-containing waste
JPH08319154A (en) Magnesia-carbon regenerated refractory brick
JP3735178B2 (en) Reduction method of Mn ore in converter
JP5359669B2 (en) Fluorine elution suppression method from slag
JP2001181729A (en) Slag in chromium-containing steel and treating method therefor
JP3586311B2 (en) Chrome-containing steel slag and its waste treatment method
KR100189297B1 (en) Method of making melting composite slag
JPH11172320A (en) Method for refining steel by utilizing mgo in slag in electric furnace for steelmaking or combination of electric furnace for steelmaking and ladle arc refining apparatus
KR100426850B1 (en) A slag composition for deoxidation of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250