JP4482790B2 - Self-luminous device - Google Patents

Self-luminous device Download PDF

Info

Publication number
JP4482790B2
JP4482790B2 JP2003375968A JP2003375968A JP4482790B2 JP 4482790 B2 JP4482790 B2 JP 4482790B2 JP 2003375968 A JP2003375968 A JP 2003375968A JP 2003375968 A JP2003375968 A JP 2003375968A JP 4482790 B2 JP4482790 B2 JP 4482790B2
Authority
JP
Japan
Prior art keywords
light
color
light emitting
organic
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003375968A
Other languages
Japanese (ja)
Other versions
JP2005056813A (en
Inventor
博士 鎌田
裕美子 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2003375968A priority Critical patent/JP4482790B2/en
Publication of JP2005056813A publication Critical patent/JP2005056813A/en
Application granted granted Critical
Publication of JP4482790B2 publication Critical patent/JP4482790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、例えば有機LED、有機EL、無機ELなどと呼ばれる自発光装置に関する。   The present invention relates to a self-luminous device called an organic LED, an organic EL, an inorganic EL, or the like.

従来の有機LEDなどを用いた自発光装置は、有機LEDの発光時のジュール熱による発光物質の結晶化(非晶質からガラス状に結晶化することで絶縁物になり発光しなくなる。)による影響で大面積化が非常に困難であった。   A conventional self-light emitting device using an organic LED or the like is based on crystallization of a luminescent material by Joule heat at the time of light emission of the organic LED (it becomes an insulator due to crystallization from an amorphous state to a glass state and does not emit light). Due to the influence, it was very difficult to increase the area.

また、有機LEDなどは、屈折率差がある材料をガラス基板上に積層して形成しているため、有機LEDなどの発光部から発光された光は、その影響、つまりファイバー効果でサイドに放射されてしまい、所望方向へ光を取り出す効率が悪かった。   In addition, since organic LEDs and the like are formed by laminating materials having a refractive index difference on a glass substrate, the light emitted from the light emitting part such as organic LEDs is radiated to the side by its influence, that is, the fiber effect. As a result, the efficiency of extracting light in the desired direction was poor.

そこで、この効率悪化の問題を解決するために、ガラス基板の表面全面を凹凸状に加工する技術が提案されている(例えば特許文献1参照)。   Therefore, in order to solve this problem of deterioration in efficiency, a technique for processing the entire surface of the glass substrate into a concavo-convex shape has been proposed (see, for example, Patent Document 1).

また、このようなEL素子で可視光を得るために、有機EL材料および蛍光材料部を並列に横置するEL素子が特開平3−152897号広報(特許文献2)に開示されている。
特開2002−043054号公報 特開平3−152897号公報
Moreover, in order to obtain visible light with such an EL element, an EL element in which an organic EL material and a fluorescent material portion are disposed in parallel is disclosed in Japanese Patent Laid-Open No. 3-152897 (Patent Document 2).
JP 2002-043054 A Japanese Patent Laid-Open No. 3-152897

しかしながら、特許文献1の場合、有機LEDなどの発光部からガラス基板表面までの遠い位置で光を乱反射させる構造のため、期待していたほど光を取り出す効率が上がらないという問題があった。また、特許文献2の場合でも、効率的に光を取り出すことはできないので、効率向上の効果はあがらなかった。   However, in the case of Patent Document 1, there is a problem that the efficiency of extracting light is not increased as expected because of the structure in which light is diffusely reflected at a position far from the light emitting unit such as an organic LED to the surface of the glass substrate. Further, even in the case of Patent Document 2, the efficiency cannot be improved because light cannot be extracted efficiently.

本発明はこのような課題を解決するためになされたもので、光を取り出す効率を向上でき、さらには広い面での発光を可能とする自発光装置を提供することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a self-luminous device that can improve the efficiency of extracting light and can emit light in a wide area.

請求項1の発明の自発光装置は、透光性基板と;透光性基板上に形成された透明性導電体と;透明性導電体の上に形成され、エレクトロルミネッセンス材料を含有した層を含む発光部と;透明性導電体と少なくとも一部が対向するように発光部上に形成され、発光部が発光した光を反射可能な金属電極と;発光部に並接するとともに金属電極に接するよう形成される光変換部と;を具備している。 The self-luminous device of the invention of claim 1 includes a translucent substrate; a transparent conductor formed on the translucent substrate; and a layer formed on the transparent conductor and containing an electroluminescent material. A light-emitting part including: a metal electrode formed on the light-emitting part so that at least part of the light-emitting part faces the transparent conductor, and capable of reflecting the light emitted from the light- emitting part ; parallel to the light-emitting part and in contact with the metal electrode And a light converting portion to be formed.

本発明および以下の各発明において、特に指定しない限り、用語の定義および技術的な意味は次による。   In the present invention and each of the following inventions, the definitions and technical meanings of terms are as follows unless otherwise specified.

発光部のエレクトロルミネッセンス材料(以下、EL材料)は、有機物であっても無機物であってもよい。また、低分子材料だけでなく高分子材料であってもよい。金属電極は、光が反射できる金属であればよく、アルミニウム、銀、金、プラチナ等の金属および合金を許容する。また、金属電極に凸凹面を設けるなどして多くの光を光変換部に入射できるように、または、透光性基板から透過させるようにしてもよい。   The electroluminescent material (hereinafter referred to as EL material) of the light emitting part may be organic or inorganic. Further, not only a low molecular material but also a high molecular material may be used. The metal electrode may be any metal that can reflect light, and accepts metals and alloys such as aluminum, silver, gold, and platinum. In addition, a large amount of light may be incident on the light conversion unit by providing an uneven surface on the metal electrode, or may be transmitted from the translucent substrate.

光変換部は、発光部から放射された光の光色を変換させる機能を持つものであり、蛍光色素などを含んだレジストなどの絶縁物が好ましい。材質としては、アクリル、エポキシ樹脂等の単純透明材料あるいは白色透光材料のレジスト膜に光変換材料を含有させて形成することができる。   The light conversion part has a function of converting the light color of the light emitted from the light emitting part, and an insulator such as a resist containing a fluorescent dye is preferable. The material can be formed by including a light conversion material in a resist film of a simple transparent material such as acrylic or epoxy resin or a white light-transmitting material.

請求項2の発明は、請求項1の自発光装置であって、発光部が青色に発光し、色変換部は青色の光を緑色および赤色に変換することを特徴とする。   The invention according to claim 2 is the self-light-emitting device according to claim 1, wherein the light-emitting portion emits blue light, and the color conversion portion converts blue light into green and red.

青色に発光する発光部としては、EL材料としてジスチリルアリーレン誘導体(DPVBi)などがある。また、青色の発光を赤色に変換するものとして、ローダミンBbase、DCM、ナイルレッド等の蛍光色素などがある。また、青色の発光を緑色に変換するものとして、クマリン6蛍光色素、キナクリドンなどがある。   As the light emitting portion emitting blue light, there is a distyrylarylene derivative (DPVBi) or the like as an EL material. Moreover, there are fluorescent dyes such as rhodamine Bbase, DCM, and Nile red that convert blue light emission into red. Moreover, there exist coumarin 6 fluorescent dye, quinacridone, etc. as what converts blue light emission into green.

請求項3の発明は、請求項1の自発光装置であって、発光部が青色に発光し、色変換部は青色の光を黄色ないし橙色に変換することを特徴とする。   A third aspect of the invention is the self-light-emitting device according to the first aspect, wherein the light-emitting portion emits blue light, and the color conversion portion converts blue light from yellow to orange.

青色の発光を黄色ないし橙色に変換するものとして、ルブレン蛍光色素(黄色に変換)、DCM誘導体蛍光色素(橙色に変換)などがあり、これらを混合して使用することも許容する。   There are rubrene fluorescent dyes (converted to yellow), DCM derivative fluorescent dyes (converted to orange), and the like that convert blue light emission to yellow to orange, and these can be used in combination.

請求項4の発明は、請求項1ないし3の自発光装置であって、色変換部は、変換される色が異なる少なくとも2種類の色変換体を混合して形成したことを特徴とする。   According to a fourth aspect of the present invention, in the self-luminous device according to the first to third aspects, the color converter is formed by mixing at least two types of color converters having different colors to be converted.

光を変換する光変換体を少なくとも2種類混合したものを光変換部に形成したので、光変換部によって変換された有色の光が混合され、白色に近い発光がむらなく得られる。   Since the light conversion unit is formed by mixing at least two types of light conversion bodies that convert light, the colored light converted by the light conversion unit is mixed, and light emission close to white can be obtained uniformly.

なお、発光部の発光色と色変換部によって変換される色の組み合わせは、上記に限られるものではなく、光発光部のEL材料を1、4ビス(4−メチルスチリル)ベンゼン(PMSBなどの青緑色の発光を用いた場合、光変換部を青緑色から赤色に変換させるピリジン1のような蛍光体を用いることによって自発光装置からを略白色の発光を得ることができる。また、任意の色の組み合わせによって任意の発光色を得ることも許容する。   The combination of the light emission color of the light emission part and the color converted by the color conversion part is not limited to the above, and the EL material of the light emission part may be 1,4 bis (4-methylstyryl) benzene (PMSB or the like). When blue-green light emission is used, substantially white light emission can be obtained from the self-light-emitting device by using a phosphor such as pyridine 1 that converts the light conversion portion from blue-green to red. It is also possible to obtain an arbitrary emission color by a combination of colors.

請求項5の発明は、請求項1ないし4記載の自発光装置であって、光変換部に光拡散性粒子を含有していることを特徴とする。   A fifth aspect of the present invention is the self-luminous device according to the first to fourth aspects, characterized in that the light conversion part contains light diffusing particles.

光変換部に絶縁物にアクリル、エポキシ樹脂等の単純透明材料あるいは白色透光材料で保護層(レジスト膜)を形成するまたは、アルミナ、セリア、チタニア、ジルコニア等の無機材料あるいはポリエチレン、ポリスチレン等の有機材料からなる透明な微粒子を透明材料あるいは透光材料に含有させたものを用いてもよい。   Form a protective layer (resist film) with a simple transparent material such as acrylic or epoxy resin or white translucent material on the light conversion part, or inorganic material such as alumina, ceria, titania, zirconia or polyethylene, polystyrene, etc. You may use what contained the transparent fine particle which consists of organic materials in the transparent material or the translucent material.

請求項1の発明によれば、発光部に並接するとともに金属電極に接する部分に光変換部を形成したので、発光部からの光が、透明性導電体の境界面で生じる屈折によって発光部から放射される光が光変換部に放射され、また、その光を反射効果のある金属電極による反射によって光が所望の方向(前面方向)へ照射される量が増加し、その光が、光変換部によって光色が変換されるので、EL材料のみでは得ることの困難であった光色も、発光部から得られる光色と光変換部によって変換された別の光色とが混ざり合うことによって得ることができる。さらに、光の取り出し効率を向上させることができる。 According to the first aspect of the present invention, since the light conversion part is formed in the part in parallel with the light emitting part and in contact with the metal electrode , the light from the light emitting part is separated from the light emitting part by refraction generated at the boundary surface of the transparent conductor. The emitted light is radiated to the light conversion unit, and the amount of light irradiated in the desired direction (front direction) is increased by reflection by the metal electrode having a reflection effect, and the light is converted into light. Since the light color is converted by the light source, the light color that was difficult to obtain with only the EL material is mixed with the light color obtained from the light emitting part and another light color converted by the light conversion part. Obtainable. Furthermore, the light extraction efficiency can be improved.

請求項2の発明によれば、発光部の光色を青色、光変換部が青色を緑色および赤色に変換する光変換部を設けたので、白色の自発光装置を得るのに適している。また、発光部の出力を変化させることで、様様な光色の自発光装置を得ることができる。   According to the second aspect of the present invention, since the light conversion unit that converts the light color of the light emitting unit into blue and the light conversion unit converts blue into green and red is provided, it is suitable for obtaining a white light-emitting device. Further, by changing the output of the light emitting unit, various light-colored self-light emitting devices can be obtained.

請求項3の発明によれば、発光部の光色を青色、光変換部が青色を黄色ないし橙色に変換する光変換部を設けたので、白色の自発光装置を得るのに適している。   According to the third aspect of the present invention, since the light conversion unit for converting the light color of the light emitting unit to blue and the light conversion unit converting blue to yellow or orange is provided, it is suitable for obtaining a white light-emitting device.

請求項4の発明によれば、変換された有色の光が混合され、白色に近い発光がむらなく得られる。   According to the invention of claim 4, the converted colored light is mixed, and light emission close to white can be obtained uniformly.

請求項5の発明によれば、発光部からの光が、透明性導電体の境界面で生じる屈折によって発光部から放射される光が光変換部に放射され、光変換部に含有されている光拡散粒子によって拡散される。このため、発光部からの光を拡散させて前方への光の取り出し効率を向上させることもできる。   According to the invention of claim 5, the light emitted from the light emitting part is radiated to the light converting part by the refraction generated at the boundary surface of the transparent conductor, and is contained in the light converting part. Diffused by light diffusing particles. For this reason, the light extraction efficiency can be improved by diffusing the light from the light emitting portion.

本発明の第一の実施の形態を図面を参照して詳細に説明する。図1は本発明に係る一つの実施形態の有機EL装置の構成を示す図、図2は図1の有機EL装置の断面図、図3は図1の有機EL装置の要部拡大図である。   A first embodiment of the present invention will be described in detail with reference to the drawings. 1 is a diagram showing a configuration of an organic EL device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the organic EL device of FIG. 1, and FIG. 3 is an enlarged view of a main part of the organic EL device of FIG. .

図1ないし図3に示すように、この有機EL装置は、例えば光をマトリクス状に発光させるために透光性基板としてのガラス基板21と、このガラス基板21上にライン状に形成した透明性導電体としての陽極22と、ガラス基板21の上に有機発光材料であるエレクトロルミネッセンス材料(以下EL材料と称す)を含有した層を含む複数の層を積層して形成された発光部25と、陽極22と対向して交差するようにライン状に形成された金属電極としての陰極24と、ガラス基板21の上に塗布した封止用接着剤28を介して発光部25を密閉する皿状の封止用ガラス基板27と、この封止用ガラス基板27の内面に取り付けられた乾燥剤26とを備えている。   As shown in FIGS. 1 to 3, this organic EL device has, for example, a glass substrate 21 as a translucent substrate for emitting light in a matrix, and transparency formed in a line on the glass substrate 21. A light emitting section 25 formed by laminating a plurality of layers including a layer containing an electroluminescent material (hereinafter referred to as EL material) that is an organic light emitting material on the glass substrate 21; A dish-like shape that seals the light emitting portion 25 via a cathode 24 as a metal electrode formed in a line so as to cross the anode 22 and a sealing adhesive 28 applied on the glass substrate 21. A sealing glass substrate 27 and a desiccant 26 attached to the inner surface of the sealing glass substrate 27 are provided.

図3に示すように、ガラス基板21には、陽極22(ITO膜)がライン状に形成されている。ガラス基板21の厚みは、例えば1.5mm程度である。陽極22(ITO膜)の厚みは例えば2.0μm程度である。陽極22(ITO膜)の上には、発光部25が形成されている。発光部25は、正孔輸送層32、発光層33、電子注入層34を順に積層形成したものである。正孔輸送層32には、例えばα-NPD、Bis[N-(1-naphthyl)-N-phenyl]benzidine等が用いられている。正孔輸送層32の厚みは、例えば0.04μm程度である。発光層33には、ジスチリルアリーレン誘導体:(DPVBi:4,4’-bis(2,2’diphenylvinyl)-1,1’-biphenylが用いられている。発光層33の厚みは、例えば0.02μm程度である。電子注入層34には、フッ化リチウム(LiF)が用いられている。電子注入層34の厚みは、例えば0.0007μm程度である。陽極22と交差する方向に陰極24がライン状に形成されている。陰極24は、アルミニウム、銀、金、プラチナ等の光が反射できる材料で形成された金属電極であり、厚みは例えば1.0μm程度である。   As shown in FIG. 3, an anode 22 (ITO film) is formed in a line shape on the glass substrate 21. The thickness of the glass substrate 21 is about 1.5 mm, for example. The thickness of the anode 22 (ITO film) is, for example, about 2.0 μm. A light emitting unit 25 is formed on the anode 22 (ITO film). The light emitting section 25 is formed by laminating a hole transport layer 32, a light emitting layer 33, and an electron injection layer 34 in this order. For the hole transport layer 32, for example, α-NPD, Bis [N- (1-naphthyl) -N-phenyl] benzidine or the like is used. The thickness of the hole transport layer 32 is, for example, about 0.04 μm. A distyrylarylene derivative: (DPVBi: 4,4′-bis (2,2′diphenylvinyl) -1,1′-biphenyl) is used for the light emitting layer 33. The thickness of the light emitting layer 33 is, for example, 0.02 μm. Lithium fluoride (LiF) is used for the electron injection layer 34. The thickness of the electron injection layer 34 is, for example, about 0.0007 μm, and the cathode 24 is linear in the direction intersecting the anode 22. The cathode 24 is a metal electrode formed of a material that can reflect light, such as aluminum, silver, gold, or platinum, and has a thickness of, for example, about 1.0 μm.

発光部25に並設し、陰極24に接する位置に光変換部23が配置される。光変換部23は、青色の光色を赤色に変換できるローダミンBbaseの蛍光色素を含んだアクリル、エポキシポリイミドなどの主原料からなるレジストをR色変換部23R、青色の光色を緑色に変換できるクマリン6蛍光色素を含んだレジストをG色変換部23Gとして、発光部と併設するように配置する。   The light conversion unit 23 is arranged in parallel with the light emitting unit 25 and in contact with the cathode 24. The light conversion unit 23 can convert a resist made of a main material such as acrylic or epoxy polyimide containing a rhodamine Bbase fluorescent dye capable of converting a blue light color into a red color, and can convert a blue light color into a green color. A resist containing coumarin 6 fluorescent dye is disposed as a G color conversion unit 23G so as to be provided along with the light emitting unit.

図1は、発光部25を、ほぼ正方形に複数形成する有機EL光源である。上から見ると、複数の発光部25の周辺をR色変換部23RとG色変換部23Gの領域が等しくなるように光変換部23を形成している。   FIG. 1 shows an organic EL light source in which a plurality of light emitting portions 25 are formed in a substantially square shape. When viewed from above, the light conversion unit 23 is formed around the plurality of light emitting units 25 so that the regions of the R color conversion unit 23R and the G color conversion unit 23G are equal.

これら光変換部23および発光部25の上には、陰極24の上には空間を隔てて封止用ガラス基板27が配設されている。この封止用ガラス基板27と最下部のガラス基板21とで発光部25を密封し、空気、水分等の浸入を防ぐ封止構造を構成している。   A sealing glass substrate 27 is disposed on the light conversion unit 23 and the light emitting unit 25 on the cathode 24 with a space therebetween. The sealing glass substrate 27 and the lowermost glass substrate 21 form a sealing structure that seals the light emitting portion 25 and prevents the intrusion of air, moisture, and the like.

封止用ガラス基板27は、光を透過する必要がないので、ガラス以外に、例えば金属等の材料を用いてもよい。封止用ガラス基板27の内面は、皿状にくぼんでおり空間が設けられている。この空間に酸素、水を除去する乾燥剤26が取り付けられている。   Since the sealing glass substrate 27 does not need to transmit light, a material such as metal may be used in addition to glass. The inner surface of the sealing glass substrate 27 is recessed in a dish shape to provide a space. A desiccant 26 for removing oxygen and water is attached to this space.

このようにこの実施形態の有機EL装置によれば、ガラス基板21上に発光部25を形成し、発光部に並接および金属電極24に隣接させるようにガラス基板21の上に光変換部23を形成したので、陽極22の境界面で生じる屈折によって発光部25の光が光変換部23に放射された光やまたその光を反射効果のある陰極24による反射により光が所望の方向(前面方向)へ照射される量が増加し、その光が、赤や緑に変換されるので、光の取り出し効率を向上させた白色の有機EL装置を提供することができる。   As described above, according to the organic EL device of this embodiment, the light emitting unit 25 is formed on the glass substrate 21, and the light conversion unit 23 is arranged on the glass substrate 21 so as to be juxtaposed to the light emitting unit and adjacent to the metal electrode 24. Therefore, the light emitted from the light emitting portion 25 is radiated to the light converting portion 23 due to refraction generated at the boundary surface of the anode 22, and the light is reflected in the desired direction (front surface) by the reflection of the cathode 24 having a reflection effect. The amount of light irradiated in the direction increases, and the light is converted into red or green, so that a white organic EL device with improved light extraction efficiency can be provided.

これにより、従来の前面照射照度を1としたときの百分率である比向上率に換算した場合、従来のもの(比向上率:100%)に対して、光変換部23の上に塗布した場合、比向上率を120%〜140%程度に高めることができる。また、各発光部25への入力電力を変化させることによって、有機EL装置全体の光色を変化させることも可能である。   Thereby, when converted into a ratio improvement rate which is a percentage when the conventional front illumination intensity is 1, when applied on the light conversion portion 23 with respect to the conventional one (ratio improvement rate: 100%) The ratio improvement rate can be increased to about 120% to 140%. It is also possible to change the light color of the entire organic EL device by changing the input power to each light emitting unit 25.

また、図4に示すように、光変換部23とガラス基板21の境界面に光拡散部30を形成することもできる。この光拡散部30は、ガラス基板21の表面に光拡散部23の形成する範囲をマスキングした後ガラス基板をサンドブラスト処理、薬品処理や拡散膜を塗布するなどによってフロストを形成することができる。このように形成することによって発光部25の光と光変換部23で変換された光が拡散部30によってお互いに拡散され、光が混合しやすく光の色むらが押さえられた白色を得ることができる。   In addition, as shown in FIG. 4, the light diffusion portion 30 can be formed on the boundary surface between the light conversion portion 23 and the glass substrate 21. The light diffusing portion 30 can form a frost by masking the area where the light diffusing portion 23 is formed on the surface of the glass substrate 21 and then applying a sandblast treatment, a chemical treatment or a diffusion film to the glass substrate. By forming in this way, the light of the light emitting unit 25 and the light converted by the light converting unit 23 are diffused to each other by the diffusing unit 30, and it is easy to mix the light and obtain a white color in which the color unevenness of the light is suppressed. it can.

さらに、図5のようにガラス基板21の発光部を形成する側とは反対側の面に拡散部30を設けることできる。これは、ガラス基板21の片側全面にフロストを形成することやガラス基板21の片側全面に拡散膜を形成することなどにより作ることができる。このように形成することによって、発光部25の光と光変換部23で変換された光が拡散部30によってお互いに拡散され、光が混合しやすく光の色むらが押さえられた白色を得ることができる。さらに、光拡散部30の形成が簡易にできる利点がある   Furthermore, as shown in FIG. 5, the diffusion part 30 can be provided on the surface of the glass substrate 21 opposite to the side on which the light emitting part is formed. This can be made by forming frost on the entire surface of one side of the glass substrate 21 or forming a diffusion film on the entire surface of one side of the glass substrate 21. By forming in this way, the light of the light emitting unit 25 and the light converted by the light converting unit 23 are diffused to each other by the diffusing unit 30 to obtain a white color in which light is easy to mix and color unevenness of light is suppressed. Can do. Furthermore, there is an advantage that the formation of the light diffusion portion 30 can be simplified.

また、図6に示すように、発光部25を、ほぼ長方形に複数形成した有機EL装置の場合は、発光部の中間部分で、R色変換部23RとG色変換部23Gの領域が等しくなるように光変換部23を形成してもよい。   Further, as shown in FIG. 6, in the case of an organic EL device in which a plurality of light emitting portions 25 are formed in a substantially rectangular shape, the regions of the R color converting portion 23R and the G color converting portion 23G are equal in the middle portion of the light emitting portion. In this manner, the light conversion unit 23 may be formed.

さらに、図7に示すように発光部25をほぼ長方形に複数形成した有機EL装置のような場合、複数の発光部25の中心で十字に分けるように発光部の周辺をR色変換部23RとG色変換部23Gの領域が等しくなるように光変換部23を形成してもよい。この用に構成すると、それぞれの発光色が光に形成されるため有機EL装置全体の光色をより白色に近づけることができる。   Further, in the case of an organic EL device in which a plurality of light emitting portions 25 are formed in a substantially rectangular shape as shown in FIG. 7, the periphery of the light emitting portion is divided into an R color converting portion 23R so as to be divided into a cross at the center of the plurality of light emitting portions 25. You may form the light conversion part 23 so that the area | region of G color conversion part 23G may become equal. When configured for this purpose, each light emission color is formed in light, so that the light color of the entire organic EL device can be made closer to white.

また、発光部25や光変換部(23R,23G)は、各光色や発光強度によって任意にそれぞれの大きさや形状など変化させることも許容する。   Further, the light emitting section 25 and the light converting sections (23R, 23G) also allow the size, shape, etc., to be arbitrarily changed according to each light color and light emission intensity.

さらに、図8のように発光部25をほぼ正方形に複数形成し、G色変換部23Gを発光部25の周囲に形成し、さらにその周囲にR色変換部23Rを形成してもよい。外側に配置されているR色変換部23Rは、発光部25から発光される青色の光を赤色に変換するだけでなく、G色発光部23Gによって青色から緑色に変換された光も赤色に変換することが可能であるため、光の取り出す量が多くなり発光効率が向上する。このように変換される光色の波長が長いものを外側に形成していくことによって、光の利用率が大きくなり発光効率が向上した有機EL装置を提供することができる。   Further, as shown in FIG. 8, a plurality of light emitting portions 25 may be formed in a substantially square shape, the G color converting portion 23G may be formed around the light emitting portion 25, and the R color converting portion 23R may be further formed therearound. The R color conversion unit 23R arranged outside converts not only the blue light emitted from the light emitting unit 25 into red, but also converts the light converted from blue to green by the G color light emitting unit 23G into red. Therefore, the amount of extracted light is increased and the light emission efficiency is improved. By forming the light having the long wavelength of the converted light color on the outside in this way, it is possible to provide an organic EL device in which the light utilization rate is increased and the light emission efficiency is improved.

次に本発明の第二の実施の形態を図面を参照して説明する。なお、図1ないし5と同一部分には同一符号を付して説明は省略する。   Next, a second embodiment of the present invention will be described with reference to the drawings. The same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.

図9は、本発明の第二の実施の形態であり、図1と同様に発光部25はほぼ正方形に形成したものであるが、光拡散部23Mは、R色光拡散部に使用した蛍光体とG色光拡散部に使用した蛍光体を混合したレジストにて形成される。このように形成することによって光の混合がされ、白色を得ることができる。また、R色に変換する蛍光体とG色に変換する蛍光体の混合する量を調節して有機EL装置の光色を任意に変化させることもできる。   FIG. 9 shows a second embodiment of the present invention. As in FIG. 1, the light emitting part 25 is formed in a substantially square shape, but the light diffusion part 23M is a phosphor used for the R color light diffusion part. And a phosphor mixed with the phosphor used in the G color light diffusion portion. By forming in this way, light is mixed and white can be obtained. In addition, the light color of the organic EL device can be arbitrarily changed by adjusting the amount of the phosphor that converts to R color and the phosphor that converts to G color.

次に本発明の第三の実施の形態を図面を参照して説明する。なお、図1ないし5と同一部分には同一符号を付して説明は省略する。   Next, a third embodiment of the present invention will be described with reference to the drawings. The same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.

図10は有機EL装置の構成をしめす平面図、図11はその要部断面図である。略正方形状に形成した発光部25の発光層は、ジスチリルアリーレン誘導体:(DPVBi)が用いられ、第一の実施形態と同様青色の発光色を有する。発光部の周囲には青色の光色を黄色の変換するY色光変換部23Yが形成される。Y色変換部23Yは、ルブレン蛍光色素を含有したレジスト材から構成されている。このように構成すれば、発光部から放射される青色の光は、第1の実施形態と同様に光変換部23に放射されまたは反射されその光を黄色の変換することにより青色と黄色の混色により白色の発光を得ることができる。光変換部23は、アルミナからなる光拡散性粒子29を含有したレジスト材から構成されている。光拡散粒子は、粒径5nm〜50nmの粒子である。この光拡散粒子によって、発光部からの光および光変換部23によって色変換された光が拡散され、よりよく混合され白色の光を得やすくしている。   FIG. 10 is a plan view showing the configuration of the organic EL device, and FIG. The light-emitting layer of the light-emitting portion 25 formed in a substantially square shape uses a distyrylarylene derivative: (DPVBi) and has a blue emission color as in the first embodiment. Around the light emitting portion, a Y color light converting portion 23Y for converting blue light color into yellow is formed. The Y color conversion unit 23Y is composed of a resist material containing a rubrene fluorescent dye. If comprised in this way, the blue light radiated | emitted from the light emission part will be radiated | emitted or reflected to the light conversion part 23 similarly to 1st Embodiment, and the color mixture of blue and yellow is carried out by converting the light into yellow. Thus, white light emission can be obtained. The light converting portion 23 is made of a resist material containing light diffusing particles 29 made of alumina. The light diffusing particles are particles having a particle diameter of 5 nm to 50 nm. The light diffusing particles diffuse the light from the light emitting portion and the light whose color has been converted by the light converting portion 23 and are better mixed to easily obtain white light.

図12の有機EL装置は、略ライン状に形成した発光部25もまた青色の発光色を有する。発光部の周囲には青色の光色を橙色の変換するO色光変換部23Oが形成される。O色変換部23Oは、DCM誘導体蛍光色素、およびアルミナからなる光拡散性粒子29を含有したレジスト材から構成されている。光拡散粒子は、粒径5nm〜50nmの粒子である。このように構成すれば、発光部から放射される青色の光は、第1の実施形態と同様に光変換部23に放射されまたは反射されその光を橙色の変換することにより青色と橙色の混色により白色の発光を得ることができる。さらに光変換部23に含まれた光拡散粒子29のため光変換部23に放射された光を効率的に有機EL装置の前面に放射させることもできる。よってより効率よく光を取り出すことが可能である。   In the organic EL device of FIG. 12, the light emitting portion 25 formed in a substantially line shape also has a blue light emission color. An O color light conversion unit 23O that converts blue light color into orange is formed around the light emitting unit. The O color conversion portion 23O is made of a resist material containing a DCM derivative fluorescent dye and light diffusing particles 29 made of alumina. The light diffusing particles are particles having a particle diameter of 5 nm to 50 nm. If comprised in this way, the blue light radiated | emitted from the light emission part will be radiated | emitted or reflected to the light conversion part 23 similarly to 1st Embodiment, and the color mixture of blue and orange is carried out by converting the light into orange. Thus, white light emission can be obtained. Furthermore, the light diffusing particles 29 included in the light conversion unit 23 can efficiently radiate the light emitted to the light conversion unit 23 to the front surface of the organic EL device. Therefore, it is possible to extract light more efficiently.

図13は、有機EL装置は、略ライン状に形成した発光部25もまた青色の発光色を有する。発光部を略二分割した周囲には、青色の光色を黄色の変換するルブレン蛍光色素を含有したレジスト材から構成されるY色光変換部23Yおよび青色の光色を橙色の変換するDCM誘導体蛍光色素を含有したレジストから構成される色光変換部23Oが形成されるこのように構成すれば、発光部から放射される青色の光は、第1の実施形態と同様に光変換部23に放射されまたは反射されその光を黄色と橙色の変換することにより青色と黄色および橙色の混色により白色の発光を得ることができる。   In FIG. 13, in the organic EL device, the light emitting section 25 formed in a substantially line shape also has a blue emission color. Around the periphery of the light-emitting part, the Y-color light converting part 23Y made of a resist material containing a rubrene fluorescent dye that converts blue light color into yellow and DCM derivative fluorescence that converts blue light color into orange If configured in this way, the color light conversion unit 23O composed of a resist containing a dye is formed, and the blue light emitted from the light emitting unit is emitted to the light conversion unit 23 as in the first embodiment. Alternatively, by reflecting and converting the light into yellow and orange, white light emission can be obtained by mixing blue, yellow and orange.

本発明の第一の実施形態の有機EL装置の構成を示す平面図。The top view which shows the structure of the organic electroluminescent apparatus of 1st embodiment of this invention. 図1の有機EL装置の断面図。Sectional drawing of the organic electroluminescent apparatus of FIG. 図2の有機EL装置の要部を拡大した断面図。Sectional drawing which expanded the principal part of the organic electroluminescent apparatus of FIG. 他の例の要部拡大断面図。The principal part expanded sectional view of another example. 同じく他の例の要部拡大断面図。Similarly the principal part expanded sectional view of another example. 本発明の第一の実施形態の有機EL装置の他の例を示す平面図。The top view which shows the other example of the organic electroluminescent apparatus of 1st embodiment of this invention. 同じく第一の実施形態の有機EL装置の他の例を示す平面図。The top view which similarly shows the other example of the organic electroluminescent apparatus of 1st embodiment. 同じく第一の実施形態の有機EL装置の他の例を示す平面図。The top view which similarly shows the other example of the organic electroluminescent apparatus of 1st embodiment. 本発明の第二の実施形態の有機EL装置の構成を示す平面図。The top view which shows the structure of the organic electroluminescent apparatus of 2nd embodiment of this invention. 本発明の第三の実施形態の有機EL装置の構成を示す平面図。The top view which shows the structure of the organic electroluminescent apparatus of 3rd embodiment of this invention. 図10の有機EL装置の要部を拡大した断面図。Sectional drawing which expanded the principal part of the organic electroluminescent apparatus of FIG. 同じく第三の実施形態の有機EL装置の他の例を示す平面図。The top view which shows the other example of the organic electroluminescent apparatus of 3rd embodiment similarly. 同じく第三の実施形態の有機EL装置の他の例を示す平面図。The top view which shows the other example of the organic electroluminescent apparatus of 3rd embodiment similarly.

符号の説明Explanation of symbols

21…ガラス基板、21a…乱反射面、22…陽極、23…光変換部、24…陰極、25…発光部、26…乾燥剤、27…封止用ガラス基板、28…封止用接着剤、30・・・光拡散部 32…正孔輸送層、33…発光層、34…電子注入層。
DESCRIPTION OF SYMBOLS 21 ... Glass substrate, 21a ... Diffuse reflection surface, 22 ... Anode, 23 ... Light conversion part, 24 ... Cathode, 25 ... Light emission part, 26 ... Desiccant, 27 ... Glass substrate for sealing, 28 ... Adhesive for sealing, DESCRIPTION OF SYMBOLS 30 ... Light diffusion part 32 ... Hole transport layer, 33 ... Light emitting layer, 34 ... Electron injection layer.

Claims (1)

透光性基板と;
透光性基板上に形成された透明性導電体と;
透明性導電体の上に形成され、エレクトロルミネッセンス材料を含有した層を含む発光部と;
透明性導電体と少なくとも一部が対向するように発光部上に形成され、発光部が発光した光を反射可能な金属電極と;
発光部に並接するとともに金属電極に接するよう形成される光変換部と;
を具備したことを特徴とする自発光装置。
A translucent substrate;
A transparent conductor formed on a translucent substrate;
A light emitting part formed on a transparent conductor and including a layer containing an electroluminescent material;
A metal electrode which is formed on the light emitting part so that at least a part thereof faces the transparent conductor and can reflect the light emitted by the light emitting part;
A light conversion part formed in parallel with the light emitting part and in contact with the metal electrode ;
A self-luminous device characterized by comprising:
JP2003375968A 2003-07-23 2003-11-05 Self-luminous device Expired - Fee Related JP4482790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375968A JP4482790B2 (en) 2003-07-23 2003-11-05 Self-luminous device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003278240 2003-07-23
JP2003375968A JP4482790B2 (en) 2003-07-23 2003-11-05 Self-luminous device

Publications (2)

Publication Number Publication Date
JP2005056813A JP2005056813A (en) 2005-03-03
JP4482790B2 true JP4482790B2 (en) 2010-06-16

Family

ID=34380032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375968A Expired - Fee Related JP4482790B2 (en) 2003-07-23 2003-11-05 Self-luminous device

Country Status (1)

Country Link
JP (1) JP4482790B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504645B2 (en) * 2003-08-27 2010-07-14 明義 三上 Combined light emitting device
JPWO2006120895A1 (en) * 2005-05-12 2008-12-18 出光興産株式会社 Color conversion material composition and color conversion medium containing the same
JP2008108439A (en) * 2006-10-23 2008-05-08 Nec Lighting Ltd Electroluminescent element and electroluminescent panel
SK51202007A3 (en) * 2006-10-24 2008-08-05 Sumitomo Chemical Company, Limited Light diffusing resin means
JP4950870B2 (en) * 2007-12-21 2012-06-13 ローム株式会社 Organic light emitting device
JP5604817B2 (en) * 2009-06-25 2014-10-15 富士ゼロックス株式会社 Light emitting element, light emitting element array, exposure head, exposure apparatus, and image forming apparatus
CN102576734B (en) 2009-10-21 2015-04-22 株式会社半导体能源研究所 Display device and electronic device including display device

Also Published As

Publication number Publication date
JP2005056813A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4937845B2 (en) Illumination device and display device
JP5481587B2 (en) Light emitting element
EP1987539B1 (en) A light emitting device
ES2251618T3 (en) ELECTROLUMINISCENT LIGHT EMISSION DEVICE.
JP2010512618A5 (en)
JP2005260229A (en) Led display device with overlay
JP2008108439A (en) Electroluminescent element and electroluminescent panel
TWI445226B (en) Organic light emitting diode devices with optical microstructures
JP2011512638A (en) Double-sided organic light emitting diode (OLED)
JP2010212204A (en) El element, display apparatus, display device, and liquid crystal display device
US20100283068A1 (en) Colour Optoelectronic Device
JP6233750B2 (en) LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, LIGHTING LIGHT SOURCE, AND LIGHTING DEVICE
KR101676291B1 (en) White organic light-emitting device including light conversion layer and preparing method of the same
JP4482790B2 (en) Self-luminous device
JP2008010245A (en) Light emitting device
JP2003249381A (en) Organic electroluminescence element and its manufacturing method
JP2012524368A (en) Transparent organic light-emitting device with high brightness
JP2008052950A (en) Display device
JP2004311153A (en) Organic electroluminescent element, surface light source, and display device
TWI831384B (en) Light emitting device
JP2015041421A (en) Surface light emitting illumination device
JPWO2016084472A1 (en) Surface emitting module
KR101765902B1 (en) Lgiht emitting device
JP2009182083A (en) Light emitting device
JP5870651B2 (en) LENS SHEET AND ORGANIC EL ELEMENT HAVING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees