JP4487440B2 - Failure diagnosis device for evaporative fuel treatment equipment - Google Patents

Failure diagnosis device for evaporative fuel treatment equipment Download PDF

Info

Publication number
JP4487440B2
JP4487440B2 JP2001156812A JP2001156812A JP4487440B2 JP 4487440 B2 JP4487440 B2 JP 4487440B2 JP 2001156812 A JP2001156812 A JP 2001156812A JP 2001156812 A JP2001156812 A JP 2001156812A JP 4487440 B2 JP4487440 B2 JP 4487440B2
Authority
JP
Japan
Prior art keywords
failure diagnosis
failure
pressure
negative pressure
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001156812A
Other languages
Japanese (ja)
Other versions
JP2002349362A (en
Inventor
健司 齋藤
英嗣 金尾
陽一郎 安藤
諭 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001156812A priority Critical patent/JP4487440B2/en
Priority to KR10-2002-0028849A priority patent/KR100510372B1/en
Priority to US10/153,793 priority patent/US6651491B2/en
Publication of JP2002349362A publication Critical patent/JP2002349362A/en
Application granted granted Critical
Publication of JP4487440B2 publication Critical patent/JP4487440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンク内に発生する蒸散燃料が大気中に放出されるのを防止するための蒸発燃料処理装置の故障を診断する装置に関する。
【0002】
【従来の技術】
特開2000−282972号には、エンジン回転数及びエンジン負荷をパラメータとした所定領域で直径0.5インチ程度の大きな漏れ故障を診断する第1故障診断手段(モードC)と、所定領域でスロットル開度変化が小さいことを条件として直径0.02インチ程度の小さな漏れ故障を診断する第2故障診断手段(モードB)とを有する蒸発燃料処理装置の故障診断装置が開示されている。
【0003】
【発明が解決しようとする課題】
従来の故障診断装置では、大きな漏れ故障は負圧導入不良で検出しており、具体的には負圧導入状態で所定時問以内にタンク内圧が所定値より低圧とならなければ負圧導入不良、即ち大きな漏れ故障と判定している。このような判定手法を採用する場合、正常状態で所定時間内に所定の減圧状態を達成できるだけの吸気負圧が必要となることから大きな漏れ故障診断が実行される所定領域は必然的に決まってしまい、ある程度の吸気負圧が得られるエンジン運転領域となる。小さな漏れ故障については上述の大きな漏れ故障とは異なり、所定負圧に減圧した後の密閉状態での圧力上昇度合を検出して故障診断を行う方式となっているが、診断が実行される領域はエンジン回転数及びエンヅン負荷に関して大きな漏れ故障と同じ所定領域となっている。
【0004】
小さな漏れ故障については、減圧後の圧力上昇度合に基づく診断であるため、必ずしも所定時間内に所定の減圧状態を達成できるだけの吸気負圧が得られる領域にする必要はなく、所定時問より長い時間を要しても所定の減圧状態を達成できれば診断可能である。ところが、従来のものは、このような点を全く考慮することなく、単純に小さな漏れの診断領域を大きな漏れ故障の診断領域と同一としているため、それだけ小さな漏れ故障の診断領域を不必要に狭くしてしまい、故障診断機会が減少してしまう問題がある。
【0005】
また、従来のものは、アイドル時に所定エンジン回転数以上で且つ空燃比フィートバック制御中に小さな漏れ故障診断する別の診断手段(モードA)を設定しているが、これは別手段を付加して小さな漏れの検出機会を増やしているに過ぎず制御ロジック等の複雑化を招く問題があり、効率良く診断機会を増やすことはできない。
本発明は、故障診断機会を不具合なく増大して故障診断性能の向上を図った蒸発燃料処理装置の故障診断装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明にかかる蒸発燃料処理装置の故障診断装置では、燃料タンクとエンジン吸気通路とを接続する蒸発燃料のパージ経路を大気と遮断してエンジン吸気負圧を導入した状態での上記燃料タンク内の圧力減少度合を監視して大孔対応の故障診断を行う第1故障診断手段と、燃料タンク内を所定負圧まで減圧させたあと大気と遮断された密閉状態での圧力上昇度合を監視して小孔対応の故障診断を行う第2故障診断手段とを有し、第2故障診断手段の作動領域を、第1故障診断手段の作動領域を実質的に含んで第1故障診断手段の作動領域より低吸気負圧側に拡大設定している。
【0007】
本発明によると、大孔対応の故障診断を行う第1故障診断手段は、燃料タンクとエンジン吸気通路とを接続する蒸発燃料のパージ経路を大気と遮断してエンジン吸気負圧を導入した状態での燃料タンク内の圧力減少度合を監視して、負圧導入不良を検出する方式であるため、作動領域がエンジン吸気負圧との兼ね合いで自ずと決まってしまう。小孔対応の故障診断を行う第2故障診断手段は、燃料タンク内を所定負圧まで減圧させたあと大気と遮断された密閉状態での圧力上昇度合を検出する方式であるため、負圧導入時の圧力減少度合が小さくても所定負圧まで減圧できれば診断可能である。よって、第1故障診断手段の作動領域を実質的に含んで第1故障診断手段の作動領域より低吸気負圧側に第2故障診断手段の作動領域を拡大設定した本願においては、両故障診断手段の特性の違いを有効活用でき、第2故障診断手段による故障診断機会が不具合なく増大する。
【0008】
好ましい態様として、第1及び第2故障診断手段の作動領域は、エンジン回転数及びエンジン負荷をパラメータとしてそれぞれ定めて、第2故障診断手段の作動領域が第1故障診断手段の作動領域より低負荷側及び又は低回転数側を含むように設定すると、第1及び第2故障診断手段毎の最適な作動領域を簡便に設定することができる。
また、第2故障診断手段の作動領域が、第1故障検出手段の作動領域を完全に含むように設定すると、大孔対応の故障診断だけが実行されることがないので、小孔による漏れが発生している状況下で正常判定されるようなことがなく、故障診断の信頼性を確保することができる。
【0009】
【発明の実施の形態】
本発明の実施の形態について図面を用いて説明する。本形態にかかる蒸発燃料処理装置であるエバポパージシステムは、図1に示すように、自動車等の車両に装備される燃料タンク1内に発生する蒸散燃料(ベーパ)が大気中に放出されるのを防止するためのものである。このシステムは、燃料タンク1からの蒸散燃料を、ベーパ通路2につながるキャニスタ3内にベーパ通路2を通して導入し、このキャニスタ3内に吸着された蒸散燃料を所定条件下でパージ通路4を介して内燃機関5の吸気通路6へ放出(パージ)するように構成されている。
【0010】
パージ通路4には、この通路を開閉する開閉手段としてパージソレノイドバルブ7が介装されている。キャニスタ3には大気導入部12を開閉するベントソレノイドバルブ8が取り付けられている。パージソレノイドバルブ7及びベントソレノイドバルブ8は、故障診断時に使用されるものである。これらのパージソレノイドバルブ7及びベントソレノイドバルブ8は、制御手段としてのエンジンコントロールユニット(以下「ECU」と記す)11と接続されていて、ECU11からの制御信号に基づいて開閉制御されるようになっている。
【0011】
図6、図7に示すように、パージソレノイドバルブ7は、オンされると開状態となってパージ通路4を開放し、オフされると閉状態となってパージ通路4を閉鎖する。ベントソレノイドバルブ8は、オフでは大気導入部12を開放し、オンされると大気導入部12を閉鎖する。このエバポパージシステムにおいては、通常パージソレノイドバルブ7はオンされ、ベントソレノイドバルブ8はオフされている。そして、故障判定するための判定条件が設立すると、パージソレノイドバルブ7をオフしてパージ通路4を閉鎖し、ベントソレノイドバルブ8をオンして大気導入部12を閉鎖すると、燃料タンク1内は大気圧程度に増圧する。この状態でパージソレノイドバルブ7をオンしてパージ通路4を開放すると、燃料タンク1と吸気通路6とが、ベーパ通路2、パージ通路4を介して連通し、吸気通路6内の負圧作用によりタンク内圧が減圧される。
【0012】
燃料タンク1には、燃料残量検出手段としての燃料レベルセンサ9が取り付けられており、タンク内の燃料残量を検出できるようになっている。燃料タンク1には、状況検出手段として圧力検出手段となる圧力センサ10が取り付けられており、タンク内圧力を検出できるようになっている。そして、これらの燃料レベルセンサ9、圧力センサ10からの検出情報はECU11へ送られるようになっている。燃料タンク1の給油口17には、着脱自在なフィラーキャップ16が装着されている。このフィラーキャップ16は、給油口17へ正常に装着された状態では給油口17を密閉状態とし、給油口17から燃料タンク1内へ大気導入がなされないように構成されている。
【0013】
このように構成されるエバポパージシステムには、エバポパージシステムの故障により蒸散燃料が大気中に放出するのを防止すべく、エバポパージシステムのリーク故障を検知する故障診断装置が備えられている。この故障診断装置は、パージソレノイドバルブ7及びベントソレノイドバルブ8を制御することで、燃料タンク1内の圧力下降度合(ΔPD)や、圧力上昇度合(ΔP)を監視して故障判定を行うものである。
【0014】
故障診断装置は、パージソレノイドバルブ7及びベントソレノイドバルブ8を制御して、パージ経路4を大気と遮断してエンジン吸気負圧を導入した状態での燃料タンク1内の圧力減少度合ΔPDを監視して大孔対応の故障診断を行う第1故障診断手段13と、パージソレノイドバルブ7及びベントソレノイドバルブ8を制御して、燃料タンク1内を所定負圧まで減圧させたあと大気と遮断された密閉状態での圧力上昇度合ΔPを監視して小孔対応の故障診断を行う第2故障診断手段14と、第1故障診断手段13あるいは第2故障診断実手段を選択する選択手段15とを備えている。本形態において、第1故障診断手段13、第2故障診断手段14、選択手段15は、ECU11が備えている。
【0015】
図2は、第1故障診断手段13が作動する作動領域Aと、第2故障診断手段14が作動する作動領域Bとを示す図である。同図において、縦軸はエンジンなどの負荷Ev、横軸はエンジン回転数Neをそれぞれ示す。本形態において、作動領域Bは作動領域Aを実質的に含み、この作動領域Aより低吸気負圧側に拡大設定している。すなわち、作動領域A,Bは、エンジン回転数Ne及び負荷Evをパラメータとしてそれぞれ定めていて、作動領域Bが作動領域Aより低負荷側及び又は低回転数側を含むともに、作動領域Bが作動領域Aを完全に含むように設定されている。
【0016】
本形態において、小孔対応の故障診断とは、およそ1.0mm程度の孔からのリークの有無を診断するものであり、大孔対応の故障診断とは、1.0mmよりも大きな孔からのリークやフィラーキャップ16等が締まっていない状態を診断するものである。ECU11の図示しないメモリーには、第1故障診断手段13で用いるリーク判定値Mと、第2故障診断手段14で用いるリーク判定値Lが予め記憶されている。
【0017】
次に、第1故障診断手段13、第2故障診断手段14、選択手段15の動作を、図3、図4、図5に示すフローチャートを基に説明する。
図3において、ステップR1において、エンジン回転数Ne、負荷Evを図示しない回転センサ及びスロットル開度センサ等の検出手段より読み込む他、水温、吸気温、空燃比学習値、燃料残量等の各運転状態を読込み、ステップR2において、エンジン回転数Ne、エンジン負荷Evを除く運転状態が第1故障診断を実行する所定の条件を満たしているか否かを判断する。ここで条件を満たしている場合は、ステップR3においてエンジン回転数Ne、エンジン負荷Evから図2を用いて作動領域Aであるか否かを判断する。そして作動領域Aである場合には、ステップR4に進んで第1故障診断手段13を選択して後述の第1故障診断手段を実行する。
【0018】
ステップR4での第1故障診断の実行を終了した後、あるいはステップR2で実行条件が成立しない場合や、ステップR3でA領域でない場合は、ステップR5に進む。このステップでは、エンジン回転数Ne、エンジン負荷Evを除く運転状態が第2故障診断を実行する所定の条件を満たしているか否かを判断する。ここで条件を満たしている場合は、ステップR6においてエンジン回転数Ne、エンジン負荷Evから図2を用いて作動領域Bであるか否かを判断する。そして作動領域Bである場合には、ステップR7に進んで第2故障診断手段14を選択して後述の第2故障診断手段を実行する。なおステップR7での第2故障診断の実行を終了した後、あるいはステップR5で実行条件が成立しない場合や、ステップR6でB領域でない場合は終了する。
【0019】
図4は、図3中のステップR7で行われる第2故障診断手段14による処理の詳細を示すものである。第2故障診断手段14では、ステップS1でパージソレノイドバルブ7をオンしてタンク内圧を図6に示す所定負圧P2まで減圧した後、オフする制御を行い、燃料タンク1を密閉状態としてステップS2に進む。ステップS2では燃料タンク1のタンク内圧の上昇量を計測し(図6参照)、ステップS3で計測結果から圧力上昇度合ΔP(所定負圧P2からの圧力上昇量)を算出する。ステップS4では、圧力上昇度合ΔPとリーク判定値Lとを比較し、圧力上昇度合ΔPがリーク判定値Lを超えていなければ、エバポパージシステムにリーク(洩れ)がないものと判断し、ベルトソレノイドバルブ8をオフして第2故障診断を終了する。
【0020】
ステップS4で圧力上昇度合ΔPがリーク判定値Lを超えると、燃料系にリーク(洩れ)があるおそれがあるとしてステップS5において、リークあり状態をカウントし、カウント回数がステップS6で予めECU11のメモリーに記憶した所定回数カウントになったか否かが判断される。ここで所定回数に至っていない場合には、信頼性を高めるためにステッフS1からステップS6までの各ステップを繰り返し、圧力上昇度合ΔPがリーク判定値Lを超えたカウント数が所定回数、例えば2回を超えると、リークありとしてステップS7に進み、図示しない警告灯を点灯して故障であることを警告するとともに、ベルトソレノイドバルブ8をオフして第2故障診断を終える。
【0021】
図5は、図3中のステップR4で行われる第1故障診断手段13による処理の詳細を示すものである。第1故障診断では、ステップT1でパージソレノイドバルブ7をオンする制御を行い、ステップT2に進む。ステップT2では燃料タンク内圧の下降量を所定時間計測する。ステップT3で計測結果から圧力下降度合ΔPDを算出する。ここではパージソレノイドバルブ7がオンしてから所定時間内に下降したタンク内圧の圧力下降度合ΔPDが算出される。ステップT4では、圧力下降度合ΔPDとリーク判定値Mとを比較する。
【0022】
図7に破線で示すように、計測時間経過時点でのタンク内圧力P3が所定負圧P1(ΔPD=Mに相当)よりも高く、圧力下降度合ΔPDがリーク判定値Mとしての基準圧力下降度合に満たなければ、エバポパージシステムに大きな孔があるものとしてステップT5に進む。ステップT5では図示しない警告灯を点灯して故障であることを警告し、ステップT6に進んでベルトソレノイドバルブ8をオフして第1故障診断を終える。ステップT4で圧力下降度合ΔPDがリーク判定値Mを超えるように場合には、大きな孔はないものとし、引き続き小孔対応の第2故障診断を行うために図3のステップR5以降の処理を行う。
【0023】
このように、故障診断を行う際に、第2故障診断手段14の作動領域Bを、第1故障診断手段13の作動領域Aを実質的に含んで第1故障診断手段の作動領域より低吸気負圧側に拡大設定することで、両故障診断手段の特性の違いを有効活用して第2故障診断手段14による故障診断機会を不具合なく増大させることができ、故障診断性能を向上することができる。
【0024】
小孔診断を行う第2故障診断手段14においては、電気的ノイズや精度誤差などを考慮して、燃料タンク1内の圧力上昇度合ΔPを複数回検出して診断するので、診断精度を高めることができる。
また、作動領域Bが作動領域Aより低負荷側及び又は低回転数側を含むので、第1及び第2故障診断手段13,14毎の最適な作動領域を簡便に設定することができる。さらに、作動領域Bが作動領域Aを完全に含んでいるので、大孔対応の故障診断だけが実行されることがないので、小孔による漏れが発生している状況下で正常判定されるようなことがなく、故障診断の信頼性を確保することができる。
【0025】
【発明の効果】
本発明によれば、大孔対応の故障診断を行う第1故障診断手段は、負圧導入不良を検出する方式であるためエンジン吸気負圧との兼ね合いで自ずと作動領域が決まってしまい、小孔対応の故障診断を行う第2故障診断手段は、負圧導入時の圧力減少度合が小さくても所定負圧まで減圧できれば診断可能であるので、第2故障診断手段の作動領域を、第1故障診断手段の作動領域を実質的に含んで第1故障診断手段の作動領域より低吸気負圧側に拡大設定することで、両故障診断手段の特性の違いを有効活用して第2故障診断手段による故障診断機会を不具合なく増大させることができ、故障診断性能を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる蒸発燃料処理装置及び故障診断装置を概略構成図である。
【図2】第1および第2故障診断手段のそれぞれ作動領域を示す図である。
【図3】第1または第2故障診断手段を選択するためのフローチャートである。
【図4】第2故障診断の一形態を示すフローチャートである。
【図5】第1故障診断の一形態を示すフローチャートである。
【図6】第2故障診断を説明するためのタイムチャートである。
【図7】第1故障診断を説明するためのタイムチャートである。
【符号の説明】
1 燃料タンク
4 パージ経路
6 エンジン吸気通路
14 第1故障診断手段
15 第2故障診断手段
A 第1故障診断手段の作動領域
B 第2故障診断手段の作動領域
ΔP 圧力上昇度合
ΔPD 圧力減少度合
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for diagnosing a failure of a fuel vapor processing apparatus for preventing vaporized fuel generated in a fuel tank from being released into the atmosphere.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 2000-282972 discloses a first failure diagnosis means (mode C) for diagnosing a large leak failure of about 0.5 inches in diameter in a predetermined region using engine speed and engine load as parameters, and a throttle in the predetermined region. A failure diagnosis device for an evaporated fuel processing device having second failure diagnosis means (mode B) for diagnosing a small leak failure of about 0.02 inches in diameter on the condition that the change in opening is small is disclosed.
[0003]
[Problems to be solved by the invention]
In the conventional failure diagnosis device, a large leak failure is detected by a negative pressure introduction failure. Specifically, if the tank internal pressure does not become lower than a predetermined value within a predetermined time in a negative pressure introduction state, a negative pressure introduction failure is detected. That is, it is determined as a large leak failure. When such a determination method is adopted, a predetermined region where a large leakage failure diagnosis is executed is inevitably determined because an intake negative pressure that can achieve a predetermined pressure reduction state within a predetermined time in a normal state is necessary. Therefore, it becomes an engine operation region in which a certain amount of intake negative pressure is obtained. Unlike the above-mentioned large leak failures, small leak failures have a method of performing failure diagnosis by detecting the degree of pressure increase in a sealed state after reducing to a predetermined negative pressure. Is in the same predetermined area as the large leakage failure with respect to engine speed and engine load.
[0004]
Small leak failures are diagnosed based on the degree of pressure increase after decompression, so it is not always necessary to make the intake negative pressure sufficient to achieve a prescribed decompression state within a prescribed time. Even if time is required, diagnosis can be made if a predetermined reduced pressure state can be achieved. However, the conventional one simply makes the diagnosis area of a small leak failure the same as the diagnosis area of a large leak failure without considering such points at all, so that the diagnosis area of a small leak failure is unnecessarily narrow. As a result, there is a problem that the opportunity for failure diagnosis is reduced.
[0005]
Further, the conventional one sets another diagnostic means (mode A) for diagnosing a small leak failure during idling when the engine speed is higher than a predetermined engine speed and during air-fuel ratio footback control. However, there is a problem of increasing the complexity of the control logic and the like, and it is not possible to increase the diagnosis opportunities efficiently.
SUMMARY OF THE INVENTION An object of the present invention is to provide a failure diagnosis device for an evaporative fuel processing apparatus that improves failure diagnosis performance by increasing failure diagnosis opportunities without problems.
[0006]
[Means for Solving the Problems]
In the failure diagnosis apparatus for the evaporated fuel processing apparatus according to the present invention, the evaporated fuel purge path connecting the fuel tank and the engine intake passage is blocked from the atmosphere and the engine intake negative pressure is introduced in the fuel tank. A first failure diagnosis means for monitoring a pressure decrease degree and diagnosing a failure corresponding to a large hole; and monitoring a pressure increase degree in a sealed state where the pressure inside the fuel tank is reduced to a predetermined negative pressure and then shut off from the atmosphere. Second failure diagnosis means for performing failure diagnosis corresponding to the small holes, the operation area of the second failure diagnosis means substantially including the operation area of the first failure diagnosis means, and the operation area of the first failure diagnosis means It is set to expand to a lower intake negative pressure side.
[0007]
According to the present invention, the first failure diagnosing means for diagnosing the failure corresponding to the large hole is in a state where the purge path of the evaporated fuel connecting the fuel tank and the engine intake passage is shut off from the atmosphere and the engine intake negative pressure is introduced. This is a method for detecting the negative pressure introduction failure by monitoring the pressure decrease degree in the fuel tank, so that the operating region is naturally determined by the balance with the engine intake negative pressure. The second failure diagnosis means for performing the failure diagnosis corresponding to the small hole is a method of detecting the pressure increase degree in a sealed state where the pressure inside the fuel tank is reduced to a predetermined negative pressure and then shut off from the atmosphere. Even if the pressure decrease degree is small, it can be diagnosed if the pressure can be reduced to a predetermined negative pressure. Therefore, in the present application in which the operation region of the second failure diagnosis unit is substantially set to the lower intake negative pressure side than the operation region of the first failure diagnosis unit, substantially including the operation region of the first failure diagnosis unit, Thus, the failure diagnosis opportunities by the second failure diagnosis means can be increased without problems.
[0008]
As a preferred embodiment, the operating area of the first and second failure diagnosis means is determined by setting the engine speed and the engine load as parameters, respectively, and the operation area of the second failure diagnosis means is lower than the operation area of the first failure diagnosis means. By setting so as to include the side and / or the low rotational speed side, it is possible to easily set the optimum operation region for each of the first and second failure diagnosis means.
Further, if the operation area of the second failure diagnosis means is set so as to completely include the operation area of the first failure detection means, only the failure diagnosis corresponding to the large hole will not be executed. The reliability of failure diagnosis can be ensured without being judged as normal under the situation where it occurs.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the evaporative purge system that is an evaporative fuel processing apparatus according to the present embodiment releases vaporized fuel (vapor) generated in a fuel tank 1 installed in a vehicle such as an automobile into the atmosphere. It is for preventing. In this system, the vaporized fuel from the fuel tank 1 is introduced into the canister 3 connected to the vapor passage 2 through the vapor passage 2, and the vaporized fuel adsorbed in the canister 3 is passed through the purge passage 4 under predetermined conditions. It is configured to discharge (purge) into the intake passage 6 of the internal combustion engine 5.
[0010]
The purge passage 4 is provided with a purge solenoid valve 7 as an opening / closing means for opening and closing the passage. The canister 3 is provided with a vent solenoid valve 8 that opens and closes the air introduction part 12. The purge solenoid valve 7 and the vent solenoid valve 8 are used for failure diagnosis. The purge solenoid valve 7 and the vent solenoid valve 8 are connected to an engine control unit (hereinafter referred to as “ECU”) 11 as control means, and are controlled to be opened and closed based on a control signal from the ECU 11. ing.
[0011]
As shown in FIGS. 6 and 7, the purge solenoid valve 7 is opened when the purge solenoid valve 7 is turned on to open the purge passage 4, and when it is turned off, the purge solenoid valve 7 is closed and closes the purge passage 4. The vent solenoid valve 8 opens the atmosphere introduction part 12 when turned off, and closes the atmosphere introduction part 12 when turned on. In this evaporation purge system, the purge solenoid valve 7 is normally turned on and the vent solenoid valve 8 is turned off. When a determination condition for determining a failure is established, when the purge solenoid valve 7 is turned off and the purge passage 4 is closed, and the vent solenoid valve 8 is turned on and the atmosphere introduction part 12 is closed, the inside of the fuel tank 1 is large. Increase the pressure to about atmospheric pressure. When the purge solenoid valve 7 is turned on in this state and the purge passage 4 is opened, the fuel tank 1 and the intake passage 6 communicate with each other via the vapor passage 2 and the purge passage 4, and the negative pressure in the intake passage 6 causes the negative pressure action. The tank internal pressure is reduced.
[0012]
A fuel level sensor 9 as fuel remaining amount detecting means is attached to the fuel tank 1 so that the fuel remaining amount in the tank can be detected. The fuel tank 1 is provided with a pressure sensor 10 serving as a pressure detecting means as a situation detecting means so that the pressure in the tank can be detected. The detection information from the fuel level sensor 9 and the pressure sensor 10 is sent to the ECU 11. A detachable filler cap 16 is attached to the fuel filler port 17 of the fuel tank 1. The filler cap 16 is configured so that when the fuel cap 17 is normally attached to the fuel filler port 17, the fuel filler port 17 is hermetically sealed so that the atmosphere is not introduced into the fuel tank 1 from the fuel filler port 17.
[0013]
The evaporation purge system configured as described above includes a failure diagnosis device that detects a leakage failure of the evaporation purge system in order to prevent the vaporized fuel from being released into the atmosphere due to the failure of the evaporation purge system. This failure diagnosis device controls the purge solenoid valve 7 and the vent solenoid valve 8 to monitor the pressure drop degree (ΔPD) and the pressure rise degree (ΔP) in the fuel tank 1 to make a failure determination. is there.
[0014]
The failure diagnosis device controls the purge solenoid valve 7 and the vent solenoid valve 8 to monitor the pressure reduction degree ΔPD in the fuel tank 1 in a state where the purge path 4 is shut off from the atmosphere and the engine intake negative pressure is introduced. The first failure diagnosis means 13 for performing failure diagnosis corresponding to a large hole and the purge solenoid valve 7 and the vent solenoid valve 8 are controlled to reduce the pressure in the fuel tank 1 to a predetermined negative pressure and then shut off from the atmosphere. A second failure diagnosis means 14 for monitoring the pressure rise degree ΔP in the state and performing a failure diagnosis corresponding to the small hole, and a selection means 15 for selecting the first failure diagnosis means 13 or the second failure diagnosis actual means. Yes. In the present embodiment, the ECU 11 includes the first failure diagnosis unit 13, the second failure diagnosis unit 14, and the selection unit 15.
[0015]
FIG. 2 is a diagram illustrating an operation region A in which the first failure diagnosis unit 13 operates and an operation region B in which the second failure diagnosis unit 14 operates. In the figure, the vertical axis represents the load Ev of the engine and the horizontal axis represents the engine speed Ne. In this embodiment, the operation region B substantially includes the operation region A, and is set to be enlarged toward the low intake negative pressure side from the operation region A. In other words, the operating regions A and B each define the engine speed Ne and the load Ev as parameters. The operating region B includes a lower load side and / or a lower engine speed side than the operating region A, and the operating region B operates. The area A is set to be completely included.
[0016]
In this embodiment, the failure diagnosis corresponding to small holes is for diagnosing the presence or absence of leakage from a hole of about 1.0 mm, and the failure diagnosis corresponding to large holes is from a hole larger than 1.0 mm. It diagnoses a state in which the leak or filler cap 16 is not tightened. In a memory (not shown) of the ECU 11, a leak determination value M used by the first failure diagnosis unit 13 and a leak determination value L used by the second failure diagnosis unit 14 are stored in advance.
[0017]
Next, the operation of the first failure diagnosis means 13, the second failure diagnosis means 14, and the selection means 15 will be described based on the flowcharts shown in FIGS.
In FIG. 3, in step R1, the engine speed Ne and the load Ev are read from detection means such as a rotation sensor and a throttle opening sensor (not shown), and each operation such as water temperature, intake air temperature, air-fuel ratio learning value, remaining fuel amount, etc. The state is read, and in step R2, it is determined whether the operating state excluding the engine speed Ne and the engine load Ev satisfies a predetermined condition for executing the first failure diagnosis. If the condition is satisfied, it is determined in step R3 whether or not the engine is in the operation region A using FIG. 2 from the engine speed Ne and the engine load Ev. If it is the operation region A, the process proceeds to step R4, the first failure diagnosis means 13 is selected, and the first failure diagnosis means described later is executed.
[0018]
After the execution of the first failure diagnosis at step R4 is completed, or when the execution condition is not satisfied at step R2, or when it is not the A region at step R3, the process proceeds to step R5. In this step, it is determined whether or not the operating state excluding the engine speed Ne and the engine load Ev satisfies a predetermined condition for executing the second failure diagnosis. If the condition is satisfied, it is determined in step R6 from the engine speed Ne and the engine load Ev whether or not it is the operation region B using FIG. If it is the operation region B, the process proceeds to step R7, the second failure diagnosis means 14 is selected, and the second failure diagnosis means described later is executed. Note that after the execution of the second failure diagnosis at step R7 is completed, or when the execution condition is not satisfied at step R5, or when it is not the B region at step R6, the process ends.
[0019]
FIG. 4 shows the details of the processing by the second failure diagnosis means 14 performed in step R7 in FIG. In the second failure diagnosis means 14, the purge solenoid valve 7 is turned on in step S1 to reduce the tank internal pressure to the predetermined negative pressure P2 shown in FIG. Proceed to In step S2, the amount of increase in the internal pressure of the fuel tank 1 is measured (see FIG. 6), and in step S3, the pressure increase degree ΔP (the amount of increase in pressure from the predetermined negative pressure P2) is calculated from the measurement result. In step S4, the pressure increase degree ΔP and the leak judgment value L are compared. If the pressure rise degree ΔP does not exceed the leak judgment value L, it is determined that there is no leak in the evaporation purge system, and the belt solenoid The valve 8 is turned off to end the second failure diagnosis.
[0020]
If the degree of pressure increase ΔP exceeds the leak judgment value L in step S4, it is assumed that there is a possibility that the fuel system has a leak (leakage). In step S5, a state with a leak is counted, and the number of counts is previously stored in the memory of the ECU 11 in step S6. It is determined whether or not the predetermined number of times stored in the memory is reached. If the predetermined number of times has not been reached, the steps from step S1 to step S6 are repeated to increase the reliability, and the number of counts at which the pressure increase degree ΔP exceeds the leak determination value L is a predetermined number of times, for example, two times. If it exceeds, the process proceeds to step S7 because there is a leak, a warning lamp (not shown) is turned on to warn of a failure, and the belt solenoid valve 8 is turned off to complete the second failure diagnosis.
[0021]
FIG. 5 shows the details of the processing by the first failure diagnosis means 13 performed in step R4 in FIG. In the first failure diagnosis, the purge solenoid valve 7 is controlled to be turned on in step T1, and the process proceeds to step T2. In step T2, the amount of decrease in the fuel tank internal pressure is measured for a predetermined time. In step T3, a pressure drop degree ΔPD is calculated from the measurement result. Here, the pressure drop degree ΔPD of the tank internal pressure that has fallen within a predetermined time after the purge solenoid valve 7 is turned on is calculated. In step T4, the pressure drop degree ΔPD is compared with the leak determination value M.
[0022]
As indicated by a broken line in FIG. 7, the tank pressure P3 at the time when the measurement time has elapsed is higher than a predetermined negative pressure P1 (corresponding to ΔPD = M), and the pressure drop degree ΔPD is the reference pressure drop degree as the leak judgment value M. If not, the process proceeds to step T5 assuming that the evaporation purge system has a large hole. In step T5, a warning lamp (not shown) is lit to warn of a failure, the process proceeds to step T6, the belt solenoid valve 8 is turned off, and the first failure diagnosis is finished. When the pressure drop degree ΔPD exceeds the leak determination value M in step T4, it is assumed that there is no large hole, and the processing after step R5 in FIG. 3 is subsequently performed to perform the second failure diagnosis corresponding to the small hole. .
[0023]
In this way, when performing the failure diagnosis, the operation region B of the second failure diagnosis unit 14 substantially includes the operation region A of the first failure diagnosis unit 13 and is lower than the operation region of the first failure diagnosis unit. By setting the expansion to the negative pressure side, it is possible to increase the failure diagnosis opportunities by the second failure diagnosis unit 14 without any failure by effectively utilizing the difference in characteristics between the two failure diagnosis units, and to improve the failure diagnosis performance. .
[0024]
In the second failure diagnosing means 14 for performing the small hole diagnosis, the pressure rise degree ΔP in the fuel tank 1 is detected and diagnosed a plurality of times in consideration of electric noise, accuracy error, etc., so that the diagnosis accuracy is improved. Can do.
Further, since the operation region B includes a lower load side and / or a lower rotation speed side than the operation region A, the optimal operation region for each of the first and second failure diagnosis means 13 and 14 can be easily set. Further, since the operation region B completely includes the operation region A, only failure diagnosis corresponding to the large hole is not performed, so that the normal determination is made under a situation where leakage due to the small hole occurs. Therefore, reliability of failure diagnosis can be ensured.
[0025]
【The invention's effect】
According to the present invention, the first failure diagnosing means for diagnosing a failure corresponding to a large hole is a method of detecting a negative pressure introduction failure, so that the operating region is naturally determined by the balance with the engine intake negative pressure. The second failure diagnosing means for performing the corresponding failure diagnosis can be diagnosed if the pressure can be reduced to a predetermined negative pressure even if the degree of pressure decrease at the time of introducing the negative pressure is small. By effectively setting the lower intake negative pressure side than the operating region of the first failure diagnostic means, substantially including the operating region of the diagnostic means, the difference between the characteristics of both failure diagnostic means can be effectively utilized by the second failure diagnostic means. Failure diagnosis opportunities can be increased without problems, and failure diagnosis performance can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an evaporated fuel processing device and a failure diagnosis device according to an embodiment of the present invention.
FIG. 2 is a diagram showing operating areas of first and second failure diagnosis means, respectively.
FIG. 3 is a flowchart for selecting first or second failure diagnosis means;
FIG. 4 is a flowchart showing one form of second failure diagnosis.
FIG. 5 is a flowchart showing one form of first failure diagnosis.
FIG. 6 is a time chart for explaining a second failure diagnosis.
FIG. 7 is a time chart for explaining the first failure diagnosis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel tank 4 Purge path | route 6 Engine intake passage 14 1st failure diagnostic means 15 2nd failure diagnostic means A Operation area B of 1st failure diagnosis means Operation area ΔP of 2nd failure diagnosis means ΔPD Pressure increase degree ΔPD Pressure decrease degree

Claims (1)

燃料タンクとエンジン吸気通路とを接続する蒸発燃料のパージ経路を大気と遮断してエンジン吸気負圧を導入した状態での上記燃料タンク内の圧力減少度合を監視して大孔対応の故障診断を行う第1故障診断手段と、
上記燃料タンク内を所定負圧まで減圧させたあと大気と遮断された密閉状態での圧力上昇度合を監視して小孔対応の故障診断を行う第2故障診断手段とを有し、
第2故障診断手段の作動領域は第1故障診断手段の作動領域を実質的に含んで第1故障診断手段の作動領域より低吸気負圧側に拡大設定されていることを特徴とする蒸発燃料処理装置の故障診断装置。
Diagnose faults in response to large holes by monitoring the pressure decrease in the fuel tank with the engine intake negative pressure introduced while the purge path of the evaporated fuel connecting the fuel tank and the engine intake passage is shut off from the atmosphere. First failure diagnosis means to perform;
A second failure diagnosing means for diagnosing a failure corresponding to a small hole by monitoring the degree of pressure increase in a sealed state that is shut off from the atmosphere after the inside of the fuel tank is depressurized to a predetermined negative pressure,
The operating region of the second failure diagnosis means substantially includes the operation region of the first failure diagnosis means, and is set to be expanded to the low intake negative pressure side from the operation region of the first failure diagnosis means. Device fault diagnosis device.
JP2001156812A 2001-05-25 2001-05-25 Failure diagnosis device for evaporative fuel treatment equipment Expired - Lifetime JP4487440B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001156812A JP4487440B2 (en) 2001-05-25 2001-05-25 Failure diagnosis device for evaporative fuel treatment equipment
KR10-2002-0028849A KR100510372B1 (en) 2001-05-25 2002-05-24 Failure diagnostic system of evaporated fuel processing system
US10/153,793 US6651491B2 (en) 2001-05-25 2002-05-24 Failure diagnostic system of evaporated fuel processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156812A JP4487440B2 (en) 2001-05-25 2001-05-25 Failure diagnosis device for evaporative fuel treatment equipment

Publications (2)

Publication Number Publication Date
JP2002349362A JP2002349362A (en) 2002-12-04
JP4487440B2 true JP4487440B2 (en) 2010-06-23

Family

ID=19000766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156812A Expired - Lifetime JP4487440B2 (en) 2001-05-25 2001-05-25 Failure diagnosis device for evaporative fuel treatment equipment

Country Status (3)

Country Link
US (1) US6651491B2 (en)
JP (1) JP4487440B2 (en)
KR (1) KR100510372B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930437B2 (en) * 2002-04-11 2007-06-13 株式会社日本自動車部品総合研究所 Failure diagnosis method and failure diagnosis apparatus for evaporated fuel processing apparatus
DE10248627B4 (en) * 2002-10-18 2014-05-22 Robert Bosch Gmbh Method for operating an internal combustion engine, internal combustion engine and control device therefor
JP4110931B2 (en) * 2002-11-05 2008-07-02 トヨタ自動車株式会社 Evaporative fuel processing device for internal combustion engine
JP4210626B2 (en) * 2004-04-14 2009-01-21 トヨタ自動車株式会社 Failure diagnosis device for fuel vapor purge system, and fuel vapor purge device and combustion engine provided with the same
DE102008001447A1 (en) * 2008-04-29 2009-11-05 Robert Bosch Gmbh Diagnosis of the functionality of fuel vapor tanks
US8539938B2 (en) * 2009-03-12 2013-09-24 Ford Global Technologies, Llc Fuel systems and methods for controlling fuel systems in a vehicle with multiple fuel tanks
JP5333532B2 (en) * 2011-07-14 2013-11-06 株式会社デンソー Fuel vapor leak detection device
JP5880159B2 (en) * 2012-03-09 2016-03-08 日産自動車株式会社 Evaporative fuel processor diagnostic device
JP5998529B2 (en) * 2012-03-09 2016-09-28 日産自動車株式会社 Evaporative fuel processor diagnostic device
JP5892012B2 (en) 2012-09-11 2016-03-23 日本精工株式会社 In-vehicle electronic control unit
US9243592B2 (en) * 2013-04-18 2016-01-26 Ford Global Technologies, Llc Canister purge valve self-cleaning cycle
JP2016003575A (en) * 2014-06-13 2016-01-12 株式会社デンソー Evaporative gas purge system abnormality diagnosis device
CN114352442B (en) * 2021-11-30 2023-04-21 岚图汽车科技有限公司 Fuel evaporation system diagnosis method and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243983C2 (en) * 1991-12-28 1999-07-15 Suzuki Motor Co Diagnostic device for a fuel vapor control device of a motor vehicle
JP2688674B2 (en) * 1992-01-20 1997-12-10 本田技研工業株式会社 Failure detection device and failure compensation device for fuel tank internal pressure sensor
JP3250351B2 (en) * 1993-12-28 2002-01-28 日産自動車株式会社 Failure diagnosis device for evaporative fuel treatment equipment
JP3804158B2 (en) * 1996-03-29 2006-08-02 マツダ株式会社 Evaporative fuel supply system failure diagnosis device
JPH1061504A (en) * 1996-06-11 1998-03-03 Toyota Motor Corp Trouble diagnostic device of evaporation purge system
KR100250321B1 (en) * 1997-08-30 2000-04-01 정몽규 Apparatus and method of leak inspection for evaporative system
JP3501207B2 (en) * 1997-12-25 2004-03-02 三菱自動車工業株式会社 Failure diagnosis device for fuel evaporative gas treatment system
JP3729683B2 (en) * 1998-12-04 2005-12-21 トヨタ自動車株式会社 Evaporative purge system failure diagnosis device
JP3577985B2 (en) * 1999-03-29 2004-10-20 マツダ株式会社 Failure diagnosis device for evaporative fuel treatment equipment
JP3587093B2 (en) * 1999-08-06 2004-11-10 三菱自動車工業株式会社 Evaporative purge system failure diagnosis device

Also Published As

Publication number Publication date
JP2002349362A (en) 2002-12-04
US20020189328A1 (en) 2002-12-19
KR100510372B1 (en) 2005-08-24
US6651491B2 (en) 2003-11-25
KR20020090332A (en) 2002-12-02

Similar Documents

Publication Publication Date Title
JP4487440B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
JP3073010B2 (en) Vehicle tank ventilation system and method for checking its functional normality
JP2688674B2 (en) Failure detection device and failure compensation device for fuel tank internal pressure sensor
JP3411768B2 (en) Evaporative system diagnostic device
JPH04300727A (en) Tank ventilator and driving method thereof
JP4319794B2 (en) Failure diagnosis device for fuel evaporative gas processing equipment
JP3277774B2 (en) Fault diagnosis device for evaporative fuel evaporation prevention device of internal combustion engine and fuel refueling detection device
US6397824B1 (en) Fault diagnosing apparatus for evapopurge systems
JP3844706B2 (en) Fuel vapor gas processing equipment
JP4552356B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
JP2004360553A (en) Evaporating fuel control apparatus of internal combustion engine
KR20160071576A (en) Method for diagnosing leakage of fuel tank of vehicle
JP3937511B2 (en) Fault diagnosis method and apparatus for fuel vapor supply system
JP4560991B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
KR101240936B1 (en) Disorder diagnosis method for fuel system of vehicle because of fuel's overflowing
JP3948002B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP3250351B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
JP3539303B2 (en) Failure diagnosis device for evaporative fuel purge system
JP3428506B2 (en) Failure diagnosis device for evaporation purge system
JP2751763B2 (en) Failure diagnosis device for evaporation purge system
JP3951118B2 (en) Failure diagnosis device for fuel transpiration prevention system
JP2003222057A (en) Failure diagnostics system for fuel vapor processing apparatus
JP3937263B2 (en) Leak diagnostic device for fuel evaporative gas purge system
JP3536420B2 (en) Failure diagnosis device for evaporative fuel supply system
JP2745980B2 (en) Failure diagnosis device for evaporation purge system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4