JP4481562B2 - Method for producing crystalline thin film - Google Patents

Method for producing crystalline thin film Download PDF

Info

Publication number
JP4481562B2
JP4481562B2 JP2002348005A JP2002348005A JP4481562B2 JP 4481562 B2 JP4481562 B2 JP 4481562B2 JP 2002348005 A JP2002348005 A JP 2002348005A JP 2002348005 A JP2002348005 A JP 2002348005A JP 4481562 B2 JP4481562 B2 JP 4481562B2
Authority
JP
Japan
Prior art keywords
thin film
starting
melting
region
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002348005A
Other languages
Japanese (ja)
Other versions
JP2004186199A (en
Inventor
壮俊 渡邉
日出也 雲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002348005A priority Critical patent/JP4481562B2/en
Priority to AU2003283833A priority patent/AU2003283833A1/en
Priority to US10/533,091 priority patent/US7473621B2/en
Priority to PCT/JP2003/015072 priority patent/WO2004049412A2/en
Priority to TW092133410A priority patent/TW200421450A/en
Publication of JP2004186199A publication Critical patent/JP2004186199A/en
Priority to US12/325,689 priority patent/US20090166626A1/en
Application granted granted Critical
Publication of JP4481562B2 publication Critical patent/JP4481562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フラットパネルディスプレイやイメージセンサ、磁気記録装置、情報処理装置など高い空間的均質性を要する大規模集積回路に用いられる結晶性薄膜及びその製造方法、該結晶性薄膜を用いた素子、該素子を用いた回路、該素子もしくは該回路を含む装置に関する。
【0002】
【背景技術】
液晶ディスプレイ等に代表されるフラットパネルディスプレイは、画素駆動用の回路のパネルへのモノリシックな実装とその高性能化によって、画像表示の高精細化、高速化、及び多階調化を図ってきた。単純マトリクス駆動のパネルは画素毎にスイッチングトランジスタを備えたアクティヴマトリクス駆動に発展し、さらにそのアクティヴマトリクス駆動に用いるシフトレジスタ回路を同一パネル上周辺に作製することによって、今日、動画像にも対応するフルカラーの高精細液晶ディスプレイが提供されている。
【0003】
このような周辺駆動回路まで含めたモノリシック実装が実用的な製造コストで可能となったのは、電気的特性に優れた多結晶シリコン薄膜の安価なガラス基体上への形成技術に負うところが大きい。即ち、ガラス基体上に堆積した非晶質シリコン薄膜をエキシマレーザーなどの紫外域の短時間パルス光によって、ガラス基体を低温に保ったまま非晶質シリコン薄膜を溶融再固化させる技術である。同じ非晶質シリコン薄膜を出発材料としてこれを固相で結晶化させた多結晶薄膜を構成する結晶粒に比べて、溶融再固化法によって得られる結晶粒は内部の結晶欠陥密度が低く、該薄膜を活性領域として用いて構成した薄膜トランジスタは高いキャリア移動度を示す。そのためサブミクロン程度の平均粒径を持つ多結晶薄膜でも、対角数インチ程のサイズで高々100ppi以下の精細度の液晶ディスプレイには十分な性能を示すアクティヴマトリクス駆動用モノリシック回路を製造することができる。
【0004】
【非特許文献1】
H.Kumomi and T.Yonehara,Jpn.J.Appl.Phys.36,1383(1997)
【非特許文献2】
H.Kumomi and F.G.Shi,”Handbook of Thin Films Materials”Volume 1,Chapter 6,”Nucleation,Growth,and Crystallization of Thin Films”edited by H.S.Nalwa(Academic Press,New York,2001)
【非特許文献3】
P.Ch.van der Wilt,B.D.van Dijk,G.J.Bertens,R.Ishihara,and C.I.M.Beenakker,Appl.Phys.Lett.,Vol.79,No.12,1819(2001)
【非特許文献4】
R.Ishihara, P.Ch.van der Wilt,B.D.van Dijk,A.Burtsev,J.W.Metselaar,and C.I.M.Beenakker,Digest of Technical Papers,AM−LCD 02,53(The Japan Society of Applied Physics,2002)
【0005】
【発明が解決しようとする課題】
しかしながら、次世代に望まれるより大画面或いは高精細な液晶ディスプレイに対して、現行の溶融再固化多結晶シリコン薄膜を用いる薄膜トランジスタは性能が不足していることが明らかとなっている。また、液晶ディスプレイよりも高電圧或いは大電流での駆動を要するプラズマディスプレイやエレクトロルミネッセンスディスプレイの駆動回路用素子、或いは医療用大画面X線イメージセンサの高速駆動回路用の素子など、今後発展が期待されている用途においても上記多結晶シリコン薄膜は性能不足である。いかに結晶粒内の欠陥密度が低いとは言え、多結晶シリコン薄膜の平均粒径が高々サブミクロン程度ではこれらの高性能素子は得られない。なぜなら、ミクロン程度のサイズを有する素子の活性領域内に、電荷移動の大きな障害となる結晶粒界が多く含まれるからである。
【0006】
このような多結晶薄膜における結晶粒界の密度とその空間分散を同時に小さくするための一般論が存在する。それは結晶粒の形成位置を制御することにより、結晶粒界の位置と粒径分布を制御するというアイデアであり、これまでに多結晶薄膜の化学気相堆積や薄膜の固相結晶化などにおいて実証されてきた〔例えば、非特許文献1、2を参照のこと〕。
【0007】
溶融再固化による結晶性薄膜形成においても、同じアイデアを実現しようとする試みがこれまでいくつか報告されている。それらのうちでこれまでに最も成功しているものは、Wiltら〔非特許文献3、4〕によって初めて報告された方法である。彼らは先ず、シリコン単結晶基板上のシリコン酸化膜層の表面から深さ1μmに及ぶ直径0.1μm以下の細孔を設け、これを埋めるように膜厚90−272nmの非晶質シリコン薄膜を形成し、この表面から細孔の内部を除く薄膜が完全溶融するようにエキシマレーザーを照射した。これにより、細孔の位置を中心として結晶粒の位置が制御されたと報告されている。しかしながら、細孔における単一結晶粒の選択収率が不十分であるために結晶粒界の位置制御という所期の目的を十分には達成していない。また、深さ1μmに及ぶ直径0.1μm以下の細孔を大面積に亙って均一に形成すること、及びそこに非晶質シリコンを埋めることは極めて困難であり、生産工程としての現実性に乏しい。
【0008】
本発明の課題は、上記したように、ガラス基体等へも適用可能な汎用性の高い溶融再固化による結晶性薄膜の製造方法において結晶粒位置を高度に制御する新たな方法を実現し、該製造方法によって結晶粒位置を高度に制御した結晶性薄膜を提供し、さらには該薄膜を用いて高性能な素子、回路、並びに装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、基板上に配した出発薄膜を溶融再固化させる工程を含む結晶性薄膜の製造方法であって、小領域と前記小領域とは状態の異なる周囲の領域とが少なくとも連続して共存する薄膜前記出発薄膜として用い、前記小領域と前記周囲の領域の両方を溶融して、少なくとも前記周囲の領域を完全溶融させる溶融過程と、前記小領域において単一の結晶粒を周囲の領域に対して優先的に成長させ、かつ、前記単一の結晶粒を前記小領域を越えて周囲の領域へ成長させる冷却固化過程と、を含み、前記溶融過程は、前記出発薄膜を融点以下の温度に加熱する工程と、前記融点以下の温度に加熱された前記出発薄膜を追加加熱することで前記周囲の領域を完全溶融させる工程と、を含むことを特徴とするものである。
【0015】
【発明の実施の形態】
本発明の結晶性薄膜及びその製造方法の最も基本的な実施形態を図1に示す。図中、薄膜はその表面もしくは界面に鉛直な方向に薄膜の一部を切り出した断面によって模式的に表されている。尚、本発明にかかる薄膜はその上下に設けた別の層と接していてもよいが、図1においては便宜上それらを省略し、薄膜のみを図示する。
図1(a)は、溶融再固化前の薄膜すなわち出発薄膜を示す。
図1(b)は、出発薄膜を加熱した様子を示す。
図1(c)は、エネルギー投与終了直後の薄膜を示す。
図1(d)は、再固化が開始された初期の薄膜を示す。
図1(e)は、再固化が進行中の薄膜を示す。
図1(f)は、再固化の最終段階の薄膜を示す。
図1(g)は、再固化終了後の薄膜を示す。
【0016】
図1中、10は出発薄膜、11はその周囲の領域とは状態の異なる特定の小領域(以下、小領域)、12は小領域とは状態の異なる周囲の領域(以下、周囲の領域)、13は溶融再固化のための投与エネルギー、14は結晶粒もしくは結晶性クラスター、15はランダムな結晶性クラスター、16は未再固化領域、17はランダムな結晶性クラスター群、18は結晶粒界、19は薄膜の下の層(基板)から伝わる熱である。
【0017】
はじめに、図1(a)に示すように互いに状態の異なる小領域11および周囲の領域12を有する出発薄膜10を用意する。出発薄膜10において、小領域11は、あらかじめ定められた特定の位置に設けられ、その周りに、周囲の領域12が連続して共存する。小領域11と周囲の領域12の状態の差異を付加する方法としては、エネルギーをもった粒子線や電磁波の照射によって形成することが可能である。
【0018】
本発明の結晶性薄膜の製造方法は、この互いに状態の異なる領域が連続して共存する出発薄膜10を、加熱溶融し、再固化させるものであるが、その場合には、後に説明するとおり、温度の均一かつ精度の高い制御が必要であり、そのために、加熱過程を、空間的、時間的に精度よく制御する必要がある。
【0019】
以下、加熱の過程とその手段について説明する。
【0020】
図1(a)に示す出発薄膜10に、複数の独立した加熱手段により加熱して薄膜を溶融させる。図1の実施形態においては、加熱手段は、図1(b)に示すように、溶融再固化のための投与エネルギー13と基板から伝達される熱19とを薄膜に与える。
【0021】
複数の加熱手段のうち、一つは、溶融前に、あらかじめ出発薄膜を融点以下の温度に加熱するために用いられる。その後、薄膜は、他の加熱手段によってさらに加熱されて溶融状態になる。図1の実施形態においては、基板から伝達される熱19が溶融前の加熱、溶融再固化のための投与エネルギー13が追加の加熱である。
【0022】
加熱の具体的手段としては、出発薄膜がエネルギー吸収可能な波長を有する電磁波の照射や、エネルギーを有する粒子ビームの照射、出発薄膜を含む基板への物理的な接触による熱伝導、出発薄膜へ電流投与や誘導電流による出発薄膜自体の電気抵抗による薄膜自体の発熱が可能であり、複数の独立した手段であれば、これらの何れの組み合わせも可能である。また、投与するエネルギーはトータルで出発薄膜を溶融することが可能であれば特に制限はない。
【0023】
この複数の独立した加熱手段として、その溶融過程での加熱強度の時間変化のない等温的な過程を有する手段である場合と、溶融過程において加熱強度の時間変化のある非等温的な過程を有する手段である場合と、複数の独立した加熱手段の少なくとも1つが溶融過程での加熱強度の時間変化のない等温的な過程を有する手段であって、且つ少なくとも1つが溶融過程において加熱強度の時間変化のある非等温的な過程を有する手段である場合が可能である。
【0024】
ここで、等温的過程を有する加熱手段は、時間変化のない一定の加熱強度を有し、薄膜に一定の熱を与えることができる加熱手段であり、主として、薄膜を均一に加熱し、所定温度に昇温し、その温度を維持するために用いられる。この、等温的過程すなわち時間変化のない一定の加熱強度を有する加熱手段は、薄膜を直接加熱するものであってもよいが、薄膜を含む基板や、それを支持するサセプタを熱して、薄膜に伝導させるものであってもよい。
【0025】
また、非等温的過程を有する加熱手段は、時間的に変化する加熱強度を有し、薄膜に短時間で一定の熱を与え、かつ短時間で加熱を停止することができる加熱手段であり、主として、薄膜を瞬時に加熱して溶融させ、その後速やかに加熱を停止して冷却を開始するために用いられる。薄膜の溶融再固化の過程で、薄膜を搭載する基板は、薄膜より融点の低いガラスなどの材料が用いられることが多く、薄膜を溶融するための熱が、基板にも伝わって基板温度を上昇させてしまうことは避けなければならない。そのため、短時間の加熱ができる非等温的過程すなわち時間的に変化する加熱強度を有する加熱手段を用いることが好ましい。また、この時間的に変化する加熱強度を有する加熱手段は、基板を介さず、薄膜を直接加熱するものが好ましい。
【0026】
したがって、溶融前にあらかじめ出発薄膜を融点以下の温度に加熱するために、時間変化のない一定の加熱強度を有する加熱手段を用い、追加の加熱により薄膜を溶融させるために時間的に変化する加熱強度を有する加熱手段を用いることが好ましい。この場合、時間変化のない一定の加熱強度を有する加熱手段は、薄膜の溶融過程においても一定の加熱強度で基板を加熱し続けている。これにより、あらかじめ精度よく昇温された薄膜に、比較的小さなエネルギーをパルス的に与えて加熱溶融させることができ、その結果、大出力のパルスレーザを用いることなく、溶融再固化による結晶性薄膜を作ることができる。
【0027】
しかし、時間変化のない一定の加熱強度を有する加熱手段であっても、加熱とその停止が短時間で切り替えできるものであれば、上記追加の加熱のために用いることもできる。また、時間的に変化する加熱強度を有する加熱手段であっても、出力が十分大きく、短時間で薄膜を所定温度に昇温することができるものであれば、上記のあらかじめ出発薄膜を融点以下の温度に加熱するための加熱手段として用いてもよい。
【0028】
このように、複数の加熱手段を用いて薄膜を溶融させ、その後加熱を停止して再固化させることにより、それぞれの加熱手段の加熱の時間的変化を適切に組み合わせることが可能になり、溶融前、溶融途中、溶融後、それぞれの温度制御を行なうことが容易になる。このことは、以下で説明するように,互いに状態の異なる領域が連続して共存する出発薄膜を、加熱溶融し、再固化させる結晶性薄膜の製造方法において特に重要である。
【0029】
以下、本発明の薄膜の溶融再固化の過程について説明する。
【0030】
図1において、複数の独立した加熱手段すなわち、基板からの熱伝導19と溶融再固化のためのエネルギー13の投与により周囲の領域12は必ず完全溶融する。一方、小領域11は近完全溶融する場合と完全溶融する場合がある。
【0031】
小領域11が近完全溶融する場合、溶融に要する最低のエネルギー(臨界エネルギー)Ecは、「周囲の領域12の臨界エネルギーEc<薄膜に与えるトータルエネルギー(13+19)<小領域11の臨界エネルギーEc」なる関係が成立するように小領域の内外のEcが小領域11或いは周囲の領域12への異なる状態の付加によって調整されている。これにより、溶融再固化のためのエネルギー13の投与終了後に、小領域11には結晶粒もしくは結晶性クラスター14が未溶融で残留する。
【0032】
小領域11が完全溶融する場合、小領域11の結晶核形成自由エネルギー障壁Wは、「W<周囲の領域12の結晶核形成自由エネルギー障壁W」なる関係が成立するように小領域内外のWが小領域11或いは周囲の領域12への異なる状態の付加によって調整されている。これにより、溶融再固化のためのエネルギー13の投与終了後に、小領域11には結晶粒もしくは結晶性クラスター14が優先的に発生する。
【0033】
いずれの場合も、この後薄膜の冷却が進むにつれて微小な結晶粒もしくは結晶性クラスター14が成長して結晶粒14となる〔図1(c)〜(d)〕。結晶粒14はさらに成長して薄膜の表面に届き、小領域11を越えてその周囲の領域12へ専ら横方向に成長する〔図1(e)〕。やがて薄膜が冷却し、小領域外部の未再固化領域16の過冷却度が増大すると、ここにランダムな結晶核17が高速発生する〔図1(f)〕。そして、結晶粒14と衝突してそこに結晶粒14の結晶粒界18が形成される〔図1(g)〕。結果として、本実施形態においては、小領域11を中心として結晶粒14の位置が制御された溶融再固化による結晶性薄膜を形成することができる。
【0034】
図1では小領域11を中心として単一の結晶粒14を成長させる例を示したが、小領域11に2個以上の所望の数だけ結晶粒14を成長させることも可能である。
【0035】
また図1では、結晶粒14の形成位置を規定する小領域11が、周囲の領域12に囲まれた単一のドメインである場合の実施形態を示した。本発明においては、当該形態に限らず、小領域11を不連続且つ離散的に複数設けてもよい。この場合、隣接する小領域11が十分離れていれば、それぞれの小領域11に成長した結晶粒14の間にランダムな結晶性クラスター群17が挟まれることになる。逆に隣接する小領域11が十分近接していれば、それぞれの小領域11に成長した結晶粒14は間に結晶性クラスター群17を挟むことなく直接接し、結晶粒界18をなすこともできる。さらにそのような間隔で小領域11を周期的に配せば、薄膜全体を位置制御された結晶粒14で構成することも可能である。
【0036】
また、図1に示した実施形態では、出発薄膜の小領域11及び周囲の領域12を出発薄膜の面内方向に二次元的に設けた例を示した。本発明においては、出発薄膜の厚さ方向の次元も加えた三次元的な構成も可能である。
【0037】
更に、図1に示した実施形態では、出発薄膜がその面内方向に連続している範囲が、少なくとも小領域11もしくは結晶粒14或いは複数の小領域11の間隔より遥かに広い場合の例を示した。一方、図1に示した結晶粒14ほどの広さの出発薄膜を用い、周囲の領域12に囲まれた小領域11を設けるならば、未再固化領域16においてランダムな結晶核17が高速発生する前に、結晶粒14の成長が出発薄膜全域に及び、結晶粒14のみからなる再固化薄膜を得ることも可能である。
【0038】
【実施例】
(第lの実施例)
本発明の第一の実施例として、図1に示した工程によって形成される結晶性シリコン薄膜の第一の例を、図2を用いて説明する。
【0039】
先ず、非晶質酸化シリコン表面を有するガラス基板上23に、プラズマ化学気相堆積法により結晶性シリコンクラスターを含む膜厚100nmの水素化非晶質シリコン薄膜を堆積し、熱処理により脱水素処理を行った。この非晶質シリコン薄膜表面にスパッタ法で厚さ150nmの非晶質酸化シリコン膜を堆積し、これをフォトリソグラフィー工程でパターニングして、5μm間隔の正方格子点に1μm角の非晶質酸化シリコン島を残した。この表面から非晶質酸化シリコン島をマスクにして、シリコンイオンを加速エネルギー40keV、電流密度10μA、ドーズ4×1015cm- の条件にて注入した。その後マスクである非晶質シリコン島を除去し、これを出発薄膜22とした。この出発薄膜22の結晶性を調べたところ、非晶質シリコン島マスクを設けた5μm間隔の正方格子点にある1μm角の領域では脱水素処理後の結晶性シリコンクラスターを含む非晶質シリコン薄膜から変化がなかったのに対して、それ以外のシリコンイオンが注入された領域では結晶性シリコンクラスターは観察されず、完全な非晶質であった。
【0040】
次に、この出発薄膜22を有するガラス基板23をサセプタ24上に置き、このサセプタ24を400℃まで誘導加熱装置25で昇温しこれを一定に保った後、気温やガラス基板23の熱容量などの条件を加味し、一定出力を有する炭酸ガスレーザー21を一定時間照射し、出発薄膜22を溶融再固化させて結晶性薄膜を得た。
【0041】
得られた結晶性薄膜を構成する結晶粒形状を観察したところ、5μm間隔の各正方格子点に配した1μm角の領域を中心として、直径約3μmに達する円形の単一の結晶粒が成長していた。その周囲は平均直径約50nmの様々なサイズの微結晶粒で埋め尽くされており、且つ、それらの位置は全くランダムであった。
【0042】
本実施例においては、シリコンイオン照射によって小領域及びその周囲の領域を互いに異なる状態にした出発薄膜22を用い、出発薄膜22に溶融再固化のエネルギーを付与するために、一定温度に保ったサセプタ24と、一定出力の炭酸ガスレーザー21とを用いた。サセプタ24は、基板を介して薄膜に熱を伝達し、薄膜を融点以下の温度に昇温する加熱手段であり、炭酸ガスレーザー21は、該昇温された薄膜を加熱して薄膜を溶融させる加熱手段である。
【0043】
すなわち、本実施例は、基板からの熱伝導により、出発薄膜を融点以下の温度に昇温する工程と、一定時間の追加のエネルギー投与により、該昇温された薄膜を加熱し溶融させる工程と、追加エネルギー投与の終了後、再固化させる工程とを含む結晶性薄膜の製造方法の例である。
【0044】
(第2の実施例)
本発明の第二の実施例として、図1に示した工程によって形成される結晶性シリコン薄膜の第二の例を、図3を用いて説明する。
【0045】
先ず、出発薄膜36には本発明の第一の実施例と同条件で小領域及びその周囲の領域を互いに異なる状態にしたシリコンの出発薄膜36を使用した。
【0046】
次に、この出発薄膜36の溶融再固化を行う為に、パルス幅約60nsecのKrFエキシマレーザー光源31を用いた。このKrFエキシマレーザー光源31から出発薄膜36までの光路の途中にビームスプリッター32を設置し、レーザー光をレーザー光A35a及びレーザー光B35bの2つに分け、レーザー光A35aを最短距離の光路に、レーザー光B35bを光路延長装置34によりレーザー光A35aよりも約10m長い光路に設定し、出発薄膜36への同一部位へ照射を行い、出発薄膜36を溶融再固化させて結晶性薄膜を得た。尚、エネルギー密度は、気温やガラス基板の熱容量などの条件を加味し、トータルで出発薄膜36が溶融するパルス出力に調整し、試料に照射されたレーザーは、図3(b)に示すようにレーザー光Aの強度プロファイル38aとレーザー光Bの強度プロファイル38bの足し合わせによって、時間的に非対称な強度プロファイルであった。
【0047】
得られた結晶性薄膜を構成する結晶粒形状を観察したところ、5μm間隔の各正方格子点に配した1μm角の領域を中心として、直径約3μmに達する円形の単一の結晶粒が成長していた。その周囲は本発明の実施例1と同様に平均直径約50nmの様々なサイズの微結晶粒で埋め尽くされており、且つ、それらの位置は全くランダムであった。
【0048】
本実施例では、シリコンイオン照射によって小領域及びその周囲の領域を互いに異なる状態にした出発薄膜36を用い、出発薄膜にエネルギーを付与する複数の独立した手段として、光路長の異なる同一光源のパルスレーザーの分波を用い、時間差を設けて、強度の異なる2つのパルスを薄膜に照射した。その結果、時間的に非対称な加熱強度変化を薄膜に与えることになり、好適な温度変化プロファイルが実現したものと考えられる。
【0049】
(第3の実施例)
本発明の第三の実施例として、図1に示した工程によって形成される結晶性シリコン薄膜の第三の例を、図4を用いて説明する。
【0050】
先ず、出発薄膜には本発明の第一の実施例と同条件で小領域及びその周囲の領域を互いに異なる状態にしたシリコンの出発薄膜を用意し、フォトリソグラフィーの工程によって、正方格子点を中心とした幅3μmの一方向に長いストライプ形状にパターニングを行い、各々のストライプパターンの両端に通電用の電極を設けたパターニングされたストライプ状の出発薄膜44を使用した。
【0051】
次に、ストライプ状シリコン出発薄膜44の溶融再固化を行う為に、はじめにストライプパターンの両端に設けた電極に電極ニードル42を通してストライプ状シリコン出発薄膜44に交流電流を流し、300℃程度の通電加熱を行う。そして、シリコン出発薄膜44のストライプ方向にライン状の照射が可能なパルス幅約30nsecのKrFエキシマレーザー41を照射し、出発薄膜44を溶融再固化させて結晶性薄膜を得た。尚、エネルギー密度は、気温やガラス基板の熱容量などの条件を加味し、トータルで出発薄膜が溶融するパルス出力に調整した。
【0052】
得られた結晶性薄膜を構成する結晶粒形状を観察したところ、ストライプ状のシリコン薄膜44において、5μm間隔毎に、直径約3μmに達する円形の単一の結晶粒が成長していた。その周囲は本発明の実施例1と同様に平均直径約50nmの様々なサイズの微結晶粒で埋め尽くされており、且つ、それらの位置は全くランダムであった。
【0053】
本実施例においては、シリコンイオン照射によって小領域及びその周囲の領域を互いに異なる状態にした出発薄膜44を用い、出発薄膜44に溶融再固化のエネルギーを付与する複数の独立した手段として、出発薄膜の通電加熱による加熱と、時間的に強度変化するパルスレーザーを用いた。通電加熱手段は、出発薄膜の溶融過程において加熱強度の時間変化のない等温的な過程を有する手段であって、これにより薄膜を融点以下の温度に昇温した。パルスレーザー加熱手段は、出発薄膜の溶融過程において加熱強度の時間変化のある非等温的な過程を有する手段であって、これにより該昇温された薄膜を加熱して薄膜を溶融させた。
【0054】
(第4の実施例)
本発明の第四の実施例として、図1に示した工程によって形成される結晶性シリコン薄膜の第四の例を、図1を用いて説明する。
【0055】
先ず、出発薄膜22には本発明の第一の実施例と同条件で小領域及びその周囲の領域を互いに異なる状態にしたシリコンの出発薄膜22を使用した。
【0056】
次に、この出発薄膜22を有するガラス基板23をサセプタ24上に置き、このサセプタ24を400℃までホットプレート25で昇温し、これを一定に保った。更に、パルス幅約60nsecのKrFエキシマレーザー光源21を用いて、出発薄膜へエキシマレーザー照射21を行い、出発薄膜22を溶融再固化させて結晶性薄膜を得た。尚、エネルギー密度は、気温やガラス基板23の熱容量などの条件を加味し、トータルで出発薄膜が溶融するパルス出力に調整した。
【0057】
得られた結晶性薄膜を構成する結晶粒形状を観察したところ、5μm間隔の各正方格子点に配した1μm角の領域を中心として、直径約3μmに達する円形の単一の結晶粒が成長していた。その周囲は本発明の実施例1と同様に平均直径約50nmの様々なサイズの微結晶粒で埋め尽くされており、且つ、それらの位置は全くランダムであった。
【0058】
本実施例においては、シリコンイオン照射によって小領域及びその周囲の領域を互いに異なる状態にした出発薄膜22を用い、出発薄膜22の溶融再固化の為のエネルギーを付与する複数の独立した手段として、出発薄膜22を一定温度に保つサセプタ24と、時間的に強度変化するKrFエキシマレーザー21を用いた。サセプタ24は、出発薄膜の溶融過程において加熱強度の時間変化のない等温的な過程を有する加熱手段であって、基板を介して薄膜に熱を伝導させることにより、薄膜を融点以下の温度に昇温し、その温度を保持する。エキシマパルスレーザー21は、出発薄膜の溶融過程において加熱強度の時間変化のある非等温的な過程を有する加熱手段であって、これにより該昇温された薄膜を加熱して薄膜を溶融させた。
【0059】
【発明の効果】
以上説明したように、本発明は、溶融再固化によって形成する結晶性薄膜において、互いに状態の異なる領域が連続して共存する出発薄膜を、複数の独立した加熱手段により溶融再固化させることにより、結晶性薄膜を構成する結晶粒の空間的位置制御を容易に実現する。
【0060】
また、本発明の結晶性薄膜は、これを構成する結晶粒の制御された位置と素子の特定の領域を空間的に関係づけるか、或いは、位置制御された単一結晶粒の内部に素子の特定の領域を形成することにより、従来のランダムな結晶粒のみからなる結晶性薄膜を用いる場合に比べて、当該素子の動作特性を著しく向上させ、そのバラツキを低減することができる。
【図面の簡単な説明】
【図1】本発明の結晶性薄膜及びその製造方法の基本的な実施形態を説明するための製造工程図である。
【図2】本発明の結晶性薄膜及びその製造方法の第1と第4の実施例を説明するための製造工程図である。
【図3】本発明の結晶性薄膜及びその製造方法の第2の実施例を説明するための製造工程図である。
【図4】本発明の結晶性薄膜及びその製造方法の第3の実施例を説明するための製造工程図である。
【符号の説明】
10 出発薄膜
11 周囲の領域とは状態の異なる小領域(小領域)
12 小領域とは状態の異なる周囲の領域(周囲の領域)
13 溶融再固化のためのエネルギー
14 結晶粒もしくは結晶性クラスター
15 ランダムな結晶性クラスター
16 未固化領域
17 ランダムな結晶性クラスター群
18 結晶粒界
19 基板からの伝達熱
21 レーザー照射
22 Si出発薄膜
23 ガラス基板
24 サセプタ
25 ホットプレート或いは誘導加熱装置
31 エキシマレーザー光源
32 ビームスプリッター
33 ミラー
34 光路延長装置
35a レーザー光A
35b レーザー光B
36 Si出発薄膜
37 ガラス基板
38a レーザー光Aの強度プロファイル
38b レーザー光Bの強度プロファイル
41 ライン状エキシマレーザー
42 電極ニードル
43 配線
44 ストライプ状Si出発薄膜
45 ガラス基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystalline thin film used in a large-scale integrated circuit that requires high spatial homogeneity, such as a flat panel display, an image sensor, a magnetic recording apparatus, and an information processing apparatus, a manufacturing method thereof, an element using the crystalline thin film, The present invention relates to a circuit using the element, the element, or an apparatus including the circuit.
[0002]
[Background]
Flat panel displays typified by liquid crystal displays have achieved higher resolution, higher speed, and multi-gradation of image display through monolithic mounting of pixel drive circuits on panels and higher performance. . Simple matrix drive panels have evolved into active matrix drive with a switching transistor for each pixel, and today, shift register circuits used for the active matrix drive are made around the same panel to support moving images today. Full-color high-definition liquid crystal displays are provided.
[0003]
The reason why such monolithic mounting including the peripheral drive circuit is possible at a practical manufacturing cost is largely due to the technology for forming a polycrystalline silicon thin film having excellent electrical characteristics on an inexpensive glass substrate. That is, this is a technique in which an amorphous silicon thin film deposited on a glass substrate is melted and re-solidified with ultraviolet short-time pulsed light such as an excimer laser while the glass substrate is kept at a low temperature. Compared to the crystal grains constituting the polycrystalline thin film obtained by crystallizing the same amorphous silicon thin film as a starting material, the crystal grains obtained by the melt resolidification method have a low internal crystal defect density, A thin film transistor formed using a thin film as an active region exhibits high carrier mobility. Therefore, it is possible to manufacture an active matrix driving monolithic circuit that has sufficient performance for a liquid crystal display with a size of about a few inches diagonal and a resolution of 100 ppi or less even with a polycrystalline thin film having an average grain size of about submicron. it can.
[0004]
[Non-Patent Document 1]
H. Kumomi and T.K. Yonehara, Jpn. J. et al. Appl. Phys. 36, 1383 (1997)
[Non-Patent Document 2]
H. Kumomi and F.K. G. Shi, “Handbook of Thin Films Materials”, Volume 1, Chapter 6, “Nucleation, Growth, and Crystallization of Thin Films”, by by H. S. Nalwa (Academic Press, New York, 2001)
[Non-Patent Document 3]
P. Ch. van der Wilt, B.M. D. van Dijk, G.M. J. et al. Bertens, R.A. Ishihara, and C.I. I. M.M. Beenakker, Appl. Phys. Lett. , Vol. 79, no. 12, 1819 (2001)
[Non-Patent Document 4]
R. Ishihara, P.I. Ch. van der Wilt, B.M. D. van Dijk, A.M. Burtsev, J. et al. W. Metselar, and C.I. I. M.M. Beenakker, Digest of Technical Papers, AM-LCD 02, 53 (The Japan Society of Applied Physics, 2002)
[0005]
[Problems to be solved by the invention]
However, it is clear that thin film transistors using the current melt-resolidified polycrystalline silicon thin film have insufficient performance for larger screens or high-definition liquid crystal displays desired for the next generation. Further development is expected in the future, such as elements for driving circuits of plasma displays and electroluminescence displays that require driving at higher voltages or larger currents than liquid crystal displays, or elements for high-speed driving circuits of medical large-screen X-ray image sensors. Even in the applications used, the polycrystalline silicon thin film has insufficient performance. Although the defect density in the crystal grains is low, these high performance devices cannot be obtained if the average grain size of the polycrystalline silicon thin film is at most about submicron. This is because there are many crystal grain boundaries that are a major obstacle to charge transfer in the active region of an element having a size of about a micron.
[0006]
There is a general theory for simultaneously reducing the density of grain boundaries and the spatial dispersion in such polycrystalline thin films. The idea is to control the position of grain boundaries and grain size distribution by controlling the formation position of crystal grains, and has been demonstrated in chemical vapor deposition of polycrystalline thin films and solid-phase crystallization of thin films. [For example, see Non-Patent Documents 1 and 2].
[0007]
Some attempts have been reported to realize the same idea in the formation of a crystalline thin film by melt resolidification. Among them, the method most successful so far is a method first reported by Wilt et al. First, they provided pores having a diameter of 0.1 μm or less extending from the surface of the silicon oxide film layer on the silicon single crystal substrate to a depth of 1 μm, and formed an amorphous silicon thin film having a thickness of 90 to 272 nm so as to fill the pores. An excimer laser was irradiated so that the thin film excluding the inside of the pores was completely melted from the surface. As a result, it is reported that the position of the crystal grains is controlled around the position of the pores. However, since the selective yield of single crystal grains in the pores is insufficient, the intended purpose of position control of the grain boundaries is not sufficiently achieved. In addition, it is extremely difficult to uniformly form pores with a diameter of 0.1 μm or less that extend to a depth of 1 μm over a large area, and to embed amorphous silicon in the pores. It is scarce.
[0008]
As described above, the object of the present invention is to realize a new method for highly controlling the position of crystal grains in a method for producing a crystalline thin film by melting and resolidification having high versatility that can be applied to a glass substrate and the like. It is an object of the present invention to provide a crystalline thin film whose crystal grain position is highly controlled by a manufacturing method, and to provide a high-performance element, circuit, and apparatus using the thin film.
[0009]
[Means for Solving the Problems]
  The present invention relates to a method for producing a crystalline thin film including a step of melting and re-solidifying a starting thin film disposed on a substrate, wherein the small region and the surrounding region in different states coexist at least continuously. DoThin filmTheSaidUsed as a starting thin film, melting both the small region and the surrounding region to completely melt at least the surrounding region, and giving priority to a single crystal grain in the small region over the surrounding region Cooling and solidifying a single crystal grain to a surrounding region beyond the small region, the melting step heating the starting thin film to a temperature below the melting point And the starting thin film heated to a temperature below the melting pointadd toAnd the step of completely melting the surrounding area by heating.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The most basic embodiment of the crystalline thin film and the manufacturing method thereof of the present invention is shown in FIG. In the drawing, the thin film is schematically represented by a cross section obtained by cutting out a part of the thin film in a direction perpendicular to the surface or interface thereof. In addition, although the thin film concerning this invention may be in contact with the other layer provided in the upper and lower sides, in FIG. 1, they are abbreviate | omitted for convenience and only the thin film is illustrated.
FIG. 1A shows a thin film before melting and resolidification, that is, a starting thin film.
FIG.1 (b) shows a mode that the starting thin film was heated.
FIG. 1 (c) shows a thin film immediately after the end of energy administration.
FIG. 1 (d) shows the initial thin film where resolidification has begun.
FIG. 1 (e) shows a thin film in which re-solidification is in progress.
FIG. 1 (f) shows the thin film at the final stage of resolidification.
FIG.1 (g) shows the thin film after completion | finish of resolidification.
[0016]
In FIG. 1, 10 is a starting thin film, 11 is a specific small region (hereinafter referred to as a small region) having a state different from that of the surrounding region, and 12 is a surrounding region having a state different from that of the small region (hereinafter referred to as a peripheral region). , 13 is a dose energy for melt resolidification, 14 is a crystal grain or crystal cluster, 15 is a random crystal cluster, 16 is an unresolidified region, 17 is a group of random crystal clusters, and 18 is a grain boundary. , 19 is heat transmitted from the lower layer (substrate) of the thin film.
[0017]
First, as shown in FIG. 1A, a starting thin film 10 having a small region 11 and a surrounding region 12 in different states is prepared. In the starting thin film 10, the small region 11 is provided at a predetermined position, and the surrounding region 12 coexists continuously therearound. As a method for adding a difference in state between the small region 11 and the surrounding region 12, it can be formed by irradiation with an energy particle beam or electromagnetic wave.
[0018]
In the method for producing a crystalline thin film of the present invention, the starting thin film 10 in which regions having different states coexist continuously is heated and melted and re-solidified. In that case, as described later, It is necessary to control the temperature uniformly and with high accuracy. For this reason, it is necessary to control the heating process with high accuracy in terms of space and time.
[0019]
Hereinafter, the heating process and its means will be described.
[0020]
The starting thin film 10 shown in FIG. 1A is heated by a plurality of independent heating means to melt the thin film. In the embodiment of FIG. 1, the heating means provides the thin film with dosing energy 13 for melt resolidification and heat 19 transmitted from the substrate, as shown in FIG. 1 (b).
[0021]
One of the plurality of heating means is used to heat the starting thin film to a temperature below the melting point in advance before melting. Thereafter, the thin film is further heated by another heating means to be in a molten state. In the embodiment of FIG. 1, the heat 19 transmitted from the substrate is heating before melting, and the dosing energy 13 for melting and resolidification is additional heating.
[0022]
Specific means of heating include irradiation of electromagnetic waves having a wavelength that allows the starting thin film to absorb energy, irradiation of an energy particle beam, heat conduction by physical contact with the substrate including the starting thin film, current to the starting thin film. The thin film itself can generate heat due to the electrical resistance of the starting thin film itself due to administration or induced current, and any combination of these is possible as long as it is a plurality of independent means. The energy to be administered is not particularly limited as long as it is possible to melt the starting thin film in total.
[0023]
As the plurality of independent heating means, a means having an isothermal process with no temporal change in heating intensity in the melting process and a non-isothermal process with a temporal change in heating intensity in the melting process. And at least one of a plurality of independent heating means is a means having an isothermal process without a time change of the heating intensity in the melting process, and at least one of the heating intensity is changed with time in the melting process. It is possible to have a non-isothermal process.
[0024]
Here, the heating means having an isothermal process is a heating means that has a constant heating intensity with no time change and can give a constant heat to the thin film. Is used to maintain the temperature. The heating means having an isothermal process, that is, a constant heating intensity that does not change with time, may directly heat the thin film, but the substrate including the thin film and the susceptor that supports the thin film are heated to form the thin film. It may be made to conduct.
[0025]
Further, the heating means having a non-isothermal process is a heating means that has a heating intensity that changes with time, can give a constant heat to the thin film in a short time, and can stop the heating in a short time, Mainly used to instantaneously heat and melt the thin film, and then quickly stop heating and start cooling. During the process of melting and resolidifying the thin film, the substrate on which the thin film is mounted is often made of glass or other material having a melting point lower than that of the thin film, and the heat for melting the thin film is also transmitted to the substrate to raise the substrate temperature. You must avoid it. Therefore, it is preferable to use a non-isothermal process capable of heating for a short time, that is, a heating means having a heating intensity that changes with time. Moreover, the heating means having the heating intensity that changes with time is preferably one that directly heats the thin film without using the substrate.
[0026]
Therefore, in order to heat the starting thin film to a temperature below the melting point in advance before melting, a heating means having a constant heating intensity with no time change is used, and heating that changes with time in order to melt the thin film by additional heating. It is preferable to use a heating means having strength. In this case, the heating means having a constant heating intensity without time change keeps heating the substrate with a constant heating intensity even in the melting process of the thin film. As a result, it is possible to heat and melt a thin film that has been accurately heated in advance by applying a relatively small amount of energy in a pulsed manner. As a result, the crystalline thin film can be melted and re-solidified without using a high-power pulse laser. Can be made.
[0027]
However, even a heating means having a constant heating intensity that does not change with time can be used for the additional heating as long as it can switch between heating and stopping in a short time. Moreover, even if the heating means has a heating intensity that changes over time, the above-mentioned starting thin film should be below the melting point if the output is sufficiently large and the thin film can be heated to a predetermined temperature in a short time. You may use as a heating means for heating to this temperature.
[0028]
In this way, by melting the thin film using a plurality of heating means, and then stopping and re-solidifying the heating, it becomes possible to appropriately combine the temporal changes of the heating of each heating means, and before the melting During and after melting, it becomes easy to control each temperature. This is particularly important in a method for producing a crystalline thin film in which a starting thin film in which regions having different states coexist continuously is heated and melted and re-solidified as described below.
[0029]
Hereinafter, the process of melting and resolidifying the thin film of the present invention will be described.
[0030]
In FIG. 1, a plurality of independent heating means, that is, heat conduction 19 from the substrate and administration of energy 13 for melting and resolidification, the surrounding region 12 is necessarily completely melted. On the other hand, the small region 11 may be completely melted or may be completely melted.
[0031]
When the small region 11 is nearly completely melted, the minimum energy (critical energy) Ec required for melting is “critical energy Ec of the surrounding region 12 <total energy given to the thin film (13 + 19) <critical energy Ec of the small region 11” The inside and outside Ec of the small area are adjusted by adding different states to the small area 11 or the surrounding area 12 so that the following relationship is established. Thereby, after the administration of the energy 13 for melting and re-solidifying is completed, the crystal grains or the crystalline clusters 14 remain unmelted in the small region 11.
[0032]
When the small region 11 is completely melted, the crystal nucleation free energy barrier W of the small region 11*"W*<Crystal nucleation free energy barrier W in the surrounding region 12*”Inside and outside the small area so that the relationship“*Is adjusted by adding different states to the small area 11 or the surrounding area 12. As a result, crystal grains or crystalline clusters 14 are preferentially generated in the small region 11 after the administration of the energy 13 for melting and re-solidifying is completed.
[0033]
In either case, as the cooling of the thin film proceeds thereafter, fine crystal grains or crystalline clusters 14 grow into crystal grains 14 (FIGS. 1C to 1D). The crystal grains 14 further grow and reach the surface of the thin film, and grow only in the lateral direction beyond the small region 11 to the surrounding region 12 (FIG. 1 (e)). When the thin film eventually cools and the degree of supercooling of the non-resolidified region 16 outside the small region increases, random crystal nuclei 17 are generated at a high speed (FIG. 1 (f)). And it collides with the crystal grain 14 and the crystal grain boundary 18 of the crystal grain 14 is formed there [FIG.1 (g)]. As a result, in this embodiment, it is possible to form a crystalline thin film by melt resolidification in which the position of the crystal grains 14 is controlled around the small region 11.
[0034]
Although FIG. 1 shows an example in which a single crystal grain 14 is grown around the small region 11, it is possible to grow two or more desired number of crystal grains 14 in the small region 11.
[0035]
FIG. 1 shows an embodiment in which the small region 11 that defines the formation position of the crystal grains 14 is a single domain surrounded by the surrounding region 12. In the present invention, not limited to this form, a plurality of small regions 11 may be provided discontinuously and discretely. In this case, if adjacent small regions 11 are sufficiently separated, random crystalline cluster groups 17 are sandwiched between crystal grains 14 grown in each small region 11. On the contrary, if the adjacent small regions 11 are sufficiently close to each other, the crystal grains 14 grown in the respective small regions 11 can directly contact each other without sandwiching the crystalline cluster group 17 therebetween to form the crystal grain boundary 18. . Furthermore, if the small regions 11 are periodically arranged at such intervals, the entire thin film can be constituted by the crystal grains 14 whose position is controlled.
[0036]
In the embodiment shown in FIG. 1, the example in which the small region 11 and the surrounding region 12 of the starting thin film are two-dimensionally provided in the in-plane direction of the starting thin film is shown. In the present invention, a three-dimensional configuration including the dimension in the thickness direction of the starting thin film is also possible.
[0037]
Further, in the embodiment shown in FIG. 1, an example in which the range in which the starting thin film is continuous in the in-plane direction is far wider than at least the small region 11, the crystal grain 14, or the interval between the plurality of small regions 11. Indicated. On the other hand, if the starting thin film as large as the crystal grain 14 shown in FIG. 1 is used and the small region 11 surrounded by the surrounding region 12 is provided, random crystal nuclei 17 are generated at high speed in the non-resolidified region 16. It is also possible to obtain a re-solidified thin film consisting of only the crystal grains 14, where the crystal grains 14 grow all over the starting thin film.
[0038]
【Example】
(First embodiment)
As a first embodiment of the present invention, a first example of a crystalline silicon thin film formed by the process shown in FIG. 1 will be described with reference to FIG.
[0039]
First, a 100 nm-thick hydrogenated amorphous silicon thin film containing crystalline silicon clusters is deposited on a glass substrate 23 having an amorphous silicon oxide surface by a plasma chemical vapor deposition method, and dehydrogenation is performed by heat treatment. went. An amorphous silicon oxide film having a thickness of 150 nm is deposited on the surface of this amorphous silicon thin film by sputtering, and this is patterned by a photolithography process to form 1 μm square amorphous silicon oxide at square lattice points at intervals of 5 μm. I left the island. From this surface, using the amorphous silicon oxide island as a mask, silicon ions are accelerated by energy of 40 keV, current density is 10 μA, and dose is 4 × 10.15cm- 2The injection was performed under the following conditions. Thereafter, the amorphous silicon island as a mask was removed, and this was used as a starting thin film 22. When the crystallinity of the starting thin film 22 was examined, an amorphous silicon thin film containing a crystalline silicon cluster after dehydrogenation treatment was found in a 1 μm square region at square lattice points with an interval of 5 μm provided with an amorphous silicon island mask. However, no crystalline silicon cluster was observed in the region where other silicon ions were implanted, and the film was completely amorphous.
[0040]
Next, the glass substrate 23 having the starting thin film 22 is placed on the susceptor 24, and the susceptor 24 is heated to 400 ° C. by the induction heating device 25 and kept constant, and then the temperature, the heat capacity of the glass substrate 23, etc. In consideration of the above conditions, a carbon dioxide laser 21 having a constant output was irradiated for a certain period of time, and the starting thin film 22 was melted and re-solidified to obtain a crystalline thin film.
[0041]
As a result of observing the shape of the crystal grains constituting the obtained crystalline thin film, a single circular crystal grain having a diameter of about 3 μm grows around a 1 μm square region arranged at each square lattice point at 5 μm intervals. It was. The surrounding area was filled with microcrystal grains of various sizes having an average diameter of about 50 nm, and their positions were completely random.
[0042]
In the present embodiment, a susceptor maintained at a constant temperature is used in order to apply melting and resolidification energy to the starting thin film 22 using the starting thin film 22 in which a small region and its surrounding region are made different from each other by silicon ion irradiation. 24 and a carbon dioxide laser 21 having a constant output were used. The susceptor 24 is a heating means that transfers heat to the thin film through the substrate and raises the temperature of the thin film to a temperature equal to or lower than the melting point. The carbon dioxide laser 21 heats the heated thin film to melt the thin film. It is a heating means.
[0043]
That is, this example includes a step of heating the starting thin film to a temperature below the melting point by heat conduction from the substrate, and a step of heating and melting the heated thin film by administration of additional energy for a certain time. FIG. 4 is an example of a method for producing a crystalline thin film including a step of re-solidifying after the administration of additional energy.
[0044]
(Second embodiment)
As a second embodiment of the present invention, a second example of a crystalline silicon thin film formed by the process shown in FIG. 1 will be described with reference to FIG.
[0045]
First, as the starting thin film 36, a silicon starting thin film 36 in which a small region and a surrounding region thereof are made different from each other under the same conditions as in the first embodiment of the present invention was used.
[0046]
Next, in order to melt and resolidify the starting thin film 36, a KrF excimer laser light source 31 having a pulse width of about 60 nsec was used. A beam splitter 32 is installed in the middle of the optical path from the KrF excimer laser light source 31 to the starting thin film 36, the laser light is divided into two, laser light A35a and laser light B35b. The light path 35b was set to an optical path about 10 m longer than the laser beam A 35a by the optical path extension device 34, the same portion of the starting thin film 36 was irradiated, and the starting thin film 36 was melted and re-solidified to obtain a crystalline thin film. Note that the energy density is adjusted to a pulse output in which the starting thin film 36 is melted in total, taking into account conditions such as the temperature and the heat capacity of the glass substrate, and the laser irradiated to the sample is as shown in FIG. The intensity profile was asymmetric in time due to the addition of the intensity profile 38a of the laser beam A and the intensity profile 38b of the laser beam B.
[0047]
As a result of observing the shape of the crystal grains constituting the obtained crystalline thin film, a single circular crystal grain having a diameter of about 3 μm grows around a 1 μm square region arranged at each square lattice point at 5 μm intervals. It was. The periphery was filled with fine crystal grains of various sizes having an average diameter of about 50 nm as in Example 1 of the present invention, and their positions were completely random.
[0048]
In this embodiment, the starting thin film 36 in which the small region and the surrounding region are made different from each other by silicon ion irradiation is used, and as a plurality of independent means for applying energy to the starting thin film, pulses of the same light source having different optical path lengths are used. The thin film was irradiated with two pulses having different intensities using laser demultiplexing with a time difference. As a result, a temporally asymmetric heating intensity change is given to the thin film, and it is considered that a suitable temperature change profile is realized.
[0049]
(Third embodiment)
As a third embodiment of the present invention, a third example of a crystalline silicon thin film formed by the process shown in FIG. 1 will be described with reference to FIG.
[0050]
First, a starting thin film of silicon in which a small region and a surrounding region are made different from each other under the same conditions as in the first embodiment of the present invention is prepared as a starting thin film, and a square lattice point is centered by a photolithography process. A patterned stripe-shaped starting thin film 44 in which an electrode for energization was provided at both ends of each stripe pattern was used.
[0051]
Next, in order to melt and resolidify the stripe-shaped silicon starting thin film 44, an alternating current is first passed through the electrodes provided on both ends of the stripe pattern through the electrode needles 42 to the stripe-shaped silicon starting thin film 44 and heated to about 300 ° C. I do. Then, a KrF excimer laser 41 having a pulse width of about 30 nsec capable of linear irradiation in the stripe direction of the silicon starting thin film 44 was irradiated to melt and resolidify the starting thin film 44 to obtain a crystalline thin film. The energy density was adjusted to a pulse output that totally melts the starting thin film, taking into account conditions such as the temperature and the heat capacity of the glass substrate.
[0052]
When the shape of the crystal grains constituting the obtained crystalline thin film was observed, a single circular crystal grain having a diameter of about 3 μm was grown every 5 μm in the stripe-shaped silicon thin film 44. The periphery was filled with fine crystal grains of various sizes having an average diameter of about 50 nm as in Example 1 of the present invention, and their positions were completely random.
[0053]
In this embodiment, a starting thin film 44 in which a small region and its surrounding regions are made different from each other by silicon ion irradiation is used as a plurality of independent means for imparting melting and resolidifying energy to the starting thin film 44. The pulse laser whose intensity changes with time was used. The electric heating means is a means having an isothermal process in which the heating intensity does not change with time in the melting process of the starting thin film, and thereby the temperature of the thin film is raised to a temperature below the melting point. The pulse laser heating means is a means having a non-isothermal process in which the heating intensity changes with time in the melting process of the starting thin film, and the thin film thus heated is heated to melt the thin film.
[0054]
(Fourth embodiment)
As a fourth embodiment of the present invention, a fourth example of the crystalline silicon thin film formed by the process shown in FIG. 1 will be described with reference to FIG.
[0055]
First, the starting thin film 22 was a silicon starting thin film 22 in which the small region and the surrounding region were made different from each other under the same conditions as in the first embodiment of the present invention.
[0056]
Next, the glass substrate 23 having the starting thin film 22 was placed on the susceptor 24, and the susceptor 24 was heated to 400 ° C. with the hot plate 25 to keep it constant. Furthermore, using a KrF excimer laser light source 21 with a pulse width of about 60 nsec, the excimer laser irradiation 21 was performed on the starting thin film, and the starting thin film 22 was melted and re-solidified to obtain a crystalline thin film. The energy density was adjusted to a pulse output that totally melts the starting thin film, taking into account conditions such as the air temperature and the heat capacity of the glass substrate 23.
[0057]
As a result of observing the shape of the crystal grains constituting the obtained crystalline thin film, a single circular crystal grain having a diameter of about 3 μm grows around a 1 μm square region arranged at each square lattice point at 5 μm intervals. It was. The periphery was filled with fine crystal grains of various sizes having an average diameter of about 50 nm as in Example 1 of the present invention, and their positions were completely random.
[0058]
In this embodiment, a plurality of independent means for applying energy for melting and resolidifying the starting thin film 22 using the starting thin film 22 in which the small region and the surrounding region are made different from each other by silicon ion irradiation, A susceptor 24 that keeps the starting thin film 22 at a constant temperature and a KrF excimer laser 21 that changes in intensity with time are used. The susceptor 24 is a heating means having an isothermal process in which the heating strength does not change with time in the melting process of the starting thin film, and conducts heat to the thin film through the substrate to raise the thin film to a temperature below the melting point. Warm and hold that temperature. The excimer pulse laser 21 is a heating means having a non-isothermal process in which the heating intensity changes with time in the melting process of the starting thin film, whereby the heated thin film is heated to melt the thin film.
[0059]
【The invention's effect】
As described above, in the present invention, the crystalline thin film formed by melt resolidification is obtained by melting and resolidifying a starting thin film in which regions having different states continuously coexist with a plurality of independent heating means, The spatial position control of the crystal grains constituting the crystalline thin film is easily realized.
[0060]
In addition, the crystalline thin film of the present invention spatially relates a controlled position of the crystal grains constituting the element and a specific region of the element, or places the element inside the position-controlled single crystal grain. By forming the specific region, the operating characteristics of the element can be remarkably improved and the variation can be reduced as compared with the conventional case where a crystalline thin film made of only random crystal grains is used.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram for explaining a basic embodiment of a crystalline thin film and a manufacturing method thereof according to the present invention.
FIG. 2 is a manufacturing process diagram for explaining first and fourth embodiments of the crystalline thin film and the manufacturing method thereof according to the present invention.
FIG. 3 is a manufacturing process diagram for explaining a second embodiment of the crystalline thin film and the manufacturing method thereof according to the present invention.
FIG. 4 is a manufacturing process diagram for explaining a third embodiment of the crystalline thin film and the manufacturing method thereof according to the present invention.
[Explanation of symbols]
10 Starting thin film
11 Small area (small area) in a different state from the surrounding area
12 Surrounding area in different state from the small area (surrounding area)
13 Energy for melt resolidification
14 Crystal grains or crystalline clusters
15 Random crystalline clusters
16 Unsolidified area
17 Random crystalline clusters
18 Grain boundary
19 Heat transfer from substrate
21 Laser irradiation
22 Si starting thin film
23 Glass substrate
24 Susceptor
25 Hot plate or induction heating device
31 Excimer laser light source
32 Beam splitter
33 Mirror
34 Optical path extension device
35a Laser light A
35b Laser light B
36 Si starting thin film
37 Glass substrate
38a Intensity profile of laser light A
38b Intensity profile of laser beam B
41 Line-shaped excimer laser
42 Electrode needle
43 Wiring
44 Striped Si starting thin film
45 Glass substrate

Claims (3)

基板上に配した出発薄膜を溶融再固化させる工程を含む結晶性薄膜の製造方法であって、
小領域と前記小領域とは状態の異なる周囲の領域とが少なくとも連続して共存する薄膜前記出発薄膜として用い、
前記小領域と前記周囲の領域の両方を溶融して、少なくとも前記周囲の領域を完全溶融させる溶融過程と、
前記小領域において単一の結晶粒を周囲の領域に対して優先的に成長させ、かつ、前記単一の結晶粒を前記小領域を越えて周囲の領域へ成長させる冷却固化過程と、を含み、 前記溶融過程は、
前記出発薄膜を融点以下の温度に加熱する工程と、
前記融点以下の温度に加熱された前記出発薄膜を追加加熱することで前記周囲の領域を完全溶融させる工程と、
を含むことを特徴とする結晶性薄膜の製造方法。
A method for producing a crystalline thin film comprising a step of melting and re-solidifying a starting thin film disposed on a substrate,
Using the small region and the small region and the surrounding regions of different states is a thin film to co-exist at least continuously as the starting thin film,
A melting process for melting both the small region and the surrounding region to completely melt at least the surrounding region;
A cooling solidification process in which a single crystal grain is preferentially grown in the small region with respect to the surrounding region, and the single crystal grain is grown beyond the small region to the surrounding region. The melting process is
Heating the starting thin film to a temperature below the melting point;
A step of completely melting the surrounding region by additionally heating the starting thin film heated to a temperature below the melting point;
A method for producing a crystalline thin film, comprising:
出発薄膜を融点以下の温度に加熱する工程は、前記基板からの熱伝導を含み、
前記前記出発薄膜を直接加熱する工程は、前記出発薄膜へのパルスレーザの照射を含む、
ことを特徴とする請求項1に記載の結晶性薄膜の製造方法。
Heating the starting thin film to a temperature below the melting point includes heat conduction from the substrate;
The step of directly heating the starting thin film includes irradiation of the starting thin film with a pulsed laser.
The method for producing a crystalline thin film according to claim 1.
前記出発薄膜の溶融再固化過程において、前記小領域において単一の結晶粒もしくは結晶性クラスターが未溶融で残留することを特徴とする請求項1に記載の結晶性薄膜の製造方法。  2. The method for producing a crystalline thin film according to claim 1, wherein in the melting and resolidification process of the starting thin film, single crystal grains or crystalline clusters remain unmelted in the small region.
JP2002348005A 2002-11-27 2002-11-29 Method for producing crystalline thin film Expired - Fee Related JP4481562B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002348005A JP4481562B2 (en) 2002-11-29 2002-11-29 Method for producing crystalline thin film
AU2003283833A AU2003283833A1 (en) 2002-11-27 2003-11-26 Producing method for crystalline thin film
US10/533,091 US7473621B2 (en) 2002-11-27 2003-11-26 Producing method for crystalline thin film
PCT/JP2003/015072 WO2004049412A2 (en) 2002-11-27 2003-11-26 Producing method for crystalline thin film
TW092133410A TW200421450A (en) 2002-11-27 2003-11-27 Producing method for crystalline thin film
US12/325,689 US20090166626A1 (en) 2002-11-27 2008-12-01 Producing method for crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348005A JP4481562B2 (en) 2002-11-29 2002-11-29 Method for producing crystalline thin film

Publications (2)

Publication Number Publication Date
JP2004186199A JP2004186199A (en) 2004-07-02
JP4481562B2 true JP4481562B2 (en) 2010-06-16

Family

ID=32751036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348005A Expired - Fee Related JP4481562B2 (en) 2002-11-27 2002-11-29 Method for producing crystalline thin film

Country Status (1)

Country Link
JP (1) JP4481562B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102035A (en) * 1991-10-04 1993-04-23 Sony Corp Method of growth of semiconductor crystal
JPH05195231A (en) * 1992-01-23 1993-08-03 Canon Inc Formation of crystal film
JPH0629212A (en) * 1992-07-08 1994-02-04 Sony Corp Manufacture of semiconductor device
JPH06333827A (en) * 1993-05-25 1994-12-02 Sony Corp Crystal growth method and channel formation method for mos transistor
JPH06345415A (en) * 1993-05-27 1994-12-20 Samsung Electron Co Ltd Process and apparatus for producing polycrystalline silicon
JPH08236443A (en) * 1995-02-28 1996-09-13 Fuji Xerox Co Ltd Semiconductor crystal growing method and semiconductor manufacturing device
JPH11145484A (en) * 1989-11-16 1999-05-28 Sony Corp Manufacture of thin-film transistor
JP2001274088A (en) * 2001-02-28 2001-10-05 Trustees Of Columbia Univ In The City Of New York Crystallization treatment of semiconductor film region on substrate and device being manufactured thereby
JP2002025907A (en) * 2000-04-26 2002-01-25 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145484A (en) * 1989-11-16 1999-05-28 Sony Corp Manufacture of thin-film transistor
JPH05102035A (en) * 1991-10-04 1993-04-23 Sony Corp Method of growth of semiconductor crystal
JPH05195231A (en) * 1992-01-23 1993-08-03 Canon Inc Formation of crystal film
JPH0629212A (en) * 1992-07-08 1994-02-04 Sony Corp Manufacture of semiconductor device
JPH06333827A (en) * 1993-05-25 1994-12-02 Sony Corp Crystal growth method and channel formation method for mos transistor
JPH06345415A (en) * 1993-05-27 1994-12-20 Samsung Electron Co Ltd Process and apparatus for producing polycrystalline silicon
JPH08236443A (en) * 1995-02-28 1996-09-13 Fuji Xerox Co Ltd Semiconductor crystal growing method and semiconductor manufacturing device
JP2002025907A (en) * 2000-04-26 2002-01-25 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2001274088A (en) * 2001-02-28 2001-10-05 Trustees Of Columbia Univ In The City Of New York Crystallization treatment of semiconductor film region on substrate and device being manufactured thereby

Also Published As

Publication number Publication date
JP2004186199A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4211967B2 (en) Method for crystallizing silicon using mask
JP4470395B2 (en) Method and apparatus for manufacturing semiconductor thin film, and thin film transistor
KR100507553B1 (en) Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
JP2002110544A (en) Thin film crystal growth by laser annealing
JP2004087535A (en) Method for manufacturing crystalline semiconductor material and method for manufacturing semiconductor device
JP5068171B2 (en) System and method for producing a crystallographically controlled polysilicon film
US20090166626A1 (en) Producing method for crystalline thin film
JP2002246312A (en) Method for optimizing channel characteristics using multiple masks for forming laterally crystallized ela polycrystalline si film
JP4310076B2 (en) Method for producing crystalline thin film
JP2002261016A (en) MASK PATTERN DESIGN TO IMPROVE QUALITY UNIFORMITY IN LATERALLY CRYSTALLIZED POLYCRYSTALLINE Si FILM
JP2005005410A (en) Crystalline thin film and its manufacturing method, element using same, circuit constituted by using the element, as well as device including the element or the circuit
JP4481562B2 (en) Method for producing crystalline thin film
KR100611040B1 (en) Apparutus for thermal treatment using laser
WO2004064133A1 (en) Crystallized semiconductor thin film manufacturing method and its manufacturing apparatus
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
KR100713895B1 (en) Method for forming polycrystalline film
JP4328519B2 (en) Method for producing crystalline thin film
TWI294139B (en) Method for forming polycrystalline silicon film of polycrystalline silicon tft
JP4328518B2 (en) Method for producing crystalline thin film
KR100498635B1 (en) Fabrication method of polycrystalline silicon using laser annealing method
KR20030015618A (en) Method of manufacturing a crystalloid silicone
KR20020012983A (en) Method for crystallizing amorphous silicon thin film for liquid crystal display
JP2004186198A (en) Method of manufacturing crystalline thin film
JP2004193263A (en) Forming method for crystalline thin film
JP2004193264A (en) Forming method for crystalline thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees