JP4483056B2 - Power factor adjustment device - Google Patents

Power factor adjustment device Download PDF

Info

Publication number
JP4483056B2
JP4483056B2 JP2000283278A JP2000283278A JP4483056B2 JP 4483056 B2 JP4483056 B2 JP 4483056B2 JP 2000283278 A JP2000283278 A JP 2000283278A JP 2000283278 A JP2000283278 A JP 2000283278A JP 4483056 B2 JP4483056 B2 JP 4483056B2
Authority
JP
Japan
Prior art keywords
power
capacitor
power factor
light load
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000283278A
Other languages
Japanese (ja)
Other versions
JP2002091587A (en
Inventor
達義 松浦
博久 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000283278A priority Critical patent/JP4483056B2/en
Publication of JP2002091587A publication Critical patent/JP2002091587A/en
Application granted granted Critical
Publication of JP4483056B2 publication Critical patent/JP4483056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統における無効電力、無効電流あるいは力率を検出し、それらの検出値に基づいて電力系統に力率改善用コンデンサを投入または遮断して力率を改善するための力率調整装置に関するものである。
【0002】
【従来の技術】
図4は例えば特開平7−182057号公報に示された従来の力率調整装置の構成図、図5は従来の力率調整の関係を説明するベクトル図、図6は演算処理部の演算処理手順を示すフローチャートである。
図4において、1は力率調整対象の電力系統、2は電力系統1に設置された計器用変圧器、3は計器用変流器、10は力率調整装置である。
4は力率改善用コンデンサであり、複数のコンデンサ4a〜4nが力率調整装置10の出力によって制御回路部5を介して電磁接触器6a〜6nにて各々に入・切可能に
接続されている。7a〜7nは各コンデンサ4a〜4nに接続された直流リアクトル、8は電力系統1に接続された変圧器、9は変圧器8に接続された負荷である。
【0003】
力率調整装置10は、図示していないマイクロプロセッサーにより制御され、計器用変圧器2と計器用変流器3からの検出電圧及び検出電流をそれぞれ所定の変換比で変換する第1の変換回路11及び第2の変換回路12と、第1の変換回路11及び第2の変換回路12からのアナログ信号をディジタル信号に変換するA/Dコンバータ13と、ディジタル信号に変換された検出電圧と検出電流、及び後述する目標力率設定値と軽負荷遮断電力設定値に基づいて電力系統1への力率改善用コンデンサ4の投入及び遮断を制御する信号を出力する演算処理部14と、この演算処理部14からの制御信号に基づいて電力系統1への力率改善用コンデンサの投入及び遮断を制御する制御出力リレー部15と、演算処理部14の演算処理結果を表示する表示部16と、演算処理部14に目標力率と軽負荷遮断電力設定値を設定する設定部17とを備えている。
ここで、軽負荷遮断電力設定値とは、軽負荷時であって力率改善用コンデンサ4が投入されたままとなって大幅な進み力率となることを防ぐために、力率改善用コンデンサ4をすべて遮断するための最低有効電力値である。
【0004】
次に、この力率調整装置の動作を図5と図6により説明する。図5において、30は縦軸の無効電力を示し、0点より上側は進み力率、下側は遅れ力率を示し、31は横軸に有効電力を示す。34は目標力率であり、設定部17から設定され、その角度を0点と結んだ線上がコンデンサ投入点33となる。投入点33にコンデンサ容量に対応する進相無効電力値にハンチング防止の余裕定数(一般的には1.2倍)を乗じた値37を進み力率方向に移動した線上をコンデンサ遮断点32として制御が行われる。
【0005】
36は無効電力で、設定部17で設定した目標力率34と計測値より算出した有効電力35より算出する。無効電力36は、無効電力=有効電力×√(1/目標力率2 -1)として求める。この無効電力36の値から現在投入中のコンデンサ容量に定数(一般的には1.2倍)を乗じて求めた値37を減算した値38とコンデンサ遮断点32の対比を行いコンデンサ遮断の要否を決定する。40は設定部17で設定される有効電力値の軽負荷遮断電力設定値であり、縦に結んだ線上が軽負荷遮断点39となる。
【0006】
設定部17から設定された目標力率及び軽負荷遮断電力設定値40をもとに、演算処理部14にて投入点及び軽負荷遮断点39を設定すると共に(ステップS1)、計器用変圧器2からの検出電圧と計器用変流器3からの検出電流をそれぞれ第1の変換回路11と第2の変換回路12で変換した後、A/Dコンバータ13でディジタル変換されて演算処理部14にて検出電圧及び検出電流をもとに皮相電力、有効電力、無効電力、及び力率を演算する(ステップS2)。
【0007】
これらの演算数値は表示部16へ表示されるとともに、算出した有効電力値が軽負荷遮断点39未満であれば(ステップS3)、コンデンサ遮断信号を制御回路部15へ出力する(ステップS6)。有効電力値が軽負荷遮断点39を超過していれば、無効電力がコンデンサ遮断点32を超過しているかどうかの比較をして(ステップS5)、超過していれば、ステップS6にてコンデンサ遮断信号を制御回路部5へ出力する。
一方、有効電力値が軽負荷遮断点39を超過しており、かつ無効電力がコンデンサ投入点33を遅れ力率方向に超過していれば(ステップS7)、コンデンサ投入信号をステップS8にて制御回路部5へ出力する。
【0008】
すなわち、図5のハッチングのない部分に皮相電力ベクトルが存在するように複数のコンデンサ4の中から適宜に単独または組み合わせて入・切り制御が実行される。そして複数のコンデンサ4a〜4nでコンデンサバンクを形成されているので、各はコンデンサ4a〜4nは寿命の平均化のため予め定められた順番、または、そのとき力率改善に最適な容量のものを選択して入・切りの制御対象コンデンサが選択される。このため、最後まで投入状態で残るコンデンサは必ずしも最小容量のコンデンサにならず、ときとしては最大容量のコンデンサが1台だけ投入状態で残る可能性もある。
【0009】
【発明が解決しようとする課題】
従来の力率調整装置は以上のように構成されているので、軽負荷遮断点設定値40として小さな値を設定した場合、有効電力が軽負荷遮断点39を僅かに超えた軽負荷状態においは、コンデンサバンク内の投入状態で残る1台のコンデンサの容量が大きいと、コンデンサ容量にハンチング防止の余裕定数を乗じて(例えば1.2倍)得た値が大きいために、計測値から算出した無効電力値と、演算して求めた目標無効電力値と各々絶対値の和がこれに達せず、コンデンサが遮断されないので、図5のP点位置のように極端な進み力率になってしまい、回路電圧が上昇したり、高調波が発生するなどの課題があった。
【0010】
本発明は上記のような問題点を解消するためになされたもので、有効電力が軽負荷遮断点に達していない軽負荷状態において、比較的容量の大きなコンデンサが入ったまま残って極端な進み力率になることを防止する。
【0011】
【課題を解決するための手段】
この発明に係る力率調整装置は、予め設定される目標力率と軽負荷遮断電力値に加え、進み力率設定手段からの許容進み力率の設定と制御対象のコンデンサバンク中の最小容量コンデンサを選択可能にして、演算した有効電力値が軽負荷遮断電力値を超過し、演算した無効電力がコンデンサ投入領域であって、かつ上記許容進み力率より進みのとき、現在の接続中コンデンサを遮断して最小容量のコンデンサを選択して接続するようにしたものである。
【0012】
そして、演算した有効電力値が軽負荷遮断電力値を超過し、演算した無効電力がコンデンサ投入領域であって、かつ許容進み力率より進みのとき、現在接続中のコンデンサが最小容量コンデンサのときはコンデンサの遮断を実行しないようにしたものである。
【0013】
【発明の実施の形態】
実施の形態1.
図1は本発明の力率調整装置の構成図、図2は力率調整の動作を説明するベクトル図、図3は演算処理内容を示すフローチャートである。
図において、1〜17、30〜40及び図3のステップS1〜S12は上記従来装置と同一であり説明を省略する。18は電力系統1の進み力率の許容上限値を入力設定する進み力率設定部、19は各コンデンサ4a〜4nの容量値、投入・遮断順序、現在の投入・遮断状態を記憶するメモリ装置である。
図2において、41は進み力率設定部18で設定した進み力率設定値であり、0点と結んだ線上が進み力率の許容限界制御点42になる。すなわち、電力系統1の皮相電力ベクトルが進み力率許容限界制御点42を超えて大幅な進み力率にならないようにコンデンサ4の遮断を促す。
【0014】
次にこの発明の動作を図2、図3により説明する。電力系統1の電力負荷が次第に減少してきて例えば、現在の負荷電力ベクトルがA点にあるとすると、この負荷電力の有効電力Bは軽負荷遮断点39を超過しているのでコンデンサの全遮断はなされない。そして無効電力Cは遮断点32には達していない。しかし、進み力率許容限界制御点42を超える位置にある。従って、進み力率許容限界制御点42以内になるようにコンデンサの遮断・入れ替えを実施する。
【0015】
本発明の要点であるこのコンデンサの遮断・入れ替え処理フローを図3にて説明する。有効電力が軽負荷遮断点39以上であり、無効電力が進み力率(ステップS1〜S4)のとき、進み無効電力が遮断点32を超えているかどうか比較し(ステップS5)超過していればコンデンサの遮断を行う(ステップS6)。進み無効電力が遮断点32を下回るときは、進み無効電力が進み力率許容限界制御点42を超えているかどうかを比較し、進み無効電力が進み力率許容限界制御点42未満であればそのままのコンデンサ投入状態を維持する(ステップS20)。進み無効電力が進み力率許容限界制御点42以上のときは、現在投入コンデンサがコンデンサバンク内の最小容量のものかどうかチェックし、最小容量のコンデンサのときはそのままコンデンサの接続を継続する(ステップS21)。最小容量のコンデンサ以外のときは現在接続中のコンデンサを遮断して待機中のコンデンサの中から最小容量のコンデンサを選択して投入する(ステップS2、S2)。
【0016】
ステップS21でコンデンサを遮断する際、該コンデンサが最小容量の場合は該コンデンサを一旦遮断した後、再度投入することになり、コンデンサの開閉頻度が多くなり、コンデンサの耐久寿命を縮めることになる。
そこで、現在投入されているコンデンサが制御対象のコンデンサのうち最小容量のものかどうかを判断し、最小容量のコンデンサであれば現在投入済のコンデンサを遮断せずそのままとする。これにより、最小容量コンデンサの頻繁な開閉が回避できる。
【0017】
なお、上記実施例では進み力率設定部18を別に設けているが、これを目標力率と軽負荷遮断電力設定値を設定する設定部17に含めて設けてもよい。
また、進み力率設定値41は、設定部17で設定できるものとして説明したが、予め決めた固定値であってもよい。
【0018】
【発明の効果】
従来装置では力率制御の対象外になっていた、図2のコンデンサ遮断点32と軽負荷遮断点39及び進み力率許容限界制御点42で囲まれる三角形(XYZ)範囲内での大幅な進み力率状態の解消ができる。
【0019】
また、コンデンサバンク内の最小容量コンデンサに対応させて軽負荷遮断点39を小さく設定できるので、軽負荷遮断点39に達しない有効電力の範囲で全くコンデンサの投入なしの大幅な遅れ力率での電力使用が少なくなり、電気料金取引において、力率割引の恩恵を受けることができる。
その理由は、電気料金=基本料金+電力量料金となっており、このうちの基本料金は契約電力×契約電力単価×{1−(月間力率−0.85)}で求められる(基準月間力率が85%に設定されている)。1−(月間力率−0.85)の式は、一般に力率割引と呼ばれており、遅れ85%すなわち0.85の力率の値を基準とし、この値より月間力率が1%単位で上廻れば基本料金を1%単位で割引し、逆に1%単位で下廻れば1%単位で割増しするという制度である。力率の悪い状態での電力使用が少ないので力率割引の恩恵を得ることができる。
【図面の簡単な説明】
【図1】 この発明の力率調整装置の構成図である。
【図2】 この発明の力率調整の動作を説明するベクトル図である。
【図3】 この発明の力率調整の演算処理内容を示すフローチャートである。
【図4】 従来の力率調整装置の構成図である。
【図5】 従来の力率調整動作を説明するベクトル図である。
【図6】 従来の力率調整の演算処理内容を示すフローチャートである。
【符号の説明】
1 電力系統、 4 コンデンサ、 10 力率調整装置
14 演算処理部、 18 進み力率設定部、 19 メモリ装置
32 コンデンサ遮断点、 33 コンデンサ投入点、 34 目標力率
39 軽負荷遮断点、 40 軽負荷遮断電力設定値
41 進み力率設定値、 42 進み力率許容限界制御点
[0001]
BACKGROUND OF THE INVENTION
The present invention detects a reactive power, a reactive current or a power factor in a power system, and adjusts a power factor for improving the power factor by inserting or shutting off a power factor improving capacitor in the power system based on the detected values. It relates to the device.
[0002]
[Prior art]
4 is a configuration diagram of a conventional power factor adjustment apparatus disclosed in, for example, Japanese Patent Laid-Open No. 7-182057, FIG. 5 is a vector diagram illustrating the relationship of conventional power factor adjustment, and FIG. 6 is an arithmetic process of an arithmetic processing unit. It is a flowchart which shows a procedure.
In FIG. 4, 1 is a power system subject to power factor adjustment, 2 is a transformer for an instrument installed in the power system 1, 3 is a current transformer for the instrument, and 10 is a power factor adjustment device.
Reference numeral 4 denotes a power factor improving capacitor, and a plurality of capacitors 4a to 4n are connected to each other by electromagnetic contactors 6a to 6n via the control circuit unit 5 according to the output of the power factor adjusting device 10, respectively. Yes. Reference numerals 7a to 7n denote DC reactors connected to the capacitors 4a to 4n, 8 denotes a transformer connected to the power system 1, and 9 denotes a load connected to the transformer 8.
[0003]
The power factor adjusting device 10 is controlled by a microprocessor (not shown) and converts a detected voltage and a detected current from the instrument transformer 2 and the instrument current transformer 3 with a predetermined conversion ratio, respectively. 11 and the second conversion circuit 12, the A / D converter 13 for converting the analog signal from the first conversion circuit 11 and the second conversion circuit 12 into a digital signal, and the detection voltage and detection converted into the digital signal An arithmetic processing unit 14 that outputs a signal for controlling the insertion and interruption of the power factor improving capacitor 4 to the power system 1 based on the current and a target power factor setting value and a light load breaking power setting value, which will be described later, and this calculation Based on the control signal from the processing unit 14, the control output relay unit 15 that controls the insertion and interruption of the power factor improving capacitor to the power system 1 and the calculation processing result of the calculation processing unit 14 are displayed. It includes a display unit 16, the arithmetic processing unit 14 and a setting unit 17 for setting a target power factor and light load shedding power setting.
Here, the light load cut-off power set value is a power factor improving capacitor 4 in order to prevent the power factor improving capacitor 4 from being kept on when the load is light and a significant advance power factor. Is the minimum active power value for shutting down all of the above.
[0004]
Next, the operation of the power factor adjusting device will be described with reference to FIGS. In FIG. 5, 30 indicates the reactive power on the vertical axis, the leading power factor above the zero point, the lagging power factor below, and 31 the active power on the horizontal axis. Reference numeral 34 denotes a target power factor, which is set by the setting unit 17, and the capacitor connecting point 33 is a line connecting the angle with the zero point. A value 37 obtained by multiplying the charging point 33 by a phase constant reactive power value corresponding to the capacitor capacity and a margin constant (generally 1.2 times) for preventing hunting advances and moves in the power factor direction is defined as a capacitor cutoff point 32. Control is performed.
[0005]
Reference numeral 36 denotes reactive power, which is calculated from the target power factor 34 set by the setting unit 17 and the active power 35 calculated from the measured value. Reactive power 36 is obtained as reactive power = active power × √ (1 / target power factor 2 -1). A value 38 obtained by subtracting a value 37 obtained by multiplying the value of the reactive power 36 by a constant (generally 1.2 times) from the currently charged capacitor capacity is compared with the capacitor cutoff point 32, and the capacitor cutoff point is required. Decide no. Reference numeral 40 denotes a light load breaking power setting value of the active power value set by the setting unit 17, and a light load breaking point 39 is a line connected vertically.
[0006]
Based on the target power factor set by the setting unit 17 and the light load breaking power set value 40, the calculation processing unit 14 sets a closing point and a light load breaking point 39 (step S1), and an instrument transformer. 2, the detected voltage from the current transformer 2 and the detected current from the current transformer 3 are converted by the first conversion circuit 11 and the second conversion circuit 12, respectively, and then converted into a digital signal by the A / D converter 13. The apparent power, active power, reactive power, and power factor are calculated based on the detected voltage and the detected current (step S2).
[0007]
These calculated numerical values are displayed on the display unit 16, and if the calculated active power value is less than the light load cutoff point 39 (step S3), a capacitor cutoff signal is output to the control circuit unit 15 (step S6). If the active power value exceeds the light load breaking point 39, a comparison is made as to whether the reactive power exceeds the capacitor breaking point 32 (step S5). A cutoff signal is output to the control circuit unit 5.
On the other hand, if the active power value exceeds the light load cutoff point 39 and the reactive power exceeds the capacitor charging point 33 in the delay power factor direction (step S7), the capacitor charging signal is controlled in step S8. Output to the circuit unit 5.
[0008]
That is, the on / off control is executed appropriately or in combination from among the plurality of capacitors 4 so that the apparent power vector exists in the non-hatched part of FIG. Since a capacitor bank is formed by a plurality of capacitors 4a to 4n, each of the capacitors 4a to 4n has a predetermined order for life averaging, or a capacitor having an optimum capacity for power factor improvement at that time. The capacitor to be controlled is selected by selecting it. For this reason, the capacitor that remains in the input state until the end does not necessarily have the minimum capacity, and in some cases, only one capacitor with the maximum capacity may remain in the input state.
[0009]
[Problems to be solved by the invention]
Since the conventional power factor adjusting device is configured as described above, when a small value is set as the light load break point set value 40, the active power is not in a light load state in which the light load break point 39 is slightly exceeded. When the capacity of one capacitor remaining in the capacitor bank is large, the value obtained by multiplying the capacitor capacity by a margin constant for preventing hunting (for example, 1.2 times) is large. The sum of the reactive power value, the calculated target reactive power value and the absolute value of each does not reach this value, and the capacitor is not cut off, resulting in an extreme advance power factor as shown at point P in FIG. There are problems such as an increase in circuit voltage and generation of harmonics.
[0010]
The present invention has been made to solve the above problems, and in a light load state in which the active power has not reached the light load cutoff point, a capacitor having a relatively large capacity remains and is extremely advanced. Prevent power factor.
[0011]
[Means for Solving the Problems]
The power factor adjusting apparatus according to the present invention is configured to set an allowable advance power factor from the advance power factor setting means in addition to a preset target power factor and light load breaking power value, and a minimum capacity capacitor in the capacitor bank to be controlled. When the calculated active power value exceeds the light load cut-off power value, and the calculated reactive power is in the capacitor input area and is ahead of the allowable advance power factor, the currently connected capacitor is selected. The capacitor with the smallest capacity is selected and connected by cutting off.
[0012]
And when the calculated active power value exceeds the light load cut-off power value, the calculated reactive power is in the capacitor input area and is ahead of the allowable advance power factor, and the currently connected capacitor is the minimum capacity capacitor Indicates that the capacitor is not cut off.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a power factor adjustment apparatus according to the present invention, FIG. 2 is a vector diagram illustrating an operation of power factor adjustment, and FIG. 3 is a flowchart showing contents of arithmetic processing.
In the figure, 1 to 17, 30 to 40 and steps S1 to S12 of FIG. Reference numeral 18 denotes an advance power factor setting unit that inputs and sets an allowable upper limit value of the advance power factor of the power system 1. Reference numeral 19 denotes a memory device that stores the capacitance values of the capacitors 4a to 4n, the on / off sequence, and the current on / off state. It is.
In FIG. 2, reference numeral 41 denotes the advance power factor setting value set by the advance power factor setting unit 18, and the line connecting the zero point is the advance power factor allowable limit control point 42. In other words, the cutoff of the capacitor 4 is urged so that the apparent power vector of the power system 1 does not exceed the advance power factor allowable limit control point 42 to become a significant advance power factor.
[0014]
Next, the operation of the present invention will be described with reference to FIGS. For example, if the power load of the power system 1 gradually decreases and, for example, the current load power vector is at point A, the active power B of this load power exceeds the light load cut-off point 39, so that the total cut-off of the capacitor is Not done. The reactive power C has not reached the cutoff point 32. However, it is in a position that exceeds the advance power factor allowable limit control point 42. Accordingly, the capacitor is cut off and replaced so that the lead power factor allowable limit control point 42 is not exceeded.
[0015]
The flow of this capacitor shut-off / replacement process, which is the main point of the present invention, will be described with reference to FIG. When the active power is equal to or higher than the light load cut-off point 39 and the reactive power is the advance power factor (steps S1 to S4), it is compared whether or not the advance reactive power exceeds the cut-off point 32 (step S5). The capacitor is cut off (step S6). When the advanced reactive power falls below the cut-off point 32, it is compared whether the advanced reactive power exceeds the advanced power factor allowable limit control point 42, and if the advanced reactive power is less than the advanced power factor allowable limit control point 42, it is left as it is. The capacitor input state is maintained (step S20). When the advance reactive power is greater than the advance power factor allowable limit control point 42, it is checked whether or not the currently input capacitor has the minimum capacity in the capacitor bank. S21). When the capacitor is not the minimum capacitor, the currently connected capacitor is cut off, and the capacitor having the minimum capacitance is selected from the standby capacitors (steps S2 2 and S2 3 ).
[0016]
When the capacitor is cut off in step S21, if the capacitor has the minimum capacity, the capacitor is once cut off and then turned on again, so that the frequency of opening and closing of the capacitor increases, and the durable life of the capacitor is shortened.
Therefore, it is determined whether or not the capacitor that is currently input has the minimum capacity among the capacitors to be controlled. If the capacitor has the minimum capacity, the capacitor that has been already input is not cut off. Thereby, frequent opening and closing of the minimum capacitor can be avoided.
[0017]
In addition, although the advance power factor setting part 18 is provided separately in the said Example, you may include this in the setting part 17 which sets a target power factor and a light load cutoff electric power setting value.
The advance power factor set value 41 has been described as being settable by the setting unit 17, but may be a fixed value determined in advance.
[0018]
【The invention's effect】
In the conventional device, a significant advance in a triangle (XYZ) range surrounded by the capacitor cutoff point 32, the light load cutoff point 39, and the advance power factor allowable limit control point 42 of FIG. The power factor state can be resolved.
[0019]
In addition, since the light load breaking point 39 can be set small corresponding to the minimum capacity capacitor in the capacitor bank, it is possible to achieve a large delay power factor without introducing a capacitor at all in the range of the active power that does not reach the light load breaking point 39. Electricity usage is reduced, and power rate discounts can be benefited in electricity bill transactions.
The reason is that the electricity charge = basic charge + power consumption charge, and the basic charge is calculated by contract power x contract power unit price x {1- (monthly power factor -0.85)} (base month) The power factor is set to 85%). The formula of 1- (monthly power factor -0.85) is generally called power factor discount, and the power factor of 1% is calculated from this value based on the power factor value of 85% delay, that is, 0.85. If the unit is exceeded, the basic fee is discounted in units of 1%. Conversely, if the unit rate is reduced by 1%, it is increased by 1%. Since there is little power usage in a state where the power factor is bad, the benefit of power factor discount can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power factor adjusting device according to the present invention.
FIG. 2 is a vector diagram illustrating an operation of power factor adjustment according to the present invention.
FIG. 3 is a flowchart showing the calculation process contents of power factor adjustment according to the present invention.
FIG. 4 is a configuration diagram of a conventional power factor adjustment device.
FIG. 5 is a vector diagram for explaining a conventional power factor adjustment operation.
FIG. 6 is a flowchart showing the contents of a conventional power factor adjustment calculation process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric power system, 4 Capacitor, 10 Power factor adjustment apparatus 14 Computation processing part, 18 Advance power factor setting part, 19 Memory apparatus 32 Capacitor cutoff point, 33 Capacitor insertion point, 34 Target power factor 39 Light load cutoff point, 40 Light load Breaking power set value 41 Leading power factor set value, 42 Leading power factor allowable limit control point

Claims (2)

電力系統における電圧と電流を計測し、その計測値から有効電力、無効電力を演算し、予め設定される目標力率と軽負荷遮断電力値にもとづいて上記電力系統へコンデンサの投入・遮断を制御して力率調整する力率調整装置において、
上記電力系統の許容進み力率を設定する進み力率設定手段と、制御対象のコンデンサバンクの中で最小容量のコンデンサを記憶し選択する手段とを具備し、
演算した有効電力値が上記軽負荷遮断電力値を超過し、演算した無効電力がコンデンサ投入領域であって、かつ上記許容進み力率より進みのとき、現在の接続中コンデンサを遮断して上記最小容量のコンデンサを選択して接続するようにしたことを特徴とした力率調整装置。
Measures voltage and current in the power system, calculates active power and reactive power from the measured values, and controls on / off of capacitors to the above power system based on preset target power factor and light load cutoff power value In the power factor adjustment device that adjusts the power factor,
A lead power factor setting means for setting an allowable lead power factor of the power system, and means for storing and selecting a capacitor having the minimum capacity among the capacitor banks to be controlled,
When the calculated active power value exceeds the light load cut-off power value, and the calculated reactive power is in the capacitor input area and is ahead of the allowable advance power factor, the currently connected capacitor is cut off and the minimum A power factor adjusting device characterized in that a capacitor having a capacity is selected and connected.
演算した有効電力値が上記軽負荷遮断電力値を超過し、演算した無効電力コンデンサ投入領域であって、かつ上記許容進み力率より進みのとき、現在接続中のコンデンサが最小容量コンデンサのときはコンデンサの遮断を実行しないようにしたことを特徴とした請求項1記載の力率調整装置。When the calculated active power value exceeds the light load cut-off power value, the calculated reactive power is in the capacitor input area and is ahead of the allowable advance power factor, and the currently connected capacitor is the minimum capacity capacitor 2. The power factor adjusting device according to claim 1, wherein the capacitor is not cut off.
JP2000283278A 2000-09-19 2000-09-19 Power factor adjustment device Expired - Lifetime JP4483056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000283278A JP4483056B2 (en) 2000-09-19 2000-09-19 Power factor adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000283278A JP4483056B2 (en) 2000-09-19 2000-09-19 Power factor adjustment device

Publications (2)

Publication Number Publication Date
JP2002091587A JP2002091587A (en) 2002-03-29
JP4483056B2 true JP4483056B2 (en) 2010-06-16

Family

ID=18767664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000283278A Expired - Lifetime JP4483056B2 (en) 2000-09-19 2000-09-19 Power factor adjustment device

Country Status (1)

Country Link
JP (1) JP4483056B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979717B2 (en) * 2009-01-16 2012-07-18 中国電力株式会社 Method, program, and information processing apparatus for supporting determination of phase-advancing capacitor to be disconnected

Also Published As

Publication number Publication date
JP2002091587A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
US7834480B2 (en) Energy converter system with reactive-power-management
JP4001004B2 (en) Operation control device for fuel cell system
JP2001327080A (en) Power storage device and control method of distributed power supply system equipped therewith
JP6033438B2 (en) Power control system
EP2482415A1 (en) On-load tap changer control method, excitation control system carrying out said control method and power excitation chain
JP5969059B2 (en) Power conditioner variable control device and control method for power conditioner
JP7202963B2 (en) MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR
JP5473141B2 (en) Storage power conditioner system
JP2006067760A (en) Distributed power supply unit
JP3428869B2 (en) Fuel cell output fluctuation compensation method
JP2006254635A (en) Load leveler
KR20190019562A (en) Smart compensation apparatus capable of improving power-factor of leading phase and lagging phase current
JP4483056B2 (en) Power factor adjustment device
KR20190028918A (en) Distribution board smart compensation apparatus capable of improving power-factor of leading phase and lagging phase current
US20200395782A1 (en) Power conversion device
JP2000032665A (en) Power quality-compensating device
JP3570913B2 (en) Control device for semiconductor switch
JP2006166683A (en) Method and system for suppressing voltage fluctuation
JP2010011677A (en) Power converting apparatus
WO2022239057A1 (en) Electricity storage system and system control system
AU2009342061B2 (en) Control device, reactive power compensator and method
WO2018225581A1 (en) Power supply system and control device
JPH0965574A (en) Control of self-excited reactive power compensating device
JP6783181B2 (en) Power converter
US20220085608A1 (en) Magnetic Field Control Device and Magnetic Field Control Method of Synchronous Machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250