JP4482973B2 - Method for producing methionine - Google Patents

Method for producing methionine Download PDF

Info

Publication number
JP4482973B2
JP4482973B2 JP25771999A JP25771999A JP4482973B2 JP 4482973 B2 JP4482973 B2 JP 4482973B2 JP 25771999 A JP25771999 A JP 25771999A JP 25771999 A JP25771999 A JP 25771999A JP 4482973 B2 JP4482973 B2 JP 4482973B2
Authority
JP
Japan
Prior art keywords
methionine
stirring
drying
water
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25771999A
Other languages
Japanese (ja)
Other versions
JP2000143617A (en
Inventor
雅充 福田
正 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP25771999A priority Critical patent/JP4482973B2/en
Publication of JP2000143617A publication Critical patent/JP2000143617A/en
Application granted granted Critical
Publication of JP4482973B2 publication Critical patent/JP4482973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はメチオニンの製造方法、詳しくは取り扱いが容易な嵩比重の大きいメチオニンを製造する方法に関する。
メチオニンは主に動物用飼料添加物として有用である。
【0002】
【従来の技術】
メチオニンの製造方法として、5−(β−メチルメルカプトエチル)ヒダントインを炭酸カリウムまたはカセイソーダの存在下に加水分解し、次いで加水分解溶液に炭酸ガスまたは硫酸などの酸を加えて中和してメチオニンを晶析、濾別し、濾液は濃縮してヒダントインの加水分解工程に循環し、分離したメチオニンは水洗、乾燥して製品メチオニンを取得する方法が知られている。
【0003】
【発明が解決しようとする課題】
特公昭54−9174号公報には、5−(β−メチルメルカプトエチル)ヒダントインを炭酸カリウムの存在下に加水分解し、次いで加水分解溶液に炭酸ガスを加えて中和してメチオニンを晶析、濾別し、濾液は濃縮してヒダントインの加水分解工程に循環し、分離したメチオニンは水洗、乾燥して製品メチオニンを取得する方法が開示されている。
【0004】
しかしながら、特公昭54−9174号公報に開示されている方法で得られるメチオニンの結晶は鱗片状であり、嵩比重も0.3〜0.4と小さく、粉立ちが多く、メチオニンを取扱う上で好ましいものではない。この対策として、鱗片状のメチオニンを再結晶して、嵩比重の大きい板状晶のメチオニンにする方法があるが、設備的に複雑になり経済的な方法とは言えない。なお、特公昭54−9174号公報などの先行文献には、メチオニンの含水ケーキの乾燥方法については何ら開示されていない。
本発明者は、取り扱いが容易な嵩比重の大きいメチオニンを製造する方法について鋭意検討した結果、乾燥方法によって嵩比重が変わること、すなわち、晶析、分離し、水洗して得たメチオニンの含水ケーキを、機械撹拌下に乾燥することによって、得られるメチオニンの嵩比重が大きくなることを見出し、本発明を完成した。
【0005】
【課題を解決するための手段】
すなわち本発明は、5−(β−メチルメルカプトエチル)ヒダントインを加水分解して得られる加水分解溶液に酸を加えて中和してメチオニンを晶析、分離し、次いで水洗、乾燥してメチオニンを製造する方法において、ジャケット付き攪拌槽を用い、初めに攪拌槽に入れる全仕込み量の15〜40%の加水分解溶液及び凝集剤を仕込み、これに炭酸ガスを加えて攪拌下に回分的に晶析し、次いで残りの60〜85%の加水分解溶液、凝集剤及び炭酸ガスを連続的に供給し、かつ生成するスラリーを抜き出すことなく攪拌下に連続的に晶析し、濾過、分離、水洗して得たメチオニンの含水ケーキを、メチオニンの含水率が12重量%〜所望とする製品の含水率までの間を機械撹拌下に乾燥することを特徴とするメチオニンの製造方法である。
【0006】
【発明の実施の形態】
本発明に於いては、5−(β−メチルメルカプトエチル)ヒダントインを加水分解し、次いで加水分解溶液に酸を加えて中和してメチオニンを晶析、分離し、濾液は濃縮してヒダントインの加水分解工程に循環し、分離したメチオニンは水洗して製品メチオニンを取得する。
具体的には、5−(β−メチルメルカプトエチル)ヒダントインを炭酸カリウムの存在下に加水分解し、次いで加水分解溶液を炭酸ガスで中和してメチオニンを晶析分離する、または5−(β−メチルメルカプトエチル)ヒダントインをカセイソーダの存在下に加水分解し、次いで加水分解溶液に硫酸などの酸を加えて中和してメチオニンを晶析分離する。この内、炭酸カリウムの存在下に加水分解し、次いで加水分解溶液を炭酸ガスで中和する方法がアルカリの循環再利用が容易なことから好ましく用いられる。
【0007】
この方法は、先ず5−(β−メチルメルカプトエチル)ヒダントインを炭酸カリウムの存在下に加水分解してメチオニンのカリウム塩にする。加水分解は、通常、約5〜10kg/cmG、約150〜200℃で行われ、発生するアンモニア及び炭酸ガスはヒダントイン化工程に回収される。
【0008】
このようにして得られた加水分解液に炭酸ガスを導入して溶液pHを7〜8に中和し、メチオニンを晶析させる。この中和晶析は、回分法または連続法で行うことができるが、次に述べる加水分解液の一部を回分的に晶析(回分晶析)し、引き続いて残りの加水分解液をセミ連続的に晶析(セミ連続晶析)する方法を採ることによって、顆粒状でより嵩密度の大きいメチオニンが得られる。
【0009】
以下、この回分晶析−セミ連続晶析について説明する。ジャケット付き攪拌槽を用い、初めに全仕込み量の15〜40%の加水分解溶液及び凝集剤を仕込み、これに炭酸ガスを加えて攪拌下に回分的に晶析(回分晶析)し、次いで残りの60〜85%の加水分解溶液、凝集剤及び炭酸ガスを連続的に供給し、かつ生成スラリーを抜き出すことなく攪拌下に連続的に晶析(セミ連続晶析)する。
【0010】
回分晶析において、種結晶を生成させ、次いでセミ連続晶析をすることによって該種結晶を成長させ嵩比重の大きい凝集晶が得られるものと推定される。回分晶析は約20〜50分間、セミ連続晶析は約40〜90分間かけて行うのが好ましい。特にセミ連続晶析の時間が嵩比重に影響し、約40分より少ないと嵩比重が十分大きくならず、約90分を越えると設備効率が悪くなるうえに、凝集晶が鱗片晶に変化して好ましくない。
【0011】
晶析は炭酸ガスで約2〜6kg/cmGに加圧し、約15〜30℃で行われる。中和はpHが7.5〜8まで行われる。中和の完了は炭酸ガスの吸収速度が小さくなること及びpHの低下がなくなることで知ることができる。中和反応を100%完了させるには長時間かかり、反応率が低いとメチオニンの得量が少なく、経済性の点から、通常、好ましくはpH7.8〜8.0まで行われる。晶析の温度が低いとメチオニンの溶解度が小さくなり、メチオニンの析出量が多くなるが、重炭酸カリウムの析出の恐れがある。重炭酸カリウム濃度は析出しないよう濃度調整が必要である。
【0012】
凝集剤としては有機系凝集剤が用いられ、中でもソルビタンラウレート、ポリビニルアルコール及びヒドロキシプロピルメチルセルロースが好ましく用いられる。凝集剤はメチオニンに対して、回分晶析では約1000〜3000ppm、セミ連続晶析では約500〜2000ppm用いられる。使用量が少な過ぎると凝集が不充分で嵩比重の大きいメチオニンは得られず、多くてもそれに見合った効果は得られない。
【0013】
攪拌は結晶を破砕しないものであれば特に限定されるものではなく、単位液重量当たりの攪拌動力は、炭酸ガスの通気のない状態に換算して、回分晶析では約0.7〜1.2kw/m、セミ連続晶析では約0.5〜1.2kw/mトンで行われる。攪拌は強すぎると凝集した結晶が破砕し、弱すぎるとガス吸収及び中和が不充分になり好ましくない。
【0014】
中和して析出したメチオニンは濾過、分離、水洗、中和し、乾燥して製品のメチオニンとする。濾液及び洗浄液はヒダントインの加水分解工程に回収される。
【0015】
本発明において、水洗、中和して得たメチオニンの含水ケーキは、製造方法にもよるが、通常、約10〜25重量%の水分を含有している。このメチオニンの含水ケーキをその含水率が約9重量%〜所望とする製品の含水率(通常約0.5重量%以下、普通には約0.3重量%以下)まで、好ましくは約12重量%〜所望とする製品の含水率までの間を少なくとも機械撹拌下に乾燥する。機械撹拌下に乾燥することによって、静置乾燥や気流乾燥などの場合に比べて、嵩密度の大きい乾燥メチオニンを得ることができる。上記乾燥に於いては、通常工業的には所望とする製品の含水率まで機械攪拌を行いながら乾燥するが、本発明の目的からは含水率が約2重量%になるまで機械攪拌を行うならば、さらなる乾燥を他の乾燥方法、例えば静置乾燥で実施しても嵩密度の大きい乾燥メチオニンを得ることができる。
【0016】
具体的には、ケーキを機械撹拌して乾燥するタイプの乾燥器、例えば、パドル型乾燥器、回転円盤型乾燥器など用いて乾燥することによって、メチオニンの嵩密度を大きくすることができる。
【0017】
乾燥後のメチオニンの嵩密度を高める方法としての機械撹拌下に於ける乾燥処理は水洗して得られる含水ケーキから所望とする含水率に乾燥する全工程に於いて実施する必要はなく、含水ケーキの含水率が約9重量%〜所望とする製品の含水率までの間、好ましくは約12重量%〜所望とする製品の含水率までの間を少なくとも機械撹拌下に乾燥すればよい。ケーキ含水率が約12重量%を越える含水率のものにあっては、約12重量%程度までは静置乾燥等で乾燥し、その後所望とする含水率まで撹拌下に乾燥する方法を採用することも可能である。勿論、乾燥の全工程を機械撹拌を用い行うことは可能であり、採用確率の高い方法である。
【0018】
乾燥温度は、60〜150℃、好ましくは100〜140℃である。温度が高すぎるとメチオニンの熱劣化が生じ、温度が低いと乾燥に長時間を要したり、伝熱面積を多くしたり、減圧装置を設ける必要が生じたり経済的でない。
【0019】
また、乾燥雰囲気中の酸素濃度を5容量%以下にして行う方が、メチオニンの劣化を防止するために好ましい。
【0020】
乾燥時間は、用いる乾燥器、温度、乾燥気流の量、含水率などによるが、通常、0.5〜2時間程度である。
【0021】
【発明の効果】
本発明の方法により、取り扱いが容易な嵩比重の大きいメチオニンを容易に製造することができる。
【0022】
【実施例】
本発明を実施例で更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
尚、実施例に於いて嵩密度は、静置した100mlメスシリンダーに、上部より静かに測定に供する試料を投入し、上部より試料が溢れるまで入れた後、ヘラ等でメスシリンダー上部の余分な試料をかきとり、メスシリンダーに入った100mlの試料重量をメスシリンダーと一緒に重量測定し、その重量よりメスシリンダー重量を減じることにより試料重量を求め、得られた試料重量を容積(100ml)で除する(試料重量g/100ml)ことにより求めた。
【0023】
参考例
(含水メチオニンの調製)
5−(β−メチルメルカプトエチル)ヒダントインを炭酸カリウムの存在下に加水分解して得られた加水分解溶液(メチオニンのカリウム塩:14.2wt%、KCO換算のその他のカリウム塩:6.2wt%含有)10リットルと凝集剤として2wt%ポリビニルアルコール水溶液200ml(メチオニンに対してポリビニルアルコールが3000ppm)を晶析槽に仕込み、20℃、炭酸ガスによる圧力4kg/cmG、単位液重量当たり攪拌動力が、炭酸ガスの通気のない状態に換算して、0.7kw/mで40分間、回分晶析を行った。
【0024】
次に晶析槽に加水分解溶液を330ml/min 、ポリビニルアルコール水溶液を3.3ml/min(メチオニンに対してポリビニルアルコールが1500ppm)で連続供給しながら、20℃、炭酸ガスによる圧力4kg/cmG、単位液重量当たり撹拌動力が反応終了間際で、炭酸ガスの通気のない状態に換算して、0.5kw/mとなる攪拌で60分間、セミ連続晶析を行った(連続して供)。
【0025】
中和晶析後、すぐ液を抜き出し、濾過し、次いで水洗して酸にて中和しメチオニンの含水ケーキ(含水率:20.0重量%)を得た。
【0026】
実施例1
直径110mmのアンカー型の撹拌羽根を設けた内径120mm、容量1000mlのセパラブルフラスコに、上記の参考例で調製したメチオニンの含水ケーキ200gを仕込んだ。 このフラスコ内に窒素ガスを1500ml/時間で流し、撹拌羽根を80rpmで回がら、フラスコを120℃のオイルバスに入れて加熱し、40分間乾燥を行った。
結果を表1に示す。尚、表中の翼撹拌型との記載はアンカー型の撹拌羽根を用いた撹拌機を示す。
【0027】
比較例1
参考例で調製したメチオニンの含水ケーキ50gを真空下(75℃×1Torr)に15時間、静置乾燥を行った。結果を表1に示す。
【0028】
実施例2および3
参考例と同様にして調製したメチオニンの含水ケーキを、回転円盤型乾燥器、およびパドル型乾燥器のテスト機を用いて乾燥を行った。結果を表1に示す。
【0029】
【表1】
【0030】
実施例4、比較例2
5−(β−メチルメルカプトエチル)ヒダントインをカセイソーダの存在下に加水分解し、次いで加水分解溶液に硫酸を加えて中和してメチオニンを晶析分離し、水洗して得たメチオニンの含水ケーキを用いて、実施例1および比較例1と同様に乾燥を行った。結果を表2に示す。
【0031】
【表2】
【0032】
実施例5
参考例の方法で得た含水ケーキを用い、表3に示す条件で、実施例1で用いたと同じ翼型攪拌機を用い所定の含水率まで乾燥し(前段乾燥)、次いで比較例1で用いたと同様の真空静置型乾燥機を用いて乾燥(後段乾燥)した。その結果を表3に示す。
【0033】
【表3】
【0034】
実施例6、7
参考例の方法で得た含水ケーキを用い、表4に示す条件で、比較例1で用いたと同様の真空静置型乾燥機を用い所定の含水率まで乾燥し(前段乾燥)、次いで実施例1で用いたと同じ翼型攪拌機を用いて乾燥(後段乾燥)した。その結果を表4に示す。
【0035】
【表4】
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing methionine, and more particularly to a method for producing methionine having a large bulk specific gravity that is easy to handle.
Methionine is mainly useful as an animal feed additive.
[0002]
[Prior art]
As a method for producing methionine, 5- (β-methylmercaptoethyl) hydantoin is hydrolyzed in the presence of potassium carbonate or caustic soda, and then neutralized by adding an acid such as carbon dioxide or sulfuric acid to the hydrolysis solution to obtain methionine. Crystallization, filtration, concentration of the filtrate and circulation to the hydantoin hydrolysis step, and the separated methionine is washed with water and dried to obtain product methionine.
[0003]
[Problems to be solved by the invention]
In Japanese Patent Publication No. 54-9174, 5- (β-methylmercaptoethyl) hydantoin is hydrolyzed in the presence of potassium carbonate, and then neutralized by adding carbon dioxide to the hydrolyzed solution to crystallize methionine. A method is disclosed in which the product is filtered off, the filtrate is concentrated and recycled to the hydantoin hydrolysis step, and the separated methionine is washed with water and dried to obtain product methionine.
[0004]
However, the crystals of methionine obtained by the method disclosed in JP-B-54-9174 are scaly, have a small bulk specific gravity of 0.3 to 0.4, have a lot of powder, and handle methionine. It is not preferable. As a countermeasure, there is a method in which scaly methionine is recrystallized into plate-like methionine having a large bulk specific gravity, but it is complicated in equipment and cannot be said to be an economical method. Prior art documents such as Japanese Patent Publication No. 54-9174 do not disclose any method for drying a methionine hydrous cake.
As a result of diligent research on a method for producing methionine having a large bulk specific gravity that is easy to handle, the present inventors have found that the bulk specific gravity varies depending on the drying method, that is, hydrated cake of methionine obtained by crystallization, separation and washing with water. Was dried under mechanical stirring, and the bulk specific gravity of the obtained methionine was found to be large, and the present invention was completed.
[0005]
[Means for Solving the Problems]
That is, the present invention adds and neutralizes an acid to a hydrolysis solution obtained by hydrolyzing 5- (β-methylmercaptoethyl) hydantoin to crystallize and separate methionine, and then wash with water and dry to obtain methionine. In the production method, a jacketed stirring tank is used, and a hydrolyzing solution and a flocculant of 15 to 40% of the total charging amount initially put in the stirring tank are charged, and carbon dioxide is added thereto, and crystallized batchwise with stirring. Next, the remaining 60 to 85% of the hydrolysis solution , flocculant and carbon dioxide are continuously supplied, and the resulting slurry is continuously crystallized with stirring without removing the resulting slurry , followed by filtration, separation and washing with water. The water-containing cake of methionine thus obtained is dried with mechanical stirring until the water content of methionine is from 12% by weight to the water content of the desired product.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, 5- (β-methylmercaptoethyl) hydantoin is hydrolyzed, then acid is added to the hydrolyzed solution to neutralize it to crystallize and separate methionine, and the filtrate is concentrated to form hydantoin. The methionine circulated through the hydrolysis process and separated is washed with water to obtain product methionine.
Specifically, 5- (β-methylmercaptoethyl) hydantoin is hydrolyzed in the presence of potassium carbonate, and then the hydrolyzed solution is neutralized with carbon dioxide to crystallize and separate methionine, or 5- (β -Methyl mercaptoethyl) hydantoin is hydrolyzed in the presence of caustic soda and then neutralized by adding an acid such as sulfuric acid to the hydrolyzed solution to crystallize and separate methionine. Among these, the method of hydrolyzing in the presence of potassium carbonate and then neutralizing the hydrolyzed solution with carbon dioxide gas is preferably used because the alkali can be easily recycled and reused.
[0007]
In this method, first, 5- (β-methylmercaptoethyl) hydantoin is hydrolyzed to potassium salt of methionine in the presence of potassium carbonate. Hydrolysis is usually performed at about 5 to 10 kg / cm 2 G and about 150 to 200 ° C., and the generated ammonia and carbon dioxide are recovered in the hydantoinization step.
[0008]
Carbon dioxide gas is introduced into the hydrolyzed solution thus obtained to neutralize the solution pH to 7-8 and crystallize methionine. This neutralized crystallization can be carried out by a batch method or a continuous method. A part of the hydrolyzed liquid described below is crystallized batchwise (batch crystallization), and then the remaining hydrolyzed liquid is semi-crystallized. By adopting a method of continuous crystallization (semi-continuous crystallization), granular methionine having a larger bulk density can be obtained.
[0009]
Hereinafter, this batch crystallization-semi-continuous crystallization will be described. Using a jacketed stirring tank, firstly, a hydrolysis solution and a flocculant of 15 to 40% of the total charge amount are charged, and carbon dioxide is added thereto, and crystallization is performed batchwise with stirring (batch crystallization). The remaining 60 to 85% of the hydrolysis solution, the flocculant and carbon dioxide are continuously supplied, and the resulting slurry is continuously crystallized (semi-continuous crystallization) with no stirring.
[0010]
In batch crystallization, it is presumed that seed crystals are produced, and then semi-continuous crystallization is performed, whereby the seed crystals are grown to obtain aggregate crystals having a large bulk specific gravity. Batch crystallization is preferably performed for about 20 to 50 minutes, and semi-continuous crystallization is preferably performed for about 40 to 90 minutes. In particular, the semi-continuous crystallization time affects the bulk specific gravity, and if it is less than about 40 minutes, the bulk specific gravity will not be sufficiently large, and if it exceeds about 90 minutes, the equipment efficiency will deteriorate and the aggregated crystals will change to scaly crystals. It is not preferable.
[0011]
Crystallization is performed at about 15 to 30 ° C. under a pressure of about 2 to 6 kg / cm 2 G with carbon dioxide gas. Neutralization is carried out to a pH of 7.5-8. Completion of neutralization can be known by the fact that the absorption rate of carbon dioxide gas becomes small and the pH is not lowered. It takes a long time to complete the neutralization reaction to 100%. When the reaction rate is low, the amount of methionine obtained is small. From the economical point of view, the pH is usually preferably 7.8 to 8.0. If the temperature of crystallization is low, the solubility of methionine decreases and the amount of methionine deposited increases, but there is a risk of precipitation of potassium bicarbonate. It is necessary to adjust the concentration of potassium bicarbonate so that it does not precipitate.
[0012]
As the flocculant, an organic flocculant is used, and among them, sorbitan laurate, polyvinyl alcohol, and hydroxypropylmethylcellulose are preferably used. The flocculant is used in an amount of about 1000 to 3000 ppm for batch crystallization and about 500 to 2000 ppm for semi-continuous crystallization with respect to methionine. If the amount used is too small, methionine with insufficient aggregation and a large bulk specific gravity cannot be obtained, and at most, an effect commensurate with it cannot be obtained.
[0013]
Stirring is not particularly limited as long as the crystals are not crushed, and the stirring power per unit liquid weight is about 0.7-1. 2 kw / m 3 , and semi-continuous crystallization is performed at about 0.5 to 1.2 kw / m 3 tons. If the stirring is too strong, the aggregated crystals are crushed, and if it is too weak, gas absorption and neutralization are insufficient, which is not preferable.
[0014]
Neutralized and precipitated methionine is filtered, separated, washed with water, neutralized, and dried to obtain the product methionine. The filtrate and washings are recovered in the hydantoin hydrolysis step.
[0015]
In the present invention, the water-containing methionine-containing cake obtained by washing and neutralization usually contains about 10 to 25% by weight of water, depending on the production method. This methionine water-containing cake has a water content of about 9% by weight to the desired product water content (usually about 0.5% by weight or less, usually about 0.3% by weight or less), preferably about 12% by weight. Dry at least under mechanical agitation between% and the desired product moisture content. By drying under mechanical stirring, dry methionine having a large bulk density can be obtained as compared with stationary drying or airflow drying. In the above drying, the drying is usually carried out while mechanically stirring to the desired moisture content of the product, but for the purpose of the present invention, if the mechanical stirring is performed until the moisture content reaches about 2% by weight. For example, dry methionine with a large bulk density can be obtained even if further drying is carried out by other drying methods such as stationary drying.
[0016]
Specifically, the bulk density of methionine can be increased by drying the cake using a dryer that mechanically stirs and dries the cake, for example, a paddle dryer or a rotary disk dryer.
[0017]
The drying process under mechanical stirring as a method for increasing the bulk density of methionine after drying does not need to be carried out in all the steps of drying from a water-containing cake obtained by washing to a desired water content. It is sufficient to dry at a mechanical agitation at a moisture content of about 9 wt% to a desired product moisture content, preferably about 12 wt% to a desired product moisture content. For a cake having a moisture content exceeding about 12% by weight, a method of drying by static drying or the like up to about 12% by weight and then drying with stirring to a desired moisture content is adopted. It is also possible. Of course, it is possible to carry out the entire drying process using mechanical stirring, which is a method with a high probability of adoption.
[0018]
The drying temperature is 60 to 150 ° C, preferably 100 to 140 ° C. If the temperature is too high, thermal degradation of methionine occurs, and if the temperature is low, drying takes a long time, a heat transfer area needs to be increased, or a decompression device needs to be provided, which is not economical.
[0019]
Further, it is preferable to perform the oxygen concentration in the dry atmosphere at 5% by volume or less in order to prevent deterioration of methionine.
[0020]
The drying time is usually about 0.5 to 2 hours, depending on the dryer used, temperature, amount of drying airflow, moisture content, and the like.
[0021]
【The invention's effect】
By the method of the present invention, methionine having a large bulk specific gravity that can be easily handled can be easily produced.
[0022]
【Example】
Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, the bulk density is measured by placing a sample for measurement quietly from the top into a 100 ml graduated cylinder, placing the sample over the top until it overflows, and then using a spatula etc. Scrap the sample, weigh the 100 ml sample weight in the graduated cylinder together with the graduated cylinder, subtract the graduated cylinder weight from the weight, determine the sample weight, and divide the obtained sample weight by the volume (100 ml). (Sample weight g / 100 ml).
[0023]
Reference example (preparation of hydrous methionine)
Hydrolysis solution obtained by hydrolyzing 5- (β-methylmercaptoethyl) hydantoin in the presence of potassium carbonate (potassium salt of methionine: 14.2 wt%, other potassium salt in terms of K 2 CO 3 : 6 .2 wt% contained) 10 liters and 200 ml of 2 wt% polyvinyl alcohol aqueous solution as a flocculant (3000 ppm of polyvinyl alcohol with respect to methionine) were charged in a crystallization tank, 20 ° C., pressure of carbon dioxide gas 4 kg / cm 2 G, unit liquid weight Batch crystallization was performed at 0.7 kw / m 3 for 40 minutes in terms of agitation power per hit converted to a state without aeration of carbon dioxide gas.
[0024]
Next, while continuously supplying the hydrolysis solution to the crystallization tank at 330 ml / min and the polyvinyl alcohol aqueous solution at 3.3 ml / min (polyvinyl alcohol with respect to methionine is 1500 ppm), the pressure by carbon dioxide gas at 20 ° C. is 4 kg / cm 2. G, semi-continuous crystallization was carried out for 60 minutes with stirring at 0.5 kw / m 3 in terms of the stirring power per unit liquid weight just before the end of the reaction, converted to a state without aeration of carbon dioxide gas. Provided).
[0025]
After neutralization and crystallization, the liquid was immediately extracted, filtered, washed with water and neutralized with acid to obtain a methionine water-containing cake (water content: 20.0% by weight).
[0026]
Example 1
Into a separable flask having an inner diameter of 120 mm and a capacity of 1000 ml provided with an anchor type stirring blade having a diameter of 110 mm, 200 g of the methionine hydrous cake prepared in the above Reference Example was charged. Nitrogen gas was allowed to flow through the flask at 1500 ml / hour, the stirring blade was rotated at 80 rpm, the flask was heated in an oil bath at 120 ° C., and dried for 40 minutes.
The results are shown in Table 1. In addition, description with a blade | wing stirring type in a table | surface shows the stirrer using the anchor type stirring blade.
[0027]
Comparative Example 1
50 g of the methionine hydrous cake prepared in the reference example was left to dry under vacuum (75 ° C. × 1 Torr) for 15 hours. The results are shown in Table 1.
[0028]
Examples 2 and 3
The hydrated methionine cake prepared in the same manner as in the Reference Example was dried using a rotating disk type dryer and a paddle type dryer. The results are shown in Table 1.
[0029]
[Table 1]
[0030]
Example 4 and Comparative Example 2
A hydrous cake of methionine obtained by hydrolyzing 5- (β-methylmercaptoethyl) hydantoin in the presence of caustic soda, neutralizing by adding sulfuric acid to the hydrolyzed solution, crystallizing and separating methionine, and washing with water. Then, drying was performed in the same manner as in Example 1 and Comparative Example 1. The results are shown in Table 2.
[0031]
[Table 2]
[0032]
Example 5
Using the water-containing cake obtained by the method of the reference example, using the same blade-type stirrer as used in Example 1 under the conditions shown in Table 3, drying to a predetermined water content (pre-stage drying), and then using in Comparative Example 1 It dried using the same vacuum stationary dryer (after-stage drying). The results are shown in Table 3.
[0033]
[Table 3]
[0034]
Examples 6 and 7
Using the water-containing cake obtained by the method of the reference example, it was dried to a predetermined water content using the same vacuum static dryer as used in Comparative Example 1 under the conditions shown in Table 4 (pre-stage drying), and then Example 1 It dried using the same wing-type stirrer as used in (dry stage drying). The results are shown in Table 4.
[0035]
[Table 4]

Claims (3)

5−(β−メチルメルカプトエチル)ヒダントインを加水分解して得られる加水分解溶液に酸を加えて中和してメチオニンを晶析、分離し、次いで水洗、乾燥してメチオニンを製造する方法において、ジャケット付き攪拌槽を用い、初めに攪拌槽に入れる全仕込み量の15〜40%の加水分解溶液及び凝集剤を仕込み、これに炭酸ガスを加えて攪拌下に回分的に晶析し、次いで残りの60〜85%の加水分解溶液、凝集剤及び炭酸ガスを連続的に供給し、かつ生成するスラリーを抜き出すことなく攪拌下に連続的に晶析し、濾過、分離、水洗して得たメチオニンの含水ケーキを、メチオニンの含水率が12重量%〜所望とする製品の含水率までの間を機械撹拌下に乾燥することを特徴とするメチオニンの製造方法。In a method for producing methionine by adding acid to a hydrolyzed solution obtained by hydrolyzing 5- (β-methylmercaptoethyl) hydantoin to neutralize it by crystallizing and separating methionine, followed by washing with water and drying. Using a jacketed stirring tank, firstly add a hydrolysis solution and a flocculant of 15 to 40% of the total amount to be put into the stirring tank, add carbon dioxide to this and crystallize batchwise with stirring , then the rest A methionine obtained by continuously supplying a 60-85% hydrolysis solution , a flocculant and carbon dioxide gas, and continuously crystallizing with stirring without removing the resulting slurry, followed by filtration, separation and washing with water. A method for producing methionine, characterized in that the hydrated cake of methionine is dried with mechanical stirring until the moisture content of methionine is 12% by weight to the desired moisture content of the product. 乾燥温度が60〜150℃である請求項1記載のメチオニンの製造方法。  The method for producing methionine according to claim 1, wherein the drying temperature is 60 to 150 ° C. 乾燥雰囲気中の酸素濃度が5容量%以下である請求項1または2記載のメチオニンの製造方法。  The method for producing methionine according to claim 1 or 2, wherein the oxygen concentration in the dry atmosphere is 5% by volume or less.
JP25771999A 1998-09-11 1999-09-10 Method for producing methionine Expired - Fee Related JP4482973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25771999A JP4482973B2 (en) 1998-09-11 1999-09-10 Method for producing methionine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-258228 1998-09-11
JP25822898 1998-09-11
JP25771999A JP4482973B2 (en) 1998-09-11 1999-09-10 Method for producing methionine

Publications (2)

Publication Number Publication Date
JP2000143617A JP2000143617A (en) 2000-05-26
JP4482973B2 true JP4482973B2 (en) 2010-06-16

Family

ID=26543365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25771999A Expired - Fee Related JP4482973B2 (en) 1998-09-11 1999-09-10 Method for producing methionine

Country Status (1)

Country Link
JP (1) JP4482973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254403A1 (en) 2019-06-18 2020-12-24 Evonik Operations Gmbh Process for the preparation of d,l-methionine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223884B2 (en) * 2001-11-29 2007-05-29 Nippon Soda Co., Ltd. Process for production of methionine
DE10160358A1 (en) * 2001-12-08 2003-06-18 Degussa Process for the production of methionine
CN103282116B (en) 2010-12-28 2015-06-10 东曹株式会社 Method for collecting precious metals from solution containing precious metal ions, extractant or adsorbent used therefor, and back extractant or desorbent
JP2013173717A (en) * 2012-02-27 2013-09-05 Sumitomo Chemical Co Ltd Method of producing purified methionine
CN104744326B (en) * 2015-02-12 2016-08-10 山东新和成氨基酸有限公司 A kind of method preparing the crystallization of high-bulk-density methionine continuously
KR20180078621A (en) 2016-12-30 2018-07-10 씨제이제일제당 (주) A Method for Producing L-Methionine Crystal Using Crystallization Technique
WO2019017415A1 (en) 2017-07-19 2019-01-24 住友化学株式会社 Method for producing purified methionine and method for preventing caking of methionine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254403A1 (en) 2019-06-18 2020-12-24 Evonik Operations Gmbh Process for the preparation of d,l-methionine

Also Published As

Publication number Publication date
JP2000143617A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP4834680B2 (en) Method and apparatus for biomass conversion
JP4338524B2 (en) Method for producing methionine
JP4482973B2 (en) Method for producing methionine
US9938547B2 (en) Process for the preparation of 2,5-furandicarboxylic acid
JP3292119B2 (en) Method for producing methionine
US6143270A (en) Anhydrous magnesium chloride
CN1097578C (en) Production process of high-purity creatine and its monohydrate
JP6745276B2 (en) Method for producing furan-2,5-dicarboxylic acid (FDCA) from solid salt
JPH10182593A (en) Production of methionine
JPH07118285A (en) Production of sucrose fatty acid ester
US6309621B1 (en) Process for producing high test hypochlorite and calcium chloride aqueous solution
US3848063A (en) Process for the manufacture of high-purity lithium hexafluoroarsenate
JP4309648B2 (en) High purity aluminum chloride manufacturing method and high purity aluminum chloride manufacturing apparatus
JP3890642B2 (en) Continuous production method of alkali metal styrene sulfonate
CH636624A5 (en) PROCESS FOR THE MANUFACTURE OF ALUMINUM MONOETHYLPHOSPHITE.
FR2490618A1 (en) PROCESS FOR MANUFACTURING STABLE SOLUTION OF TITANYLE SULFATES
JP2000095728A (en) Production of sorbic acid
CN103420935A (en) Method of processing sodium saccharin crystallized mother liquid
US6684526B2 (en) Process for removing trace solvent from a material
JP4198952B2 (en) Method for crystallizing methionine and alkali metal bicarbonate
JP2002037769A (en) Method for producing 2-hydroxy-4-methylthiobutanoic acid
CH653010A5 (en) BENZYL-LIGNOCAINE BENZOATE HYDRATE.
JP2004292324A (en) Method for purifying methionine
US4315915A (en) Process for the preparation of stable copper (II) sulfate monohydrate applicable as trace element additive in animal fodders
JPS62179503A (en) Production of chitosan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R151 Written notification of patent or utility model registration

Ref document number: 4482973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees