JP4481558B2 - Lithium secondary battery - Google Patents
Lithium secondary battery Download PDFInfo
- Publication number
- JP4481558B2 JP4481558B2 JP2002273349A JP2002273349A JP4481558B2 JP 4481558 B2 JP4481558 B2 JP 4481558B2 JP 2002273349 A JP2002273349 A JP 2002273349A JP 2002273349 A JP2002273349 A JP 2002273349A JP 4481558 B2 JP4481558 B2 JP 4481558B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- aqueous electrolyte
- compound
- secondary battery
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に関するものであり、特に、安全性に優れたリチウム二次電池に関するものである。
【0002】
【従来の技術】
従来のリチウム二次電池用の非水電解質(非水電解液)としては、エチレンカーボネート、プロピレンカーボネートなどの環状エステルに、ジメチルカーボネート、プロピオン酸エチルなどの直鎖状エステルや、テトラヒドロフランなどの環状エーテルを混合した混合物が用いられている。しかし従来の非水電解液には、引火点を有する可燃性溶媒を用いたものが多く、安全性において必ずしも満足しうるものではない。
そこで最近になって、リチウム二次電池の安全性の向上を実現させるものとして、熱や酸化分解に対する安定性の高い有機ハロゲン化合物を溶媒として用いた電解液が提案されている。有機ハロゲン化合物を含んだ電解液は発火しにくい傾向があるため、電池の安全性を向上させる手段として注目されている。例えば、下記の特許文献1に示されているように、ハロゲン化ポリエーテルを用いたものが開示されている。しかし、これらハロゲン化ポリエーテルは、未だ量産化されておらず、価格面で高コストになるといった問題があった。そこで本発明者らは、低価格で量産されているクリーニング溶媒(有機ハロゲン化合物)に注目した。
【0003】
【特許文献1】
特開平7−249432公報
【0004】
【発明が解決しようとする課題】
しかし、有機ハロゲン化合物は一般的に有機物を溶解させる能力が高いため、リチウム二次電池おいては特に負極に含まれる結着剤を膨潤若しくは溶解させてしまう場合がある。結着剤が膨潤若しくは溶解してしまうと、集電体から負極活物質の脱落が起こりやすくなって、電池の充放電容量が低下するといった問題があった。
【0005】
本発明は、上記事情に鑑みてなされたものであり、安全性が高く、しかも充放電容量の劣化の少ないリチウム二次電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池は、正極と負極と非水電解質とを具備してなり、前記非水電解質に二塩化五フッ化プロパンが含まれていることを特徴とする。
前記非水電解質には不燃性溶媒として有機ハロゲン化合物を添加することが好ましく、具体的には、二塩化五フッ化プロパンが好ましい。二塩化五フッ化プロパンにはいくつかの構造異性体があるが、その中でも特に下記の2種類の異性体を1:1の割合で混合させたものが好ましい。
即ち、CF3CF2CHCl2とCClF2CF2CHClFの混合物である。
【0007】
これらの不燃性溶媒は、引火点がなく、ハロゲン元素が分子内に存在することから自己消火性に優れ、更に蒸気圧が低いという性質があり、非水電解質に添加することで非水電解質の引火点を高めて非水電解質を難燃性にする作用がある。従って本発明のリチウム二次電池によれば、非水電解質に上記の不燃性溶媒が含まれているので、非水電解質の引火点を高くして引火を防ぐことができ、リチウム二次電池の安全性を向上できる。
【0008】
また本発明のリチウム二次電池は、先に記載のリチウム二次電池であり、前記負極の表面にポリアクリレート化合物及び/またはアジリジン化合物からなる被膜が形成されていることを特徴とする。
【0009】
係るリチウム二次電池によれば、負極の表面にポリアクリレート化合物及び/またはアジリジン化合物からなる被膜が形成されているので、この被膜の存在により、不燃性溶媒による負極中の結着剤の溶解が防止されて負極活物質が集電体から脱落することがなく、また負極表面で非水電解質の成分が分解するおそれがなく、リチウム二次電池の充放電容量を向上できる。
【0010】
なお、上記のポリアクリレート化合物としては、下記[化1]で表されるようなジペンタエリスリトール構造を具備してなるものが好ましく、特に、下記[化2]で表されるような6つのアクリル基を有するものが最も好ましい。
【0011】
【化1】
【0012】
【化2】
【0013】
また、上記のアジリジン化合物としては、下記[化3]〜[化6]に示す構造のものが好ましい。
ただし、下記[化3]の構造式中、R1はH、CH3、OHのいずれかであり、R2はHまたはCH3のいずれか一方である。
更に、アジリジン化合物として、下記[化4]に示す構造式で表される化合物、又は下記[化3]に示す構造式で表される化合物と下記[化4]に示す構造式で表される化合物との混合物であってもよい。
また、アジリジン化合物として、下記[化5]〜[化6]に示すものを含んでいても良い。これらの化合物は、下記の[化3]及び/又は[化4]に示すものと同時に使用することが好ましい。
尚、下記[化4]の構造式中、R2はHまたはCH3のいずれか一方であり、下記[化5]におけるn1は0〜10の範囲が好ましく、下記[化6]におけるn2は0〜10の範囲が好ましい。
【0014】
【化3】
【0015】
【化4】
【0016】
【化5】
【0017】
【化6】
【0018】
また、本発明のリチウム二次電池は、先に記載のリチウム二次電池であり、前記非水電解質に酸化アンチモンが添加されていることを特徴とする。
酸化アンチモンは自己消火性を有するため、非水電解質に微量ながら溶解して非水電解質の引火点を高める作用がある。
従って本発明のリチウム二次電池によれば、酸化アンチモンを添加することで、非水電解質(非水電解液)の引火点を高めて引火を防止することができ、リチウム二次電池の安全性を向上できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
本発明のリチウム二次電池は、正極と負極と非水電解質とを具備してなり、前記非水電解質に不燃性溶媒が含まれて構成されている。
【0020】
本発明に係る非水電解質は、不燃性溶媒と非プロトン性溶媒との混合溶媒にリチウム塩が溶解されてなる非水電解質(非水電解液)、あるいは係る非水電解液がポリマーに含浸されてなるゲル型の非水電解質である。ポリマーとしては、PEO、PPO、PAN、PVDF、PMA、PMMA等のポリマーあるいはその重合体を用いることができる。
これらの不燃性溶媒は、いわゆる有機ハロゲン化合物であり、引火点がなく、ハロゲン元素が分子内に存在することから自己消火性に優れ、更に蒸気圧が低いという性質があり、非水電解質に添加することで非水電解質の引火点を高めて非水電解質を難燃性にする作用がある。
従って非水電解質に不燃性溶媒が添加されることで、非水電解質(非水電解液)自体の引火点が高くなり、このため非水電解質が引火するおそれがなく、リチウム二次電池の安全性が向上する。
【0021】
また、セパレータは、非水電解質がゲル化していない場合には必須であり、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。
【0022】
非水電解質に含まれる不燃性溶媒は、有機ハロゲン化合物であることが好ましく、具体的にはテトラクロロエチレンまたは二塩化五フッ化プロパンであることが好ましい。尚、二塩化五フッ化プロパンにはいくつかの構造異性体があるが、その中でも特に下記の2種類の異性体を1:1の割合で混合させたものが好ましい。即ち、CF3CF2CHCl2とCClF2CF2CHClFの混合物である。
【0023】
また、非プロトン溶媒としては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等の環状カーボネートのうちの1種以上を含むものが好ましく、更にこれらの他にジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのいずれかを含んでいても良い。
非水電解質中にこれらの非プロトン溶媒が不燃性溶媒とともに含まれるので、リチウムイオンの解離を向上させて非水電解質自体のイオン伝導度を高めることができる。
【0024】
リチウム塩は、LiPF6、LiBF4、Li[N(SO2C2F6)2]、Li[B(OCOCF3)4] 、Li[B(OCOC2F5)4]を用いることができるが、LiPF6またはBETI塩(Li[N(SO2C2F5)2])のいずれか一方または両方を用いることが好ましい。これらリチウム塩の非水電解質における濃度は、0.5モル/L以上2.0モル/L以下であることが好ましい。
非水電解質中にこれらのリチウム塩が含まれるので、非水電解質自体のイオン伝導度を高めることができる。
【0025】
非水電解質(非水電解液)における不燃性溶媒の含有率は、5質量%以上40質量%以下の範囲が好ましく、10質量%以上30質量%以下の範囲がより好ましい。不燃性溶媒の含有率が5質量%未満だと、非水電解質の引火点を高めることができないので好ましくなく、含有率が30質量%を超えると、非プロトン溶媒の含有量が相対的に低下し、イオン伝導度が低下するので好ましくない。
【0026】
次に正極は、正極活物質粉末にポリフッ化ビニリデン等の結着材とカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示でき、更に正極活物質粉末等をシート状、扁平円板状等に成形して金属集電体に積層したものも例示できる。上記の正極活物質としては、コバルト、マンガン、ニッケルから選ばれる少なくとも一種とリチウムとの複合酸化物のいずれか1種以上のものが好ましく、具体的には、LiMn2O4、LiCoO2、LiNiO2、LiFeO2、V2O5等が好ましい。またTiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物等のリチウムを吸蔵・放出が可能なものを用いても良い。
【0027】
負極は、リチウムを吸蔵・放出が可能な負極活物質粉末に、ポリフッ化ビニリデン等の結着材と、場合によってカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示でき、更に負極活物質等をシート状、扁平円板状等に成形して金属集電体に積層したものも例示できる。負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、Al、Si、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。
【0028】
また、負極の表面には、ポリアクリレート化合物及び/またはアジリジン環を有するアジリジン化合物からなる被膜が形成されていることが好ましい。ポリアクリレート化合物及び/またはアジリジン化合物からなる被膜が形成されると、不燃性溶媒による負極中の結着剤の溶解がこの被膜の存在により防止され、負極活物質が集電体から脱落しないので、リチウム二次電池の充放電容量を向上できる。
【0029】
なお、ポリアクリレート化合物としては、上記[化1]で表されるようなジペンタエリスリトール構造を具備してなるものが好ましく、特に、上記[化2]で表されるような6つのアクリル基を有するものが最も好ましい。
【0030】
また、アジリジン化合物としては、上記[化3]〜[化6]に示す構造のものが好ましい。ただし、上記[化3]の構造式中、R1はH、CH3、OHのいずれかであり、R2はHまたはCH3のいずれか一方である。
更に、アジリジン化合物として、[化4]に示す構造式で表される化合物、又は上記[化3]に示す構造式で表される化合物と上記[化4]に示す構造式で表される化合物との混合物であってもよい。
また、アジリジン化合物として、上記[化5]〜[化6]に示すものを含んでいても良い。これらの化合物は、上記の[化3]及び/又は上記[化4]に示すものと同時に使用することが好ましい。
尚、上記[化4]の構造式中、R2はHまたはCH3のいずれか一方であり、上記[化5]におけるn1は0〜10の範囲が好ましく、上記[化6]におけるn2は0〜10の範囲が好ましい。
【0031】
これらのポリアクリレート化合物やアジリジン化合物は、非水電解質に添加された状態でリチウム二次電池に組み込まれ、初充電時に負極表面で重合して被膜を形成する。形成された被膜は、リチウムイオンの伝導性に優れる一方で不燃性溶媒による溶解性が低く、安定した被膜構造を維持できる。
【0032】
上記[化1]及び[化2]に示すポリアクリレート化合物は、アニオン重合を行うアニオン付加重合性モノマーであり、充電時に卑な電位を示す負極表面上で被膜を形成する。このポリアクリレート化合物がアニオン重合すると、分子内の二重結合が開裂してそれぞれ別のポリアクリレート化合物と結合する反応が連鎖的に起こり、負極表面上にポリアクリレート化合物が重合してなる被膜が形成される。
即ち、ポリアクリレート化合物による皮膜の形成は、図1に示すように進行するものと推定される。まず図1(a)に示すように、初充電開始前には、非水電解質(非水電解液)中にポリアクリレート化合物が存在しており、次に図1(b)に示すように、充電を開始すると、ポリアクリレート化合物が負極表面に引き寄せられ、負極表面上でアニオン重合し、最終的に図1(c)に示すように被膜が形成される。
【0033】
また、上記[化3]〜[化6]に示すアジリジン化合物は、炭素2つと窒素1つを骨格とするアジリジン環を具備して構成され、このアジリジン環が、リチウムと配位するか、あるいは開裂して別のアジリジン化合物とともに重合体を形成することによって、被膜を形成する。
【0034】
即ち、アジリジン化合物による皮膜の形成は、図2に示すように進行するものと推定される。まず図2(a)に示すように、初充電開始前には、非水電解質(非水電解液)中にリチウムイオンとアジリジン化合物の全部又は一部が、高次の網目構造にまでは達しない程度のイオン架橋物(「Li−アジリジン架橋物」と称する。)として存在しているものと考えられる。このLi−アジリジン架橋物は、アジリジン化合物の負の電荷を有するアジリジン環が、陽イオンであるリチウムイオンに配位して形成されているものと考えられる。
次に、図2(b)に示すように、充電を開始すると、陽イオンであるリチウムイオンが負極に引き寄せられることによって、Li−アジリジン架橋物が負極表面に付着する。これにより、負極表面において、アジリジン化合物の密度増加が生じる。
次に、リチウムイオンがアジリジン環とのイオン架橋から解き放たれ、負極内に吸蔵される。すると、残されたアジリジン環が開裂し、重合反応が開始され、その結果図2(c)に示すように被膜が形成される。この生成した被膜は負の電荷を帯びているため、陽イオンのみを輸送する被膜となる。そのため、電解液が直接負極に接して分解することを防止することができる。
【0035】
また、ポリアクリレート化合物とアジリジン化合物とが混合されてなる被膜は、不燃性溶媒による溶解性が特に低く、より安定した被膜を維持できる。
即ち図3に示すように、ポリアクリレート化合物とアジリジン化合物が同時に添加された場合は、図1及び図2で説明した重合反応と同様の反応がそれぞれ進行し(図3(a)及び(b))、最終的にポリアクリレート化合物とアジリジン化合物が混合してなる皮膜が形成される(図3(c))。係る皮膜は極めて緻密で強固であり、不燃性溶媒に対する耐性が極めて高いものである。
【0036】
ポリアクリレート化合物は、非水電解質に対して0.1質量%以上1.0質量%以下の範囲で添加することが好ましい。またアジリジン化合物は、非水電解質に対して0.5質量%以上1.5質量%以下の範囲で添加することが好ましい。ポリアクリレート化合物及び/またはアジリジン化合物の添加量が上記範囲より少ないと負極表面に十分な被膜を形成できなくなるので好ましくなく、添加量が上記範囲より多いと被膜が厚くなり、界面抵抗が増加するので好ましくない。
【0037】
また、非水電解質中に酸化アンチモンを添加、溶解させても良い。酸化アンチモンを溶解させることで、有機ハロゲン化合物と酸化アンチモンが相互作用し、非水電解質の引火点が有機ハロゲン化合物の単独添加の場合よりも上昇する。酸化アンチモンは自己消火性を有するため、非水電解質に微量ながら溶解して非水電解質の引火点を高める作用がある。
酸化アンチモンの添加量としては、非水電解質に対して0.1質量%以上1質量%以下が好ましい。添加量が上記の範囲より少ないと引火点がほとんど変化しないので好ましくなく、添加量が上記の範囲を超えると酸化アンチモンが溶解せずに析出してしまうので好ましくない。
【0038】
上記のリチウム二次電池によれば、非水電解質に上記の不燃性溶媒が含まれているので、非水電解質の引火点を高くすることができ、リチウム二次電池の安全性を向上できる。
また、負極の表面にポリアクリレート化合物及び/またはアジリジン化合物からなる被膜が形成されているので、不燃性溶媒による負極中の結着剤の溶解を防止して負極活物質が集電体から脱落せず、また非水電解質の成分が負極表面で分解するおそれがないので、リチウム二次電池の充放電容量を向上できる。
【0039】
本実施形態のリチウム二次電池において、ポリアクリレート化合物及び/またはアジリジン化合物の被膜を負極に形成するには、後述の「化成」のように初充電を行えばよい。
尚、ポリアクリレート化合物及び/またはアジリジン化合物は、非水電解質に対する含有量が高い場合、それ自体が他の溶媒及びリチウム塩を取り込んでゲル化し、固体電解質を形成する場合がある。
したがって、本実施形態のリチウム二次電池を非水電解液二次電池として製造する場合には、たとえば、放置してもゲルを形成できない程度に少量のポリアクリレート化合物及び/またはアジリジン化合物を非水電解質に添加し、負極表面にのみ皮膜を形成させればよい。
また、本実施形態のリチウム二次電池をゲル電解質二次電池として製造する場合には、ゲル形成に充分な比較的多量のポリアクリレート化合物及び/またはアジリジン化合物を非水電解質に添加し、ゲル化が完全に終了する前に、初充電を行うことによって、負極に皮膜を形成させればよい。
【0040】
【実施例】
不燃性溶媒として、テトラクロロエチレン、二塩化五フッ化プロパン(CF3CF2CHCl2及びCClF2CF2CHClFを1:1で混合したもの)、C6HF13及びCHF2(CF2)3CH2OHを用意した。これらはいずれも引火点がなく、フッ素または塩素を分子内に有し、自己消火性を示すものである。次に、非水電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比でEC:DEC=3:7)にLiPF6を1.3モル/Lの濃度で溶解させたものを用意した。
更に、皮膜を形成する化合物として、上記[化2]に示す構造のポリアクリレート化合物を用意した(以下、PAAと表記)。
更にまた、皮膜を形成する化合物として、下記[化7]に示す構造のテトラメチロールメタン−トリ−β−アジリジニルプロピネート[tetramethylolmethane−tri−β−aziridinylpropionate]と上記[化4]のR2がHである化合物とが、25:75の割合で混合した混合物(以下、TAZOと表記)を用意した。
【0041】
【化7】
【0042】
上記の不燃性溶媒と、非水電解液と、ポリアクリレート化合物またはTAZOを混合して実施例3、4、6、参考例1、2、5及び比較例1〜5の非水電解質を調製した。表1に各非水解質の混合比を示す。
【0043】
【表1】
【0044】
調製した非水電解質について、性状を目視で観察したところ、C6HF13を添加した比較例4の非水電解質には相分離が認められ、リチウム二次電池の非水電解質として使用するのは不可能な状態であった。比較例4以外の非水電解質は、相分離することなく、見かけ上均一なものが得られた。
また、比較例4を除く全ての非水電解質について、JIS−K2265に規定される開放式引火点測定装置により引火点を測定したところ、比較例1について引火点58℃が確認され、実施例3、4、6、参考例1、2、5及び比較例2〜3及び5については室温から70℃の範囲で引火点が確認されなかった。これは、実施例3、4、6、参考例1、2、5及び比較例2〜3及び5の非水電解質には低蒸気圧で自己消火性を示す不燃性溶媒が添加されていたため、非水電解質のヘッドスペースにおいて不燃性溶媒の蒸気の高濃度で存在し、このため引火点測定装置によっても引火しなかったと考えられる。また、同様に、実施例3、4、6、参考例1、2、5、比較例2〜3及び5に酸化アンチモンを0.5質量%添加、溶解したものについて引火点を測定した。その結果、室温から75℃の範囲で引火点が確認できなかった。これは、有機ハロゲン化合物と酸化アンチモンの相互作用によるものと考えられる。
【0045】
次に、調製した非水電解質(比較例4を除く)を用いて、コイン型のリチウム二次電池を製造した。電池の製造は、LiCoO2を正極活物質、ポリフッ化ビニリデンを結着剤、カーボンブラックを導電助材、Al箔を集電体とするペレット状の正極と、黒鉛を負極活物質、ポリフッ化ビニリデンを結着剤、Cu箔を集電体とするペレット状の負極と、ポロプロピレン製セパレータとを重ね合わせた状態で電池容器に挿入し、先に調製した非水電解質を注入した後に電池容器を封口することにより行い、直径20mm、高さ1.6mm、設計充放電容量が5mAhのコイン型の電池を製造した。
【0046】
参考例1、実施例3、比較例1〜3及び5のリチウム二次電池については、0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する1段階充電を行うことにより、各電池について初充電(化成)を行い、負極表面に皮膜を形成させた。
一方、参考例2、実施例4、参考例5、実施例6のリチウム二次電池については、0.2Cの電流で電池電圧が3Vに達するまで定電流充電をした後に4時間の定電圧充電をし、更に0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する2段階充電を行うことにより、各電池について初充電(化成)を行い、負極表面に皮膜を形成させた。
【0047】
その後、全ての電池について、0.2Cの電流で電池電圧が2.75Vになるまで放電を行って放電容量を測定した。各電池の充放電曲線を図4〜6に示し、比較例1の放電容量を100%としたときの各電池の放電容量比(%)を表2に示す。
【0048】
【表2】
【0049】
まず、図4及び表2に示すように、比較例2及び3の電池は、比較例1よりも大幅に放電容量が低くなった。放電後の比較例2及び3の電池を分解してみると、負極活物質の一部がCu箔から脱落していた。この結果から、比較例2及び3では、非水電解質に添加した不燃性溶媒によって負極の結着剤が膨潤若しくは溶解し、負極活物質とCu箔とが分離したために放電が正常に行われなかったものと考えられる。
更に、表2に示すように、比較例5の電池は全く充放電できなかった。これは比較例5に添加した不燃性溶媒がアルコール類であったため、リチウムがアルコールの水酸基と反応して不活性な水酸化リチウムに変化したためと考えられる。
【0050】
次に、図5及び表2に示すように、参考例1、2(図5における実施例1、2)、実施例3、4の電池は、放電容量比が比較例2及び3と比べて大幅に向上した。これらの電池を分解したところ、集電体からの負極活物質の脱落が見られず、良好な密着状態を維持していた。これは、PAAまたはTAZOを添加したことにより負極表面に被膜が形成され、その結果、負極の結着剤の溶解が防止され、さらに被膜の存在によって負極表面での非水電解質の分解が防止されたためと考えられる。
【0051】
更に、図6及び表2に示すように、参考例5(図5における実施例5)及び実施例6の電池は、放電容量比が更に向上した。これは、PAA及びTAZOを同時に添加したことにより負極表面に極めて強固な被膜が形成され、その結果、負極の結着剤の溶解と負極表面での非水電解質の分解がそれぞれ効果的に防止されたためと考えられる。
【0052】
【発明の効果】
以上、詳細に説明したように、本発明の本発明のリチウム二次電池によれば、非水電解質に不燃性溶媒が含まれているので、非水電解質の引火点を高くして発火を防ぐことができ、リチウム二次電池の安全性をより向上できる。
また、負極の表面にポリアクリレート化合物及び/またはアジリジン化合物からなる被膜が形成されているので、この被膜の存在により、不燃性溶媒による負極中の結着剤の溶解が防止されて負極活物質が集電体から脱落することがなく、また負極表面で非水電解質の成分が分解するおそれがなく、リチウム二次電池の充放電容量を向上できる。
【図面の簡単な説明】
【図1】 負極にポリアクリレート化合物の被膜が形成される機構の説明図。
【図2】 負極にアジリジン化合物の被膜が形成される機構の説明図。
【図3】 負極にポリアクリレート化合物及びアジリジン化合物の被膜が形成される機構の説明図。
【図4】 比較例1〜3の充放電曲線を示すグラフ。
【図5】 実施例1〜4と比較例1の充放電曲線を示すグラフ。
【図6】 実施例5及び6と比較例1〜3の充放電曲線を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and particularly to a lithium secondary battery excellent in safety.
[0002]
[Prior art]
Conventional non-aqueous electrolytes (non-aqueous electrolytes) for lithium secondary batteries include cyclic esters such as ethylene carbonate and propylene carbonate, linear esters such as dimethyl carbonate and ethyl propionate, and cyclic ethers such as tetrahydrofuran. The mixture which mixed is used. However, many conventional non-aqueous electrolytes use a flammable solvent having a flash point, and are not always satisfactory in safety.
Therefore, recently, an electrolytic solution using an organic halogen compound having high stability against heat and oxidative decomposition as a solvent has been proposed as an improvement in the safety of lithium secondary batteries. Electrolytic solutions containing organic halogen compounds tend to be hard to ignite, and thus are attracting attention as a means for improving battery safety. For example, as shown in the following Patent Document 1, one using a halogenated polyether is disclosed. However, these halogenated polyethers have not been mass-produced yet, and there has been a problem that the cost is high. Therefore, the present inventors have paid attention to cleaning solvents (organic halogen compounds) that are mass-produced at low prices.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-249432
[Problems to be solved by the invention]
However, since an organic halogen compound generally has a high ability to dissolve an organic substance, in a lithium secondary battery, a binder contained in a negative electrode may be swollen or dissolved. When the binder swells or dissolves, there is a problem that the negative electrode active material is easily detached from the current collector and the charge / discharge capacity of the battery is reduced.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium secondary battery that is highly safe and has little deterioration in charge / discharge capacity.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the non-aqueous electrolyte contains dichloropentafluoropropane .
It is preferable to add an organic halogen compound as a nonflammable solvent to the nonaqueous electrolyte , and specifically, pentachloropentafluoropropane is preferable. Dichloropentafluoropropane has several structural isomers, and among them, a mixture of the following two isomers in a ratio of 1: 1 is particularly preferable.
That is, a mixture of CF 3 CF 2 CHCl 2 and CClF 2 CF 2 CHClF.
[0007]
These non-flammable solvents have no flash point, and since halogen elements are present in the molecule, they have excellent self-extinguishing properties and low vapor pressure, and when added to the non-aqueous electrolyte, It has the effect of increasing the flash point and making the non-aqueous electrolyte flame retardant. Therefore, according to the lithium secondary battery of the present invention, since the non-aqueous electrolyte contains the non-flammable solvent, the flash point of the non-aqueous electrolyte can be increased to prevent ignition, and the lithium secondary battery Safety can be improved.
[0008]
The lithium secondary battery of the present invention is the lithium secondary battery described above, wherein a film made of a polyacrylate compound and / or an aziridine compound is formed on the surface of the negative electrode.
[0009]
According to such a lithium secondary battery, since a film made of a polyacrylate compound and / or an aziridine compound is formed on the surface of the negative electrode, the presence of this film causes the binder in the negative electrode to be dissolved by the nonflammable solvent. This prevents the negative electrode active material from dropping from the current collector, and there is no possibility that the components of the nonaqueous electrolyte are decomposed on the negative electrode surface, thereby improving the charge / discharge capacity of the lithium secondary battery.
[0010]
In addition, as said polyacrylate compound, what comprises the dipentaerythritol structure as represented by following [Chemical Formula 1] is preferable, and especially six acrylics represented by the following [Chemical Formula 2] Most preferred are those having a group.
[0011]
[Chemical 1]
[0012]
[Chemical formula 2]
[0013]
Moreover, as said aziridine compound, the thing of the structure shown to the following [Chemical 3]-[Chemical 6] is preferable.
However, in the structural formula of [Chemical Formula 3] below, R 1 is any one of H, CH 3 , and OH, and R 2 is either one of H or CH 3 .
Further, as an aziridine compound, a compound represented by the structural formula shown in the following [Chemical Formula 4], or a compound represented by the structural formula shown in the following [Chemical Formula 3] and a structural formula shown in the following [Chemical Formula 4] It may be a mixture with a compound.
Moreover, what is shown to the following [Chemical 5]-[Chemical 6] may be included as an aziridine compound. These compounds are preferably used simultaneously with those shown in the following [Chemical Formula 3] and / or [Chemical Formula 4].
In the structural formula of the following [Chemical Formula 4], R 2 is either H or CH 3 , and n 1 in the following [Chemical Formula 5] is preferably in the range of 0 to 10; 2 is preferably in the range of 0-10.
[0014]
[Chemical 3]
[0015]
[Formula 4]
[0016]
[Chemical formula 5]
[0017]
[Chemical 6]
[0018]
The lithium secondary battery of the present invention is the lithium secondary battery described above, wherein antimony oxide is added to the non-aqueous electrolyte.
Since antimony oxide has self-extinguishing properties, it dissolves in a small amount in the non-aqueous electrolyte and acts to increase the flash point of the non-aqueous electrolyte.
Therefore, according to the lithium secondary battery of the present invention, by adding antimony oxide, the flash point of the non-aqueous electrolyte (non-aqueous electrolyte) can be increased to prevent ignition, and the safety of the lithium secondary battery Can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the non-aqueous electrolyte includes a non-flammable solvent.
[0020]
The non-aqueous electrolyte according to the present invention is a non-aqueous electrolyte (non-aqueous electrolyte) in which a lithium salt is dissolved in a mixed solvent of a non-flammable solvent and an aprotic solvent, or the polymer is impregnated with such a non-aqueous electrolyte. This is a gel-type non-aqueous electrolyte. As the polymer, a polymer such as PEO, PPO, PAN, PVDF, PMA, PMMA, or a polymer thereof can be used.
These non-flammable solvents are so-called organohalogen compounds, have no flash point, have a property of self-extinguishing because of the presence of halogen elements in the molecule, and have a low vapor pressure, and are added to non-aqueous electrolytes. By doing so, it has the effect of increasing the flash point of the non-aqueous electrolyte and making the non-aqueous electrolyte flame retardant.
Therefore, by adding a non-flammable solvent to the non-aqueous electrolyte, the flash point of the non-aqueous electrolyte (non-aqueous electrolyte) itself is increased, so there is no risk of the non-aqueous electrolyte igniting and the safety of the lithium secondary battery. Improves.
[0021]
The separator is essential when the non-aqueous electrolyte is not gelled, and a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.
[0022]
The non-flammable solvent contained in the non-aqueous electrolyte is preferably an organic halogen compound, specifically tetrachloroethylene or pentachloropentafluoropropane . Incidentally, the two are the chloride pentafluoride propane has several structural isomers, but especially two isomers of the following among them 1: is preferably one obtained by mixing at a ratio of 1. That is, a mixture of CF 3 CF 2 CHCl 2 and CClF 2 CF 2 CHClF.
[0023]
Further, as the aprotic solvent, for example, those containing one or more of cyclic carbonates such as ethylene carbonate, butylene carbonate, propylene carbonate, and γ-butyrolactone are preferable, and besides these, dimethyl carbonate, methyl ethyl carbonate, Any of diethyl carbonate may be included.
Since these aprotic solvents are contained in the non-aqueous electrolyte together with the non-flammable solvent, the dissociation of lithium ions can be improved and the ionic conductivity of the non-aqueous electrolyte itself can be increased.
[0024]
LiPF 6 , LiBF 4 , Li [N (SO 2 C 2 F 6 ) 2 ], Li [B (OCOCF 3 ) 4 ], Li [B (OCOC 2 F 5 ) 4 ] can be used as the lithium salt. However, it is preferable to use either one or both of LiPF 6 and BETI salt (Li [N (SO 2 C 2 F 5 ) 2 ]). The concentration of these lithium salts in the non-aqueous electrolyte is preferably 0.5 mol / L or more and 2.0 mol / L or less.
Since these lithium salts are contained in the nonaqueous electrolyte, the ionic conductivity of the nonaqueous electrolyte itself can be increased.
[0025]
The content of the nonflammable solvent in the non-aqueous electrolyte (non-aqueous electrolyte) is preferably in the range of 5% by mass to 40% by mass, and more preferably in the range of 10% by mass to 30% by mass. If the content of the non-flammable solvent is less than 5% by mass, the flash point of the nonaqueous electrolyte cannot be increased, which is not preferable. If the content exceeds 30% by mass, the content of the aprotic solvent is relatively reduced. However, the ionic conductivity decreases, which is not preferable.
[0026]
Next, the positive electrode can be exemplified by a positive electrode active material powder mixed with a binder such as polyvinylidene fluoride and a conductive additive such as carbon black and formed into a sheet shape, a flat disk shape, etc. Examples thereof include a powder or the like formed into a sheet shape, a flat disk shape, or the like and laminated on a metal current collector. The positive electrode active material is preferably a composite oxide of at least one selected from cobalt, manganese, and nickel and lithium, specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO. 2 , LiFeO 2 , V 2 O 5 and the like are preferable. Moreover, you may use what can occlude / release lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound.
[0027]
The negative electrode is formed into a sheet shape, flat disk shape, etc. by mixing a negative electrode active material powder capable of occluding and releasing lithium with a binder such as polyvinylidene fluoride and a conductive auxiliary agent such as carbon black in some cases. In addition, a negative electrode active material or the like formed into a sheet shape or a flat disk shape and laminated on a metal current collector can also be exemplified. Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Moreover, the metal substance simple substance which can be alloyed with lithium, and the composite containing this metal substance and carbonaceous material can be illustrated as a negative electrode active material. Examples of metals that can be alloyed with lithium include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. A metal lithium foil can also be used as the negative electrode active material.
[0028]
Further, it is preferable that a film made of an aziridine compound having a polyacrylate compound and / or an aziridine ring is formed on the surface of the negative electrode. When a film made of a polyacrylate compound and / or an aziridine compound is formed, dissolution of the binder in the negative electrode by the nonflammable solvent is prevented by the presence of this film, and the negative electrode active material does not fall off from the current collector. The charge / discharge capacity of the lithium secondary battery can be improved.
[0029]
In addition, as a polyacrylate compound, what comprises the dipentaerythritol structure as represented by said [Chemical 1] is preferable, and especially six acrylic groups as represented by said [Chemical 2] are shown. What has is most preferable.
[0030]
Moreover, as an aziridine compound, the thing of the structure shown to the said [Formula 3]-[Formula 6] is preferable. However, in the structural formula of [Chemical Formula 3], R 1 is any one of H, CH 3 , and OH, and R 2 is either one of H or CH 3 .
Furthermore, as the aziridine compound, a compound represented by the structural formula shown in [Chemical Formula 4], or a compound represented by the structural formula shown in [Chemical Formula 3] and a compound represented by the structural formula shown in [Chemical Formula 4] above. And a mixture thereof.
Moreover, what is shown to the said [Chemical 5]-[Chemical 6] may be included as an aziridine compound. These compounds are preferably used simultaneously with those shown in the above [Chemical Formula 3] and / or the above [Chemical Formula 4].
In the structural formula of [Chemical Formula 4], R 2 is either H or CH 3 , and n 1 in [Chemical Formula 5] is preferably in the range of 0 to 10, and n in the above [Chemical Formula 6]. 2 is preferably in the range of 0-10.
[0031]
These polyacrylate compounds and aziridine compounds are incorporated into a lithium secondary battery in a state where they are added to the non-aqueous electrolyte, and polymerize on the surface of the negative electrode during initial charging to form a film. The formed film is excellent in lithium ion conductivity but low in solubility in a non-flammable solvent, and can maintain a stable film structure.
[0032]
The polyacrylate compounds shown in the above [Chemical Formula 1] and [Chemical Formula 2] are anionic addition polymerizable monomers that perform anionic polymerization, and form a film on the negative electrode surface that shows a base potential during charging. When this polyacrylate compound is anionically polymerized, a double bond in the molecule is cleaved and a reaction occurs in which each bond with another polyacrylate compound occurs in a chain, and a film is formed by polymerizing the polyacrylate compound on the negative electrode surface. Is done.
That is, it is presumed that the formation of the film with the polyacrylate compound proceeds as shown in FIG. First, as shown in FIG. 1 (a), the polyacrylate compound is present in the non-aqueous electrolyte (non-aqueous electrolyte) before the start of the initial charge, and then, as shown in FIG. 1 (b), When charging is started, the polyacrylate compound is attracted to the surface of the negative electrode and anionic polymerizes on the surface of the negative electrode, and finally a film is formed as shown in FIG.
[0033]
In addition, the aziridine compound represented by the above [Chemical Formula 3] to [Chemical Formula 6] is configured to have an aziridine ring having two carbons and one nitrogen as a skeleton, and the aziridine ring is coordinated with lithium, or A film is formed by cleaving to form a polymer with another aziridine compound.
[0034]
That is, it is presumed that the film formation by the aziridine compound proceeds as shown in FIG. First, as shown in FIG. 2 (a), before starting the initial charge, all or part of the lithium ions and the aziridine compound in the non-aqueous electrolyte (non-aqueous electrolyte) reach a high-order network structure. It is thought that it exists as an ionic cross-linked product (referred to as “Li-aziridine cross-linked product”). This Li-aziridine cross-linked product is considered to be formed by coordination of the negatively charged aziridine ring of the aziridine compound with lithium ions that are cations.
Next, as shown in FIG. 2B, when charging is started, lithium ions, which are cations, are attracted to the negative electrode, so that a Li-aziridine crosslinked product adheres to the negative electrode surface. This causes an increase in the density of the aziridine compound on the negative electrode surface.
Next, lithium ions are released from ionic crosslinking with the aziridine ring and occluded in the negative electrode. Then, the remaining aziridine ring is cleaved to start the polymerization reaction, and as a result, a film is formed as shown in FIG. Since the produced film is negatively charged, it becomes a film that transports only cations. Therefore, it can prevent that electrolyte solution contacts a negative electrode directly and decomposes | disassembles.
[0035]
In addition, a film formed by mixing a polyacrylate compound and an aziridine compound has particularly low solubility in a nonflammable solvent, and can maintain a more stable film.
That is, as shown in FIG. 3, when a polyacrylate compound and an aziridine compound are added simultaneously, the same reaction as the polymerization reaction described in FIGS. 1 and 2 proceeds (FIGS. 3A and 3B). Finally, a film formed by mixing the polyacrylate compound and the aziridine compound is formed (FIG. 3C). Such a coating is extremely dense and strong, and has extremely high resistance to nonflammable solvents.
[0036]
The polyacrylate compound is preferably added in the range of 0.1% by mass to 1.0% by mass with respect to the nonaqueous electrolyte. Moreover, it is preferable to add an aziridine compound in 0.5 to 1.5 mass% with respect to a nonaqueous electrolyte. If the addition amount of the polyacrylate compound and / or the aziridine compound is less than the above range, a sufficient film cannot be formed on the negative electrode surface, which is not preferable. If the addition amount is more than the above range, the film becomes thick and the interface resistance increases. It is not preferable.
[0037]
Further, antimony oxide may be added and dissolved in the nonaqueous electrolyte. By dissolving antimony oxide, the organic halogen compound and antimony oxide interact with each other, and the flash point of the non-aqueous electrolyte is higher than when the organic halogen compound is added alone. Since antimony oxide has self-extinguishing properties, it dissolves in a small amount in the non-aqueous electrolyte and acts to increase the flash point of the non-aqueous electrolyte.
The addition amount of antimony oxide is preferably 0.1% by mass or more and 1% by mass or less with respect to the non-aqueous electrolyte. If the addition amount is less than the above range, the flash point is hardly changed, which is not preferable. If the addition amount exceeds the above range, antimony oxide is not dissolved and is not preferable.
[0038]
According to the above lithium secondary battery, since the non-flammable solvent is contained in the non-aqueous electrolyte, the flash point of the non-aqueous electrolyte can be increased, and the safety of the lithium secondary battery can be improved.
In addition, since a film made of a polyacrylate compound and / or an aziridine compound is formed on the surface of the negative electrode, the negative electrode active material can be removed from the current collector by preventing dissolution of the binder in the negative electrode by the nonflammable solvent. In addition, since there is no possibility that components of the nonaqueous electrolyte are decomposed on the negative electrode surface, the charge / discharge capacity of the lithium secondary battery can be improved.
[0039]
In the lithium secondary battery of the present embodiment, in order to form a polyacrylate compound and / or aziridine compound film on the negative electrode, initial charging may be performed as in “chemical conversion” described later.
When the content of the polyacrylate compound and / or aziridine compound is high with respect to the non-aqueous electrolyte, the polyacrylate compound and / or the aziridine compound itself may take in another solvent and a lithium salt to be gelled to form a solid electrolyte.
Therefore, when the lithium secondary battery of this embodiment is manufactured as a non-aqueous electrolyte secondary battery, for example, a small amount of polyacrylate compound and / or aziridine compound is added to the non-aqueous solution to such an extent that a gel cannot be formed even if left standing. What is necessary is just to add to an electrolyte and to form a membrane | film | coat only on the negative electrode surface.
Further, when the lithium secondary battery of this embodiment is manufactured as a gel electrolyte secondary battery, a relatively large amount of polyacrylate compound and / or aziridine compound sufficient for gel formation is added to the non-aqueous electrolyte to form a gel. It is sufficient to form a film on the negative electrode by performing initial charging before the process is completely completed.
[0040]
【Example】
As non-flammable solvent, tetrachlorethylene,
Furthermore, a polyacrylate compound having the structure shown in the above [Chemical Formula 2] was prepared as a compound for forming a film (hereinafter referred to as PAA).
Furthermore, as a compound for forming a film, tetramethylolmethane-tri-β-aziridinylpropionate having the structure shown in the following [Chemical Formula 7] [tetramethylolmethane-tri-β-aziridinylpropionate] and R 2 in the above [Chemical Formula 4] are used. A mixture (hereinafter referred to as TAZO) prepared by mixing the compound in which H is H with a ratio of 25:75 was prepared.
[0041]
[Chemical 7]
[0042]
The above nonflammable solvent, nonaqueous electrolyte, and polyacrylate compound or TAZO were mixed to prepare nonaqueous electrolytes of Examples 3, 4, 6, Reference Examples 1, 2, 5, and Comparative Examples 1-5. . Table 1 shows the mixing ratio of each non-hydrolyzed material.
[0043]
[Table 1]
[0044]
When the properties of the prepared nonaqueous electrolyte were visually observed, phase separation was observed in the nonaqueous electrolyte of Comparative Example 4 to which C 6 HF 13 was added, and it was used as a nonaqueous electrolyte for a lithium secondary battery. It was impossible. Non-aqueous electrolytes other than Comparative Example 4 were apparently uniform without phase separation.
Further, for all the non-aqueous electrolytes except for Comparative Example 4, when the flash point was measured by an open flash point measuring device defined in JIS-K2265, a flash point of 58 ° C. was confirmed for Comparative Example 1, and Example 3 Regarding 4, 6, Reference Examples 1, 2, 5 and Comparative Examples 2-3 and 5, no flash point was confirmed in the range of room temperature to 70 ° C. This is because non-flammable solvents exhibiting self-extinguishing properties at low vapor pressure were added to the nonaqueous electrolytes of Examples 3, 4, 6, Reference Examples 1, 2, 5 and Comparative Examples 2-3 and 5. It is considered that a non-flammable solvent vapor exists in a high concentration in the non-aqueous electrolyte headspace, and therefore, it was not ignited even by the flash point measuring device. Similarly, the flash points were measured for Examples 3, 4, 6, Reference Examples 1 , 2 , 5 , and Comparative Examples 2-3 and 5 in which 0.5% by mass of antimony oxide was added and dissolved. As a result, the flash point could not be confirmed in the range from room temperature to 75 ° C. This is considered to be due to the interaction between the organic halogen compound and antimony oxide.
[0045]
Next, a coin-type lithium secondary battery was manufactured using the prepared nonaqueous electrolyte (excluding Comparative Example 4). The battery is manufactured by using LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder, carbon black as a conductive additive, Al foil as a current collector, a pellet-shaped positive electrode, graphite as a negative electrode active material, and polyvinylidene fluoride. Is inserted into the battery container in a state where a pellet-shaped negative electrode having a Cu foil as a current collector and a polypropylene-made separator are overlapped, and the non-aqueous electrolyte prepared above is injected, Sealing was performed to manufacture a coin-type battery having a diameter of 20 mm, a height of 1.6 mm, and a designed charge / discharge capacity of 5 mAh.
[0046]
For the lithium secondary batteries of Reference Example 1, Example 3 and Comparative Examples 1 to 3 and 5, constant current charging was performed until the battery voltage reached 4.2 V at a current of 0.2 C, followed by constant voltage charging for 9 hours. By performing one-stage charging, initial charging (chemical conversion) was performed for each battery, and a film was formed on the surface of the negative electrode.
On the other hand, the lithium secondary batteries of Reference Example 2, Example 4, Reference Example 5, and Example 6 were charged at a constant current until the battery voltage reached 3 V at a current of 0.2 C and then charged at a constant voltage for 4 hours. In addition, the battery is first charged (formed) by performing two-stage charging with constant current charging until the battery voltage reaches 4.2 V at a current of 0.2 C, followed by constant voltage charging for 9 hours. A film was formed on the negative electrode surface.
[0047]
Thereafter, discharge was performed on all the batteries until the battery voltage reached 2.75 V at a current of 0.2 C, and the discharge capacity was measured. 4 to 6 show the charge / discharge curves of each battery, and Table 2 shows the discharge capacity ratio (%) of each battery when the discharge capacity of Comparative Example 1 is 100%.
[0048]
[Table 2]
[0049]
First, as shown in FIG. 4 and Table 2, the batteries of Comparative Examples 2 and 3 had a significantly lower discharge capacity than Comparative Example 1. When the batteries of Comparative Examples 2 and 3 after discharge were disassembled, a part of the negative electrode active material was dropped from the Cu foil. From these results, in Comparative Examples 2 and 3, the negative electrode binder was swollen or dissolved by the non-flammable solvent added to the nonaqueous electrolyte, and the negative electrode active material and the Cu foil were separated, so that the discharge was not performed normally. It is thought that.
Furthermore, as shown in Table 2, the battery of Comparative Example 5 could not be charged / discharged at all. This is presumably because the nonflammable solvent added to Comparative Example 5 was an alcohol, so that lithium reacted with the hydroxyl group of the alcohol and changed to inactive lithium hydroxide.
[0050]
Next, as shown in FIG. 5 and Table 2, the batteries of Reference Examples 1 and 2 (Examples 1 and 2 in FIG. 5) and Examples 3 and 4 have a discharge capacity ratio as compared with Comparative Examples 2 and 3. Greatly improved. When these batteries were disassembled, the negative electrode active material did not fall off from the current collector, and a good adhesion state was maintained. This is because a film is formed on the negative electrode surface by adding PAA or TAZO, and as a result, dissolution of the binder of the negative electrode is prevented, and the presence of the film prevents decomposition of the nonaqueous electrolyte on the negative electrode surface. It is thought that it was because of.
[0051]
Further, as shown in FIG. 6 and Table 2, in the batteries of Reference Example 5 (Example 5 in FIG. 5) and Example 6 , the discharge capacity ratio was further improved. This is because PAA and TAZO were simultaneously added to form a very strong film on the negative electrode surface, and as a result, dissolution of the negative electrode binder and decomposition of the nonaqueous electrolyte on the negative electrode surface were effectively prevented, respectively. It is thought that it was because of.
[0052]
【The invention's effect】
As described above in detail, according to the lithium secondary battery of the present invention of the present invention, since the non-aqueous electrolyte contains a non-flammable solvent, the flash point of the non-aqueous electrolyte is increased to prevent ignition. The safety of the lithium secondary battery can be further improved.
In addition, since a film made of a polyacrylate compound and / or an aziridine compound is formed on the surface of the negative electrode, the presence of this film prevents dissolution of the binder in the negative electrode by the non-flammable solvent, thereby reducing the negative electrode active material. The lithium secondary battery can be improved in charge / discharge capacity without falling off from the current collector and without the possibility of decomposing the components of the nonaqueous electrolyte on the negative electrode surface.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a mechanism for forming a polyacrylate compound film on a negative electrode.
FIG. 2 is an explanatory view of a mechanism for forming a film of an aziridine compound on the negative electrode.
FIG. 3 is an explanatory diagram of a mechanism for forming a film of a polyacrylate compound and an aziridine compound on a negative electrode.
FIG. 4 is a graph showing charge / discharge curves of Comparative Examples 1 to 3.
5 is a graph showing charge / discharge curves of Examples 1 to 4 and Comparative Example 1. FIG.
6 is a graph showing charge / discharge curves of Examples 5 and 6 and Comparative Examples 1 to 3. FIG.
Claims (3)
但し、R1はH、CH3、OHのいずれかであり、R2はHまたはCH3のいずれか一方であり、n1は0〜10の範囲であり、n2は0〜10の範囲である。
However, R 1 is either H, CH 3, OH, R 2 is one of a H or CH 3, n 1 is in the range of 0, n 2 is in the range of 0 It is.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002273349A JP4481558B2 (en) | 2002-09-19 | 2002-09-19 | Lithium secondary battery |
KR10-2003-0003974A KR100508931B1 (en) | 2002-09-19 | 2003-01-21 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002273349A JP4481558B2 (en) | 2002-09-19 | 2002-09-19 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004111257A JP2004111257A (en) | 2004-04-08 |
JP4481558B2 true JP4481558B2 (en) | 2010-06-16 |
Family
ID=32270128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002273349A Expired - Fee Related JP4481558B2 (en) | 2002-09-19 | 2002-09-19 | Lithium secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4481558B2 (en) |
KR (1) | KR100508931B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123498A (en) * | 2007-11-14 | 2009-06-04 | Sony Corp | Nonaqueous electrolyte composition and nonaqueous electrolyte battery |
KR101012668B1 (en) * | 2009-02-20 | 2011-02-09 | 황인철 | Tire chain |
WO2010101180A1 (en) * | 2009-03-03 | 2010-09-10 | 株式会社Nttファシリティーズ | Nonaqueous electrolyte cell |
WO2018139065A1 (en) | 2017-01-30 | 2018-08-02 | パナソニック株式会社 | Non-aqueous electrolyte secondary cell |
-
2002
- 2002-09-19 JP JP2002273349A patent/JP4481558B2/en not_active Expired - Fee Related
-
2003
- 2003-01-21 KR KR10-2003-0003974A patent/KR100508931B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2004111257A (en) | 2004-04-08 |
KR20040025518A (en) | 2004-03-24 |
KR100508931B1 (en) | 2005-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3580305B2 (en) | Non-aqueous electrolyte and lithium secondary battery | |
CN113348579A (en) | Rechargeable battery unit | |
CN109792085A (en) | For the electrolyte of lithium secondary battery and including lithium secondary battery of electrolyte | |
US6797437B2 (en) | Electrolyte system and energy storage device using same | |
JP4537035B2 (en) | Non-aqueous electrolyte and lithium secondary battery | |
JP4050251B2 (en) | Organic electrolyte and lithium battery using the same | |
JP2004087136A (en) | Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery | |
JP5050404B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003308875A (en) | Nonaqueous secondary battery | |
JPH11195429A (en) | Nonaqueous electrolytic solution secondary battery | |
JP2002025615A (en) | Lithium secondary battery | |
JPH10172615A (en) | Nonaqueous solvent battery and polymer electrolyte secondary battery | |
JPH10154528A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
JPWO2019093411A1 (en) | Fire extinguishing electrolyte and secondary battery containing the electrolyte | |
JPH09306540A (en) | Lithium secondary battery | |
CN114946065A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
JP2001052736A (en) | Lithium secondary battery | |
JP5372584B2 (en) | Lithium secondary battery | |
JPH08306364A (en) | Nonaqueous electrolytic solution and nonaqueous electrolyte battery | |
JP4481558B2 (en) | Lithium secondary battery | |
JP4020557B2 (en) | Electrolyte for electrochemical devices | |
JP2022518409A (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary batteries containing it, and lithium secondary batteries | |
JP3721857B2 (en) | Nonflammable electrolyte and lithium secondary battery using the same | |
JP4479045B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3438364B2 (en) | Non-aqueous electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040812 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080625 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100318 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |