JP4481060B2 - Method for producing hydrogen using hydrothermal reaction - Google Patents

Method for producing hydrogen using hydrothermal reaction Download PDF

Info

Publication number
JP4481060B2
JP4481060B2 JP2004108287A JP2004108287A JP4481060B2 JP 4481060 B2 JP4481060 B2 JP 4481060B2 JP 2004108287 A JP2004108287 A JP 2004108287A JP 2004108287 A JP2004108287 A JP 2004108287A JP 4481060 B2 JP4481060 B2 JP 4481060B2
Authority
JP
Japan
Prior art keywords
formic acid
hydrogen
reaction
hydrothermal reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004108287A
Other languages
Japanese (ja)
Other versions
JP2005289742A (en
Inventor
勝 中原
伸幸 松林
千尋 若井
健 吉田
Original Assignee
蟻酸・水素エネルギー開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蟻酸・水素エネルギー開発株式会社 filed Critical 蟻酸・水素エネルギー開発株式会社
Priority to JP2004108287A priority Critical patent/JP4481060B2/en
Publication of JP2005289742A publication Critical patent/JP2005289742A/en
Application granted granted Critical
Publication of JP4481060B2 publication Critical patent/JP4481060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、水熱反応を利用した水素の製造方法に関する。   The present invention relates to a method for producing hydrogen using a hydrothermal reaction.

水素は、石炭や石油などの化石燃料(炭化水素)とは異なり、二酸化炭素などの温室効果ガスを発生させることなく燃焼して水に変換されるクリーンな燃料である。今日、これまでに当たり前のように用いられてきた地球上の化石燃料がもはや底をつきかけていることからも、化石燃料にとってかわる燃料としての水素の製造方法の確立が急務とされている。このような背景の下、世界中で様々な研究開発が行われていることは周知の通りであり、既に実験室レベルでは優れた方法も提案されている(例えば下記の特許文献1に記載されている金属触媒を用いた炭化水素の接触熱分解による方法など)。しかしながら、水素の製造を工業的規模で考えた場合には、(1)如何に安価に製造するかはもちろんのこととして、(2)如何にコンパクトに貯蔵するか、(3)如何に安全に輸送するか、といった問題を解決する必要がある。とりわけ(2)と(3)の問題を解決することは、水素が弱い分子間相互作用を伴った最も小さくかつ軽量の分子であることから容易なことではない。現時点で考えられる解決方法としては、高圧力をかける方法、水素の沸点である−253℃以下といった超低温に保持する方法、水素貯蔵合金を用いる方法などがあるが、いずれも根本的な解決方法にはならない。
特開2003−95605号公報
Unlike fossil fuels (hydrocarbons) such as coal and oil, hydrogen is a clean fuel that is burned and converted into water without generating greenhouse gases such as carbon dioxide. Today, the fossil fuel on the earth, which has been used as usual so far, has almost reached the bottom, and it is urgently required to establish a method for producing hydrogen as a fuel to replace fossil fuel. Under such circumstances, it is well known that various research and development are being carried out all over the world, and an excellent method has already been proposed at the laboratory level (for example, described in Patent Document 1 below). Etc.) by catalytic pyrolysis of hydrocarbons using metal catalysts. However, when the production of hydrogen is considered on an industrial scale, (1) not only how cheaply it is produced, but also (2) how it is stored compactly, (3) how safe it is It is necessary to solve the problem of transportation. In particular, solving the problems (2) and (3) is not easy because hydrogen is the smallest and lightest molecule with weak intermolecular interaction. There are a solution method considered at present, such as a method of applying a high pressure, a method of maintaining an ultra-low temperature such as a boiling point of hydrogen of −253 ° C. or lower, a method of using a hydrogen storage alloy, etc., all of which are fundamental solutions. Must not.
JP 2003-95605 A

そこで本発明は、水素の製造を工業的規模で考えた場合に解決しなければならない製造コスト、貯蔵性、輸送性といった問題に対する解決策としてのこれまでにない水素の製造方法を提供することを目的とする。   Therefore, the present invention provides an unprecedented method for producing hydrogen as a solution to problems such as production cost, storage, and transportability that must be solved when production of hydrogen is considered on an industrial scale. Objective.

本発明者らは、上記の点に鑑み鋭意研究を重ねた結果、原料としてギ酸水溶液を用い、特定の条件下でギ酸の水熱分解反応(Hydrothermal reaction:密閉反応容器の中での高温高圧の水が関与する反応)を行うことで、ギ酸の脱カルボキシル化(decarboxylation:HCOOH→H2+CO2)により水素が生成することを見出した。 As a result of intensive studies in view of the above points, the present inventors have used a formic acid aqueous solution as a raw material, and hydrothermal decomposition reaction of formic acid (Hydrothermal reaction: high temperature and high pressure in a closed reaction vessel) under specific conditions. It was found that hydrogen was generated by decarboxylation of formic acid (decarboxylation: HCOOH → H 2 + CO 2 ) by performing a reaction involving water.

上記の知見に基づいてなされた本発明の水素の製造方法は、請求項1記載の通り密閉反応容器に一酸化炭素と水を0.001:1〜1:1のモル比で充填し、150℃〜250℃(ただし250℃を除く)で水熱反応を行うことでギ酸水溶液を得る工程1と、工程1により得られたギ酸水溶液をギ酸濃度が0.05M〜0.3Mで密閉反応容器に充填し、250℃〜330℃で水熱反応を行うことで水素と二酸化炭素を得る工程2を、少なくとも含んでなることを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、工程2における反応系にSUS、ハステロイ、インコネルから選ばれる少なくとも1種の金属の粉末を添加して水熱反応を行うことを特徴とする。
The method for producing hydrogen according to the present invention based on the above knowledge is as described in claim 1 , in which a closed reaction vessel is charged with carbon monoxide and water in a molar ratio of 0.001: 1 to 1: 1 , Step 1 for obtaining a formic acid aqueous solution by hydrothermal reaction at 150 ° C. to 250 ° C. (excluding 250 ° C.) and the formic acid aqueous solution obtained in step 1 are sealed with a formic acid concentration of 0.05 M to 0.3 M It is characterized by comprising at least the process 2 which fills a container and obtains hydrogen and a carbon dioxide by performing a hydrothermal reaction at 250 to 330 degreeC .
The manufacturing method according to claim 2 is the manufacturing method according to claim 1, wherein at least one metal powder selected from SUS, hastelloy, and inconel is added to the reaction system in step 2 to perform a hydrothermal reaction. It is characterized by that.

本発明によれば、比較的温和な温度条件での水熱反応により、極性を有する水溶性の有機化合物であるギ酸と水とから、金属触媒を用いることなく水素を簡便に製造することができるので、本発明の水素の製造方法は、製造コストに優れるものである。また、本発明によれば、通常は取扱性に優れたギ酸水溶液を貯蔵したり運搬したりし、必要な時に必要な量の水素をギ酸水溶液から製造して実用に供するといった道が開かれる。即ち、簡便に水素を製造することができる原料としてのギ酸水溶液は、水素の貯蔵タンク(storage tank)や運搬船(carrier ship)として機能する。従って、本発明は、水素の製造を工業的規模で考えた場合に解決しなければならない製造コスト、貯蔵性、輸送性といった問題に対する画期的な解決策となる。   According to the present invention, hydrogen can be easily produced from formic acid, which is a water-soluble organic compound having polarity, and water by a hydrothermal reaction under a relatively mild temperature condition without using a metal catalyst. Therefore, the method for producing hydrogen of the present invention is excellent in production cost. Further, according to the present invention, there is a way to store or transport a formic acid aqueous solution that is usually excellent in handleability and to produce a necessary amount of hydrogen from the formic acid aqueous solution for practical use when necessary. That is, the formic acid aqueous solution as a raw material capable of easily producing hydrogen functions as a hydrogen storage tank or carrier ship. Accordingly, the present invention provides an epoch-making solution to problems such as production cost, storage, and transportability that must be solved when hydrogen production is considered on an industrial scale.

本発明において、水熱反応の温度とギ酸水溶液におけるギ酸濃度は、水素の生成効率を左右する重要な因子である。反応温度の下限は250℃であることが好ましい。250℃未満であるとギ酸の分解が効率よく起こらない恐れがあるからである。反応温度が低い場合、ギ酸濃度は低い方が好ましい。例えば、反応温度が250℃〜330℃の場合、ギ酸濃度は0.05M〜0.3Mであることが好ましい。ギ酸濃度が0.05M未満であると水素の生成量が少なすぎる恐れがある一方、ギ酸濃度が0.3Mを超えるとギ酸の脱カルボニル化(decarbonylation:HCOOH→H2O+CO)が脱カルボキシル化に優先して起こることで水素の生成効率が低下する恐れがあるからである。反応温度の上限は特に制限されるものではなく、反応温度が高ければ高いほどギ酸の脱カルボキシル化が脱カルボニル化に優先して起こるので、高いギ酸濃度での水熱反応が可能となるが(例えば3M)、温和な温度条件で水熱反応を行うことで、特別な製造設備などを用いることなく効率的に水素を製造するとの観点に立てば、反応温度の上限は600℃であることが好ましい。 In the present invention, the temperature of the hydrothermal reaction and the formic acid concentration in the aqueous formic acid solution are important factors that affect the efficiency of hydrogen generation. The lower limit of the reaction temperature is preferably 250 ° C. This is because if it is less than 250 ° C., the decomposition of formic acid may not occur efficiently. When the reaction temperature is low, the formic acid concentration is preferably low. For example, when the reaction temperature is 250 ° C to 330 ° C, the formic acid concentration is preferably 0.05M to 0.3M. If the formic acid concentration is less than 0.05M, the amount of hydrogen produced may be too small, whereas if the formic acid concentration exceeds 0.3M, the decarbonylation of formic acid (decarbonylation: HCOOH → H 2 O + CO) is decarboxylated. This is because the generation efficiency of hydrogen may be reduced by taking precedence over the conversion. The upper limit of the reaction temperature is not particularly limited. Since the higher the reaction temperature, the decarboxylation of formic acid takes precedence over the decarbonylation, so that hydrothermal reaction at a higher formic acid concentration is possible ( For example, 3M), the upper limit of the reaction temperature is 600 ° C. from the viewpoint of efficiently producing hydrogen by using a hydrothermal reaction under mild temperature conditions without using special production equipment. preferable.

なお、水熱反応の反応時間は、密閉反応容器に充填するギ酸水溶液の量やギ酸濃度、反応温度などによって適宜設定されるものであるが、概ね、5分間〜5時間である。   The reaction time of the hydrothermal reaction is appropriately set depending on the amount of formic acid aqueous solution filled in the sealed reaction vessel, the concentration of formic acid, the reaction temperature, etc., but is generally 5 minutes to 5 hours.

用いる密閉反応容器は、例えば、少なくとも内壁が耐腐食性金属材料としてのSUSやハステロイでできたものを用いることが好ましい。後に実施例で述べるように、これらの金属粉末は、水素の生成効率を高める触媒効果を有するからである。もっとも、このような密閉反応容器に由来する触媒効果を遮断して水熱反応を行いたい場合には、その内壁をポリテトラフルオロエチレン加工などすることで対処することができる。   As the sealed reaction vessel to be used, for example, at least the inner wall is preferably made of SUS or Hastelloy as a corrosion-resistant metal material. This is because, as will be described later in Examples, these metal powders have a catalytic effect that increases the efficiency of hydrogen generation. However, when it is desired to perform the hydrothermal reaction while blocking the catalytic effect derived from such a closed reaction vessel, it can be dealt with by processing the inner wall thereof with polytetrafluoroethylene.

以上の方法によって生成した水素は、自体公知の水素分離膜などを用いて分離精製すればよい。   Hydrogen generated by the above method may be separated and purified using a hydrogen separation membrane known per se.

原料として用いるギ酸水溶液はどのような方法で調製したものであってもよいが、本発明者らは、密閉反応容器に一酸化炭素と水を充填し、150℃〜250℃で水熱反応を行うことでギ酸水溶液を得ることができることを見出している。これまでに知られているギ酸の製造方法としては、例えば、貴金属からなる金属触媒を用いて水素と二酸化炭素から合成する方法があるが、この方法は製造コストに劣るものである。しかしながら、本発明者らが見出した、原料として一酸化炭素と水を用いて水熱反応によりギ酸を製造する方法は、金属触媒を用いることなくギ酸を簡便に製造することができるので、製造コストに優れるものである。この水熱反応においては、反応温度が150℃未満であると反応速度が遅くなる傾向にある一方、反応温度が250℃を超えると生成したギ酸が二酸化炭素と水素に分解する傾向にある。密閉反応容器に充填する一酸化炭素と水の量は、0.001:1〜1:1であることが好ましい(モル比)。反応時間は、概ね、5分間〜50時間であるが、好ましくは5分間〜30時間である。反応系に酸触媒として塩酸などを添加することで、ギ酸の生成効率を高めることができる。添加量は0.01M〜3Mであることが好ましい。添加量が0.01M未満であると添加した効果が十分に得られない恐れがある一方、添加量が3Mを超えると生成したギ酸の塩素化によりギ酸の生成効率が低下する恐れがあるからである。   The formic acid aqueous solution used as a raw material may be prepared by any method, but the present inventors filled a closed reaction vessel with carbon monoxide and water, and carried out a hydrothermal reaction at 150 to 250 ° C. It has been found that an aqueous formic acid solution can be obtained. As a method for producing formic acid known so far, for example, there is a method of synthesizing from hydrogen and carbon dioxide using a metal catalyst comprising a noble metal, but this method is inferior in production cost. However, the method for producing formic acid by hydrothermal reaction using carbon monoxide and water as raw materials found by the present inventors can easily produce formic acid without using a metal catalyst. It is excellent. In this hydrothermal reaction, when the reaction temperature is less than 150 ° C., the reaction rate tends to be slow, whereas when the reaction temperature exceeds 250 ° C., the produced formic acid tends to decompose into carbon dioxide and hydrogen. The amount of carbon monoxide and water charged in the sealed reaction vessel is preferably 0.001: 1 to 1: 1 (molar ratio). The reaction time is generally 5 minutes to 50 hours, preferably 5 minutes to 30 hours. Formic acid production efficiency can be increased by adding hydrochloric acid or the like as an acid catalyst to the reaction system. The amount added is preferably 0.01M to 3M. If the addition amount is less than 0.01M, the added effect may not be sufficiently obtained. On the other hand, if the addition amount exceeds 3M, the production efficiency of formic acid may decrease due to chlorination of the generated formic acid. is there.

密閉反応容器に一酸化炭素と水を充填し、150℃〜250℃で水熱反応を行うことでギ酸水溶液を得る工程と、この工程により得られたギ酸水溶液を密閉反応容器に充填し、250℃〜600℃で水熱反応を行うことで水素と二酸化炭素を得る工程を組み合わせた方法は、工業的水素製造プラントにおいて極めて重要な化学プロセス反応である水性ガスシフト反応(water-gas-shift reaction:CO+H2O→H2+CO2)を効率的に行う方法に相当し、ギ酸は水性ガスシフト反応における中間体として位置付けられる。従って、この方法によれば、ギ酸水溶液を要とした水熱反応を利用することで、これまで1段階で行われていた水性ガスシフト反応を取扱性に優れたものとし、自在に制御して水素を製造することができるようになる。その化学反応式は次の通りである。 Filling the closed reaction vessel with carbon monoxide and water and performing a hydrothermal reaction at 150 ° C. to 250 ° C. to obtain a formic acid aqueous solution; filling the closed reaction vessel with the formic acid aqueous solution obtained in this step; The method of combining hydrogen and carbon dioxide by performing hydrothermal reaction at ℃ ~ 600 ℃ is a water-gas-shift reaction, which is a very important chemical process reaction in an industrial hydrogen production plant. CO + H 2 O → H 2 + CO 2 ), which is an efficient method, and formic acid is positioned as an intermediate in the water gas shift reaction. Therefore, according to this method, by utilizing a hydrothermal reaction that requires an aqueous formic acid solution, the water gas shift reaction that has been performed in one step so far has excellent handling properties, and can be freely controlled to generate hydrogen. Can be manufactured. The chemical reaction formula is as follows.

Figure 0004481060
Figure 0004481060

なお、原料として一酸化炭素と水を用いて水熱反応により製造されたギ酸は、各種の化成品や医薬品などの製造原料として用いてもよい。   In addition, formic acid produced by hydrothermal reaction using carbon monoxide and water as raw materials may be used as a raw material for producing various chemical products and pharmaceuticals.

以下、実施例によって本発明を更に詳細に説明するが、本発明は以下の記載に何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to the following description and is not interpreted at all.

工程1:水熱反応によるギ酸の製造
内径1.5mm×外径3.0mmの石英ガラス製チューブに13CO(>99%)と水を充填し(両者の充填量はモル比で0.01:1)、封止した。こうして作製したサンプルチューブを、炉を用いて250℃で26時間加熱した後、大気中で冷却してから、外径10mmのNMRチューブに挿入し、400MHz−NMRを用いて液相と気相の各々について1Hスペクトルと13Cスペクトルを測定した。図1の(a)に加熱前のサンプルの気相の13Cスペクトル、(b)に加熱後のサンプルの気相の13Cスペクトル、(c)に加熱後のサンプルの液相の13Cスペクトル(上の2つのスペクトルと同じレンジで表示するとピークが小さくなりすぎるためピークの高さを5倍に伸長して表示)を示す。図1から明らかなように、原料として一酸化炭素と水を用いて水熱反応により166ppmにピークを有するギ酸を製造することができることがわかった。このことは、別途の試験で、加熱前と8時間加熱した後のサンプルの液相の1Hスペクトルを測定した場合、加熱前には存在しなかったギ酸のピークが8時間加熱した後には存在することからも確認することができた。また、別途の試験で、反応系に2M塩酸を酸触媒として添加した場合、ギ酸の生成効率が向上することがわかった。
Step 1: Production of formic acid by hydrothermal reaction A quartz glass tube having an inner diameter of 1.5 mm and an outer diameter of 3.0 mm is filled with 13 CO (> 99%) and water (both filling amounts are 0.01 by molar ratio). 1) and sealed. The sample tube thus prepared was heated in an oven at 250 ° C. for 26 hours, cooled in the atmosphere, then inserted into an NMR tube having an outer diameter of 10 mm, and liquid phase and gas phase were measured using 400 MHz-NMR. For each, a 1 H spectrum and a 13 C spectrum were measured. 13 C spectra of the gas phase of the sample before heating (a) in FIG. 1, 13 C spectrum of the gas phase of the sample after heating (b), 13 C spectrum of the liquid phase of the sample after heating (c) (When displayed in the same range as the above two spectra, the peak becomes too small, so that the height of the peak is expanded five times). As apparent from FIG. 1, it was found that formic acid having a peak at 166 ppm can be produced by hydrothermal reaction using carbon monoxide and water as raw materials. This is because, in a separate test, when the 1 H spectrum of the liquid phase of the sample before heating and after heating for 8 hours was measured, the formic acid peak that did not exist before heating was present after heating for 8 hours. I was able to confirm it. Further, in a separate test, it was found that when 2M hydrochloric acid was added to the reaction system as an acid catalyst, the production efficiency of formic acid was improved.

工程2:水熱反応による水素の製造
所定濃度のH13COOH(>99%)を含むギ酸水溶液を内径1.5mm×外径3.0mmの石英ガラス製チューブに充填し、空間部分をアルゴン置換してから封止した。こうして作製したサンプルチューブを、炉を用いて所定温度に加熱した後、大気中で冷却してから、外径10mmのNMRチューブに挿入し、400MHz−NMRを用いて液相と気相の各々について1Hスペクトルと13Cスペクトルを測定し、そこに含まれる原料物質と生成物質の濃度を決定した。図2の(a)〜(c)にギ酸濃度が0.1M,0.5M,1.0Mのギ酸水溶液を充填したサンプルチューブを300℃で10分間加熱した場合の気相の13Cスペクトルをそれぞれ示す(“% decomposition”の表記はギ酸の分解率を表す)。図2から明らかなように、ギ酸濃度が0.1Mと低いサンプルの水熱反応によっては128ppmにピークを有する二酸化炭素が主生成物であり、186ppmにピークを有する一酸化炭素はわずかに生成するに過ぎなかった。液相と気相における二酸化炭素と一酸化炭素の全体生成量に占める二酸化炭素のモル比率は95%であり、このことから、反応したギ酸の95%が水素に変換されたことがわかった。しかしながら、ギ酸濃度が高くなるにつれて二酸化炭素の生成量は減少し、水素の生成効率が低下することがわかった。
また、別途の試験で、反応系に0.05M塩酸を酸触媒として添加した場合、二酸化炭素の生成量は減少し、水素の生成効率が低下することがわかった。
また、別途の試験で、ギ酸濃度が1.0Mのギ酸水溶液を充填したサンプルチューブを275℃,300℃,325℃,350℃で10分間加熱した場合の気相の13Cスペクトルをそれぞれ測定したところ、主生成物は一酸化炭素であるものに反応温度が高くなるにつれて二酸化炭素の生成量が増加し、水素の生成効率が向上することがわかった。
また、ギ酸濃度が2Mになるようにギ酸を100mgの重水に溶解して調製した溶液に、直径20μmのSUS316Lの粉末,直径20μmのハステロイC−276の粉末,直径250μmのインコネル625の粉末をそれぞれ50mg添加して250℃で1時間加熱した場合の液相のラマン散乱スペクトルを、金属粉末を添加しなかった場合の液相のラマン散乱スペクトルとともに図3の(a)〜(d)に示す。図3から明らかなように、SUS316とハステロイC−276は、水素の生成効率を高める触媒効果を有することがわかった。
Step 2: Production of hydrogen by hydrothermal reaction A formic acid aqueous solution containing a predetermined concentration of H 13 COOH (> 99%) is filled into a quartz glass tube having an inner diameter of 1.5 mm and an outer diameter of 3.0 mm, and the space is replaced with argon. And then sealed. The sample tube thus prepared is heated to a predetermined temperature using a furnace and then cooled in the air, and then inserted into an NMR tube having an outer diameter of 10 mm, and each of the liquid phase and the gas phase is measured using 400 MHz-NMR. The 1 H spectrum and 13 C spectrum were measured, and the concentrations of the raw material and the product contained therein were determined. Fig. 2 (a) to (c) show 13 C spectra of the gas phase when a sample tube filled with a formic acid solution having a formic acid concentration of 0.1 M, 0.5 M, or 1.0 M is heated at 300 ° C for 10 minutes. Shown respectively ("% decomposition" indicates the decomposition rate of formic acid). As is clear from FIG. 2, carbon dioxide having a peak at 128 ppm is the main product and a small amount of carbon monoxide having a peak at 186 ppm is produced by the hydrothermal reaction of a sample having a low formic acid concentration of 0.1 M. It was only. The molar ratio of carbon dioxide in the total amount of carbon dioxide and carbon monoxide produced in the liquid phase and gas phase was 95%, which showed that 95% of the reacted formic acid was converted to hydrogen. However, it was found that as the formic acid concentration increases, the amount of carbon dioxide produced decreases and the hydrogen production efficiency decreases.
Further, in a separate test, it was found that when 0.05M hydrochloric acid was added to the reaction system as an acid catalyst, the amount of carbon dioxide produced decreased and the hydrogen production efficiency decreased.
In a separate test, the 13 C spectrum of the gas phase was measured when a sample tube filled with a formic acid aqueous solution having a formic acid concentration of 1.0 M was heated at 275 ° C., 300 ° C., 325 ° C., and 350 ° C. for 10 minutes. However, it has been found that the main product is carbon monoxide, and as the reaction temperature increases, the amount of carbon dioxide produced increases and the hydrogen production efficiency improves.
Also, SUS316L powder having a diameter of 20 μm, Hastelloy C-276 powder having a diameter of 20 μm, and Inconel 625 powder having a diameter of 250 μm were added to a solution prepared by dissolving formic acid in 100 mg of heavy water so that the formic acid concentration was 2 M. The Raman scattering spectrum of the liquid phase when 50 mg is added and heated at 250 ° C. for 1 hour is shown in FIGS. 3A to 3D together with the Raman scattering spectrum of the liquid phase when no metal powder is added. As is clear from FIG. 3, it was found that SUS316 and Hastelloy C-276 have a catalytic effect that increases the efficiency of hydrogen generation.

本発明は、水素の製造を工業的規模で考えた場合に解決しなければならない製造コスト、貯蔵性、輸送性といった問題に対する解決策としてのこれまでにない水素の製造方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention can provide an unprecedented method for producing hydrogen as a solution to problems such as production cost, storage, and transportability that must be solved when production of hydrogen is considered on an industrial scale. In terms of industrial applicability.

実施例の工程1において水熱反応によりギ酸が生成することを示すグラフである。It is a graph which shows that formic acid produces | generates by the hydrothermal reaction in the process 1 of an Example. 実施例の工程2において水熱反応により水素が生成することを示すグラフである。It is a graph which shows that hydrogen produces | generates by the hydrothermal reaction in the process 2 of an Example. 同、金属粉末の反応系への添加が水素の生成効率にどのような影響を及ぼすかを示すグラフである。FIG. 5 is a graph showing how the addition of metal powder to the reaction system affects the hydrogen generation efficiency. FIG.

Claims (2)

密閉反応容器に一酸化炭素と水を0.001:1〜1:1のモル比で充填し、150℃〜250℃(ただし250℃を除く)で水熱反応を行うことでギ酸水溶液を得る工程1と、工程1により得られたギ酸水溶液をギ酸濃度が0.05M〜0.3Mで密閉反応容器に充填し、250℃〜330℃で水熱反応を行うことで水素と二酸化炭素を得る工程2を、少なくとも含んでなることを特徴とする水素の製造方法。 A closed reaction vessel is filled with carbon monoxide and water in a molar ratio of 0.001: 1 to 1: 1 and a hydrothermal reaction is performed at 150 ° C. to 250 ° C. (except 250 ° C.) to obtain an aqueous formic acid solution. The formic acid aqueous solution obtained in Step 1 and Step 1 is filled in a closed reaction vessel with a formic acid concentration of 0.05 M to 0.3 M, and hydrothermal reaction is performed at 250 ° C. to 330 ° C. to obtain hydrogen and carbon dioxide. A method for producing hydrogen, comprising at least step 2. 工程2における反応系にSUS、ハステロイ、インコネルから選ばれる少なくとも1種の金属の粉末を添加して水熱反応を行うことを特徴とする請求項1記載の製造方法。The production method according to claim 1, wherein a hydrothermal reaction is performed by adding at least one metal powder selected from SUS, Hastelloy, and Inconel to the reaction system in Step 2.
JP2004108287A 2004-03-31 2004-03-31 Method for producing hydrogen using hydrothermal reaction Expired - Fee Related JP4481060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108287A JP4481060B2 (en) 2004-03-31 2004-03-31 Method for producing hydrogen using hydrothermal reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108287A JP4481060B2 (en) 2004-03-31 2004-03-31 Method for producing hydrogen using hydrothermal reaction

Publications (2)

Publication Number Publication Date
JP2005289742A JP2005289742A (en) 2005-10-20
JP4481060B2 true JP4481060B2 (en) 2010-06-16

Family

ID=35323128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108287A Expired - Fee Related JP4481060B2 (en) 2004-03-31 2004-03-31 Method for producing hydrogen using hydrothermal reaction

Country Status (1)

Country Link
JP (1) JP4481060B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918247A1 (en) 2006-10-18 2008-05-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hydrogen production from formic acid
CN102131730A (en) * 2008-07-28 2011-07-20 中原胜 Process for production of hydrogen
WO2010064302A1 (en) * 2008-12-02 2010-06-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP5397806B2 (en) * 2009-03-12 2014-01-22 国立大学法人大阪大学 Method for producing at least one of deuterium (D2) and deuterated hydrogen (HD), and formic acid decomposition catalyst used therefor
EP2530066A4 (en) 2010-01-27 2013-08-14 Nakahara Masaru Method for producing formic acid
US20130004800A1 (en) 2011-06-30 2013-01-03 Formic Acid-Hydrogen Energy Development Corporation Hydrogen generation system and method for generating hydrogen for mobile and power generator
CN112642436B (en) * 2019-10-12 2023-03-28 中石化南京化工研究院有限公司 Catalyst for synthesizing formic acid and preparation method thereof

Also Published As

Publication number Publication date
JP2005289742A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
Wang et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation
Chang et al. Photoactive earth‐abundant iron pyrite catalysts for electrocatalytic nitrogen reduction reaction
Gao et al. Lattice expansion in optimally doped manganese oxide: an effective structural parameter for enhanced thermochemical water splitting
WO2015019473A1 (en) Ammonia synthesis method
JP4481060B2 (en) Method for producing hydrogen using hydrothermal reaction
JP4982736B2 (en) A water splitting catalyst by light and a method for producing the same.
KR101567592B1 (en) Method for preparing solid nitrosyl ruthenium nitrate by using waste catalyst containing ruthenium
CN106414321A (en) A process for safe production of phosgene
US20220106691A1 (en) Process To Convert Reduced Sulfur Species And Water Into Hydrogen And Sulfuric Acid
JP2006216412A (en) Microwave heating device and carbon dioxide decomposition method using it
US20110268617A1 (en) Synthesis of hydrocarbons via catalytic reduction of co2
Rebordinos et al. BrOx cycle: A novel process for CO2-free energy production from natural gas
Fang et al. Temperature, pressure, and adsorption‐dependent redox potentials: I. Processes of CO2 reduction to value‐added compounds
JP4991175B2 (en) Hydrogen production method and hydrogen production apparatus
KR20150087557A (en) Metal-doped titanium oxide nanowire catalyst, preparing method of the same and method for oxidative coupling reaction of methane using the same
Lee et al. Concurrent production of carbon monoxide and manganese (II) oxide through the reaction of carbon dioxide with manganese
JP5821777B2 (en) Ammonia synthesis method
US3995012A (en) Process of producing hydrogen and oxygen from H2 O in a thermochemical cycle
EA038782B1 (en) Method for producing metal borohydride and molecular hydrogen
Iwasa et al. Synthesis of Narrow Band Gap Gallium Zinc Nitride Oxide Solid Solutions for Photocatalytic Water Splitting under Visible Light
Mekaru et al. Phase equilibrium conditions in carbon dioxide+ cyclopentane double clathrate hydrate forming system coexisting with sodium chloride aqueous solution
Bohn The production of pure hydrogen with simultaneous capture of carbon dioxide
Samoylenko et al. CO2‐Free Calcium Carbide Manufacturing: Demanded Strategy in the Carbon‐Neutral Chemical Industry
Thompson et al. Artificial Photosynthesis Device Development for CO2 Photoelectrochemical Conversion.
CN101959792B (en) Method for producing oxygen-containing halogenated fluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091019

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees