JP4483430B2 - Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same - Google Patents

Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same Download PDF

Info

Publication number
JP4483430B2
JP4483430B2 JP2004188738A JP2004188738A JP4483430B2 JP 4483430 B2 JP4483430 B2 JP 4483430B2 JP 2004188738 A JP2004188738 A JP 2004188738A JP 2004188738 A JP2004188738 A JP 2004188738A JP 4483430 B2 JP4483430 B2 JP 4483430B2
Authority
JP
Japan
Prior art keywords
gas bearing
bearing pad
cylindrical portion
static pressure
diameter cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004188738A
Other languages
Japanese (ja)
Other versions
JP2006009968A (en
Inventor
光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2004188738A priority Critical patent/JP4483430B2/en
Publication of JP2006009968A publication Critical patent/JP2006009968A/en
Application granted granted Critical
Publication of JP4483430B2 publication Critical patent/JP4483430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、可動体を固定体に対して移動自在に保持すベく可動体と固定体との間に介在させる静圧気体軸受パッドと、この静圧気体軸受パッドと可動体との間の隙間を調節する隙間調節部材との組み合わせ構造及びこれを用いた静圧気体軸受機構に関する。   The present invention relates to a static pressure gas bearing pad interposed between a movable body and a fixed body, which should hold the movable body movably with respect to the fixed body, and between the static pressure gas bearing pad and the movable body. The present invention relates to a combination structure with a gap adjusting member for adjusting a gap and a static pressure gas bearing mechanism using the same.

特開平8−28564号公報JP-A-8-28564 特開2000−199522号公報JP 2000-199522 A 特開2002−349569号公報Japanese Patent Application Laid-Open No. 2002-349569

静圧気体軸受、特に、多孔質金属焼結体を用いた多孔質静圧気体軸受は、すぐれた高速安定性と高い負荷容量並びに極めて小さい移動抵抗をもつ軸受として知られていると共にこれら優れた利点のために多くの分野に用いられている。斯かる静圧気体軸受を可動体と固定体との間にパッド形態(本発明ではパッド形態の静圧気体軸受を静圧気体軸受パッドという)をもって介在させる場合には、通常、可動体との間に微小の隙間、例えば5μm程度の隙間をもって静圧気体軸受パッドを配置する。   Hydrostatic gas bearings, especially porous hydrostatic gas bearings using porous metal sintered bodies, are known as bearings with excellent high-speed stability, high load capacity, and extremely low movement resistance, and these excellent It is used in many fields because of its advantages. When such a static pressure gas bearing is interposed between the movable body and the fixed body in a pad form (in the present invention, the pad-shaped static pressure gas bearing is referred to as a static pressure gas bearing pad), usually, A static pressure gas bearing pad is arranged with a minute gap between them, for example, a gap of about 5 μm.

この隙間は、軸受剛性、負荷能力及び速度特性に大きく影響を与えるために、可動体との間の隙間を調節できる隙間調節部材を介して静圧気体軸受パッドは可動体と固定体との間に介在されるのであるが、隙間調節部材は、通常、静圧気体軸受パッドが揺動(首振り)できるようにして、しかも、静圧気体軸受パッドから脱落しないようにその先端部で押え部材及びねじ等を介して静圧気体軸受パッドに連結される。   Since this gap greatly affects the bearing rigidity, load capacity and speed characteristics, the static pressure gas bearing pad is located between the movable body and the fixed body via a gap adjustment member that can adjust the gap between the movable body and the movable body. However, the clearance adjustment member usually allows the hydrostatic gas bearing pad to oscillate (swing) and, at the tip of the presser member, so that it does not fall off from the hydrostatic gas bearing pad. And a hydrostatic gas bearing pad via a screw or the like.

ところで、斯かる静圧気体軸受パッドと隙間調節部材との組み合わせ構造であると、ねじ等を用いるために、組立及び保守に時間が掛かり、コストアップの要因となる。   By the way, in the case of such a combined structure of the static pressure gas bearing pad and the gap adjusting member, since screws and the like are used, it takes time for assembly and maintenance, resulting in an increase in cost.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、ねじ等を用いないでも静圧気体軸受パッドに隙間調節部材を脱落しないように連結できて、而して、コスト低下を図り得る静圧気体軸受パッドと隙間調節部材との組み合わせ構造、それに最適な静圧気体軸受パッド及び隙間調節部材並びにそれを用いた静圧気体軸受機構を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to connect the static pressure gas bearing pad to the static pressure gas bearing pad so as not to drop off without using a screw or the like. Another object of the present invention is to provide a combined structure of a static pressure gas bearing pad and a gap adjusting member capable of reducing the cost, an optimum static pressure gas bearing pad and a gap adjusting member, and a static pressure gas bearing mechanism using the same.

可動体を固定体に対して移動自在に保持すベく可動体と固定体との間に介在させる静圧気体軸受パッドと、この静圧気体軸受パッドと可動体との間の隙間を調節する隙間調節部材との本発明の組み合わせ構造は、静圧気体軸受パッドに設けられていると共にリング装着溝を有する凹所と、リング装着溝に装着された拡径自在なリングと、隙間調節部材に設けられていると共に凹所を規定する静圧気体軸受パッドの凹所規定面から部分的に突出するリングを受容する受容溝とを具備している。   A static pressure gas bearing pad interposed between the movable body and the fixed body that holds the movable body relative to the fixed body, and a gap between the static pressure gas bearing pad and the movable body is adjusted. The combined structure of the present invention with a gap adjusting member is provided in a hydrostatic gas bearing pad and has a recess having a ring mounting groove, a ring having a diameter expandable mounted in the ring mounting groove, and a gap adjusting member. And a receiving groove for receiving a ring partially protruding from the recess defining surface of the hydrostatic gas bearing pad provided and defining the recess.

本発明の組み合わせ構造によれば、リング装着溝に装着された拡径自在なリングが部分的に受容溝に受容されているために、斯かるリングを介してねじ等を用いないでも静圧気体軸受パッドに隙間調節部材を脱落しないように連結でき、而して、コスト低下を図り得る。   According to the combination structure of the present invention, since the ring having an increased diameter mounted in the ring mounting groove is partially received in the receiving groove, the static pressure gas can be used without using a screw or the like through the ring. The gap adjusting member can be connected to the bearing pad so as not to drop off, and thus the cost can be reduced.

本発明において、凹所規定面は、円筒凹面と半球凹面又は円錐凹面とを具備しており、リング装着溝は、円筒凹面と半球凹面又は円錐凹面との間に設けられているとよく、また、隙間調節部材は、大径円柱部と、大径円柱部に一体的に連接されていると共に大径円柱部よりも小径の小径円柱部と、小径円柱部に一体的に連接されていると共に小径円柱部よりも大径の半球部とを具備しているとよく、この場合、受容溝は、大径円柱部と半球部との間に設けられているとよい。半球部としては、真円又はそれに近似の円からなる半円球部であっても、真楕円又はそれに近似の楕円からなる半楕円球部であってもよい。   In the present invention, the recess defining surface includes a cylindrical concave surface and a hemispherical concave surface or a conical concave surface, and the ring mounting groove may be provided between the cylindrical concave surface and the hemispherical concave surface or the conical concave surface. The gap adjusting member is integrally connected to the large-diameter cylindrical portion and the large-diameter cylindrical portion, and is integrally connected to the small-diameter cylindrical portion having a smaller diameter than the large-diameter cylindrical portion and the small-diameter cylindrical portion. It is preferable that a hemispherical portion having a larger diameter than the small-diameter cylindrical portion is provided. In this case, the receiving groove is preferably provided between the large-diameter cylindrical portion and the hemispherical portion. The hemispherical part may be a hemispherical part composed of a perfect circle or a circle approximate thereto, or a hemispherical part composed of a perfect ellipse or an ellipse approximated thereto.

本発明において好ましい例では、半球部の半球凸面は、凹所規定面の半球凹面又は円錐凹面に接触しており、凹所規定面が円筒凹面と半球凹面とを具備している場合、半球部の半球凸面は、凹所規定面の半球凹面の曲率と略同一の曲率又はそれよりも大きな曲率を有しているとよい。半球凸面及び半球凹面もまた、半球部と同様に、真円若しくはそれに近似の円又は真楕円若しくはそれに近似の楕円からなるものであってもよく、円錐凹面も同様である。   In a preferred example of the present invention, the hemispherical convex surface of the hemispherical portion is in contact with the concave or conical concave surface of the concave defining surface, and when the concave defining surface includes a cylindrical concave surface and a hemispherical concave surface, The hemispherical convex surface may have substantially the same curvature as the curvature of the concave hemispherical surface of the recess defining surface or a larger curvature. Similarly to the hemispherical portion, the hemispherical convex surface and the hemispherical concave surface may be formed of a perfect circle or a circle approximate thereto or a perfect ellipse or an ellipse approximate thereto, and the conical concave surface is also the same.

また本発明の好ましい例では、大径円柱部は、その外面にねじ部を有しており、このねじ部を介して固定体に螺合されるようになっており、半球部は、大径円柱部の径よりも小さな径を有しており、リング装着溝及び受容溝の夫々は環状であり、静圧気体軸受パッドは、可動体に対面する多孔面と、固定体に対面する無孔面とを有しており、凹所は、無孔面において開口しており、静圧気体軸受パッドは多孔質金属焼結層を具備しており、多孔質金属焼結層の一方の面が可動体に対面する多孔面となっており、リングは弾性Oリングからなる。   In a preferred example of the present invention, the large-diameter cylindrical portion has a threaded portion on the outer surface thereof, and is screwed to the fixed body via the threaded portion. The ring mounting groove and the receiving groove are each annular, and the static pressure gas bearing pad has a porous surface facing the movable body and a non-porous surface facing the fixed body. And the recess is open in a non-porous surface, the hydrostatic gas bearing pad has a porous metal sintered layer, and one surface of the porous metal sintered layer is It is a porous surface facing the movable body, and the ring is an elastic O-ring.

多孔質金属焼結層としては金属粉末と無機質粉末とを混合、焼結してなるものを好ましい一例として挙げることができ、ここで、金属粉末は、少なくとも錫、燐及び銅を含んでおり、更には、ニッケル及びマンガンのうちの少なくとも一方を含んでいるとよく、無機質粉末は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つを含んでいるとよいが、本発明はこれらに限定されない。   As the porous metal sintered layer, a metal powder and an inorganic powder mixed and sintered can be cited as a preferred example, where the metal powder contains at least tin, phosphorus and copper, Furthermore, it is preferable that at least one of nickel and manganese is included, and the inorganic powder includes at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Although it is good to include, this invention is not limited to these.

リングは上記のように弾性材料からなる弾性Oリングからなっていると好ましいが、本発明は、斯かるリングに限定されず、弾性的に拡径自在であって縮径自在であると共に剛性材料からなるEリング又はCリング等であってもよく、また、半球部の半球凸面は、凹所規定面の半球凹面に全体的に接触、好ましくは摺動自在に接触していてもよいが、これに代えて、部分的に凹所規定面の半球凹面に接触、好ましくは摺動自在に接触していてもよい。   The ring is preferably made of an elastic O-ring made of an elastic material as described above, but the present invention is not limited to such a ring, and is elastically expandable and contractible, and is a rigid material. The hemispherical convex surface of the hemispherical portion may be in contact with the hemispherical concave surface of the recess-defining surface as a whole, preferably in a slidable manner, Alternatively, it may partially contact the hemispherical concave surface of the recess defining surface, preferably slidably.

本発明によれば、ねじ等を用いないでも静圧気体軸受パッドに隙間調節部材を脱落しないように連結できて、而して、コスト低下を図り得る静圧気体軸受パッドと隙間調節部材との組み合わせ構造、それに最適な静圧気体軸受パッド及び隙間調節部材並びにそれを用いた静圧気体軸受機構を提供することができる。   According to the present invention, it is possible to connect the static pressure gas bearing pad to the static pressure gas bearing pad so as not to drop off without using a screw or the like, and thus to reduce the cost between the static pressure gas bearing pad and the gap adjustment member. It is possible to provide a combined structure, a hydrostatic gas bearing pad and a gap adjusting member optimum for the combined structure, and a hydrostatic gas bearing mechanism using the same.

次に本発明及びそれを実施するための最良の形態を図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれら実施例に何等限定されないのである。   Next, the present invention and the best mode for carrying it out will be described in more detail based on the preferred embodiments shown in the drawings. The present invention is not limited to these examples.

図1から図3において、可動体1を固定体2に対してX方向に移動自在に保持すベく可動体1と固定体2との間に介在させる静圧気体軸受パッド3と、静圧気体軸受パッド3と可動体1との間の隙間4を調節する隙間調節部材5との組み合わせ構造6は、静圧気体軸受パッド3に設けられていると共にリング装着溝7を有する凹所8と、リング装着溝7に装着された拡径自在な弾性Oリングからなるリング9と、隙間調節部材5に設けられていると共に凹所8を規定する静圧気体軸受パッド3の凹所規定面10から部分的に突出するリング9を受容する受容溝11とを具備している。   1 to 3, a static pressure gas bearing pad 3 interposed between the movable body 1 and the fixed body 2 to hold the movable body 1 movably in the X direction with respect to the fixed body 2, and a static pressure. A combined structure 6 with a gap adjusting member 5 for adjusting the gap 4 between the gas bearing pad 3 and the movable body 1 is provided in the static pressure gas bearing pad 3 and has a recess 8 having a ring mounting groove 7. , A ring 9 made of an elastic O-ring that can be expanded in diameter and mounted in the ring mounting groove 7, and a recess defining surface 10 of the static pressure gas bearing pad 3 that is provided in the gap adjusting member 5 and that defines the recess 8. And a receiving groove 11 for receiving a ring 9 partially protruding therefrom.

可動体1及び固定体2の夫々は、図示の例では矩形板及び断面コ字状のレールの夫々で構成されているが、組み合わせ構造6が例えば精密工作機械等に適用される場合には、可動体1は工作ヘッド自体若しくは工作ヘッドが載置される基台又はワーク載置台に適した形態となり、固定体2もまた、斯かる形態の可動体1をX方向に移動自在に保持するに適した形態となり、したがって、可動体1及び固定体2の夫々は、矩形板及び断面コ字状のレールの夫々に限定されない。   Each of the movable body 1 and the fixed body 2 is composed of a rectangular plate and a U-shaped rail in the illustrated example, but when the combination structure 6 is applied to, for example, a precision machine tool, The movable body 1 has a form suitable for the work head itself, a base on which the work head is placed, or a work placing base, and the fixed body 2 also holds the movable body 1 having such a form in a movable manner in the X direction. Therefore, the movable body 1 and the fixed body 2 are not limited to a rectangular plate and a rail having a U-shaped cross section, respectively.

可動体1の側面15及び16の夫々と固定体2の内側面17及び18との間に介在された複数の静圧気体軸受パッド3並びに可動体1の底面19と固定体2の基部上面20との間に介在された複数の静圧気体軸受パッド3の夫々は互いに同様に構成されており、また各静圧気体軸受パッド3に対応して固定体2に装着されている隙間調節部材5の夫々も互いに同様に構成されており、更に静圧気体軸受パッド3の夫々とこれに対応の隙間調節部材5の夫々との組み合わせ構造6もまた互いに同様に構成されているので、以下、可動体1の側面15と固定体2の内側面17との間に介在された静圧気体軸受パッド3及びこの静圧気体軸受パッド3に対応して固定体2に装着されている隙間調節部材5並びにこれら静圧気体軸受パッド3と隙間調節部材5との組み合わせ構造6について詳述する。   A plurality of static pressure gas bearing pads 3 interposed between the side surfaces 15 and 16 of the movable body 1 and the inner side surfaces 17 and 18 of the fixed body 2, and a bottom surface 19 of the movable body 1 and a base upper surface 20 of the fixed body 2. The plurality of static pressure gas bearing pads 3 interposed between the two are configured in the same manner, and the gap adjusting member 5 mounted on the fixed body 2 corresponding to each static pressure gas bearing pad 3. Are also configured in the same manner, and the combined structures 6 of the static pressure gas bearing pads 3 and the corresponding gap adjusting members 5 are also configured in the same manner. A static pressure gas bearing pad 3 interposed between the side surface 15 of the body 1 and the inner side surface 17 of the fixed body 2 and a gap adjusting member 5 attached to the fixed body 2 corresponding to the static pressure gas bearing pad 3. In addition, these static pressure gas bearing pads 3 and gap adjustment It will be described in detail combined structure 6 with member 5.

静圧気体軸受パッド3は、固定体2の内側面17に対面する無孔面である平面22の略中央部で開口している凹所8を有している円盤状の裏金23と、裏金23の他方の平面に一体に形成されて固着されていると共に裏金23と協働して気体通路24を形成した円盤状の多孔質金属焼結層25とを具備しており、可撓性の配管26を介して気体通路24に供給された高圧空気を多孔質金属焼結層25の多数の細孔を介して可動体1の側面15に向かって噴出するようになっている。このように静圧気体軸受パッド3は、可動体1の側面15に対面する多孔面27と、固定体2の内側面17に対面する無孔面としての平面22とを有しており、金属粉末と無機質粉末とを混合、焼結してなる多孔質金属焼結層25の一方の平坦な面が多孔面27となっている。   The hydrostatic gas bearing pad 3 includes a disc-shaped back metal 23 having a recess 8 opened at a substantially central portion of a flat surface 22 which is a non-porous surface facing the inner surface 17 of the fixed body 2, and a back metal And a disk-like porous metal sintered layer 25 which is integrally formed and fixed to the other plane of the plate 23 and which forms a gas passage 24 in cooperation with the back metal 23. The high-pressure air supplied to the gas passage 24 via the pipe 26 is ejected toward the side surface 15 of the movable body 1 through the numerous pores of the porous metal sintered layer 25. Thus, the static pressure gas bearing pad 3 has the porous surface 27 facing the side surface 15 of the movable body 1 and the flat surface 22 as the non-porous surface facing the inner surface 17 of the fixed body 2. One flat surface of a porous metal sintered layer 25 obtained by mixing and sintering powder and inorganic powder is a porous surface 27.

静圧気体軸受パッド3の凹所8を規定する凹所規定面10は、円筒凹面31と半円球凹面からなる半球凹面32とを具備しており、円環状のリング装着溝7は、X方向に直交するY方向において円筒凹面31と半球凹面32との間に設けられている。   The recess defining surface 10 that defines the recess 8 of the hydrostatic gas bearing pad 3 includes a cylindrical concave surface 31 and a hemispherical concave surface 32 composed of a semispherical concave surface. It is provided between the cylindrical concave surface 31 and the hemispherical concave surface 32 in the Y direction orthogonal to the direction.

静圧気体軸受パッド3の多孔面27と可動体1の側面15との間の隙間4の大きさ(Y方向の幅)を調節する隙間調節部材5は、大径円柱部35と、大径円柱部35に一体的に連接されていると共に大径円柱部35及び円筒凹面31よりも小径の小径円柱部36と、小径円柱部36に一体的に連接されていると共に小径円柱部36よりも大径であって大径円柱部35の径よりも小さな径を有している半円球部からなる半球部37とを具備しており、環状の受容溝11は、Y方向において大径円柱部35と半球部37との間に設けられている。大径円柱部35は、端面44側で部分的に凹所8内に配されていてもよく、この場合には、大径円柱部35は、静圧気体軸受パッド3の揺動(首振り)を可能とするように、円筒凹面31の径よりも小さい径を有しているとよい。   The gap adjusting member 5 that adjusts the size (width in the Y direction) of the gap 4 between the porous surface 27 of the static pressure gas bearing pad 3 and the side surface 15 of the movable body 1 includes a large-diameter cylindrical portion 35, a large-diameter A small-diameter cylindrical portion 36 that is integrally connected to the cylindrical portion 35 and smaller in diameter than the large-diameter cylindrical portion 35 and the cylindrical concave surface 31, and is integrally connected to the small-diameter cylindrical portion 36 and is smaller than the small-diameter cylindrical portion 36. And a hemispherical portion 37 made of a hemispherical portion having a diameter smaller than that of the large-diameter cylindrical portion 35, and the annular receiving groove 11 has a large-diameter cylindrical shape in the Y direction. It is provided between the part 35 and the hemispherical part 37. The large-diameter cylindrical portion 35 may be partially disposed in the recess 8 on the end face 44 side. In this case, the large-diameter cylindrical portion 35 swings (oscillates) the hydrostatic gas bearing pad 3. ) May be smaller than the diameter of the cylindrical concave surface 31.

大径円柱部35は、その外面にねじ部41を有しており、ねじ部41を介して固定体2に螺合されており、隙間調節部材5は、大径円柱部35を回転させることにより軸方向、即ちY方向に進退されるようになっており、斯かる進退により静圧気体軸受パッド3の多孔面27と可動体1の側面15との間の隙間4の大きさを調節するようになっている。   The large-diameter cylindrical portion 35 has a screw portion 41 on the outer surface thereof, and is screwed to the fixed body 2 via the screw portion 41, and the gap adjusting member 5 rotates the large-diameter cylindrical portion 35. Thus, the size of the gap 4 between the porous surface 27 of the static pressure gas bearing pad 3 and the side surface 15 of the movable body 1 is adjusted by the advance and retreat. It is like that.

半球部37の半円球凸面からなる半球凸面42は、凹所規定面10の半球凹面32の曲率と略同一の曲率有していると共に凹所規定面10の半球凹面32に摺動自在に全体的に接触している。半球凸面42は、半球凹面32の曲率よりも大きな曲率を有していてもよく、この場合には、半球凹面32に摺動自在に部分的に接触することになる。   The hemispherical convex surface 42 formed of a hemispherical convex surface of the hemispherical portion 37 has substantially the same curvature as the curvature of the hemispherical concave surface 32 of the concave defining surface 10 and is slidable on the hemispherical concave surface 32 of the concave defining surface 10. There is overall contact. The hemispherical convex surface 42 may have a larger curvature than the curvature of the hemispherical concave surface 32, and in this case, the hemispherical convex surface 42 is slidably partially in contact with the hemispherical concave surface 32.

環状の受容溝11は、小径円柱部36の外周面43と、大径円柱部35の環状の端面44と、半球部37の環状の端面45とによって規定されている。   The annular receiving groove 11 is defined by the outer peripheral surface 43 of the small diameter cylindrical portion 36, the annular end surface 44 of the large diameter cylindrical portion 35, and the annular end surface 45 of the hemispherical portion 37.

以上の組み合わせ構造6を具備した静圧気体軸受機構50によれば、多孔面27から可動体1に向かって噴出する高圧空気により可動体1を固定体2に対して隙間4をもってX方向に移動自在に保持する。そして、隙間4の大きさは、隙間調節部材5のY方向の進退で最適値に設定され、この最適値に設定された後に隙間調節部材5は、ロックナット51によりY方向に進退できないように固定体2に固定される。   According to the static pressure gas bearing mechanism 50 having the above-described combination structure 6, the movable body 1 is moved in the X direction with a gap 4 from the fixed body 2 by the high-pressure air ejected from the porous surface 27 toward the movable body 1. Hold freely. The size of the gap 4 is set to an optimum value by the advancement / retraction of the gap adjustment member 5 in the Y direction. After the optimum value is set, the gap adjustment member 5 cannot be advanced / retreated in the Y direction by the lock nut 51. It is fixed to the fixed body 2.

ところで、組み合わせ構造6によれば、環状のリング装着溝7に装着された拡径自在なリング9が部分的に受容溝11に受容されて、半球部37の端面45がリング9に係合し、凹所8から半球部37が抜け出さないようになっているために、ねじ等を用いないでも斯かるリング9を介して静圧気体軸受パッド3に隙間調節部材5を脱落しないように連結でき、而して、コスト低下を図ることができる。しかも、組み合わせ構造6では、半球部37の半球凸面42が半球凹面32に摺動自在に接触しているために、静圧気体軸受パッド3の揺動(首振り)を可能とする結果、隙間4を最適に保持でき、しかも、弾性Oリングからなるリング9の多少の弾性力でもって半球部37がその半球凸面42で半球凹面32に弾性的に押し付けられるために、弾性Oリングからなるリング9がダンパ材(減衰材)となり静圧気体軸受パッド3の首振り振動の発生を効果的に抑制できて好ましい。   By the way, according to the combination structure 6, the ring 9 having an increased diameter that is mounted in the annular ring mounting groove 7 is partially received in the receiving groove 11, and the end surface 45 of the hemispherical portion 37 is engaged with the ring 9. Since the hemispherical portion 37 does not come out from the recess 8, the gap adjusting member 5 can be connected to the static pressure gas bearing pad 3 via the ring 9 so as not to drop out without using a screw or the like. Thus, cost reduction can be achieved. Moreover, in the combination structure 6, since the hemispherical convex surface 42 of the hemispherical portion 37 is slidably in contact with the hemispherical concave surface 32, the static pressure gas bearing pad 3 can be swung (swinged). 4, and the hemispherical portion 37 is elastically pressed against the hemispherical concave surface 32 by the hemispherical convex surface 42 with some elastic force of the ring 9 made of an elastic O-ring. 9 is a damper material (attenuating material), which is preferable since it can effectively suppress the occurrence of oscillation of the hydrostatic gas bearing pad 3.

また組み合わせ構造6によれば、図3に示す分解状態でリング9をリング装着溝7に嵌装した後に半球部37を凹所8に挿入して半球部37の端面45をリング9に係合させることにより図1に示す状態に簡単に組立てることができる。   Further, according to the combined structure 6, after the ring 9 is fitted in the ring mounting groove 7 in the disassembled state shown in FIG. 3, the hemispherical portion 37 is inserted into the recess 8 and the end surface 45 of the hemispherical portion 37 is engaged with the ring 9. By doing so, it can be easily assembled into the state shown in FIG.

なお、リング9としては、弾性Oリングが好ましいのであるが、単なる連結という目的であれば、剛性材料であるが拡径自在且つ縮径自在なEリング又はCリングであってもよく、斯かるEリング又はCリングを用いても、静圧気体軸受パッド3に隙間調節部材5を脱落しないように連結できてコスト低下を図ることができる。   The ring 9 is preferably an elastic O-ring, but may be an E-ring or C-ring that is a rigid material but can be expanded and contracted as long as it is simply connected. Even if an E-ring or a C-ring is used, the gap adjusting member 5 can be connected to the static pressure gas bearing pad 3 so as not to drop off, thereby reducing the cost.

また、凹所8を規定する凹所規定面10は、円筒凹面31と半球凹面32とに代えて、図4に示すように円筒凹面31と円錐凹面52とを具備していてもよく、図4に示すような凹所規定面10であるとそれを容易に形成し得て好ましい。加えて、凹所規定面10において、円筒凹面31に代えて角筒凹面であってもよい。   Further, the recess defining surface 10 that defines the recess 8 may include a cylindrical concave surface 31 and a conical concave surface 52 as shown in FIG. 4 instead of the cylindrical concave surface 31 and the hemispherical concave surface 32. The recess defining surface 10 as shown in FIG. 4 is preferable because it can be easily formed. In addition, the recess defining surface 10 may be a rectangular tube concave surface instead of the cylindrical concave surface 31.

本発明の実施の形態の好ましい一例の平面説明図である。It is plane explanatory drawing of a preferable example of embodiment of this invention. 図1に示す例の全体斜視図である。It is a whole perspective view of the example shown in FIG. 図1の例の一部の分解説明図である。FIG. 2 is a partial exploded explanatory diagram of the example of FIG. 1. 本発明の実施の形態の好ましい他の例の一部説明図である。It is a partial explanatory view of another preferred example of an embodiment of the invention.

符号の説明Explanation of symbols

1 可動体
2 固定体
3 静圧気体軸受パッド
4 隙間
5 隙間調節部材
6 組み合わせ構造
7 リング装着溝
8 凹所
9 リング
10 凹所規定面
11 受容溝
DESCRIPTION OF SYMBOLS 1 Movable body 2 Fixed body 3 Hydrostatic gas bearing pad 4 Gap 5 Gap adjustment member 6 Combination structure 7 Ring installation groove 8 Recess 9 Ring 10 Recess regulation surface 11 Receiving groove

Claims (5)

可動体を固定体に対して移動自在に保持すベく可動体と固定体との間に介在させる静圧気体軸受パッドと、この静圧気体軸受パッドと可動体との間の隙間を調節する隙間調節部材との組み合わせ構造であって、静圧気体軸受パッドに設けられていると共に環状のリング装着溝を有する凹所と、リング装着溝に装着された拡径自在な弾性Oリングからなるリングと、隙間調節部材に設けられていると共に凹所を規定する静圧気体軸受パッドの凹所規定面から部分的に突出するリングを受容する環状の受容溝とを具備しており、凹所規定面は、円筒凹面と円錐凹面とを具備しており、リング装着溝は、円筒凹面と円錐凹面との間に設けられており、隙間調節部材は、外面にねじ部を有していると共に当該ねじ部を介して固定体に螺合されるようになっている大径円柱部と、大径円柱部に一体的に連接されていると共に大径円柱部よりも小径の小径円柱部と、小径円柱部に一体的に連接されていると共に小径円柱部よりも大径の半球部とを具備しており、受容溝は、大径円柱部と半球部との間に設けられており、半球部の半球凸面は、凹所規定面の円錐凹面に摺動自在に接触している静圧気体軸受パッドと隙間調節部材との組み合わせ構造。   A static pressure gas bearing pad interposed between the movable body and the fixed body that holds the movable body relative to the fixed body, and a gap between the static pressure gas bearing pad and the movable body is adjusted. A ring having a combination structure with a clearance adjustment member, which is provided on a hydrostatic gas bearing pad and has an annular ring mounting groove, and an elastic O-ring that can be expanded in diameter and is mounted in the ring mounting groove And an annular receiving groove that is provided in the gap adjusting member and receives a ring that partially protrudes from the recessed surface of the hydrostatic gas bearing pad that defines the recessed portion. The surface includes a cylindrical concave surface and a conical concave surface, the ring mounting groove is provided between the cylindrical concave surface and the conical concave surface, and the gap adjusting member has a threaded portion on the outer surface and To be screwed to the fixed body through the threaded part The large-diameter cylindrical portion, the small-diameter cylindrical portion that is integrally connected to the large-diameter cylindrical portion and smaller in diameter than the large-diameter cylindrical portion, and the small-diameter cylindrical portion that is integrally connected to the small-diameter cylindrical portion The receiving groove is provided between the large-diameter cylindrical portion and the hemispherical portion, and the hemispherical convex surface of the hemispherical portion is slid onto the conical concave surface of the recess defining surface. A combined structure of a static pressure gas bearing pad and a clearance adjustment member that are in contact with each other. 半球部は、大径円柱部の径よりも小さな径を有している請求項1に記載の組み合わせ構造。   The combination structure according to claim 1, wherein the hemispherical portion has a diameter smaller than that of the large-diameter cylindrical portion. 静圧気体軸受パッドは、可動体に対面する多孔面と、固定体に対面する無孔面とを有しており、凹所は、無孔面において開口している請求項1又は2に記載の組み合わせ構造。   The hydrostatic gas bearing pad has a porous surface facing the movable body and a non-porous surface facing the fixed body, and the recess is open in the non-porous surface. Combination structure. 静圧気体軸受パッドは多孔質金属焼結層を具備しており、多孔質金属焼結層の一方の面が可動体に対面する多孔面となっている請求項3に記載の組み合わせ構造。   The combination structure according to claim 3, wherein the hydrostatic gas bearing pad includes a porous metal sintered layer, and one surface of the porous metal sintered layer is a porous surface facing the movable body. 請求項1から4のいずれか一項に記載の組み合わせ構造を具備した静圧気体軸受機構。   A static pressure gas bearing mechanism comprising the combination structure according to any one of claims 1 to 4.
JP2004188738A 2004-06-25 2004-06-25 Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same Active JP4483430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188738A JP4483430B2 (en) 2004-06-25 2004-06-25 Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188738A JP4483430B2 (en) 2004-06-25 2004-06-25 Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same

Publications (2)

Publication Number Publication Date
JP2006009968A JP2006009968A (en) 2006-01-12
JP4483430B2 true JP4483430B2 (en) 2010-06-16

Family

ID=35777442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188738A Active JP4483430B2 (en) 2004-06-25 2004-06-25 Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same

Country Status (1)

Country Link
JP (1) JP4483430B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016232B2 (en) * 2006-02-20 2012-09-05 株式会社ミツトヨ Slider device
JP5406507B2 (en) * 2008-11-06 2014-02-05 オイレス工業株式会社 Planar moving stage device
PT2867550T (en) * 2012-06-28 2019-07-12 Outotec Finland Oy Improvements in fluid bearings
CN104454985A (en) * 2013-09-24 2015-03-25 大银微系统股份有限公司 Keeping structure between air bearing and adjusting member
CN110094419B (en) * 2019-05-20 2020-06-23 珠海格力电器股份有限公司 Axial magnetic suspension bearing, motor, compressor and air conditioner

Also Published As

Publication number Publication date
JP2006009968A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7545078B2 (en) Actuator for moving a tool
CN111649087B (en) Variable friction damping vibration isolator with adjustable central position
JP4483430B2 (en) Combination structure of hydrostatic gas bearing pad and gap adjusting member, and hydrostatic gas bearing mechanism using the same
JP5928106B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP2012145135A (en) Air spring
US20180281074A1 (en) Cantilever-supported tuned dynamic absorber
CN104985492A (en) Strength-adjustable ultrasonic-assisted abrasive flow polishing machining device
WO2020009244A1 (en) Machining tool
KR101608364B1 (en) Hydrostatic gas bearing and linear guide apparatus using the same
CN108465996B (en) Double-station ceramic substrate material clamp and clamping method
JP6916500B2 (en) Contact force adjustment end effector
JP4379126B2 (en) Gap adjusting device for hydrostatic gas bearing pad and hydrostatic gas bearing mechanism using the same
CN112846909B (en) Thin-wall part cutting vibration suppression device
CN112271952B (en) Inchworm type piezoelectric driving mechanism
JP2008298275A (en) Static pressure gas bearing and rotating device
JP5924084B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JPH01250614A (en) Gas bearing element
JP6237814B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
CN105805213B (en) A kind of anti-vibration shock resistance type back vibration isolator
JP2007313584A (en) Non-contact cylinder device, and table moving device using non-contact cylinder device
US20150336178A1 (en) Vibration reduction device for machine tool
CN110114731A (en) Reduce the axis spring bearing of friction
JP2021053725A (en) Machine tool
JP2004001114A (en) Work support device
JP4453396B2 (en) Porous static pressure gas bearing and porous static pressure gas bearing device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4483430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250