JP2007125496A - Optical water decomposition catalyst and its manufacturing method - Google Patents

Optical water decomposition catalyst and its manufacturing method Download PDF

Info

Publication number
JP2007125496A
JP2007125496A JP2005320356A JP2005320356A JP2007125496A JP 2007125496 A JP2007125496 A JP 2007125496A JP 2005320356 A JP2005320356 A JP 2005320356A JP 2005320356 A JP2005320356 A JP 2005320356A JP 2007125496 A JP2007125496 A JP 2007125496A
Authority
JP
Japan
Prior art keywords
water
gallium nitride
type gallium
oxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005320356A
Other languages
Japanese (ja)
Other versions
JP4982736B2 (en
JP2007125496A5 (en
Inventor
Yasunobu Inoue
泰宣 井上
Nobuo Saito
信雄 斉藤
Hiroshi Nishiyama
洋 西山
Naoki Arai
直樹 新井
Kazunari Doumen
一成 堂免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2005320356A priority Critical patent/JP4982736B2/en
Priority to PCT/JP2006/321254 priority patent/WO2007052512A1/en
Publication of JP2007125496A publication Critical patent/JP2007125496A/en
Publication of JP2007125496A5 publication Critical patent/JP2007125496A5/ja
Application granted granted Critical
Publication of JP4982736B2 publication Critical patent/JP4982736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for complete decomposition of water which can decompose water into hydrogen and oxygen, stably with high efficiency over a long period, through irradiation with light, and its manufacturing method. <P>SOLUTION: The optical water decomposition catalyst is prepared by causing a promoter selected from ruthenium, nickel, cobalt, iron, chromium, rhodium and iridium oxides to be supported by a type-p potassium nitride or a type-p gallium indium nitride loaded with metal atoms selected from zinc, magnesium and beryllium. The promoter is most preferably ruthenium oxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、p型窒化ガリウム類を使用した光エネルギーを利用する水分解用の触媒に関する。   The present invention relates to a catalyst for water splitting using light energy using p-type gallium nitrides.

光エネルギーを利用して触媒反応を行う技術としては、固体触媒に光を照射して伝導帯に生成した電子で反応物を還元する技術、価電子帯で生成した正孔で反応物を酸化して生成物を得る技術等が知られている。
また、この技術を応用して、水を水素と酸素に完全に分解する光による水分解用触媒は、エネルギー変換の観点から注目を集めている。(例えば、非特許文献1〜3、特許文献1,2参照)
As a technology for performing a catalytic reaction using light energy, the solid catalyst is irradiated with light to reduce the reactant with electrons generated in the conduction band, and the reactant is oxidized with holes generated in the valence band. Techniques for obtaining products are known.
Moreover, a catalyst for water splitting by light that completely decomposes water into hydrogen and oxygen by applying this technique has attracted attention from the viewpoint of energy conversion. (For example, see Non-Patent Documents 1 to 3 and Patent Documents 1 and 2)

Catal. Lett., 58(1999), 153-155Catal. Lett., 58 (1999), 153-155 J. AM. CHEM. SOC. (2005), 127, 4150-4151J. AM. CHEM. SOC. (2005), 127, 4150-4151 J. AM. CHEM. SOC. (2005), 127, 8286-8287J. AM. CHEM. SOC. (2005), 127, 8286-8287 特開2005−131531号公報JP-A-2005-131553 特開2003−24764号公報JP 2003-24764 A

上記の非特許文献1には、水を水素と酸素に分解する触媒が開示されており、特にタンタルを含むアルカリやアルカリ度類金属のオキサイドが水の完全分解に対して高い活性を示すことが記載されている。また、特許文献1及び非特許文献2には、d10電子状態を持つゲルマニウム元素を含むナイトライド及びオキシナイトライドの水分解触媒作用について記載されている。 Non-Patent Document 1 discloses a catalyst for decomposing water into hydrogen and oxygen, and in particular, an alkali or alkalinity metal oxide containing tantalum exhibits high activity for complete decomposition of water. Are listed. In Patent Document 1 and Non-Patent Document 2 describes water-splitting catalysis of nitride and oxynitride containing germanium element having a d 10 electronic states.

さらに、非特許文献3には、可視光活性の水分解触媒の設計において、窒化ガリウムと酸化亜鉛の固溶体を使用することが記載されている。同文献には、この窒化ガリウムと酸化亜鉛の固溶体は水完全分解用触媒として機能するが、窒化ガリウム単独では水分解活性がみられないことが開示されている。   Furthermore, Non-Patent Document 3 describes the use of a solid solution of gallium nitride and zinc oxide in the design of a visible light active water splitting catalyst. This document discloses that the solid solution of gallium nitride and zinc oxide functions as a catalyst for complete water decomposition, but gallium nitride alone does not exhibit water decomposition activity.

特許文献2には、窒化物半導体への光照射によるガス発生方法が記載され、ガスの発生源が窒化物表面或いは接合された金属表面であることが開示されている。また、窒化ガリウムが水から水素と酸素を生成する触媒として機能することが記載されているが、化学量論的に水素と酸素を発生させるものではなく、多量の窒素が発生している。この現象は、窒化ガリウムが分解することに起因するものであり、したがってこの特許文献に記載の技術では、長期間安定に水から水素を得ることは困難である。   Patent Document 2 describes a gas generation method by irradiating a nitride semiconductor with light, and discloses that the gas generation source is a nitride surface or a bonded metal surface. Further, although it is described that gallium nitride functions as a catalyst for generating hydrogen and oxygen from water, it does not generate hydrogen and oxygen stoichiometrically, and a large amount of nitrogen is generated. This phenomenon is caused by the decomposition of gallium nitride, and therefore it is difficult to obtain hydrogen from water stably for a long period of time with the technique described in this patent document.

したがって、本発明はこれらの従来技術における問題点を解消して、長期間安定して、光照射により水を水素と酸素に高効率で分解することのできる水完全分解用触媒とその製造方法を提供することを目的とする。   Therefore, the present invention eliminates the problems in these prior arts, and provides a catalyst for water complete decomposition that can stably decompose water into hydrogen and oxygen by light irradiation with high efficiency and a method for producing the same. The purpose is to provide.

本発明者等は鋭意検討した結果、異種金属原子を添加したp型窒化ガリウムに、酸化ルテニウム等の助触媒を担持させることによって、上記課題が解決されることを発見し、本発明を完成したものである。   As a result of intensive studies, the present inventors have found that the above problem can be solved by supporting a promoter such as ruthenium oxide on p-type gallium nitride to which different metal atoms are added, and the present invention has been completed. Is.

すなわち、本発明は次の1〜14の構成を採用するものである。
1.亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムに、酸化ルテニウム、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化ロジウム、酸化イリジウムから選択された助触媒を担持させたことを特徴とする光による水分解触媒。
2.亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムが、p型窒化ガリウムインジウムであることを特徴とする1に記載の光による水分解触媒。
3.亜鉛、マグネシウム、ベリリウムから選択された金属原子の添加量が0.0001〜7モル%であることを特徴とする1又は2に記載の光による水分解触媒。
4.助触媒が酸化ルテニウムであることを特徴とする1〜3のいずれかに記載の光による水分解触媒。
5.助触媒の担持量が0.1〜10重量%であることを特徴とする1〜4のいずれかに記載の水分解触媒。
6.亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムの平均粒径が10nm〜10μmであることを特徴とする1〜5のいずれかに記載の水分解触媒。
7.ガリウムに対する亜鉛、マグネシウム、ベリリウムから選択された金属の配合割合が0.01〜200モル%となるように、硫化ガリウム又は酸化ガリウムに、亜鉛、マグネシウム、ベリリウムから選択された金属原子を含む化合物を混合し、アンモニア気流下に焼成して得られたp型窒化ガリウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする1〜6のいずれかに記載の光による水分解触媒の製造方法。
8.アンモニアの流量が50〜1000mL/分で、アンモニア気流下での焼成温度が800〜1100℃、焼成時間が1〜30時間であることを特徴とする7に記載の水分解触媒の製造方法。
9.アンモニア気流下に焼成して得られたp型窒化ガリウムに対して、1〜50モル%の硫化インジウムを添加した混合物を、アンモニア気流下で温度500〜900℃で0.5〜24時間焼成して得られたp型窒化ガリウムインジウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする7又は8に記載の水分解触媒の製造方法。
10.助触媒前駆体となるトリルテニウムドデカカルボニルをテトラヒドロフランに溶解した溶液にp型窒化ガリウムを浸漬後、室温〜100℃で1〜5時間還流し、さらに空気中で200〜500℃で1〜10時間焼成することを特徴とする7〜9のいずれかに記載の水分解触媒の製造方法。
11.硝酸亜鉛、硝酸マグネシウム、硝酸ベリリウムから選択された化合物と硝酸ガリウムを水に溶解し、アンモニア水を添加して得られた生成物を空気中で600〜800℃で焼成して前駆体を形成し、得られた前駆体をアンモニア気流下に焼成して得られたp型窒化ガリウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする1〜6のいずれかに記載の光による水分解触媒の製造方法。
12.アンモニアの流量が50〜1000mL/分で、アンモニア気流下での焼成温度が800〜1100℃、焼成時間が1〜30時間であることを特徴とする11に記載の水分解触媒の製造方法。
13.アンモニア気流下に焼成して得られたp型窒化ガリウムに対して、1〜50モル%の硫化インジウムを添加した混合物を、アンモニア気流下で温度500〜900℃で0.5〜24時間焼成して得られたp型窒化ガリウムインジウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする11又は12に記載の水分解触媒の製造方法。
14.助触媒前駆体となるトリルテニウムドデカカルボニルをテトラヒドロフランに溶解した溶液にp型窒化ガリウムを浸漬後、室温〜100℃で1〜5時間還流し、さらに空気中で200〜500℃で1〜10時間焼成することを特徴とする11〜13のいずれかに記載の水分解触媒の製造方法。
That is, the present invention employs the following configurations 1 to 14.
1. Co-catalyst selected from ruthenium oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, rhodium oxide and iridium oxide was supported on p-type gallium nitride to which a metal atom selected from zinc, magnesium and beryllium was added. A water-decomposing catalyst using light.
2. 2. The water-based water decomposition catalyst according to 1, wherein the p-type gallium nitride to which a metal atom selected from zinc, magnesium, and beryllium is added is p-type gallium indium nitride.
3. 3. The water-decomposing catalyst for light according to 1 or 2, wherein the addition amount of a metal atom selected from zinc, magnesium and beryllium is 0.0001 to 7 mol%.
4). The water-splitting catalyst by light according to any one of 1 to 3, wherein the promoter is ruthenium oxide.
5. 5. The water splitting catalyst according to any one of 1 to 4, wherein the supported amount of the promoter is 0.1 to 10% by weight.
6). 6. The water splitting catalyst according to any one of 1 to 5, wherein the p-type gallium nitride to which a metal atom selected from zinc, magnesium and beryllium is added has an average particle size of 10 nm to 10 μm.
7). A compound containing a metal atom selected from zinc, magnesium, and beryllium in gallium sulfide or gallium oxide so that the compounding ratio of the metal selected from zinc, magnesium, and beryllium to gallium is 0.01 to 200 mol%. Any one of 1 to 6, characterized in that p-type gallium nitride obtained by mixing and firing in an ammonia stream is immersed in water or an organic solvent solution containing a cocatalyst precursor and then fired in air. A method for producing a water splitting catalyst by light as described in 1.
8). 8. The method for producing a water splitting catalyst according to 7, wherein the ammonia flow rate is 50 to 1000 mL / min, the calcination temperature under an ammonia stream is 800 to 1100 ° C., and the calcination time is 1 to 30 hours.
9. A mixture obtained by adding 1 to 50 mol% indium sulfide to p-type gallium nitride obtained by firing in an ammonia stream is fired at a temperature of 500 to 900 ° C for 0.5 to 24 hours in an ammonia stream. The method for producing a water splitting catalyst according to 7 or 8, wherein the p-type gallium indium nitride obtained in the step is immersed in water or an organic solvent solution containing a cocatalyst precursor and then calcined in air.
10. After immersing p-type gallium nitride in a solution of triruthenium dodecacarbonyl as a co-catalyst precursor in tetrahydrofuran, the solution is refluxed at room temperature to 100 ° C. for 1 to 5 hours, and further in air at 200 to 500 ° C. for 1 to 10 hours. The method for producing a water splitting catalyst according to any one of 7 to 9, which is calcined.
11. A compound selected from zinc nitrate, magnesium nitrate and beryllium nitrate and gallium nitrate are dissolved in water, and a product obtained by adding aqueous ammonia is calcined in air at 600 to 800 ° C. to form a precursor. The p-type gallium nitride obtained by firing the obtained precursor in an ammonia stream is immersed in water or an organic solvent solution containing a promoter precursor and then fired in air. The method for producing a water splitting catalyst by light according to any one of 6.
12 12. The method for producing a water splitting catalyst according to 11, wherein the ammonia flow rate is 50 to 1000 mL / min, the calcining temperature under an ammonia stream is 800 to 1100 ° C., and the calcining time is 1 to 30 hours.
13. A mixture obtained by adding 1 to 50 mol% indium sulfide to p-type gallium nitride obtained by firing in an ammonia stream is fired at a temperature of 500 to 900 ° C for 0.5 to 24 hours in an ammonia stream. The method for producing a water-splitting catalyst according to 11 or 12, wherein the p-type gallium indium nitride obtained in the step is immersed in water or an organic solvent solution containing a promoter precursor and then calcined in air.
14 After immersing p-type gallium nitride in a solution of triruthenium dodecacarbonyl as a co-catalyst precursor in tetrahydrofuran, the solution is refluxed at room temperature to 100 ° C. for 1 to 5 hours, and further in air at 200 to 500 ° C. for 1 to 10 hours. It calcines, The manufacturing method of the water splitting catalyst in any one of 11-13 characterized by the above-mentioned.

本発明では、上記の構成を有する助触媒を担持した水分解用触媒を使用することによって、長期間安定して、光照射により水を水素と酸素に高効率で分解することが可能となった。本発明は、化石燃料等を全く使用せずに、クリーンなエネルギー源を製造する道を拓くとともに、油、排ガス等に含まれる環境汚染物質の光分解反応や、光合成反応にも適用可能な触媒を提供するもので、極めて実用的価値が高いものである。   In the present invention, by using a water splitting catalyst carrying a cocatalyst having the above-described structure, water can be decomposed into hydrogen and oxygen with high efficiency by light irradiation stably for a long period of time. . The present invention opens the way to producing clean energy sources without using any fossil fuels and the like, and is also applicable to photodecomposition reactions and photosynthesis reactions of environmental pollutants contained in oil, exhaust gas, etc. Providing a very high practical value.

本発明では、亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムに、酸化ルテニウム、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化ロジウム、酸化イリジウムから選択された助触媒を担持させることによって、光による水分解触媒を構成する。
亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムは、発光ダイオードやレーザーダイオードとして半導体分野では一般的に用いられているが、光による水完全分解用の触媒として該p型窒化ガリウムを使用することは、これまで知られていない。
In the present invention, a promoter selected from ruthenium oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, rhodium oxide and iridium oxide is added to p-type gallium nitride to which a metal atom selected from zinc, magnesium and beryllium is added. By supporting the water, a water-decomposing catalyst by light is constituted.
A p-type gallium nitride to which a metal atom selected from zinc, magnesium, and beryllium is added is generally used in the semiconductor field as a light-emitting diode or a laser diode. The use of gallium nitride has not been known so far.

本発明では、上記の異種原子を含むp型窒化ガリウムに、酸化ルテニウム、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化ロジウム、酸化イリジウムから選択された助触媒を担持させることによって、光エネルギーを利用して水を水素と酸素に分解する触媒としての機能が飛躍的に向上し、長期間安定に、ほぼ化学量論的に水を水素と酸素に分解することが可能となった。   In the present invention, the p-type gallium nitride containing different atoms is loaded with a promoter selected from ruthenium oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, rhodium oxide, and iridium oxide, thereby producing light energy. As a catalyst for decomposing water into hydrogen and oxygen using water, the function as a catalyst has been dramatically improved, and it has become possible to decompose water into hydrogen and oxygen in a stable and almost stoichiometric manner for a long time.

本発明において、上記の異種原子を含むp型窒化ガリウムとは、亜鉛、マグネシウム、ベリリウムから選択された金属原子を、定法により、その添加量が0.0001〜7モル%程度となるように添加した、化学式:InGa1−xN(ただし、0≦x≦1)で表されるp型窒化ガリウム及びp型窒化ガリウムインジウムを表すものとする。このようなp型窒化ガリウムは、例えば、平均粒径が10nm〜10μm程度の粉末状のものとして使用することができる。 In the present invention, the above-mentioned p-type gallium nitride containing different atoms is a metal atom selected from zinc, magnesium, and beryllium added by a conventional method so that the addition amount is about 0.0001 to 7 mol%. P-type gallium nitride and p-type gallium indium nitride represented by the chemical formula: In x Ga 1-x N (where 0 ≦ x ≦ 1) are used. Such p-type gallium nitride can be used as a powder having an average particle size of about 10 nm to 10 μm, for example.

本発明では、この異種原子を含むp型窒化ガリウムに、好ましくは助触媒の担持量が0.1〜10重量%程度となるように、酸化ルテニウム、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化ロジウム、酸化イリジウムから選択された助触媒を担持させることによって、光による水分解触媒を構成する。特に好ましい助触媒としては、酸化ルテニウムが挙げられる。   In the present invention, ruthenium oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide are preferably added to the p-type gallium nitride containing different atoms so that the supported amount of the promoter is about 0.1 to 10% by weight. By supporting a promoter selected from rhodium oxide and iridium oxide, a water splitting catalyst by light is formed. A particularly preferred promoter is ruthenium oxide.

次に、本発明の光による水分解触媒を製造する方法の1例について説明するが、以下の具体例は本発明を限定するものではない。
(1)硫化ガリウムあるいは酸化ガリウムに対して、硫化亜鉛、硫化マグネシウム、あるいは酸化ベリリウムを、ガリウムに対する亜鉛、マグネシウムあるいはベリリウムのモル比が0.01〜200mol%の範囲となるように混合した試料を前駆体とする。
あるいは、硝酸亜鉛、硝酸マグネシウム、硝酸ベリリウムから選択された化合物と硝酸ガリウムを水に溶解した水溶液に、アンモニア水を滴下して得られた生成物を空気中で600〜800℃の温度で焼成した試料を前駆体とすることもできる。
Next, an example of the method for producing a water-splitting catalyst by light of the present invention will be described, but the following specific examples do not limit the present invention.
(1) A sample in which zinc sulfide, magnesium sulfide, or beryllium oxide is mixed with gallium sulfide or gallium oxide so that the molar ratio of zinc, magnesium, or beryllium to gallium is in the range of 0.01 to 200 mol%. Let it be a precursor.
Or the product obtained by dripping ammonia water in the aqueous solution which melt | dissolved the compound selected from zinc nitrate, magnesium nitrate, and beryllium nitrate, and gallium nitrate in water was baked in the temperature of 600-800 degreeC in the air. A sample can also be used as a precursor.

(2)次に、回転機構を持つ、例えば長さ50cm、内径2〜3cmの石英炉心管で構成される窒化装置の中央に前駆体試料を導入し、前駆体の両端を石英ウールで固定し、高純度窒素ボンベ(純度99.99%以上)から前記石英炉心に窒素ガスを十分に流通させる。回転機構を備えたロータリーキルン型炉を用いることで、均質な窒化物を作製できる。次に、アンモニアボンベ(純度99.8%以上)から前記石英炉心にアンモニアガスを50〜1000mL/分で流通させる。この時、アンモニアの流量は、マスフローコントローラーにより制御する。石英炉心管を毎分0.5〜1回転の速度で回転させ、試料付近を横型管状炉により700〜1100℃の温度に加熱する。得られた窒化ガリウムの特性は、X線回折パターン、紫外可視拡散反射スペクトル、および発光分光スペクトルにより測定する。 (2) Next, a precursor sample is introduced into the center of a nitriding apparatus having a rotating mechanism, for example, a quartz furnace core tube having a length of 50 cm and an inner diameter of 2 to 3 cm, and both ends of the precursor are fixed with quartz wool. Then, nitrogen gas is sufficiently circulated from the high purity nitrogen cylinder (purity 99.99% or more) to the quartz core. By using a rotary kiln type furnace equipped with a rotating mechanism, a homogeneous nitride can be produced. Next, ammonia gas is circulated from the ammonia cylinder (purity 99.8% or more) to the quartz core at 50 to 1000 mL / min. At this time, the flow rate of ammonia is controlled by a mass flow controller. The quartz furnace tube is rotated at a speed of 0.5 to 1 revolution per minute, and the vicinity of the sample is heated to a temperature of 700 to 1100 ° C. by a horizontal tubular furnace. The characteristics of the obtained gallium nitride are measured by an X-ray diffraction pattern, an ultraviolet-visible diffuse reflection spectrum, and an emission spectrum.

また、このようにして得られたp型窒化ガリウムに対して、1〜50モル%の硫化インジウムを添加した混合物を、アンモニア気流下で温度500〜900℃で0.5〜24時間焼成することにより、p型窒化ガリウムインジウムを製造することができる。   In addition, the p-type gallium nitride thus obtained is baked at a temperature of 500 to 900 ° C. for 0.5 to 24 hours in an ammonia stream with 1 to 50 mol% of indium sulfide added. Thus, p-type gallium indium nitride can be manufactured.

(3)得られたp型窒化ガリウム或いはp型窒化ガリウムインジウムを、例えば、助触媒前駆体となるトリルテニウムドデカカルボニルをテトラヒドロフランに溶解した溶液に浸漬後、室温〜100℃で1〜5時間還流し、さらに空気中で200〜500℃で1〜10時間焼成することにより、目的とする光による水分解触媒を得る。
他の助触媒前駆体としては、硝酸ニッケル、塩化コバルト、塩化鉄、硝酸クロム、塩化ロジウム、塩化イリジウム等を使用することができ、これらの前駆体を1〜10重量%程度となるように水又は有機溶媒に溶解した溶液にp型窒化ガリウム類を浸漬してもよい。
(3) The obtained p-type gallium nitride or p-type gallium nitride indium is immersed in a solution of triruthenium dodecacarbonyl as a co-catalyst precursor dissolved in tetrahydrofuran, and then refluxed at room temperature to 100 ° C. for 1 to 5 hours. Furthermore, the target water-decomposing catalyst by light is obtained by baking at 200 to 500 ° C. for 1 to 10 hours in air.
As other co-catalyst precursors, nickel nitrate, cobalt chloride, iron chloride, chromium nitrate, rhodium chloride, iridium chloride and the like can be used, and these precursors are used in an amount of about 1 to 10% by weight. Alternatively, p-type gallium nitrides may be immersed in a solution dissolved in an organic solvent.

以下、実施例により本発明をさらに説明するが、本発明の技術的範囲はこれら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the technical scope of this invention is not limited at all by these Examples.

(参考例1)
粉末状の硫化ガリウムを、回転機構を持つ、長さ50cm、内径2〜3cmの石英炉心管で構成される窒化装置の中央に導入し、その両端を石英ウールで固定した後に、高純度窒素ボンベ(純度99.99%以上)から前記石英炉心に窒素ガスを十分に流通させる。次に、アンモニアボンベ(純度99.8%以上)から前記石英炉心にアンモニアガスを導入し、500mL/分のアンモニア気流中、1000℃で15時間焼成して窒化する。これにより、無添加の窒化ガリウムが得られる。図6、7、8に、それぞれ異種金属原子無添加の窒化ガリウムのX線回折パターン、紫外可視拡散反射スペクトル、発光分光スペクトルを示す。結晶化度が高く、373nmに発光中心を持つ高品質な窒化ガリウムが生成していることが判る。
(Reference Example 1)
Powdered gallium sulfide is introduced into the center of a nitriding apparatus composed of a quartz furnace core tube having a rotation mechanism and a length of 50 cm and an inner diameter of 2 to 3 cm. After fixing both ends with quartz wool, a high-purity nitrogen cylinder Nitrogen gas is sufficiently circulated through the quartz core from a purity of 99.99% or higher. Next, ammonia gas is introduced into the quartz core from an ammonia cylinder (purity of 99.8% or more), and nitriding is performed by baking at 1000 ° C. for 15 hours in an ammonia stream of 500 mL / min. Thereby, additive-free gallium nitride is obtained. FIGS. 6, 7, and 8 show the X-ray diffraction pattern, ultraviolet-visible diffuse reflection spectrum, and emission spectrum of gallium nitride without addition of different metal atoms, respectively. It can be seen that high-quality gallium nitride having a high crystallinity and having an emission center at 373 nm is produced.

この窒化ガリウムを、酸化ルテニウムの濃度が3.5重量%となるようにトリルテニウムドデカカルボニルをテルラフドロフランに溶かした溶液に浸し、60℃の温度で4時間還流した後に、空気中、350℃で1.5時間焼成する。このようにして作製した酸化ルテニウム担持窒化ガリウム0.8gを蒸留水700mL中に懸濁させ、450W高圧水銀ランプを光源として円筒形パイレックス(登録商標)製ジャケットを通して光を照射した。
図5に示すように、水素1μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、この異種金属原子無添加の窒化ガリウムには、水の完全分解反応に対する触媒活性は見られない。
This gallium nitride was immersed in a solution of triruthenium dodecacarbonyl dissolved in tellurofrofuran so that the concentration of ruthenium oxide was 3.5% by weight and refluxed at a temperature of 60 ° C. for 4 hours. Bake at 1.5 ° C. for 1.5 hours. 0.8 g of ruthenium oxide-supporting gallium nitride thus prepared was suspended in 700 mL of distilled water, and irradiated with light through a cylindrical Pyrex (registered trademark) jacket using a 450 W high-pressure mercury lamp as a light source.
As shown in FIG. 5, the production activity is 1 μmol / hour for hydrogen, 0 μmol / hour for oxygen, and 0 μmol / hour for nitrogen, and this gallium nitride without addition of different metal atoms shows catalytic activity for the complete decomposition reaction of water. Absent.

(実施例1)
粉末状の硫化ガリウムと硫化亜鉛を、ガリウムに対して亜鉛元素を200%のモル比で混合し、参考例1と同様にして500mL/分のアンモニア気流中、1000℃で8時間焼成して窒化する。焼成時にほとんどの亜鉛成分が揮発し、亜鉛が数〜数十ppmの濃度で添加された窒化ガリウムが得られる。図6、7、8に亜鉛添加のp型窒化ガリウムのXRDパターン、紫外可視拡散反射スペクトル、発光分光スペクトルを示す。亜鉛添加窒化ガリウムは無添加の窒化ガリウムと比較して、結晶化度はほぼ等しいが、吸収波長がわずかに長波長に移動し、発光中心が大きく長波長の440nmに移動する。このようにp型特有の発光分光スペクトルを持つ窒化ガリウムが生成した。
このp型窒化ガリウムに、上記参考例1と同様の方法で酸化ルテニウムを担持させ、参考例1と同様の方法で光を照射した。図1に示すように、水素208μmol/時間、酸素88μmol/時間、窒素4μmol/時間の生成活性が見られ、水分解反応に対して高い光触媒活性を持つことが判明した。
Example 1
Powdered gallium sulfide and zinc sulfide are mixed with zinc element at a molar ratio of 200% with respect to gallium, and calcinated in an ammonia stream at 500 mL / min for 8 hours at 1000 ° C. in the same manner as in Reference Example 1. To do. Most of the zinc components are volatilized during firing, and gallium nitride to which zinc is added at a concentration of several to several tens of ppm is obtained. FIGS. 6, 7 and 8 show the XRD pattern, ultraviolet-visible diffuse reflection spectrum, and emission spectrum of the p-type gallium nitride added with zinc. Zinc-added gallium nitride has almost the same degree of crystallinity as non-added gallium nitride, but the absorption wavelength slightly shifts to a longer wavelength, and the emission center increases to a longer wavelength of 440 nm. Thus, gallium nitride having an emission spectrum specific to p-type was generated.
This p-type gallium nitride was loaded with ruthenium oxide by the same method as in Reference Example 1 and irradiated with light by the same method as in Reference Example 1. As shown in FIG. 1, production activity of 208 μmol / hour of hydrogen, 88 μmol / hour of oxygen, and 4 μmol / hour of nitrogen was observed, and it was found that the photocatalytic activity was high for water splitting reaction.

(比較例1)
比較のために、上記実施例1で得られた亜鉛添加p型窒化ガリウムに、助触媒となる酸化ルテニウムを担持させずに、参考例1と同様の方法で光を照射したところ、水素2μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、水分解反応に対する活性は殆んど認められなかった。
(Comparative Example 1)
For comparison, the zinc-added p-type gallium nitride obtained in Example 1 above was irradiated with light in the same manner as in Reference Example 1 without carrying ruthenium oxide as a promoter, and hydrogen 2 μmol / Production activity was as follows: time, oxygen 0 μmol / hour, nitrogen 0 μmol / hour, and almost no activity for water splitting reaction was observed.

(実施例2)
粉末状の硫化ガリウムと硫化マグネシウムを、ガリウムに対するマグネシウム元素のモル比が3%ととなるように混合し、参考例1と同様にして500mL/分のアンモニア気流中、1000℃で15時間焼成して窒化する。得られた前駆体を50〜1000mL/分のアンモニア気流中下、1000℃、15時間で焼成しマグネシウム添加p型窒化ガリウムを得た。図6、7、8にマグネシウム添加の窒化ガリウムのXRDパターン、紫外可視拡散スペクトル、発光分光スペクトルを示す。実施例1の亜鉛添加の窒化ガリウムと同様なp型窒化ガリウムが得られた。
このp型窒化ガリウムに、上記参考例1と同様の方法で酸化ルテニウムを担持させ、参考例1と同様の方法で光を照射した。図2に示すように、水素668μmol/時間、酸素286μmol/時間、窒素0μmol/時間の生成活性が見られ、水完全分解反応に対して高い光触媒活性を持つことが判明した。
(Example 2)
Powdered gallium sulfide and magnesium sulfide are mixed so that the molar ratio of magnesium element to gallium is 3%, and calcined in an ammonia stream at 500 mL / min for 15 hours at 1000 ° C. in the same manner as in Reference Example 1. To nitride. The obtained precursor was calcined at 1000 ° C. for 15 hours in an ammonia stream of 50 to 1000 mL / min to obtain magnesium-added p-type gallium nitride. FIGS. 6, 7 and 8 show the XRD pattern, ultraviolet-visible diffusion spectrum, and emission spectrum of gallium nitride added with magnesium. A p-type gallium nitride similar to the zinc-added gallium nitride of Example 1 was obtained.
This p-type gallium nitride was loaded with ruthenium oxide by the same method as in Reference Example 1 and irradiated with light by the same method as in Reference Example 1. As shown in FIG. 2, production activity of 668 μmol / hour of hydrogen, 286 μmol / hour of oxygen, and 0 μmol / hour of nitrogen was found, and it was found that the photocatalytic activity was high for the complete water decomposition reaction.

(比較例2)
比較のために、上記実施例2で得られたマグネシウム添加p型窒化ガリウムに、助触媒となる酸化ルテニウムを担持させずに、参考例1と同様の方法で光を照射したところ、水素5μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、水分解反応に対する活性は殆んど認められなかった。
(Comparative Example 2)
For comparison, the magnesium-added p-type gallium nitride obtained in Example 2 above was irradiated with light in the same manner as in Reference Example 1 without supporting ruthenium oxide as a cocatalyst. Production activity was as follows: time, oxygen 0 μmol / hour, nitrogen 0 μmol / hour, and almost no activity for water splitting reaction was observed.

(実施例3)
実施例2と同じモル比で、硝酸ガリウムと硝酸マグネシウムを水に溶解させ、アンモニア水を滴下して得られた生成物を、空気中で600〜800℃の温度で1〜60分間焼成して前駆体を製造した。得られた前駆体を、参考例1と同様にして50〜1000mL/分のアンモニア気流中、1000℃で15時間焼成することにより、実施例2のマグネシウム添加窒化ガリウムと同様なp型窒化ガリウムが得られた。
このp型窒化ガリウムに、上記参考例1と同様の方法で酸化ルテニウムを担持させ、参考例1と同様の方法で光を照射した。図3に示すように、水素341μmol/時間、酸素173μmol/時間、窒素0μmol/時間の生成活性が見られ、水完全分解反応に対して高い光触媒活性を持つことが判明した。
(Example 3)
A product obtained by dissolving gallium nitrate and magnesium nitrate in water and dropping ammonia water at the same molar ratio as in Example 2 was calcined in air at a temperature of 600 to 800 ° C. for 1 to 60 minutes. A precursor was produced. The obtained precursor was baked at 1000 ° C. for 15 hours in an ammonia stream of 50 to 1000 mL / min in the same manner as in Reference Example 1 to obtain a p-type gallium nitride similar to the magnesium-added gallium nitride of Example 2. Obtained.
This p-type gallium nitride was loaded with ruthenium oxide by the same method as in Reference Example 1 and irradiated with light by the same method as in Reference Example 1. As shown in FIG. 3, production activities of hydrogen of 341 μmol / hour, oxygen of 173 μmol / hour, and nitrogen of 0 μmol / hour were observed, and it was found that the photocatalytic activity was high for the complete water decomposition reaction.

(比較例3)
比較のために、上記実施例3で得られたマグネシウム添加p型窒化ガリウムに、助触媒となる酸化ルテニウムを担持させずに、参考例1と同様の方法で光を照射したところ、水素4μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、水分解反応に対する活性は殆んど認められなかった。
(Comparative Example 3)
For comparison, the magnesium-added p-type gallium nitride obtained in Example 3 was irradiated with light in the same manner as in Reference Example 1 without carrying ruthenium oxide as a promoter, and hydrogen 4 μmol / Production activity was as follows: time, oxygen 0 μmol / hour, nitrogen 0 μmol / hour, and almost no activity for water splitting reaction was observed.

(実施例4)
粉末状の硫化ガリウムと酸化ベリリウムを、ガリウムに対するベリリウム元素のモル比が3%となるように混合し、参考例1と同様にして500mL/分のアンモニア気流中、1000℃で15時間焼成して窒化する。図6、7、8にベリリウム添加の窒化ガリウムのXRDパターン、紫外可視拡散反射スペクトル、発光分光スペクトルを示す。実施例1の亜鉛添加の窒化ガリウムと同様なp型窒化ガリウムが得られた。
このp型窒化ガリウムに、上記参考例1と同様の方法で酸化ルテニウムを担持させ、参考例1と同様の方法で光を照射した。図4に示すように、水素278μmol/時間、酸素125μmol/時間、窒素0μmol/時間の生成活性が見られ、水完全分解反応に対して高い光活性を持つことが示唆される。
Example 4
Powdered gallium sulfide and beryllium oxide were mixed so that the molar ratio of beryllium to gallium was 3%, and calcined at 1000 ° C. for 15 hours in an ammonia stream at 500 mL / min in the same manner as in Reference Example 1. Nitrid. FIGS. 6, 7 and 8 show the XRD pattern, ultraviolet-visible diffuse reflection spectrum, and emission spectrum of beryllium-added gallium nitride. A p-type gallium nitride similar to the zinc-added gallium nitride of Example 1 was obtained.
This p-type gallium nitride was loaded with ruthenium oxide by the same method as in Reference Example 1 and irradiated with light by the same method as in Reference Example 1. As shown in FIG. 4, formation activity of hydrogen of 278 μmol / hour, oxygen of 125 μmol / hour, and nitrogen of 0 μmol / hour is observed, suggesting that it has high photoactivity for water complete decomposition reaction.

(比較例4)
比較のために、上記実施例4で得られたベリリウム添加p型窒化ガリウムに、助触媒となる酸化ルテニウムを担持させずに、参考例1と同様の方法で光を照射したところ、水素2μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、水分解反応に対する活性は殆んど認められなかった。
(Comparative Example 4)
For comparison, the beryllium-added p-type gallium nitride obtained in Example 4 was irradiated with light in the same manner as in Reference Example 1 without carrying ruthenium oxide as a cocatalyst. Production activity was as follows: time, oxygen 0 μmol / hour, nitrogen 0 μmol / hour, and almost no activity for water splitting reaction was observed.

(実施例5)
実施例1で得られた亜鉛添加p型窒化ガリウムに、ガリウムに対して硫化インジウムを30%のモル比で混合し、参考例1と同様にして500mL/分のアンモニア気流中、630℃で10時間焼成して窒化する。得られたp型窒化ガリウムインジウムに、上記参考例1と同様の方法で酸化ルテニウムを担持させた。
この酸化ルテニウム担持亜鉛添加窒化ガリウムインジウム0.8gを蒸留水1000mL中に懸濁させ、200W水銀キセノンランプを光源として、円筒型パイレックス(登録商標)ジャケットを通して光を照射した。また、420nmまでの光を遮断できるカットフィルターを光源と懸濁液の間に導入して、光を照射した。その結果を図9に示す。
(Example 5)
The zinc-added p-type gallium nitride obtained in Example 1 was mixed with indium sulfide at a molar ratio of 30% with respect to gallium, and 10% at 630 ° C. in an ammonia stream at 500 mL / min in the same manner as in Reference Example 1. Bake for hours and nitride. Ruthenium oxide was supported on the obtained p-type gallium indium nitride by the same method as in Reference Example 1 above.
This ruthenium oxide-supported zinc-doped gallium indium nitride (0.8 g) was suspended in distilled water (1000 mL) and irradiated with light through a cylindrical Pyrex (registered trademark) jacket using a 200 W mercury xenon lamp as a light source. In addition, a cut filter capable of blocking light up to 420 nm was introduced between the light source and the suspension to irradiate the light. The result is shown in FIG.

図9にみられるように、酸化ルテニウム担持窒化ガリウムインジウムに、カットフィルターを用いずに光を照射した場合には、水素29μmol/時間、酸素9μmol/時間、窒素0μmol/時間の生成活性がみられた。一方、カットフィルターを導入して420nmまでの光を遮断した場合には、水素7μmol/時間、酸素3μmol/時間、窒素0μmol/時間の生成活性がみられた。
比較のために、実施例1で得られたインジウムを添加していない酸化ルテニウム担持亜鉛添加窒化ガリウムを使用して、上記と同様にして光を照射したところ、カットフィルターを用いずに光を照射した場合には、水素82μmol/時間、酸素30μmol/時間、窒素0μmol/時間の生成活性がみられた。一方、カットフィルターを導入して420nmまでの光を遮断した場合には、水素2μmol/時間、酸素1μmol/時間、窒素0μmol/時間の生成活性がみられた。(図9参照)
酸化ルテニウム担持亜鉛添加窒化ガリウムに比べて、酸化ルテニウム担持亜鉛添加窒化ガリウムインジウムは、420nm以上の波長の光照射によってより高い触媒活性が得られていることから、インジウムを添加することによって、より長波長の光を吸収することが判明した。
As shown in FIG. 9, when ruthenium oxide-supported gallium indium nitride is irradiated with light without using a cut filter, production activity of hydrogen 29 μmol / hour, oxygen 9 μmol / hour, and nitrogen 0 μmol / hour is observed. It was. On the other hand, when a cut filter was introduced to block light up to 420 nm, generation activity of hydrogen 7 μmol / hour, oxygen 3 μmol / hour, and nitrogen 0 μmol / hour was observed.
For comparison, light was irradiated in the same manner as described above using the ruthenium oxide-supported zinc-added gallium nitride to which indium was not added obtained in Example 1, and light was irradiated without using a cut filter. In this case, the production activity of 82 μmol / hour of hydrogen, 30 μmol / hour of oxygen, and 0 μmol / hour of nitrogen was observed. On the other hand, when a cut filter was introduced to block light up to 420 nm, production activity of 2 μmol / hour of hydrogen, 1 μmol / hour of oxygen, and 0 μmol / hour of nitrogen was observed. (See Figure 9)
Compared to ruthenium oxide-supported zinc-doped gallium nitride, ruthenium oxide-supported zinc-added gallium nitride indium has a higher catalytic activity due to light irradiation with a wavelength of 420 nm or more. It has been found to absorb light of a wavelength.

(比較例5)
比較のために、上記実施例5で得られた亜鉛添加p型窒化ガリウムインジウムに、助触媒となる酸化ルテニウムを担持させずに、参考例1と同様の方法で光を照射したところ、水素0μmol/時間、酸素0μmol/時間、窒素0μmol/時間の生成活性であり、水分解反応に対する活性は認められなかった。
(Comparative Example 5)
For comparison, the zinc-added p-type gallium indium nitride obtained in Example 5 above was irradiated with light in the same manner as in Reference Example 1 without carrying ruthenium oxide as a cocatalyst. Per hour, oxygen 0 μmol / hour, nitrogen 0 μmol / hour, and no activity for water splitting reaction was observed.

本発明の光による水分解触媒は、化石燃料等を全く使用せずに、クリーンなエネルギー源を製造する道を拓くものである。また、本発明で得られる触媒は、水の分解のみならず、エタノールや油等の有機物質の分解、或いは排ガス等に含まれる環境汚染物質の光分解反応や、各種の光合成反応等の幅広い分野にも適用可能なものである。   The water-based water splitting catalyst of the present invention opens the way for producing a clean energy source without using any fossil fuel or the like. Further, the catalyst obtained in the present invention is not only decomposed in water, but also in a wide range of fields such as decomposition of organic substances such as ethanol and oil, or photolysis reaction of environmental pollutants contained in exhaust gas, and various photosynthesis reactions. It is also applicable to.

実施例1で得られた酸化ルテニウム担持亜鉛添加窒化ガリウムの水分解活性を示す図である。FIG. 4 is a diagram showing the water splitting activity of the ruthenium oxide-supported zinc-added gallium nitride obtained in Example 1. 実施例2で得られた酸化ルテニウム担持マグネシウム添加窒化ガリウムの水分解活性を示す図である。FIG. 4 is a diagram showing the water splitting activity of the ruthenium oxide-supported magnesium-added gallium nitride obtained in Example 2. 実施例3で得られた酸化ルテニウム担持マグネシウム添加窒化ガリウムの水分解活性を示す図である。FIG. 4 is a view showing the water splitting activity of the ruthenium oxide-supported magnesium-added gallium nitride obtained in Example 3. 実施例4で得られた酸化ルテニウム担持ベリリウム添加窒化ガリウムの水分解活性を示す図である。FIG. 6 is a view showing the water splitting activity of the ruthenium oxide-supported beryllium-added gallium nitride obtained in Example 4. 本発明の各例で得られた窒化ガリウムの水分解活性を示す図である。It is a figure which shows the water splitting activity of the gallium nitride obtained in each example of this invention. 本発明の各例で得られた窒化ガリウムのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the gallium nitride obtained by each example of this invention. 本発明の各例で得られた窒化ガリウムの紫外可視拡散反射スペクトルを示す図である。It is a figure which shows the ultraviolet visible diffuse reflection spectrum of the gallium nitride obtained in each example of this invention. 本発明の各例で得られた窒化ガリウムの発光分光スペクトルを示す図である。It is a figure which shows the emission spectral spectrum of the gallium nitride obtained in each example of this invention. 実施例5で得られた酸化ルテニウム担持亜鉛添加窒化ガリウムインジウムの水分解活性を示す図である。6 is a graph showing the water splitting activity of the ruthenium oxide-supported zinc-added gallium indium nitride obtained in Example 5. FIG.

Claims (14)

亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムに、酸化ルテニウム、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化ロジウム、酸化イリジウムから選択された助触媒を担持させたことを特徴とする光による水分解触媒。 Co-catalyst selected from ruthenium oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, rhodium oxide, iridium oxide was supported on p-type gallium nitride to which a metal atom selected from zinc, magnesium, and beryllium was added. A water-decomposing catalyst using light. 亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムが、p型窒化ガリウムインジウムであることを特徴とする請求項1に記載の光による水分解触媒。 2. The water-based water decomposition catalyst according to claim 1, wherein the p-type gallium nitride to which a metal atom selected from zinc, magnesium, and beryllium is added is p-type gallium indium nitride. 亜鉛、マグネシウム、ベリリウムから選択された金属原子の添加量が0.0001〜7モル%であることを特徴とする請求項1又は2に記載の光による水分解触媒。 The water-decomposing catalyst for light according to claim 1 or 2, wherein the addition amount of a metal atom selected from zinc, magnesium and beryllium is 0.0001 to 7 mol%. 助触媒が酸化ルテニウムであることを特徴とする請求項1〜3のいずれかに記載の光による水分解触媒。 The water-splitting catalyst by light according to any one of claims 1 to 3, wherein the promoter is ruthenium oxide. 助触媒の担持量が0.1〜10重量%であることを特徴とする請求項1〜4のいずれかに記載の水分解触媒。 The water splitting catalyst according to any one of claims 1 to 4, wherein the supported amount of the cocatalyst is 0.1 to 10% by weight. 亜鉛、マグネシウム、ベリリウムから選択された金属原子を添加したp型窒化ガリウムの平均粒径が10nm〜10μmであることを特徴とする請求項1〜5のいずれかに記載の水分解触媒。 6. The water splitting catalyst according to claim 1, wherein the p-type gallium nitride to which a metal atom selected from zinc, magnesium and beryllium is added has an average particle diameter of 10 nm to 10 μm. ガリウムに対する亜鉛、マグネシウム、ベリリウムから選択された金属の配合割合が0.01〜200モル%となるように、硫化ガリウム又は酸化ガリウムに、亜鉛、マグネシウム、ベリリウムから選択された金属原子を含む化合物を混合し、アンモニア気流下に焼成して得られたp型窒化ガリウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする請求項1〜6のいずれかに記載の光による水分解触媒の製造方法。 A compound containing a metal atom selected from zinc, magnesium, and beryllium in gallium sulfide or gallium oxide so that the compounding ratio of the metal selected from zinc, magnesium, and beryllium to gallium is 0.01 to 200 mol%. The p-type gallium nitride obtained by mixing and calcining in an ammonia stream is immersed in water or an organic solvent solution containing a cocatalyst precursor and then calcined in air. The method for producing a water-splitting catalyst according to any one of the above. アンモニアの流量が50〜1000mL/分で、アンモニア気流下での焼成温度が800〜1100℃、焼成時間が1〜30時間であることを特徴とする請求項7に記載の水分解触媒の製造方法。 The method for producing a water splitting catalyst according to claim 7, wherein the flow rate of ammonia is 50 to 1000 mL / min, the calcination temperature under an ammonia stream is 800 to 1100 ° C, and the calcination time is 1 to 30 hours. . アンモニア気流下に焼成して得られたp型窒化ガリウムに対して、1〜50モル%の硫化インジウムを添加した混合物を、アンモニア気流下で温度500〜900℃で0.5〜24時間焼成して得られたp型窒化ガリウムインジウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする請求項7又は8に記載の水分解触媒の製造方法。 A mixture obtained by adding 1 to 50 mol% indium sulfide to p-type gallium nitride obtained by firing in an ammonia stream is fired at a temperature of 500 to 900 ° C for 0.5 to 24 hours in an ammonia stream. The method for producing a water-splitting catalyst according to claim 7 or 8, wherein the p-type gallium indium nitride obtained in the step is immersed in water or an organic solvent solution containing a promoter precursor and then calcined in air. . 助触媒前駆体となるトリルテニウムドデカカルボニルをテトラヒドロフランに溶解した溶液にp型窒化ガリウムを浸漬後、室温〜100℃で1〜5時間還流し、さらに空気中で200〜500℃で1〜10時間焼成することを特徴とする請求項7〜9のいずれかに記載の水分解触媒の製造方法。 After immersing p-type gallium nitride in a solution of triruthenium dodecacarbonyl as a co-catalyst precursor in tetrahydrofuran, the solution is refluxed at room temperature to 100 ° C. for 1 to 5 hours, and further in air at 200 to 500 ° C. for 1 to 10 hours. It calcinates, The manufacturing method of the water-splitting catalyst in any one of Claims 7-9 characterized by the above-mentioned. 硝酸亜鉛、硝酸マグネシウム、硝酸ベリリウムから選択された化合物と硝酸ガリウムを水に溶解し、アンモニア水を添加して得られた生成物を空気中で600〜800℃で焼成して前駆体を形成し、得られた前駆体をアンモニア気流下に焼成して得られたp型窒化ガリウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする請求項1〜6のいずれかに記載の光による水分解触媒の製造方法。 A compound selected from zinc nitrate, magnesium nitrate and beryllium nitrate and gallium nitrate are dissolved in water, and a product obtained by adding aqueous ammonia is calcined in air at 600 to 800 ° C. to form a precursor. The p-type gallium nitride obtained by calcination of the obtained precursor under an ammonia stream is immersed in water or an organic solvent solution containing a cocatalyst precursor and then baked in air. The manufacturing method of the water splitting catalyst by the light in any one of 1-6. アンモニアの流量が50〜1000mL/分で、アンモニア気流下での焼成温度が800〜1100℃、焼成時間が1〜30時間であることを特徴とする請求項11に記載の水分解触媒の製造方法。 The method for producing a water splitting catalyst according to claim 11, wherein the flow rate of ammonia is 50 to 1000 mL / min, the calcination temperature under an ammonia stream is 800 to 1100 ° C, and the calcination time is 1 to 30 hours. . アンモニア気流下に焼成して得られたp型窒化ガリウムに対して、1〜50モル%の硫化インジウムを添加した混合物を、アンモニア気流下で温度500〜900℃で0.5〜24時間焼成して得られたp型窒化ガリウムインジウムを、助触媒前駆体を含有する水又は有機溶媒溶液に浸漬後空気中で焼成することを特徴とする請求項11又は12に記載の水分解触媒の製造方法。 A mixture obtained by adding 1 to 50 mol% indium sulfide to p-type gallium nitride obtained by firing in an ammonia stream is fired at a temperature of 500 to 900 ° C for 0.5 to 24 hours in an ammonia stream. 13. The method for producing a water splitting catalyst according to claim 11, wherein the p-type gallium indium nitride obtained in the step is immersed in water or an organic solvent solution containing a promoter precursor and then calcined in air. . 助触媒前駆体となるトリルテニウムドデカカルボニルをテトラヒドロフランに溶解した溶液にp型窒化ガリウムを浸漬後、室温〜100℃で1〜5時間還流し、さらに空気中で200〜500℃で1〜10時間焼成することを特徴とする請求項11〜13のいずれかに記載の水分解触媒の製造方法。





















After immersing p-type gallium nitride in a solution of triruthenium dodecacarbonyl as a co-catalyst precursor in tetrahydrofuran, the solution is refluxed at room temperature to 100 ° C. for 1 to 5 hours, and further in air at 200 to 500 ° C. for 1 to 10 hours. It calcinates, The manufacturing method of the water splitting catalyst in any one of Claims 11-13 characterized by the above-mentioned.





















JP2005320356A 2005-11-04 2005-11-04 A water splitting catalyst by light and a method for producing the same. Active JP4982736B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005320356A JP4982736B2 (en) 2005-11-04 2005-11-04 A water splitting catalyst by light and a method for producing the same.
PCT/JP2006/321254 WO2007052512A1 (en) 2005-11-04 2006-10-25 Catalyst for water decomposition by light and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320356A JP4982736B2 (en) 2005-11-04 2005-11-04 A water splitting catalyst by light and a method for producing the same.

Publications (3)

Publication Number Publication Date
JP2007125496A true JP2007125496A (en) 2007-05-24
JP2007125496A5 JP2007125496A5 (en) 2008-12-18
JP4982736B2 JP4982736B2 (en) 2012-07-25

Family

ID=38005663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320356A Active JP4982736B2 (en) 2005-11-04 2005-11-04 A water splitting catalyst by light and a method for producing the same.

Country Status (2)

Country Link
JP (1) JP4982736B2 (en)
WO (1) WO2007052512A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139116A1 (en) 2006-05-29 2007-12-06 Denki Kagaku Kogyo Kabushiki Kaisha Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
WO2011162372A1 (en) * 2010-06-25 2011-12-29 国立大学法人京都工芸繊維大学 Photocatalyst material and photocatalyst device
CN104209135A (en) * 2013-05-31 2014-12-17 天津大学 Catalyst for high-efficiency visible light excitation of water decomposition to prepare hydrogen gas and oxygen gas and preparation method thereof
CN110116015A (en) * 2018-02-06 2019-08-13 西安交通大学 Complete photochemical catalyst for decomposing water and its preparation method and application, photocatalysis decompose the reaction method and catalytic mixing liquid of water completely

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858456B (en) * 2010-03-04 2015-02-18 松下电器产业株式会社 Optical semiconductor, optical semiconductor electrode using same, photoelectrochemical cell, and energy system
US10307734B2 (en) 2013-08-30 2019-06-04 Council Of Scientific And Industrial Research Water splitting activity of layered oxides
JP6077505B2 (en) * 2013-09-18 2017-02-08 富士フイルム株式会社 Water-splitting photocatalyst and method for producing the same, water-splitting photoelectrode
CN109746019B (en) * 2018-12-28 2020-08-18 西安交通大学 Preparation method and application of gallium indium zinc ternary oxynitride
CN111085234B (en) * 2019-12-25 2021-05-28 西安交通大学 Preparation method of 2D/2D nitrogen-doped lanthanum titanate/sulfur indium zinc heterojunction photocatalyst
CN113223642B (en) * 2021-04-30 2023-09-15 中国矿业大学 Simulation method for detecting toxic gas by cobalt doped modified indium nitride sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198978A (en) * 1998-12-28 2000-07-18 Futaba Corp Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP2003024764A (en) * 2001-07-16 2003-01-28 Japan Science & Technology Corp Gas generator
JP2005144210A (en) * 2003-11-11 2005-06-09 Japan Science & Technology Agency Catalyst for decomposing water comprising galium nitride solid solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198978A (en) * 1998-12-28 2000-07-18 Futaba Corp Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP2003024764A (en) * 2001-07-16 2003-01-28 Japan Science & Technology Corp Gas generator
JP2005144210A (en) * 2003-11-11 2005-06-09 Japan Science & Technology Agency Catalyst for decomposing water comprising galium nitride solid solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139116A1 (en) 2006-05-29 2007-12-06 Denki Kagaku Kogyo Kabushiki Kaisha Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
WO2011162372A1 (en) * 2010-06-25 2011-12-29 国立大学法人京都工芸繊維大学 Photocatalyst material and photocatalyst device
CN104209135A (en) * 2013-05-31 2014-12-17 天津大学 Catalyst for high-efficiency visible light excitation of water decomposition to prepare hydrogen gas and oxygen gas and preparation method thereof
CN110116015A (en) * 2018-02-06 2019-08-13 西安交通大学 Complete photochemical catalyst for decomposing water and its preparation method and application, photocatalysis decompose the reaction method and catalytic mixing liquid of water completely
CN110116015B (en) * 2018-02-06 2020-05-19 西安交通大学 Photocatalyst for completely decomposing water, preparation method and application thereof, reaction method for completely decomposing water through photocatalysis and catalytic mixed solution

Also Published As

Publication number Publication date
JP4982736B2 (en) 2012-07-25
WO2007052512A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4982736B2 (en) A water splitting catalyst by light and a method for producing the same.
Koirala et al. Synthesis of catalytic materials in flames: opportunities and challenges
US20180065856A1 (en) Nanostructured metal oxide compositions for applied photocatalysis
JP2016524534A (en) NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
Compagnoni et al. Innovative photoreactors for unconventional photocatalytic processes: the photoreduction of CO 2 and the photo-oxidation of ammonia
WO2002062467A1 (en) Oxysulfide photocatalyst for use in decomposition of water by visible light
CN104190461B (en) Preparation method of CLSTON catalyst for catalyzing visual light to decompose water to prepare hydrogen
JP3834777B2 (en) Water splitting catalyst composed of gallium nitride solid solution
JP4437230B2 (en) Tantalum-based oxynitride photocatalyst and method for producing the same
Liu et al. BiMO x Semiconductors as Catalysts for Photocatalytic Decomposition of N2O: A Combination of Experimental and DFT+ U Study
JP4064065B2 (en) Photocatalyst for visible light decomposition of water
Hong et al. Engineering the Crystal Facet of Monoclinic NiO for Efficient Catalytic Ozonation of Toluene
JP2009214033A (en) Photocatalyst and method for reducing nitrate ion and nitrite ion
JP2019099393A (en) Method for oxidizing ammonia
JP5483723B2 (en) Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
WO2003068393A1 (en) Photocatalyst comprising titanium fluoride nitride for water decomposition with visible light irradiation
Hongsong et al. Preparation, characterization of A2Ce2O7 (A= La and Gd) and their photo-catalytic properties
WO2002013965A1 (en) Photocatalysts made by using oxides containing metal ions of d10 electronic state
JP2005131531A (en) Photocatalyst for water decomposition containing germanium nitride structure
JP4090827B2 (en) Photocatalyst using composite oxide containing metal ions in d10s2 and d0 electronic states
JP2004066028A (en) Visible light-responsive indium-barium compound oxide photocatalyst, method of producing hydrogen using the photocatalyst, and method for decomposing harmful chemical substance using photocatalyst
JP5399530B2 (en) Photocatalyst for organic matter decomposition and method for producing the photocatalyst
JP5603304B2 (en) Photocatalyst production method
NUR et al. Effects of coexisting oxoanions on SO3 decomposition activity of molten-phase potassium metavanadate catalysts
JP5825625B2 (en) Method for decomposing and removing volatile organic compounds

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150