JP4483589B2 - Vehicle information providing device - Google Patents
Vehicle information providing device Download PDFInfo
- Publication number
- JP4483589B2 JP4483589B2 JP2005005293A JP2005005293A JP4483589B2 JP 4483589 B2 JP4483589 B2 JP 4483589B2 JP 2005005293 A JP2005005293 A JP 2005005293A JP 2005005293 A JP2005005293 A JP 2005005293A JP 4483589 B2 JP4483589 B2 JP 4483589B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- detection
- surrounding
- information
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 146
- 230000001809 detectable Effects 0.000 claims description 6
- 230000002093 peripheral Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 50
- 230000000875 corresponding Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 235000020127 ayran Nutrition 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001149 cognitive Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000994 depressed Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000414 obstructive Effects 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 230000019771 cognition Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
Images
Description
例えば、双方向通信を行うための車々間通信機能を備えた車両間で通信を行い、各車両の位置情報や、各車両で保持している各車両周辺の他の車両の情報を授受することにより、自車両周辺の交通状況を獲得するようにした道路交通システムが提案されている。また、このとき測距手段によっても周辺車両を検出するようにし、車々間通信機能を搭載していない車両の存在も把握してこの車々間通信機能を搭載していない車両に関する情報も車々間通信により授受することで、車々間通信機能を搭載する車両と車々間通信機能を搭載していない非搭載車両とが混在している場合であっても、自車両を基準とした自車両周辺の各車両の位置や走行状態を把握できるようにしたシステムも提案されている(例えば、特許文献1参照。)。 Conventionally, it is possible to detect a driving situation of a surrounding vehicle of the own vehicle and provide information to the driver of the own vehicle, and the driver performs a driving operation in consideration of the driving situation of the other vehicle so that safe driving can be achieved. A proposed system has been proposed.
For example, by communicating between vehicles equipped with a vehicle-to-vehicle communication function for performing two-way communication, by exchanging position information of each vehicle and information of other vehicles around each vehicle held by each vehicle A road traffic system has been proposed in which traffic conditions around the host vehicle are acquired. At this time, the distance measuring means also detects surrounding vehicles, grasps the existence of a vehicle not equipped with the inter-vehicle communication function, and transmits / receives information about the vehicle not equipped with the inter-vehicle communication function. Therefore, even if a vehicle equipped with an inter-vehicle communication function and a non-equipped vehicle not equipped with an inter-vehicle communication function are mixed, the position and travel of each vehicle around the own vehicle A system that can grasp the state has also been proposed (for example, see Patent Document 1).
このような情報伝達を実現するための、自車両にとって障害となる車両を検出する方法として、例えば、自車両に搭載されたレーザレーダ或いは撮像手段等といった障害物センサによって検出する自律型の検出方法、道路上に配置されたセンサによってその周辺車両を検出し、この周辺車両の走行情報を無線等を用いて路車間通信により走行中の車両に伝達するインフラ協調型の検出方法、或いは、GPS等を用いて自車両の位置等を検出し、自車両位置、車速、自車両のドライバ操作情報等を、無線を用いて車々間通信により車両間で情報交換する車々間通信型の検出方法等が提案されている。 By the way, in general, in order to support safe driving, it is possible to detect a vehicle that is an obstacle for the host vehicle, display or sound the driver of the host vehicle, and perform a braking operation regardless of the driver's intention. It is necessary to communicate that there are obstacles in the form.
As a method for detecting a vehicle that is an obstacle to the host vehicle for realizing such information transmission, for example, an autonomous detection method that detects by an obstacle sensor such as a laser radar or an imaging unit mounted on the host vehicle. An infrastructure-coordinated detection method that detects surrounding vehicles by sensors arranged on the road, and transmits the traveling information of the surrounding vehicles to the traveling vehicle by road-to-vehicle communication using wireless or the like, or GPS, etc. A vehicle-to-vehicle communication type detection method is proposed in which the position of the own vehicle is detected using the vehicle, and information on the vehicle position, vehicle speed, driver operation information of the own vehicle, etc. is exchanged between vehicles using wireless communication. ing.
そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、交差点やT字路等といった複雑な交通環境下であっても、より高いレベルの運転支援を行うことの可能な車両用情報提供装置を提供することを目的としている。 For this reason, operation support such as applying braking force regardless of the driver's operation using information on surrounding vehicles detected by each single detection method, judgment support such as issuing an alarm prompting prohibition of entry, etc. In order to carry out in a complicated traffic environment such as an intersection or a T-junction, the reliability of detection information is insufficient, and it is difficult to raise the support level for drivers to operation support and judgment support. It was.
Therefore, the present invention has been made paying attention to the above-mentioned conventional unsolved problems, and can provide a higher level of driving assistance even in a complicated traffic environment such as an intersection or a T-junction. An object of the present invention is to provide a vehicular information providing apparatus.
また、一の周辺車両の存在を把握している手段の数が多いときほど存在率が高くなり、且つ一の周辺車両の存在を把握している手段の数が同数のときには、前記一の周辺車両の存在を把握している手段に対して予め設定した信頼度の和が大きいときほど前記存在率が高くなるように算出するため、一の周辺車両の存在を把握している手段の数とその信頼度とに基づいて容易且つ的確に存在率を算出することができる。 According to the vehicle information providing apparatus of the present invention, the driving situation of the surrounding vehicle of the host vehicle is detected by a plurality of different detection methods, and the presence rate of the surrounding vehicle is calculated based on the detection status of the surrounding vehicle by the different detection method However, in order to provide driving support at a support level according to this presence rate, even if each detection method alone cannot provide advanced driving support due to its reliability, a plurality of different detection methods If the presence rate is predicted to be high based on the detection status of surrounding vehicles detected in step (b), by providing relatively advanced driving assistance according to the presence rate, for example, in a complicated traffic environment such as an intersection or a T-junction. However, when it is predicted that the presence rate of surrounding vehicles is high, relatively advanced driving assistance can be performed.
In addition, when the number of means for grasping the presence of one surrounding vehicle increases, the presence rate increases, and when the number of means for grasping the presence of one surrounding vehicle is the same, The number of means for grasping the presence of one neighboring vehicle is calculated so that the presence rate increases as the sum of the reliability set in advance for the means for grasping the presence of the vehicle increases. The presence rate can be calculated easily and accurately based on the reliability.
まず、第1の実施の形態を説明する。
図1は、本発明を適用した車両用情報提供装置100の一例を示す概略構成図である。
図1中、1は、自車両の走行状態や、ドライバの操作状況を検出するための自車両状態計測部であって、例えば、自車両の走行速度を検出する車速センサ、ブレーキ液圧を検出するためのブレーキ液圧センサ、アクセル開度を検出するためのアクセル開度センサ等を含んで構成される。 Embodiments of the present invention will be described below.
First, a first embodiment will be described.
FIG. 1 is a schematic configuration diagram illustrating an example of a vehicle information providing apparatus 100 to which the present invention is applied.
In FIG. 1, reference numeral 1 denotes a host vehicle state measuring unit for detecting the driving state of the host vehicle and the operation state of the driver. For example, a vehicle speed sensor for detecting the driving speed of the host vehicle and a brake fluid pressure are detected. A brake fluid pressure sensor for detecting the accelerator opening, an accelerator opening sensor for detecting the accelerator opening, and the like.
図中3は、障害物センサであって、自車両の前方や側方の車両や障害物を検出し、検出物体までの距離や検出物体の自車両に対する相対速度を検出する。 Reference numeral 2 in the figure denotes a navigation system having a self-vehicle position detecting function for detecting the current position of the own vehicle using GPS, and having map information around the current position of the own vehicle, which is detected by GPS. From the map information around the current position of the host vehicle, the road shape in front of the host vehicle and the vicinity of the host vehicle and the presence or absence of an intersection are detected.
In the figure, reference numeral 3 denotes an obstacle sensor that detects a vehicle or an obstacle in front of or on the side of the host vehicle, and detects a distance to the detected object and a relative speed of the detected object with respect to the host vehicle.
そして、これら各種の計測部やセンサ、無線機等により、検出または獲得した各種情報は、情報提供コントローラ10に入力される。 The vehicle information providing apparatus 100 further includes a road-to-vehicle wireless device 4 and a vehicle-to-vehicle wireless device 5, and the road-to-vehicle wireless device 4 receives radio waves from an infrastructure facility arranged on the traveling road side, which will be described later. For example, if the type of service is related to a right turn at an intersection, information useful when the host vehicle makes a right turn at the intersection, such as the speed of the oncoming vehicle on the opposite lane ahead of the host vehicle or the distance from the center of the intersection. Receive. Further, the inter-vehicle radio 5 performs inter-vehicle communication with other vehicles by wireless communication or the like, data relating to the traveling state of the own vehicle detected by the own vehicle state measuring unit 1, driving operation data of the driver, navigation system The own vehicle position obtained from 2 is exchanged between vehicles.
Various information detected or acquired by these various measuring units, sensors, wireless devices, etc. is input to the information providing controller 10.
図2において、31は基点ビーコンであって、基点ビーコン31は、サービス対象車両(図2の場合車両A)が、次に受信する情報ビーコン(図2の場合には情報ビーコン32)の受信周波数や、サービスの種類等の情報を、サービス対象車両に送信する。図2中、33は、車両検出センサであって、例えば、レーザレーダで構成され、サービス対象車両Aの対向車線を走行する車両の位置を検出する。この車両検出センサ33で検出された検出情報はデータ処理装置34に入力され、データ処理装置34では対向車線上の交差点に接近する車両について、その走行速度、交差点中央からの距離、例えば第1レーン(走行車線)、第2レーン(追い越し車線)といった、車両の存在する車線位置を検出し、これら情報と共に、走行路の車線数、道路幅、基点ビーコン31から交差点中央までの距離に関する情報や、基点ビーコン31から交差点周辺までの道路線形データ等を接近車両情報として生成し、これを指定された周波数で送信する。 FIG. 2 is a schematic configuration diagram of infrastructure equipment arranged on the traveling road side, which forms a road-vehicle cooperative system together with the road-to-vehicle wireless device 4 and provides information to the road-to-vehicle wireless device 4.
In FIG. 2, 31 is a base point beacon, and the base point beacon 31 is a reception frequency of an information beacon (information beacon 32 in the case of FIG. 2) received next by the service target vehicle (vehicle A in FIG. 2). And information such as the type of service is transmitted to the service target vehicle. In FIG. 2, reference numeral 33 denotes a vehicle detection sensor, which is composed of, for example, a laser radar and detects the position of a vehicle traveling in the opposite lane of the service target vehicle A. The detection information detected by the vehicle detection sensor 33 is input to the data processing device 34. The data processing device 34 determines the traveling speed of the vehicle approaching the intersection on the opposite lane, the distance from the center of the intersection, for example, the first lane. (The driving lane), the second lane (passing lane), and the lane position where the vehicle exists is detected, along with these information, information on the number of lanes of the driving path, the road width, the distance from the base beacon 31 to the intersection center, Road alignment data from the base point beacon 31 to the vicinity of the intersection is generated as approaching vehicle information and transmitted at a specified frequency.
情報提供コントローラ10は、まず、ステップS1の処理で、自車両状態計測部1において検出した、車速センサやブレーキ液圧センサ、アクセル開度センサ等各種センサの検出情報を読み込む。 FIG. 4 is a flowchart illustrating an example of a processing procedure of arithmetic processing executed by the information providing controller 10. This calculation process is executed at a predetermined cycle set in advance.
First, the information providing controller 10 reads detection information of various sensors such as a vehicle speed sensor, a brake fluid pressure sensor, and an accelerator opening sensor detected by the host vehicle state measurement unit 1 in the process of step S1.
次いで、ステップS4に移行し、路車間無線機4で獲得したインフラ情報を読み込む。 Next, the process proceeds to step S3, and detection information from the obstacle sensor 3 is read. The detection information includes, for example, an obstacle number m for identifying an obstacle such as an oncoming vehicle, a distance LNRm from the own vehicle to the obstacle m, a relative speed VrNRm between the own vehicle and the obstacle m, and the own vehicle. The angle θLRm of the host vehicle with respect to the obstacle m, which is the direction of the obstacle m viewed from, is included.
Next, the process proceeds to step S4, and the infrastructure information acquired by the road-to-vehicle radio 4 is read.
次に、自車両Aが交差点に進入し情報ビーコン32からの情報の受信可能領域に達すると、情報ビーコン32から接近車両情報を受信する。この接近車両情報としては、前述のように、対向車線上の車両すなわち接近車両を識別するための接近車両番号sと、その走行速度VIs、交差点中央から接近車両sまでの距離LIs、接近車両の存在する走行車線DIs、対向車線の車線数NI、道路幅WI等が含まれる。なお、走行車線DIsは、歩道側から1、2、…とする。 After receiving data from the base beacon 31, the road-to-vehicle wireless device 4 sets the frequency notified as the reception frequency corresponding to the information beacon 32, and enters a state of waiting to receive information from the information beacon 32.
Next, when the own vehicle A enters the intersection and reaches the area where the information from the information beacon 32 can be received, the approaching vehicle information is received from the information beacon 32. As described above, the approaching vehicle information includes the approaching vehicle number s for identifying the vehicle on the opposite lane, that is, the approaching vehicle, the traveling speed VIs, the distance LIs from the intersection center to the approaching vehicle s, the approaching vehicle The existing lanes DIs, the number of opposite lanes NI, the road width WI, and the like are included. The travel lane DIs is 1, 2,... From the sidewalk side.
次いで、ステップS6に移行し、障害物センサ3、路車間無線機4及び車々間無線機5での障害物や接近車両また車々間通信先の車両に関する検出情報又は獲得情報と、障害物センサ3、路車間無線機4及び車々間無線機5といった、周辺車両の走行情報を検出する検出手段のそれぞれに対して予め設定した信頼度とに基づいて、支援レベルを設定する。前記検出手段に対して設定される信頼度は、各検出手段で検出される走行情報の信頼度に応じて設定される。また、前記支援レベルは、例えば、3段階に設定される。そして、支援レベルに応じて、知覚・認知支援、判断支援、操作支援の何れか1つ以上の支援を行う。 Next, the process proceeds to step S5, and the inter-vehicle communication data acquired by the inter-vehicle radio 5 is read. As the inter-vehicle communication data, for example, for each vehicle number u, the current position coordinates Ptu (Pxtu, Pytu) of the vehicle that is the inter-vehicle communication destination and its traveling speed Vtu are acquired.
Next, the process proceeds to step S6, where the obstacle sensor 3, the road-to-vehicle radio device 4 and the vehicle-to-vehicle radio device 5 are detected information or acquired information about the obstacle, the approaching vehicle, or the vehicle of the vehicle-to-vehicle communication destination, the obstacle sensor 3, the road The support level is set based on the reliability set in advance for each of the detection means for detecting the traveling information of the surrounding vehicles such as the inter-vehicle radio 4 and the inter-vehicle radio 5. The reliability set for the detection means is set according to the reliability of the travel information detected by each detection means. The support level is set, for example, in three stages. Then, depending on the support level, one or more of perception / cognition support, determination support, and operation support is performed.
まず、ステップS11で、障害物センサ3で検出した障害物の位置情報を、現在の自車位置Ph(Pxh,Pyh)と同一の座標系の位置座標に変換する。なお、現在の自車位置Phを表す座標系をX−Y座標とする。つまり、ナビゲーションシステム2では、自車両の現在位置を、X−Y座標系上の位置座標として検出している。 The determination of the support level is performed, for example, according to the procedure shown in FIG.
First, in step S11, the position information of the obstacle detected by the obstacle sensor 3 is converted into position coordinates in the same coordinate system as the current host vehicle position Ph (Pxh, Pyh). In addition, let the coordinate system showing the present own vehicle position Ph be an XY coordinate. That is, the navigation system 2 detects the current position of the host vehicle as position coordinates on the XY coordinate system.
PLR1u=−LNR1・sin(θLR1) ……(1)
PLR1v=LNR1・cos(θLR1) ……(2) Here, if the position coordinates of the obstacle m (= 1) on the UV coordinate system are PLR (PLR1u, PLR1v), PLR1u and PLR1v can be expressed by the following equations (1) and (2), respectively. .
PLR1u = −LNR1 · sin (θLR1) (1)
PLR1v = LNR1 · cos (θLR1) (2)
PLR1x
=PLR1u・cos(θuxr)−PLR1v・sin(θuxr)+OFSTRX ……(3)
PLR1y
=PLR1u・sin(θuxr)+PLR1v・cos(θuxr)+OFSTRY ……(4) Next, the position coordinates (PLR1u, PLR1v) of the obstacle 1 on the U-V coordinate system are converted into position coordinates (PLR1x, PLR1y) on the XY coordinate system using the following equations (3) and (4). To do.
PLR1x
= PLR1u · cos (θuxr) −PLR1v · sin (θuxr) + OFSTRX (3)
PLR1y
= PLR1u · sin (θuxr) + PLR1v · cos (θuxr) + OFSTRY (4)
自車両の現在位置をPh(Pxh(k),Pyh(k))、その過去値をPh(Pxh(k−1),Pyh(k−1))をとすると、自車両の進行方向を表す式は、次式(5)で表すことができる。
Y=Ah(k)・X+Bh(k) ……(5)
Ah(k)
=〔Pyh(k)−Pyh(k−1)〕/〔Pxh(k)−Pxh(k−1)〕
Bh(k)=Pyh(k)−Ah(k)・Pxh(k) Note that θuxr in the equations (3) and (4) is an angle formed by the U axis and the X axis, and is calculated by the following procedure, for example.
If the current position of the host vehicle is Ph (Pxh (k), Pyh (k)) and the past value is Ph (Pxh (k-1), Pyh (k-1)), it represents the traveling direction of the host vehicle. The formula can be expressed by the following formula (5).
Y = Ah (k) · X + Bh (k) (5)
Ah (k)
= [Pyh (k) -Pyh (k-1)] / [Pxh (k) -Pxh (k-1)]
Bh (k) = Pyh (k) −Ah (k) · Pxh (k)
θuxr=tan-1(−1/Ah(k)) ……(6)
また、式(3)及び(4)中のOFSTRX、OFSTRYは、X−Y座標系の原点と、自車両の現在位置中心のU−V座標の原点とのオフセットを表すから、これらOFSTRX、OFSTRYは、次式(7)で表すことができる。
OFSTRX=Pxh
OFSTRY=Pyh ……(7) Since the straight line orthogonal to the equation (5), that is, the inclination of the U axis can be expressed by -1 / Ah (k), the angle θuxr of the X axis with respect to the U axis can be expressed by the following equation (6). .
θuxr = tan −1 (−1 / Ah (k)) (6)
In addition, OFSTRX and OFSTRY in the equations (3) and (4) represent an offset between the origin of the XY coordinate system and the origin of the U-V coordinate at the center of the current position of the host vehicle, so these OFSTRX and OFSTRY Can be expressed by the following equation (7).
OFSTRX = Pxh
OFSTRY = Pyh (7)
次に、ステップS12に移行し、路車間無線機4で受信した、インフラ設備で保持する接近車両の位置情報を、自車位置Ph(Pxh,Pyh)と同一のX−Y座標系上の位置座標に変換する。 The above processing is similarly performed for obstacles whose obstacle number m is m = 2 or later, and the position coordinates of all the obstacles detected by the obstacle sensor 3 are the positions on the XY coordinates. Convert to coordinates.
Next, the process proceeds to step S12, and the position information of the approaching vehicle held by the infrastructure equipment received by the road-to-vehicle radio 4 is the same position on the XY coordinate system as the own vehicle position Ph (Pxh, Pyh). Convert to coordinates.
ここで、図8において、交差点中央のノードN04と、接近車両sが走行する走行路上の、交差点中央のノードN04の次に位置するノードN05とを通る直線をV′軸、このV′軸と直交する直線をU′軸とし、交差点中央を座標中心とするU′−V′座標系を想定する。 Specifically, first, an approaching vehicle number s for identifying an approaching vehicle received by the road-to-vehicle radio 4 is s = 1, a distance from the intersection center to the approaching vehicle s (= 1) is LI1, and an approaching vehicle Let DI1 be the travel lane where Here, as shown in FIG. 8, it is assumed that the approaching vehicle s (= 1) is traveling on the sidewalk side.
Here, in FIG. 8, a straight line passing through the node N04 at the center of the intersection and the node N05 located next to the node N04 at the center of the intersection on the traveling path on which the approaching vehicle s travels is represented by the V ′ axis, Assume a U'-V 'coordinate system in which an orthogonal straight line is the U' axis and the center of the intersection is the coordinate center.
PI1u=Wlane・(NI−DI1)+(Wlane/2) ……(8)
PI1v=LI1 ……(9)
なお、式(8)中の、Wlaneは1車線の幅であって、Wlane=WI/NIで算出される。なお、WIは道路幅、NIは車線数である。また、DI1は接近車両s(=1)の走行車線である。 Assuming that the approaching vehicle travels substantially in the center of the lane, the position coordinates PI1 (PI1u, PI1v) in the U′-V ′ coordinate system of the approaching vehicle s (= 1) are expressed by the following equations (8) and (9). Can be represented.
PI1u = Wlane · (NI−DI1) + (Wlane / 2) (8)
PI1v = LI1 (9)
In equation (8), Wlane is the width of one lane and is calculated as Wlane = WI / NI. Note that WI is the road width and NI is the number of lanes. DI1 is the travel lane of the approaching vehicle s (= 1).
PI1x
=PI1u・cos(θuxi)−PI1v・sin(θuxi)+OFSTIX
……(10)
PI1y
=PI1u・sin(θuxi)+PI1v・cos(θuxi)+OFSTIY
……(11)
なお、(10)及び(11)式中のθuxiは、U′軸とX軸とのなす角度であって例えば次の手順で算出する。 Next, the position coordinates (PI1u, PI1v) on the U′-V ′ coordinate system of the approaching vehicle s (= 1) are converted into the position coordinates on the XY coordinate system using the following equations (10) and (11). Convert to (PI1x, PI1y).
PI1x
= PI1u · cos (θuxi) −PI1v · sin (θuxi) + OFSTIX
(10)
PI1y
= PI1u · sin (θuxi) + PI1v · cos (θuxi) + OFSTY
...... (11)
Note that θuxi in the equations (10) and (11) is an angle formed by the U ′ axis and the X axis, and is calculated by the following procedure, for example.
Y=AI・X+BI ……(12)
AI=(y04−y05)/(x04−x05)
BI=y04−AI・x04 In FIG. 8, from the position coordinates (x04, y04) of the node N04 at the center of the intersection and the position coordinates (x05, y05) of the subsequent node N05, the road of the road detected by the vehicle detection sensor 33 arranged on the traveling road side is detected. A straight line representing a direction can be expressed by the following equation (12) in the XY coordinate system.
Y = AI · X + BI (12)
AI = (y04−y05) / (x04−x05)
BI = y04−AI · x04
θuxi=tan-1(−1/AI) ……(13)
また、(10)及び(11)式中のOFSTIX、OFSTIYは、X−Y座標系の原点と、交差点中央を原点とするU′−V′座標系の原点とのオフセットであるから、OFSTIX、OFSTIYは、次式(14)で表すことができる。
OFSETIX=x04
OFSETIY=y04 ……(14) Since the straight line orthogonal to the above equation (12), that is, the inclination of the U ′ axis can be expressed by −1 / AI, the angle θuxi of the X axis with respect to the U ′ axis can be expressed by the following equation (13). .
θuxi = tan −1 (−1 / AI) (13)
Further, OFSTIX and OFSTY in the expressions (10) and (11) are offsets between the origin of the XY coordinate system and the origin of the U′-V ′ coordinate system with the center of the intersection as the origin. OFSTY can be expressed by the following equation (14).
OFSETIX = x04
OFSETIY = y04 (14)
なお、車々間無線機5により獲得した車々間通信先の車両の位置座標は、ナビゲーションシステム2で検出した位置座標であって自車両と同様にX−Y座標系上の位置座標で表されていることから、位置座標の変換を行う必要はない。なお、自車両とは異なる座標系における位置座標で表されている場合には、上記の手順と同様にして座標変換を行い、自車両の位置座標と同じX−Y座標系上の位置座標に変換すればよい。 The above processing is similarly performed for approaching vehicles whose approaching vehicle number s is s = 2 or later, and the position coordinates of all the approaching vehicles notified are converted into position coordinates on the XY coordinate system.
In addition, the position coordinates of the vehicle of the vehicle-to-vehicle communication acquired by the inter-vehicle wireless device 5 are the position coordinates detected by the navigation system 2 and are represented by the position coordinates on the XY coordinate system like the own vehicle. Therefore, it is not necessary to convert the position coordinates. In the case where it is represented by position coordinates in a coordinate system different from that of the host vehicle, coordinate conversion is performed in the same manner as in the above procedure, and the position coordinates on the same XY coordinate system as the position coordinates of the host vehicle are converted. Convert it.
ここで、自車両の周辺車両を検出する検出手段として、障害物センサ3、路車間無線機4及び車々間無線機5といった3つの検出手段があることから、それぞれの検出手段が一つ以上の物体を検知しているか否かに応じて、8通りのパターンを想定することができ、このパターンは、それぞれの検出手段の検出可否を、可=1、否=0とすると、以下の通りとなる。 Next, the process proceeds to step S13, and detected objects such as an obstacle, an approaching vehicle, and a vehicle for communication between vehicles detected by various detection means such as the obstacle sensor 3, the road-to-vehicle wireless device 4, and the vehicle-to-vehicle wireless device 5 It is determined whether the detection means has also detected, and the sum of the multiple levels and the reliability is calculated accordingly.
Here, since there are three detection means such as the obstacle sensor 3, the road-to-vehicle wireless device 4, and the vehicle-to-vehicle wireless device 5 as detection means for detecting the surrounding vehicle of the own vehicle, each detection means has one or more objects. 8 patterns can be assumed depending on whether or not the detection is detected, and these patterns are as follows, assuming that detection by each detection means is possible = 1 and not = 0. .
パターン2(障害物センサ、路車間無線機、車々間無線機)=(1,1,0)
パターン3(障害物センサ、路車間無線機、車々間無線機)=(1,0,1)
パターン4(障害物センサ、路車間無線機、車々間無線機)=(1,0,0)
パターン5(障害物センサ、路車間無線機、車々間無線機)=(0,1,1)
パターン6(障害物センサ、路車間無線機、車々間無線機)=(0,1,0)
パターン7(障害物センサ、路車間無線機、車々間無線機)=(0,0,1)
パターン8(障害物センサ、路車間無線機、車々間無線機)=(0,0,0)
ここで、各検出手段の信頼度として、例えば、障害物センサ3の信頼度を“3”、路車間無線機4、すなわち、路車間無線機4で獲得した情報の信頼度を“2”、車々間無線機5、すなわち車々間無線機5で獲得した情報の信頼度を“1”とする。 Pattern 1 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (1, 1, 1)
Pattern 2 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (1, 1, 0)
Pattern 3 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (1, 0, 1)
Pattern 4 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (1, 0, 0)
Pattern 5 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (0,1,1)
Pattern 6 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (0, 1, 0)
Pattern 7 (obstacle sensor, road-to-vehicle radio, car-to-car radio) = (0, 0, 1)
Pattern 8 (obstacle sensor, road-to-vehicle radio, car-to-vehicle radio) = (0, 0, 0)
Here, as the reliability of each detecting means, for example, the reliability of the obstacle sensor 3 is “3”, the reliability of the information acquired by the road-to-vehicle radio 4, that is, the road-to-vehicle radio 4, is “2”, The reliability of the information acquired by the inter-vehicle radio 5, that is, the inter-vehicle radio 5, is set to “1”.
次に、上記パターンのうち、パターン4、6及び7は、1つの検出手段のみが物体を検出している。この場合、多重レベルは“1”とする。また、信頼度の和は、物体を検出している検出手段に設定された信頼度とする。そして、何れかの検出手段で検出した検出物体のX−Y座標系における位置座標、多重レベル及び信頼度の和を所定の記憶領域に格納する。 Of the above patterns, the pattern 8 does not detect an object in any detection means. Therefore, the multiplex level is set to “0”. The sum of the reliability is also set to “0”.
Next, among the patterns, the patterns 4, 6 and 7 are detected by only one detecting means. In this case, the multiplexing level is “1”. Further, the sum of the reliability is the reliability set in the detection means detecting the object. Then, the position coordinates of the detected object detected by any of the detection means in the XY coordinate system, the sum of the multiple levels, and the reliability are stored in a predetermined storage area.
また、パターン6の場合、路車間通信機4により獲得した接近車両が2台である場合には、路車間通信機4の検出情報に対する信頼度は“2”であることから、その接近車両のX−Y座標を(PI1x,PI1y)、(PI2x,PI2y)とすると、P1=(PI1x,PI1y,1,2)、P2=(PI2x,PI2y,1,2)として格納する。 For example, in the case of the pattern 4, if there is one obstacle detected by the obstacle sensor 3, the reliability with respect to the obstacle sensor 3 is "3", so the XY coordinates of the obstacle are (PLRx, PLRy). ), P1 = (PLRx, PLRy, 1, 3) is stored.
In the case of Pattern 6, when there are two approaching vehicles acquired by the road-to-vehicle communication device 4, the reliability of the detection information of the road-to-vehicle communication device 4 is “2”. If the XY coordinates are (PI1x, PI1y) and (PI2x, PI2y), the data is stored as P1 = (PI1x, PI1y, 1, 2), P2 = (PI2x, PI2y, 1, 2).
次に、上記パターンのうち、パターン2、3及び5は、2つの検出手段が物体を検出している。このため、それぞれの検出手段による検出物体が同一のものかどうかを判断する。 In the case of the pattern 7, when there is one vehicle as a vehicle-to-vehicle communication destination acquired by the vehicle-to-vehicle wireless device 5, the reliability of the detection information of the vehicle-to-vehicle wireless device 5 is “1”. If the XY coordinates of the vehicle are (Pxtu, Pytu), P1 = (Pxtu, Pytu, 1, 1) is stored.
Next, among the patterns, patterns 2, 3 and 5 have two detection means detecting objects. Therefore, it is determined whether or not the detection objects by the respective detection means are the same.
パターン3及びパターン5の場合も同様にして算出する。 Further, in the case of a detected object that is detected by only one of the obstacle sensor 3 and the infrastructure equipment, the reliability is set to the detection means that has detected this object. That is, the sum of reliability is “3” when detected only by the obstacle sensor 3, and the sum of reliability is “2” when detected only by the infrastructure equipment.
Similar calculations are performed for pattern 3 and pattern 5.
すなわち、障害物センサ3で検出された障害物の位置座標近傍(PLRmx±PLTHX,PLRMY±PLTHX)に、インフラ設備で検出した接近車両が存在するか、また、車々間通信先の車両が存在するかを判断し、全ての障害物、接近車両、車々間通信先の車両についてその位置座標を比較し、同一の物体を検出しているかどうかの判断を行う。 Next, among the above patterns, pattern 1 has three detection means detecting objects. Also in this case, it is determined whether or not the same object is detected by each detecting means in the same procedure as when the two detecting means detect the object.
That is, whether there is an approaching vehicle detected by the infrastructure equipment in the vicinity of the position coordinates of the obstacle detected by the obstacle sensor 3 (PLRmx ± PLTHX, PLRMY ± PLTHX), or whether there is a vehicle that is the vehicle-to-vehicle communication destination The position coordinates of all obstacles, approaching vehicles, and vehicles that are the communication destinations of vehicles are compared, and it is determined whether or not the same object is detected.
そして、各検出物体について、そのX−Y位置座標と、多重レベルと、信頼度の和とを上記と同様に対応付けて所定の記憶領域に格納する。なお、3つの検出手段で一つの障害物を検知している場合には、その信頼度の和は、各検出手段の信頼度の和、すなわち、障害物センサ3の信頼度“3”と路車間無線機4に対する信頼度“2”と車々間無線機5に対する信頼度“1”との和すなわち“6”となる。 When one object is detected only by any one of the detection means, that is, when only the obstacle sensor 3 or only the infrastructure equipment is detected, or this object is a vehicle that is the vehicle-to-vehicle communication destination. If this object is not detected by either the obstacle sensor 3 or the infrastructure equipment, the multiplex level for this object is “1”.
Then, for each detected object, its XY position coordinates, multiple levels, and the sum of reliability are associated with each other in the same manner as described above and stored in a predetermined storage area. When one obstacle is detected by three detection means, the sum of the reliability is the sum of the reliability of each detection means, that is, the reliability “3” of the obstacle sensor 3 and the road. The sum of the reliability “2” for the inter-vehicle radio 4 and the reliability “1” for the inter-vehicle radio 5 is “6”.
このトータル信頼度は、多重レベルと、信頼度の和とに基づき、図9に示すマップから算出する。
図9において、トータル信頼度は、多重レベルが“3”のとき、すなわち一つの物体が3つの検出手段で検出されている場合が最もその信頼度が高い。そして、多重レベルが大きいときほど信頼度は高くなる。ここで、多重レベルが“2”となる場合、2つの検出手段について3通りの組み合わせが考えられるが、信頼度の和が高いときほどトータル信頼度は高い。また、多重レベルが“1”となる場合も同様に、信頼度の和が高いときほどトータル信頼度は高い。 In this way, when the detection pattern is determined and the sum of the multiplexing level and the reliability corresponding to the detection pattern is set, the process proceeds to step S14, and the total reliability is calculated.
The total reliability is calculated from the map shown in FIG. 9 based on the multiplex level and the sum of the reliability.
In FIG. 9, the total reliability is highest when the multiplexing level is “3”, that is, when one object is detected by three detection means. The reliability increases as the multiplexing level increases. Here, when the multiplexing level is “2”, there are three possible combinations of the two detection means, but the total reliability is higher as the sum of the reliability is higher. Similarly, when the multiplexing level is “1”, the higher the sum of the reliability, the higher the total reliability.
具体的には、トータル信頼度が“5〜7”の場合には、信頼度は低いと判断する。また、信頼度が“2〜4”の場合には、信頼度は中程度と判断する。また、信頼度が“1”の場合には、信頼度は高いと判断する。そして、トータル信頼度が“0”の場合には、支援は行わないと判断する。 When the total reliability is set in this way, the process proceeds to step S15, and the support level is determined.
Specifically, when the total reliability is “5 to 7”, it is determined that the reliability is low. When the reliability is “2-4”, the reliability is determined to be medium. When the reliability is “1”, it is determined that the reliability is high. If the total reliability is “0”, it is determined that no support is provided.
具体的には、信頼度が低いと判断されたときには、前記図3に示すような、自車両を基準とする周辺車両の位置及び走行方向等といった走行状況を情報提示部21に表示する知覚・認知支援を行う。 If the support level is determined in this way, the process returns to FIG. 4 and proceeds to step S7 to perform driving support according to the support level.
Specifically, when it is determined that the reliability is low, as shown in FIG. 3, the perception / display of the driving situation such as the position and the driving direction of the surrounding vehicle based on the own vehicle on the information presentation unit 21. Provide cognitive support.
また、信頼度が高いと判断されたときには、知覚・認知支援及び判断支援に加え、さらに、自車両のドライバがブレーキペダルを解放したとしても、制動力の発生が解除されないようにブレーキアクチュエータを作動させて自車両を停止させる等といった操作支援を行う。 Further, when the reliability is determined to be medium, in addition to the perception / recognition support, the driver of the own vehicle releases the depression of the brake pedal, and when the accelerator pedal is depressed, the alarm buzzer is activated to provide the determination support.
When it is judged that the reliability is high, in addition to the perception / recognition support and judgment support, the brake actuator is operated so that the braking force is not released even if the driver of the vehicle releases the brake pedal. The operation support such as stopping the host vehicle is performed.
そして、このようにして走行支援を行ったならばステップS8に移行し、自車両の位置情報、走行速度、ブレーキペダルの操作状況及びアクセルペダルの操作状況等を含む自車両の走行情報を生成し、これを、車々間無線機5を介して他車両に送信する。 Note that the operation of the alarm buzzer or the brake actuator is determined by, for example, reaching time TTC for each detected object until the detected object reaches the host vehicle (= distance of the detected object to the host vehicle / moving speed of the detected object). When the arrival time TTC until the detected object reaches the host vehicle is less than or equal to a predetermined time and the driver releases the brake pedal for the detected object with the shortest arrival time until reaching the host vehicle Operate.
If the driving support is performed in this way, the process proceeds to step S8, where the driving information of the host vehicle including the position information of the host vehicle, the driving speed, the operating status of the brake pedal, the operating status of the accelerator pedal, and the like is generated. This is transmitted to other vehicles via the inter-vehicle radio 5.
図1に示す車両用情報提供装置100を備えた車両Aでは、障害物センサ3によって自車両前方の障害物を検知しその位置情報等を検出する。また、路車間無線機4では、例えば図2に示すように交差点等、走行路側に配設されたインフラ設備との通信可能な領域に達すると、基準ビーコン31からの情報ビーコン32からの情報を獲得するための周波数情報等に応じて周波数を変更し、情報ビーコン32からインフラ設備で検出している車両Aの対向車線を走行する、交差点に接近する接近車両の走行情報等を獲得する。 Next, the operation of the first embodiment will be described.
In the vehicle A provided with the vehicle information providing apparatus 100 shown in FIG. 1, the obstacle sensor 3 detects an obstacle ahead of the host vehicle and detects its position information and the like. In addition, when the road-to-vehicle wireless device 4 reaches an area where it can communicate with an infrastructure facility arranged on the roadside, such as an intersection, as shown in FIG. 2, the information from the information beacon 32 from the reference beacon 31 is displayed. The frequency is changed according to the frequency information for acquisition, etc., and the travel information of the approaching vehicle that travels on the opposite lane of the vehicle A detected by the infrastructure equipment from the information beacon 32 and approaches the intersection is acquired.
そして、情報提供コントローラ10では、図4に示す演算処理を所定周期で実行し、自車両の走行速度やブレーキ液圧、アクセル開度等を自車両状態計測部1から獲得し、自車両の走行状態を把握すると共に(ステップS1)、ナビゲーションシステム2から自車両の現在位置を獲得すると共に現在位置周辺の地図情報を獲得する(ステップS2)。そして、障害物センサ3、路車間無線機4、車々間無線機5により検出或いは獲得した自車両周辺の他車両の走行状態を把握し(ステップS3からステップS5)、これらに基づいてドライバに対する支援レベルを判定し(ステップS6)、これに応じた運転支援を行う(ステップS7)。また、車々間通信により送信する送信信号を生成しこれを車々間無線機5により他車両に送信する(ステップS8)。 In addition, the inter-vehicle wireless device 5 performs inter-vehicle communication with surrounding vehicles having a vehicle-to-vehicle communication function around the own vehicle, and provides traveling information such as the position and traveling speed of the surrounding vehicles and the operation status of the accelerator pedal and the brake pedal. Give and receive.
Then, the information providing controller 10 executes the arithmetic processing shown in FIG. 4 at a predetermined cycle, obtains the traveling speed, brake fluid pressure, accelerator opening, etc. of the host vehicle from the host vehicle state measuring unit 1 and travels the host vehicle. While grasping the state (step S1), the current position of the host vehicle is acquired from the navigation system 2 and map information around the current position is acquired (step S2). Then, the driving state of other vehicles around the own vehicle detected or acquired by the obstacle sensor 3, the road-to-vehicle radio 4, and the vehicle-to-vehicle radio 5 is grasped (step S3 to step S5), and the support level for the driver based on these. Is determined (step S6), and driving assistance corresponding to this is performed (step S7). Further, a transmission signal to be transmitted by inter-vehicle communication is generated and transmitted to another vehicle by the inter-vehicle radio 5 (step S8).
したがって、このように検出物体の存在率が高い場合には、知覚・認知支援、判断支援だけでなく、操作支援をも行うことによって、ドライバに対してより高レベルな運転支援を行うことができ、より有効な運転支援を行うことができる。 That is, since the reliability of the detection information of each of the detection means of the obstacle sensor 3, the road-to-vehicle radio 4 and the car-to-vehicle radio 5 is low, even if an object is detected, its presence rate is relatively low. When the same object is detected by all these detection means, the presence rate of the detected object can be regarded as high.
Therefore, when the presence rate of detected objects is high in this way, a higher level of driving assistance can be provided to the driver by providing not only perception / recognition assistance and judgment assistance but also operation assistance. More effective driving assistance can be performed.
また、上記第1の実施の形態においては、路車間協調システムとして、交差点での右折車両に対するサービスを行うようにした場合について説明したがこれに限るものではなく、例えば、T字路等において非優先道路から優先道路に進入する車両に対して、情報提供を行うようにした出会い頭発進支援サービス等、その他のサービスであっても適用することができる。 In the first embodiment, the case where the reliability and the total reliability are set as shown in the map of FIG. 9 has been described. However, the present invention is not limited to this, and the obstacle sensor 3 that is mounted. May be set arbitrarily according to the detection performance of the vehicle, the communication performance of the road-to-vehicle radio 4 or the inter-vehicle radio 5 and the like.
In the first embodiment, the case where the service for the right turn vehicle at the intersection is performed as the road-to-vehicle cooperation system has been described. However, the present invention is not limited to this. The present invention can also be applied to other services such as an encounter start support service that provides information to vehicles entering the priority road from the priority road.
この第2の実施の形態は、上記第1の実施の形態において、図4のステップS6での支援レベル判定処理の処理手順が異なること以外は同様であるので、同一部の詳細な説明は省略する。
図10は、第2の実施の形態における支援レベル判定処理の処理手順の一例を示すフローチャートである。
この第2の実施の形態における支援レベル判定処理では、図10に示すように、障害物センサデータ及び路車間通信データの座標変換を行った後、ステップS12からステップS13aに移行する。そして、上記第1の実施の形態における図6のステップS13と同様にして多重レベル及び信頼度の設定を行うが、このとき、障害物センサ3の信頼度を、道路形状に応じて設定する。 Next, a second embodiment of the present invention will be described.
The second embodiment is the same as the first embodiment except that the processing procedure of the support level determination process in step S6 of FIG. 4 is different, and thus detailed description of the same part is omitted. To do.
FIG. 10 is a flowchart illustrating an example of a processing procedure of support level determination processing according to the second embodiment.
In the support level determination process in the second embodiment, as shown in FIG. 10, after the coordinate conversion of the obstacle sensor data and the road-vehicle communication data is performed, the process proceeds from step S12 to step S13a. Then, the multilevel and reliability are set in the same manner as in step S13 of FIG. 6 in the first embodiment. At this time, the reliability of the obstacle sensor 3 is set according to the road shape.
例えば、自車両前方の道路形状がT字路であって、他車両が前方からではなく、左右方向から接近する道路形状であり、障害物センサ3で接近車両を検出することが困難な場合、すなわち、障害物センサ3での検出情報の信頼性が低い場合には、障害物センサ3の信頼度を、“3”から“0”に変更する。例えば、予め道路形状に応じて障害物センサ3の信頼度を設定しておき、図2に示すように、自車両に前方から接近する車両を検知する必要のある交差点等の場合には、障害物センサ3の信頼度は“3”に設定し、T字路の場合には、障害物センサ3の信頼度を“0”として設定する。そして、以後、上記第1の実施の形態と同様に処理を行う。 Therefore, a road shape that can be dealt with from the detectable range of the obstacle sensor 3 is set in advance, the road shape is determined based on information from the navigation system 2, and the reliability of the obstacle sensor 3 is changed according to the road shape. To do.
For example, when the road shape in front of the host vehicle is a T-shaped road and the other vehicle approaches from the left and right directions instead of from the front, and it is difficult to detect the approaching vehicle with the obstacle sensor 3, That is, when the reliability of the detection information at the obstacle sensor 3 is low, the reliability of the obstacle sensor 3 is changed from “3” to “0”. For example, the reliability of the obstacle sensor 3 is set in advance according to the road shape, and in the case of an intersection or the like where it is necessary to detect a vehicle approaching from the front as shown in FIG. The reliability of the object sensor 3 is set to “3”, and in the case of a T-junction, the reliability of the obstacle sensor 3 is set to “0”. Thereafter, processing is performed in the same manner as in the first embodiment.
なお、この第2の実施の形態においては、道路形状に応じて障害物センサ3の信頼度を変更するようにした場合について説明したが、これに限るものではない。 Thus, by changing the reliability of the obstacle sensor 3 according to the road shape that affects the reliability of the detection information of the obstacle sensor 3, the total reliability can be set more accurately, It is possible to provide accurate information according to changes in reliability due to road shapes.
In the second embodiment, the case where the reliability of the obstacle sensor 3 is changed according to the road shape has been described. However, the present invention is not limited to this.
まず、前記図8で前記式(12)を用いて説明した場合と同様の手順で、交差点中心のノードN04とその次に位置する対向車線側のノードN05とのノード間を結ぶ直線L1の方程式Y=Aroad・X+Broadを求める。
次に、前記(5)式を用いて自車両の進行方向を表す直線L2の方程式Y=Avhcl・X+Bvhclを求める。 The angle of the host vehicle with respect to the oncoming lane is calculated according to the following procedure.
First, the equation of the straight line L1 that connects between the node N04 at the center of the intersection and the node N05 on the opposite lane side positioned next to the node N04 in the same procedure as that described with reference to the equation (12) in FIG. Y = Aroad · X + Broad is calculated.
Next, an equation Y = Avhcl · X + Bvhcl of the straight line L2 representing the traveling direction of the host vehicle is obtained using the equation (5).
θvh=tan-1(Aroad)−tan-1(Avhcl) ……(15) Since the inclination of the straight line L1 with respect to the X axis is Aroad, the angle θload with respect to the X axis can be represented by tan −1 (Aroad). Further, since the inclination of the straight line L2 with respect to the X axis is Avhcl, the angle θvhcl with the X axis is tan −1 (Avhcl), so the angle θvh formed by the straight line L1 and the straight line L2 is expressed by the following equation (15). be able to.
θvh = tan −1 (Aroad) −tan −1 (Avhcl) (15)
例えば、車々間通信の場合、車々間通信機能を搭載した車両は年々増加すると期待することができることから、時間の経過、すなわち、車々間通信機能を搭載した車両の増加に応じて、信頼度が高くなるようにしてもよい。また、普段の走行シーンで、車々間通信機能を搭載した車両との遭遇度合に応じて変更するようにしてもよい。この場合、例えば、自車両が所定距離(例えば1〔km〕)走行する間に車々間通信を行った車々間通信先の車両の数を計測し、遭遇した車々間通信機能を搭載した車両数が大きいときほど信頼度を高くするようにすればよい。 Moreover, in the said 2nd Embodiment, although the case where the reliability of the obstacle sensor 3 was changed was demonstrated, you may make it also change the reliability also about vehicle-to-vehicle communication and road-to-vehicle communication. .
For example, if the inter-vehicle communication, since it is possible to expect that the vehicle equipped with the inter-vehicle communication function increases year by year, over time, i.e., according to an increase of a vehicle equipped with a vehicle-to-vehicle communication function, high reliability It may be made to become. Moreover, you may make it change according to the encounter degree with the vehicle carrying the inter-vehicle communication function in the usual driving | running | working scene. In this case, for example, when the number of vehicles with which the vehicle-to-vehicle communication is performed while the vehicle is traveling a predetermined distance (for example, 1 [km]) and the vehicle-to-vehicle communication function encountered is large The higher the reliability, the better.
また、例えば、障害物センサ3として、カメラ等の撮像手段を用いている場合には、夜間は、撮像手段による障害物の検出精度が低下することから、夜間の障害物センサ3の信頼度を低下させる構成としてもよい。 Further, for example, in a road-to-vehicle cooperation system, when the vehicle detection sensor 23 arranged on the traveling road side is configured by a laser radar, or when a laser radar is used as the obstacle sensor 3, Since the detection accuracy of the laser radar changes in fine weather, the reliability of the road-to-vehicle communication and the obstacle sensor 3 may be changed according to the weather. In this case, for example, when the wiper signal of the host vehicle is detected and the wiper is operating, it is rainy and the detection accuracy of the laser radar may be reduced. It is good also as a structure which reduces the reliability of the sensor 3. FIG.
Further, for example, when an imaging unit such as a camera is used as the obstacle sensor 3, the obstacle detection accuracy by the imaging unit is reduced at night, so the reliability of the obstacle sensor 3 at night is increased. It is good also as a structure to reduce.
この第3の実施の形態は、上記第1の実施の形態において、図4の演算処理の処理手順が異なること以外は、同様であるので同一部の詳細な説明は省略する。
図13は、第3の実施の形態において、情報提供コントローラ10で実行される演算処理の処理手順の一例を示すフローチャートである。
図13に示すように、ステップS1からステップS5の処理は上記第1の実施の形態と同様であって、自車両の走行状態や現在位置、障害物センサ3、路車間通信、車々間通信による検出情報を読み込む。そして、ステップS5aに移行する。 Next, a third embodiment of the present invention will be described.
Since the third embodiment is the same as the first embodiment except that the processing procedure of the arithmetic processing in FIG. 4 is different, detailed description of the same part is omitted.
FIG. 13 is a flowchart illustrating an example of a processing procedure of arithmetic processing executed by the information providing controller 10 in the third embodiment.
As shown in FIG. 13, the processing from step S1 to step S5 is the same as that in the first embodiment, and is detected by the traveling state and current position of the host vehicle, the obstacle sensor 3, road-to-vehicle communication, and vehicle-to-vehicle communication. Read information. Then, the process proceeds to step S5a.
ここで、車々間通信で得られる他車両情報として、高精度な走行速度の他、ドライバのブレーキペダル或いはアクセルペダル等の操作情報も獲得することができる。
このため、一旦、他車両と車々間通信が成立してからその後途切れた場合には、ドライバの操作情報や高精度な走行速度情報に基づき、加速度を推定し、これと走行速度とから現在の走行速度を推測することで、他の検出手段に比較してより長い時間他車両の補間を行うことができる。 In step S5a, an interpolation process is performed.
Here, as other vehicle information obtained by inter-vehicle communication, operation information such as a driver's brake pedal or accelerator pedal can be acquired in addition to high-accuracy traveling speed.
For this reason, once the inter-vehicle communication with the other vehicle is established and then interrupted, the acceleration is estimated based on the driver's operation information and high-accuracy travel speed information, and the current travel speed is calculated from this and the travel speed. By estimating the speed, it is possible to interpolate other vehicles for a longer time than other detection means.
そして、このようにして、補間処理を行ったならば、ステップS5aからステップS6に移行し、障害物センサ3で検出した検出情報、車々間通信により獲得した検出情報又はステップS5aで補間した補間情報、路車間通信により獲得した接近車両情報を用いて、以後、上記第1の実施の形態と同様に処理を行う。 In addition, the elapsed time from the start of interpolation (interpolation time) is measured, and when the elapsed time from the start of interpolation exceeds a preset threshold value, no interpolation processing is performed thereafter. Processing is performed on the assumption that the inter-vehicle communication has ended.
If the interpolation process is performed in this way, the process proceeds from step S5a to step S6, the detection information detected by the obstacle sensor 3, the detection information acquired by the inter-vehicle communication, or the interpolation information interpolated in step S5a, Thereafter, processing is performed in the same manner as in the first embodiment using approaching vehicle information acquired by road-to-vehicle communication.
なお、上記各実施の形態においては、車々間通信によって車々間通信先の車両の走行情報を獲得するようにした場合について説明したが、必ずしも他車両と直接通信を行うようにした場合に限るものではなく、例えば、他車両の情報を道路側に設けた中継手段等で中継し、中継手段を介して他車両の情報を獲得するようにしてもよい。 In addition, the interpolation time for the inter-vehicle communication, the road-to-vehicle communication, and the detection information of the obstacle sensor 3 is set to be longer as the driving support level is smaller, and even if information is provided based on the interpolated information. The smaller the possibility of giving the information, the longer the information provision may be continued. In this case, the robustness can be improved.
In each of the above-described embodiments, the case where the travel information of the vehicle that is the vehicle-to-vehicle communication destination is acquired by the vehicle-to-vehicle communication has been described. However, the present invention is not necessarily limited to the case where communication is directly performed with another vehicle. For example, the information on the other vehicle may be relayed by a relay unit provided on the road side, and the information on the other vehicle may be acquired via the relay unit.
また、図13のステップS5aの処理で、車々間通信が正常に行われた場合に、車々間通信による検出情報を所定の記憶領域に格納する処理が、周辺車両情報保持手段に対応し、車々間通信が正常に行われていない場合に、前記記憶領域に格納された検出情報に基づいて、車々間通信先の車両の位置や走行速度等を補間する処理が走行状況補間手段に対応している。 Further, in the process of step S13a in FIG. 10, the process of setting the reliability of the obstacle sensor 3 according to the road shape corresponds to the detection performance estimating means and the reliability setting means.
Further, when the vehicle-to-vehicle communication is normally performed in the process of step S5a of FIG. 13, the process of storing the detection information by the vehicle-to-vehicle communication in a predetermined storage area corresponds to the surrounding vehicle information holding means, and the vehicle-to-vehicle communication is performed. If not normally performed, a process for interpolating the position of the vehicle to be communicated between vehicles and the traveling speed based on the detection information stored in the storage area corresponds to the traveling state interpolation means.
2 ナビゲーションシステム
3 障害物センサ
4 路車間無線機
5 車々間無線機
10 情報提供コントローラ
21 情報提示部
22 警報ブザー
23 ブレーキ制御部
24 ブレーキアクチュエータ
100 車両表情報提供装置 DESCRIPTION OF SYMBOLS 1 Own vehicle state measurement part 2 Navigation system 3 Obstacle sensor 4 Road-to-vehicle radio 5 Inter-vehicle radio 10 Information providing controller 21 Information presentation part 22 Alarm buzzer 23 Brake control part 24 Brake actuator 100 Vehicle table information provision apparatus
Claims (11)
- 自車両に搭載され自車両の周辺車両の走行状況を検出する自律型検出手段と、
自車両の周辺車両の走行状況を、通信手段を介して外部から獲得する周辺車両情報獲得手段と、
前記自律型検出手段及び前記周辺車両情報獲得手段で獲得した周辺車両の走行状況に基づき、前記周辺車両の存在率を算出する存在率算出手段と、
当該存在率算出手段で算出した存在率に応じて、自車両のドライバに対して運転支援を行う際の支援レベルを設定する支援レベル設定手段と、
当該支援レベル設定手段で設定した支援レベルに応じた運転支援を行う運転支援手段と、を備え、
前記存在率算出手段は、一の周辺車両に対する前記存在率を、前記自律型検出手段及び前記周辺車両情報獲得手段のうち前記一の周辺車両の存在を把握している手段の数と、前記一の周辺車両の存在を把握している手段に対して予め設定した信頼度とに基づいて算出し、
前記存在率は、前記一の周辺車両の存在を把握している手段の数が多いときほど高く、且つ前記一の周辺車両の存在を把握している手段の数が同数のときには、前記一の周辺車両の存在を把握している手段に対して予め設定した信頼度の和が大きいときほど高くなるように算出されることを特徴とする車両用情報提供装置。 Autonomous detection means that is mounted on the host vehicle and detects the running conditions of the surrounding vehicles of the host vehicle;
Surrounding vehicle information acquisition means for acquiring the running status of surrounding vehicles of the host vehicle from the outside via communication means;
An abundance ratio calculating means for calculating an abundance ratio of the surrounding vehicles based on a driving situation of the surrounding vehicles acquired by the autonomous detection means and the surrounding vehicle information acquisition means;
A support level setting means for setting a support level when performing driving support for the driver of the host vehicle according to the presence ratio calculated by the presence ratio calculation means;
Driving support means for performing driving support according to the support level set by the support level setting means ,
The existence ratio calculating means is configured to determine the existence ratio for one neighboring vehicle, the number of means for grasping the existence of the one neighboring vehicle among the autonomous detection means and the neighboring vehicle information obtaining means, and the one Based on the reliability set in advance for the means for grasping the existence of the surrounding vehicle of
The presence rate is higher as the number of means grasping the presence of the one surrounding vehicle is higher, and when the number of means grasping the existence of the one surrounding vehicle is the same, An information providing device for a vehicle, characterized in that it is calculated so as to increase as the sum of the reliability set in advance with respect to the means for grasping the presence of a surrounding vehicle increases . - 前記支援レベル設定手段は、前記存在率算出手段で算出した周辺車両の存在率が高いときほどより高度な支援を行う支援レベルとなるように、前記支援レベルを設定することを特徴とする請求項1記載の車両用情報提供装置。 The support level setting unit sets the support level such that the higher the support rate of the surrounding vehicle calculated by the presence rate calculation unit, the higher the support level for performing higher support. 1 vehicle information providing device as claimed.
- 前記運転支援手段は、ドライバの知覚及び認知を支援する知覚・認知支援手段、ドライバの判断を支援する判断支援手段、及びドライバの操作を支援する操作支援手段のうちの少なくとも2つ以上を備え、
前記知覚・認知支援手段、判断支援手段、操作支援手段の順に、その支援レベルが高いことを特徴とする請求項1又は請求項2記載の車両用情報提供装置。 The driving support means includes at least two of perception / recognition support means for supporting driver perception and recognition, determination support means for supporting driver judgment, and operation support means for supporting driver operation,
The perception and recognition support means, decision support means, in the order of the operation support unit, vehicle information providing device according to claim 1 or claim 2, wherein that the support level is high. - 前記自律型検出手段及び前記周辺車両情報獲得手段の少なくとも何れか一方の、現時点における、前記周辺車両の検出性能を推定する検出性能推定手段と、
当該検出性能推定手段でその検出性能を推定した前記自律型検出手段及び前記周辺車両情報獲得手段の少なくとも何れか一方について、その信頼度を、前記検出性能推定手段で推定した検出性能に基づいて設定する信頼度設定手段と、を備えることを特徴とする請求項1から請求項3の何れか1項に記載の車両用情報提供装置。 At least one of the autonomous detection means and the surrounding vehicle information acquisition means, at present, detection performance estimation means for estimating the detection performance of the surrounding vehicle;
The reliability is set based on the detection performance estimated by the detection performance estimation means for at least one of the autonomous detection means and the surrounding vehicle information acquisition means whose detection performance is estimated by the detection performance estimation means The vehicle information providing device according to any one of claims 1 to 3 , further comprising: a reliability setting unit configured to perform the reliability setting. - 前記検出性能推定手段は、前記自律型検出手段の検出可能範囲、自車両の走行路の道路形状、前方走行路に対する自車両の向き、天候、周囲の明るさの少なくとも何れか1つを検出し、これに基づいて前記自律型検出手段の検出性能を推定することを特徴とする請求項4記載の車両用情報提供装置。 The detection performance estimation means detects at least one of a detectable range of the autonomous detection means, a road shape of the traveling road of the own vehicle, a direction of the own vehicle with respect to a forward traveling road, weather, and ambient brightness. The vehicle information providing apparatus according to claim 4, wherein the detection performance of the autonomous detection means is estimated based on this .
- 前記検出性能推定手段は、前記周辺車両情報獲得手段に対して情報提供を行う情報提供元との遭遇度合を検出し、当該遭遇度合が高いときほど前記周辺車両情報獲得手段の検出性能が高いと推定することを特徴とする請求項4又は請求項5記載の車両用情報提供装置。 The detection performance estimation means detects the degree of encounter with an information provider that provides information to the surrounding vehicle information acquisition means, and the higher the encounter degree is, the higher the detection performance of the surrounding vehicle information acquisition means is 6. The vehicle information providing apparatus according to claim 4 or 5 , wherein the information providing apparatus is estimated.
- 前記周辺車両情報獲得手段は、走行路側に設置された車両検出手段で検出した少なくとも位置情報を含む接近車両情報を獲得する路車間通信手段と、周辺車両との間で車々間通信を行い前記周辺車両の少なくとも位置情報を含む車両状態情報を獲得する車々間通信手段と、の少なくとも何れか一方を備えることを特徴とする請求項1から請求項6の何れか1項に記載の車両用情報提供装置。 The surrounding vehicle information acquisition means performs vehicle-to-vehicle communication between the road-to-vehicle communication means for acquiring approaching vehicle information including at least position information detected by the vehicle detection means installed on the traveling road side, and the surrounding vehicle. vehicle information providing device according to any one of claims 6 and the car-to-car communication means, for in that it comprises at least one of claims 1, wherein to acquire vehicle status information including at least positional information.
- 前記自律型検出手段で検出した周辺車両の走行状況及び前記周辺車両情報獲得手段で獲得した周辺車両の走行状況の少なくとも何れか一方を保持する周辺車両情報保持手段と、
当該周辺車両情報保持手段で前記周辺車両の走行状況を保持している前記自律型検出手段又は前記周辺車両情報保持手段で走行状況の検出又は獲得が不可となったとき、前記周辺車両情報保持手段で保持する前記走行状況の検出又は獲得が不可となる直前に、前記自律型検出手段又は前記周辺車両情報獲得手段で検出又は獲得した周辺車両の走行状況に基づいて周辺車両の現在の走行状況を、予め設定した補間時間の間、補間し、これを走行状況の検出又は獲得が不可となった自律型検出手段又は周辺車両情報獲得手段で検出又は獲得した周辺車両の走行状況とする走行状況補間手段と、を備えることを特徴とする請求項1から請求項7の何れか1項に記載の車両用情報提供装置。 Surrounding vehicle information holding means for holding at least one of the driving situation of the surrounding vehicle detected by the autonomous detection means and the driving situation of the surrounding vehicle acquired by the surrounding vehicle information acquisition means;
The surrounding vehicle information holding means when the autonomous detecting means holding the driving situation of the surrounding vehicle by the surrounding vehicle information holding means or the detection or acquisition of the driving situation becomes impossible by the surrounding vehicle information holding means. Just before the detection or acquisition of the traveling condition of holding becomes impossible in the current driving situation around the vehicle based on the traveling situation surrounding the vehicle detected or acquired by the autonomous detection means or the peripheral vehicle information acquiring means , Interpolated for a preset interpolation time, and this is used as a driving situation interpolation of the surrounding vehicle detected or acquired by the autonomous detection means or the surrounding vehicle information acquisition means that cannot detect or acquire the driving situation vehicle information providing device according to claim 1 to any one of claims 7, characterized in that it comprises a means. - 前記周辺車両情報獲得手段は、前記補間時間を設定する補間時間設定手段を備え、
当該補間時間設定手段は、前記支援レベルが低いときほど前記補間時間が長くなるように当該補間時間を設定することを特徴とする請求項8記載の車両用情報提供装置。 The surrounding vehicle information acquisition means includes interpolation time setting means for setting the interpolation time,
9. The vehicle information providing apparatus according to claim 8 , wherein the interpolation time setting means sets the interpolation time so that the interpolation time becomes longer as the support level is lower. - 自車両に搭載され自車両の周辺車両の走行状況を検出する自律型検出手段と、
自車両の周辺車両の走行状況を、通信手段を介して外部から獲得する周辺車両情報獲得手段と、
前記自律型検出手段及び前記周辺車両情報獲得手段で獲得した周辺車両の走行状況に基づき、前記周辺車両の存在率を算出する存在率算出手段と、
当該存在率算出手段で算出した存在率に応じて、自車両のドライバに対して運転支援を行う際の支援レベルを設定する支援レベル設定手段と、
当該支援レベル設定手段で設定した支援レベルに応じた運転支援を行う運転支援手段と、
前記自律型検出手段で検出した周辺車両の走行状況及び前記周辺車両情報獲得手段で獲得した周辺車両の走行状況の少なくとも何れか一方を保持する周辺車両情報保持手段と、
当該周辺車両情報保持手段で前記周辺車両の走行状況を保持している前記自律型検出手段又は前記周辺車両情報保持手段で走行状況の検出又は獲得が不可となったとき、前記周辺車両情報保持手段で保持する前記走行状況の検出又は獲得が不可となる直前に、自律型検出手段又は周辺車両情報獲得手段で検出又は獲得した周辺車両の走行状況に基づいて周辺車両の現在の走行状況を、予め設定した補間時間の間、補間し、これを走行状況の検出又は獲得が不可となった自律型検出手段又は周辺車両情報獲得手段で検出又は獲得した周辺車両の走行状況とする走行状況補間手段と、を備え、
前記周辺車両情報獲得手段は、前記補間時間を設定する補間時間設定手段を備え、
当該補間時間設定手段は、前記支援レベルが低いときほど前記補間時間が長くなるように当該補間時間を設定することを特徴とする車両用情報提供装置。 Autonomous detection means that is mounted on the host vehicle and detects the running conditions of the surrounding vehicles of the host vehicle;
Surrounding vehicle information acquisition means for acquiring the running status of surrounding vehicles of the host vehicle from the outside via communication means;
An abundance ratio calculating means for calculating an abundance ratio of the surrounding vehicles based on a driving situation of the surrounding vehicles acquired by the autonomous detection means and the surrounding vehicle information acquisition means;
A support level setting means for setting a support level when performing driving support for the driver of the host vehicle according to the presence ratio calculated by the presence ratio calculation means;
Driving support means for performing driving support according to the support level set by the support level setting means;
Surrounding vehicle information holding means for holding at least one of the driving situation of the surrounding vehicle detected by the autonomous detection means and the driving situation of the surrounding vehicle acquired by the surrounding vehicle information acquisition means;
The surrounding vehicle information holding means when the autonomous detecting means holding the driving situation of the surrounding vehicle by the surrounding vehicle information holding means or the detection or acquisition of the driving situation becomes impossible by the surrounding vehicle information holding means. Immediately before the detection or acquisition of the driving situation held by the vehicle becomes impossible, the current driving situation of the surrounding vehicle based on the driving situation of the surrounding vehicle detected or acquired by the autonomous detection means or the surrounding vehicle information acquisition means Interpolated during the set interpolation time, and this is a travel situation interpolation means for making the travel situation of the surrounding vehicle detected or acquired by the autonomous detection means or the surrounding vehicle information acquisition means in which detection or acquisition of the travel situation is impossible With
The surrounding vehicle information acquisition means includes interpolation time setting means for setting the interpolation time,
The vehicle information providing apparatus, wherein the interpolation time setting means sets the interpolation time so that the interpolation time becomes longer as the support level is lower. - 前記周辺車両情報獲得手段は、周辺車両との間で車々間通信を行い前記周辺車両の少なくとも位置情報を含む車両状態情報を獲得する車々間通信手段と、走行路側に設置された車両検知手段で検知した少なくとも位置情報を含む接近車両情報を獲得する路車間通信手段と、を備え、
前記補間時間設定手段は、前記車々間通信手段による獲得情報に基づき前記補間を行う際の補間時間を、前記路車間通信手段による獲得情報又は前記自律型検出手段での検出情報に基づき前記補間を行う際の補間時間に比較してより長い時間に設定することを特徴とする請求項9又は請求項10記載の車両用情報提供装置。 The surrounding vehicle information acquisition means is detected by an inter-vehicle communication means for performing vehicle-to-vehicle communication with a surrounding vehicle and acquiring vehicle state information including at least position information of the surrounding vehicle, and a vehicle detection means installed on the traveling road side. Road-to-vehicle communication means for acquiring approaching vehicle information including at least position information,
The interpolation time setting means performs the interpolation based on the acquisition information obtained by the road-to-vehicle communication means or the detection information obtained by the autonomous detection means, based on the information obtained by the vehicle-to-vehicle communication means. 11. The vehicle information providing apparatus according to claim 9, wherein the time is set to be longer than the interpolation time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005293A JP4483589B2 (en) | 2005-01-12 | 2005-01-12 | Vehicle information providing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005293A JP4483589B2 (en) | 2005-01-12 | 2005-01-12 | Vehicle information providing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006195641A JP2006195641A (en) | 2006-07-27 |
JP4483589B2 true JP4483589B2 (en) | 2010-06-16 |
Family
ID=36801696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005005293A Expired - Fee Related JP4483589B2 (en) | 2005-01-12 | 2005-01-12 | Vehicle information providing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4483589B2 (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4752669B2 (en) * | 2006-08-16 | 2011-08-17 | トヨタ自動車株式会社 | Vehicle identification device, position calculation device |
JP4650899B2 (en) * | 2006-10-13 | 2011-03-16 | 三菱電機株式会社 | In-vehicle system providing safety support information |
JP5082379B2 (en) * | 2006-10-25 | 2012-11-28 | 住友電気工業株式会社 | Safe driving support system and method, vehicle and vehicle-mounted device used therefor |
JP4905075B2 (en) * | 2006-11-14 | 2012-03-28 | 株式会社デンソー | Communication device used for inter-vehicle communication, and program thereof |
JP5082426B2 (en) * | 2006-12-21 | 2012-11-28 | トヨタ自動車株式会社 | Information providing apparatus and information providing system |
JP4840193B2 (en) * | 2007-01-15 | 2011-12-21 | 三菱電機株式会社 | Information provision judgment device |
JP4935421B2 (en) * | 2007-02-27 | 2012-05-23 | トヨタ自動車株式会社 | Driving assistance device |
JP4434224B2 (en) | 2007-03-27 | 2010-03-17 | 株式会社デンソー | In-vehicle device for driving support |
JP4566214B2 (en) * | 2007-05-07 | 2010-10-20 | 三菱電機株式会社 | Intersection safe driving support system |
JP4949198B2 (en) * | 2007-10-29 | 2012-06-06 | 三菱ふそうトラック・バス株式会社 | Device for detecting an object to be monitored in a vehicle collision damage reducing device |
JP4737238B2 (en) * | 2008-06-20 | 2011-07-27 | トヨタ自動車株式会社 | Driving assistance device |
JP4737239B2 (en) * | 2008-06-20 | 2011-07-27 | トヨタ自動車株式会社 | Driving assistance device |
US8401736B2 (en) | 2008-06-20 | 2013-03-19 | Toyota Jidosha Kabushiki Kaisha | Driving assistance apparatus and driving assistance method |
JP2010055333A (en) * | 2008-08-28 | 2010-03-11 | Bosch Corp | Safe driving support system |
JP4954960B2 (en) * | 2008-10-03 | 2012-06-20 | 本田技研工業株式会社 | Vehicle alarm device |
JP5365339B2 (en) * | 2008-12-22 | 2013-12-11 | 日産自動車株式会社 | Vehicle obstacle avoidance support apparatus and vehicle obstacle avoidance support method |
CN102334150B (en) * | 2009-02-27 | 2014-05-28 | 丰田自动车株式会社 | Road-installed driving supporting device, vehicle-mounted driving supporting device, and driving supporting system |
JP4939564B2 (en) * | 2009-03-23 | 2012-05-30 | 本田技研工業株式会社 | Vehicle information providing device |
US8155868B1 (en) | 2009-03-31 | 2012-04-10 | Toyota Infotechnology Center Co., Ltd. | Managing vehicle efficiency |
JP5287464B2 (en) * | 2009-04-21 | 2013-09-11 | トヨタ自動車株式会社 | Driving support system |
JP4659899B2 (en) * | 2009-09-09 | 2011-03-30 | 三菱電機株式会社 | Intersection safe driving support system |
JP2009289289A (en) * | 2009-09-09 | 2009-12-10 | Mitsubishi Electric Corp | Intersection safe traveling support system |
JP5240138B2 (en) * | 2009-09-10 | 2013-07-17 | トヨタ自動車株式会社 | Driving assistance device |
JP5469419B2 (en) * | 2009-09-28 | 2014-04-16 | 富士重工業株式会社 | Driving assistance device |
JP5453048B2 (en) | 2009-10-22 | 2014-03-26 | 富士重工業株式会社 | Vehicle driving support control device |
JP5613398B2 (en) * | 2009-10-29 | 2014-10-22 | 富士重工業株式会社 | Intersection driving support device |
JP5545109B2 (en) * | 2010-08-05 | 2014-07-09 | アイシン・エィ・ダブリュ株式会社 | Driving support device, information distribution device, driving support method, information distribution method, and computer program |
JP5289397B2 (en) * | 2010-08-26 | 2013-09-11 | 三菱電機株式会社 | Driving support system |
JP5206752B2 (en) | 2010-08-30 | 2013-06-12 | 株式会社デンソー | Driving environment recognition device |
JP5494411B2 (en) * | 2010-10-22 | 2014-05-14 | 株式会社デンソー | Driving support device |
JP5664129B2 (en) * | 2010-10-29 | 2015-02-04 | 住友電気工業株式会社 | Vehicle position information output device and roadside device provided with the device |
WO2012059973A1 (en) * | 2010-11-01 | 2012-05-10 | 株式会社日立製作所 | Onboard device and control method |
WO2012077204A1 (en) * | 2010-12-08 | 2012-06-14 | トヨタ自動車 株式会社 | Driving assistance device |
JP2012212271A (en) * | 2011-03-31 | 2012-11-01 | Toyota Motor Corp | Driving support device |
JP5901165B2 (en) * | 2011-07-14 | 2016-04-06 | 三菱重工業株式会社 | Position notification device, vehicle position notification method, vehicle-mounted device, vehicle position calculation method and program, and vehicle position calculation system |
JP5888113B2 (en) * | 2012-05-23 | 2016-03-16 | 株式会社デンソー | Vehicle driving support device |
JP2014191485A (en) * | 2013-03-26 | 2014-10-06 | Sharp Corp | Obstacle detection device and electrically-driven vehicle with the same |
EP2854118B1 (en) | 2013-09-25 | 2018-07-04 | Alcatel Lucent | Vehicle messaging |
JP6229882B2 (en) * | 2013-11-15 | 2017-11-15 | マツダ株式会社 | Inter-vehicle communication device |
JP6440115B2 (en) * | 2014-03-06 | 2018-12-19 | パナソニックIpマネジメント株式会社 | Display control apparatus, display control method, and display control program |
JP6493422B2 (en) | 2016-02-10 | 2019-04-03 | 株式会社デンソー | Driving support device |
JP6465127B2 (en) * | 2016-02-10 | 2019-02-06 | 株式会社デンソー | Driving support device |
WO2017138659A1 (en) * | 2016-02-10 | 2017-08-17 | 株式会社デンソー | Drive assistance device |
WO2017138658A1 (en) * | 2016-02-10 | 2017-08-17 | 株式会社デンソー | Drive assistance device |
JP6520780B2 (en) * | 2016-03-18 | 2019-05-29 | 株式会社デンソー | Vehicle equipment |
KR20180061686A (en) | 2016-11-30 | 2018-06-08 | 삼성전자주식회사 | Method and apparatus for generating autonomous driving route |
JP2019139281A (en) * | 2018-02-06 | 2019-08-22 | 日立オートモティブシステムズ株式会社 | On-vehicle electronic control device |
JP2020034366A (en) * | 2018-08-29 | 2020-03-05 | クラリオン株式会社 | Onboard processing device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475543B2 (en) * | 1995-02-02 | 2003-12-08 | マツダ株式会社 | Car driving control device |
JP4523095B2 (en) * | 1999-10-21 | 2010-08-11 | 富士通テン株式会社 | Information processing apparatus, information integration apparatus, and information processing method |
JP2002316601A (en) * | 2001-04-19 | 2002-10-29 | Mitsubishi Motors Corp | Drive support device |
-
2005
- 2005-01-12 JP JP2005005293A patent/JP4483589B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006195641A (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101901024B1 (en) | Map update determination system | |
US9914463B2 (en) | Autonomous driving device | |
US10081357B2 (en) | Vehicular communications network and methods of use and manufacture thereof | |
US9582004B2 (en) | Apparatus and method for prediction of time available for autonomous driving, in a vehicle having autonomous driving capabilities | |
EP3088280B1 (en) | Autonomous driving vehicle system | |
CN108834434B (en) | Method and apparatus for initiating or executing a coordinated driving maneuver | |
EP3021305B1 (en) | Alerting apparatus | |
CN104417561B (en) | Context aware threat-response judges | |
US10437257B2 (en) | Autonomous driving system | |
CN106064626B (en) | Controlling device for vehicle running | |
US9902398B2 (en) | Driving control device | |
US10331139B2 (en) | Navigation device for autonomously driving vehicle | |
US9802613B2 (en) | Driver assistance system for motor vehicles | |
JP5979259B2 (en) | Collision avoidance control device | |
US10176715B2 (en) | Navigation system with dynamic mapping mechanism and method of operation thereof | |
US9483059B2 (en) | Method to gain driver's attention for autonomous vehicle | |
US20160335892A1 (en) | System for Avoiding Collision with Multiple Moving Bodies | |
EP2333742B1 (en) | Vehicle support systems for pedestrians to cross roads and support methods for pedestrians to cross roads | |
JP6443545B2 (en) | Parking lot mapping system | |
JP6763901B2 (en) | Electronic control units, vehicles, and methods for switching vehicle control from autonomous driving mode | |
EP1862989B1 (en) | Image forming system | |
CN102815300B (en) | Cruise control apparatus and control method thereof | |
JP3969251B2 (en) | Vehicle driving assistance device | |
CN102449672B (en) | Vehicular peripheral surveillance device | |
JP3766909B2 (en) | Driving environment recognition method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |