JP2005144210A - Catalyst for decomposing water comprising galium nitride solid solution - Google Patents
Catalyst for decomposing water comprising galium nitride solid solution Download PDFInfo
- Publication number
- JP2005144210A JP2005144210A JP2003380939A JP2003380939A JP2005144210A JP 2005144210 A JP2005144210 A JP 2005144210A JP 2003380939 A JP2003380939 A JP 2003380939A JP 2003380939 A JP2003380939 A JP 2003380939A JP 2005144210 A JP2005144210 A JP 2005144210A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- zno
- solid solution
- gan
- nio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 title claims abstract description 28
- 239000006104 solid solution Substances 0.000 title claims abstract description 23
- 150000004767 nitrides Chemical class 0.000 title description 2
- 241001101998 Galium Species 0.000 title 1
- 239000003426 co-catalyst Substances 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims description 12
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 239000011812 mixed powder Substances 0.000 claims description 2
- 239000011941 photocatalyst Substances 0.000 abstract description 10
- 239000000243 solution Substances 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 230000001699 photocatalysis Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000005297 pyrex Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、GaNを主たる組成とする固溶体、特にZnO成分との固溶体からなる、又はこれに金属酸化物からなるプロモーターを担持させた光水分解用触媒、特に光完全水分解用触媒に関する。 The present invention relates to a photocatalyst for water splitting, particularly a photocatalytic water splitting catalyst comprising a solid solution mainly composed of GaN, particularly a solid solution with a ZnO component, or having a promoter made of a metal oxide supported thereon.
化石資源は無尽蔵とは言えないことから、これらを化学原料に振り向けることが資源の有効利用の観点から好ましい。また、地球温暖化などの環境問題などの観点から、CO2の発生を伴わないクリーンなエネルギーへの変換が熱望されている。また、石炭の燃焼の際にはCO2の発生だけでなく、白雲母として石炭中に含まれている化合物からのフッ素の発生も有ると言われている。前記問題ないエネルギー供給手段として登場して来た原子力利用の発電技術も、燃料物質を製造する工程、及び使用後の処理において生成する物質の兵器としての使用などによる世界秩序の破壊が懸念されるという事態に至り、大きな問題を抱えることになった。このような中で、環境に優しく、安全性が高く、かつ設備コストも比較的かからないエネルギー資源の開発が望まれている。最近、風力発電に、無尽蔵なエネルギー資源の利用の観点、及び設備費も比較的小さいなどから、多くの投資が向けられている。また、太陽電池もクリーンで、利用性の高いエネルギーを生産することから、実用化され、かつ更に効率性の向上と、安定したエネルギー供給に向けて多数の研究が行われている。また、太陽光を利用するエネルギー変換技術として、光触媒を利用した水の光分解反応に興味が持たれている。ここで利用される水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での酸化還元反応といった機能を備えた高度な光機能材料であり、多くのものが提案されている。 Since fossil resources cannot be said to be inexhaustible, it is preferable to allocate them to chemical raw materials from the viewpoint of effective use of resources. In addition, from the viewpoint of environmental problems such as global warming, conversion to clean energy without generating CO 2 is eagerly desired. Further, it is said that not only the generation of CO 2 but also the generation of fluorine from a compound contained in the coal as muscovite when the coal is burned. The nuclear power generation technology that has emerged as a non-problematic energy supply means is also concerned about the destruction of the world order due to the use of substances produced in the process of manufacturing fuel materials and the processing after use as weapons. This led to a big problem. Under such circumstances, development of energy resources that are environmentally friendly, high in safety, and relatively low in equipment costs is desired. Recently, many investments have been directed to wind power generation because of its infinite use of energy resources and relatively low equipment costs. In addition, since solar cells produce clean and highly usable energy, they have been put into practical use, and many studies have been conducted for further improving efficiency and supplying stable energy. In addition, as an energy conversion technology using sunlight, there is an interest in water photolysis using a photocatalyst. The photocatalyst active in the photolysis reaction of water used here is an advanced photofunctional material having functions such as light absorption, charge separation, and surface oxidation-reduction reaction, and many have been proposed. .
一方、H2が燃料電池などに利用されるクリーンなエネルギーであることから、この効率的で、クリーンな製造工程の開発が望まれている。工藤は、前記非特許文献1及び2において、その時点までの光エネルギーを利用した水素の製造を目的とする水の光分解触媒に関する原理、およびこれに利用される光水分解触媒について解説している。前記文献1の7.において、d0電子状態の金属イオン、例えばTi4+、Zr4+、Nb5+およびTa5+など酸化物の光触媒活性、およびd10および/またはs2電子状態の金属イオンの酸化物の光触媒活性などについて説明している。また、前記文献2の第629頁図6では光水分解触媒を製造するのに利用されている周期律表上の元素としてGaを挙げている。また、第640頁、右欄下から10行〜第641頁、左欄において、β−Ga2O3構造が、特にd10金属のIn酸化物と固溶体を形成することにより光水分解触媒活性を示すことを示唆している。
更に、井上らは、前記文献3及び4において、d10電子状態の典型金属イオンを含むMGa2O4(M=Zn、Ca)、MIn2O4(M=Ca、Sr)、NaSbO3、M2SnO4(M=Sr,Ca,Ba)、Zn2GeO4、M2Sb2O7(M=Ca、Sr)、MSb2O6がRuO2を担持することにより水の完全光分解反応に対し高い活性を持つことを報告している。また、前記非特許文献5において、堂免は可視光活性の光水分解触媒の設計において、酸化物光触媒の窒素化、オキシナイトライド化、オキシサルファイド化について言及している。しかしながら、Ga元素を含む可視光を利用できる光水分解触媒などについて言及していない。
On the other hand, since H 2 is clean energy used for fuel cells and the like, development of an efficient and clean manufacturing process is desired. Kudo explains the principle of water photolysis catalyst for the purpose of producing hydrogen using light energy up to that point in
Furthermore, Inoue et al. In the above-mentioned
本発明の課題は、活性な波長域を可視光まで広げたGa元素を含む光水分解触媒を提供することである。本発明者らはナイトライド構造を含むGa元素を含有する化合物としてd10金属のZnOを固溶化したものを調製し、その光触媒活性を検討したところ、400nmより長波長の光においても水分解可能な活性を有することを確認でき前記課題を解決することができた。 The subject of this invention is providing the photocatalyst decomposition catalyst containing Ga element which extended the active wavelength range to visible light. The present inventors have prepared a material obtained by solid solution the d 10 metal ZnO as the compound containing Ga elements including nitride structure, was examined its photocatalytic activity, also water degradable in the light of a wavelength longer than 400nm As a result, it was confirmed that the present invention has a good activity, and the above-mentioned problems were solved.
本発明の第1は、(1)(ZnO)X(GaN)1−X、ここでXは0.03≦X≦0.3の範囲であるZnOとGaNとの固溶体からなる光水分解触媒である。好ましくは、(2)助触媒としてNiO、NiOとCr2O3またはRuO2を担持させた前記(1)に記載の光水分解触媒である。本発明の第2は、(3)ZnOとGa2O3とのモル比が0.5〜2:1の混合粉末を、NH3を流速50〜1000mL/分の範囲内で供給し、温度750℃〜950℃の範囲において、1から20時間焼成することに得られるZnO−GaN固溶体化合物からなる光水分解触媒である。好ましくは、(4)助触媒としてNiO、NiOとCr2O3またはRuO2を担持させた前記(3)に記載の光水分解触媒である。 The first of the present invention is (1) (ZnO) X (GaN) 1-X , wherein X is a photo-water decomposition catalyst comprising a solid solution of ZnO and GaN in the range of 0.03 ≦ X ≦ 0.3. It is. Preferably, (2) the photo-water splitting catalyst according to (1), wherein NiO, NiO and Cr 2 O 3 or RuO 2 are supported as a co-catalyst. In the second aspect of the present invention, (3) a mixed powder having a molar ratio of ZnO and Ga 2 O 3 of 0.5-2: 1 is supplied with NH 3 within a flow rate of 50-1000 mL / min, It is a photo-water decomposition catalyst comprising a ZnO-GaN solid solution compound obtained by firing for 1 to 20 hours in the range of 750 ° C to 950 ° C. Preferably, (4) the photohydrolysis catalyst according to (3), wherein NiO, NiO and Cr 2 O 3 or RuO 2 are supported as promoters.
発明の効果として、開発したZnOとGaNとの固溶体からなる化合物は470nmまでの可視光を吸収する特性を示し、特にNiOとCr2O3を担持させたものは400nmより長波長の光により水を完全分解する触媒として有効に機能することを挙げることができる。 As an effect of the invention, the developed compound consisting of a solid solution of ZnO and GaN exhibits the characteristic of absorbing visible light up to 470 nm, and in particular, the one carrying NiO and Cr 2 O 3 is water with a wavelength longer than 400 nm. It can be mentioned that it functions effectively as a catalyst for completely decomposing.
A,ZnOとGaNとの固溶体は、先ずZnOとGa2O3を0.5〜2:1のモル比の混合物を流速50〜1000mL/分の範囲内のアンモニア気流中下、750℃から950℃の範囲で1から20時間焼成し窒化する。
B,得られた固溶体において(ZnO)X(GaN)1−X、ただし0.03≦X≦0.3の範囲で表されるZnOとGaNの固溶体において水分解光触媒活性を確認できた。
C.Zn−Gaオキシナイトライド固溶体化合物は、例えば、以下のようにして調製される。スケールアップに当たっては種々の設計変更がありうることは化学工学的な経験から当然である。
長さ80〜100cm、内径2〜3cmのアルミナ管で構成される窒化装置の中央に前駆体粉末1〜3gを敷いたアルミナボードを配置し、アンモニアボンベ(純度99.8%以上)からステンレス管(1/8インチ)を通して前記アルミナ管にアンモニアガスを流速50〜1000mL/分の範囲で流通させる。このときマスフローコントローラー(STEC社製、SEC−E440J)により流量を調整する。アルミナ管中央、つまり試料が置かれている付近を管状電気炉(幅30cm)により所定の温度に加熱する。窒化の程度を(XRD、元素分析)で観察して所望のオキシナイトライド化合物を得た。
The solid solution of A, ZnO and GaN is a mixture of ZnO and Ga 2 O 3 in a molar ratio of 0.5 to 2: 1 in an ammonia stream with a flow rate of 50 to 1000 mL / min. Firing and nitriding in the range of 1 ° C. for 1 to 20 hours.
B, Water-splitting photocatalytic activity was confirmed in the solid solution of ZnO and GaN represented by (ZnO) X (GaN) 1-X , where 0.03 ≦ X ≦ 0.3.
C. The Zn—Ga oxynitride solid solution compound is prepared, for example, as follows. It is natural from chemical engineering experience that various design changes can be made when scaling up.
An alumina board with 1 to 3 g of precursor powder is placed in the center of a nitriding device consisting of an alumina tube with a length of 80 to 100 cm and an inner diameter of 2 to 3 cm. From an ammonia cylinder (purity of 99.8% or more) to a stainless steel tube Ammonia gas is passed through the alumina tube at a flow rate of 50 to 1000 mL / min through (1/8 inch). At this time, the flow rate is adjusted by a mass flow controller (manufactured by STEC, SEC-E440J). The center of the alumina tube, that is, the vicinity where the sample is placed, is heated to a predetermined temperature by a tubular electric furnace (30 cm wide). The degree of nitridation was observed by (XRD, elemental analysis) to obtain the desired oxynitride compound.
D.得られたZn−Gaオキシナイトライド固溶体化合物のXRDパターンはX線回折装置(Rigak社製、Geigerflex RAD-B)により、また、UV(紫外)−Vis(可視)吸収スペクトルは、Jasco社製の商品名V-560により測定した。
E.Ni、Cr、及び前記金属の複数の硝酸塩を最終酸化物助触媒量となる所定量で含む水溶液、又はRu3(CO)12のテトラヒドロフラン(THF)溶液に(ZnO)X(GaN)1−X、ただし0.03≦X≦0.3の範囲、を含浸させ、次いで空気中において300℃で1時間、又は400℃で3時間焼成することにより前記金属酸化物からなる助触媒を担持させることができる。
D. The XRD pattern of the obtained Zn-Ga oxynitride solid solution compound was measured by an X-ray diffractometer (manufactured by Rigak, Geigerflex RAD-B), and the UV (ultraviolet) -Vis (visible) absorption spectrum was manufactured by Jasco. It was measured by trade name V-560.
E. (ZnO) X (GaN) 1-X in an aqueous solution containing Ni, Cr, and a plurality of nitrates of the metal in a predetermined amount to be the final oxide promoter amount, or in a tetrahydrofuran (THF) solution of Ru 3 (CO) 12 However, impregnation in the range of 0.03 ≦ X ≦ 0.3, and then supporting the promoter composed of the metal oxide by firing in air at 300 ° C. for 1 hour or 400 ° C. for 3 hours. Can do.
ZnOとGa2O3を2:1のモル比の混合物を2.5×105mm3/分のアンモニア気流中下、950℃で10時間焼成し窒化する。これによってZn0.05Ga0.95O0.05N0.95の組成で表される材料が得られる。X線回折(XRD)パターンよりZnOとGaNの固溶体が形成されていることが確認された。焼成時に亜鉛成分の一部が揮発し出発物質より亜鉛の比率が少ない化合物が得られる。得られた固溶体について光触媒活性を調べた。比較のためにGa2O3のみを2.5×105mm3/分のアンモニア気流中下950℃で10時間焼成し窒化してGaNを製造し、活性などの比較を行った。光触媒反応では、Zn0.05Ga0.95O0.05N0.95それぞれにNiO(1重量%)+Cr2O3(0.5重量%)を担持したもの0.3gを純水中に懸濁し、450Wの高圧水銀灯により190nmより長波長側の光を照射した。図1に示すように、GaNではほとんど活性を示さないのに対して、Zn0.05Ga0.95O0.05N0.95では水を分解して水素と酸素を生成することができる光触媒として機能することが確認できた。Znが入ることにより水の完全分解が可能となる。 A mixture of ZnO and Ga 2 O 3 in a molar ratio of 2: 1 is baked and nitrided at 950 ° C. for 10 hours in an ammonia stream of 2.5 × 10 5 mm 3 / min. As a result, a material represented by a composition of Zn 0.05 Ga 0.95 O 0.05 N 0.95 is obtained. From the X-ray diffraction (XRD) pattern, it was confirmed that a solid solution of ZnO and GaN was formed. A part of the zinc component volatilizes at the time of firing, and a compound having a zinc ratio smaller than that of the starting material is obtained. The photocatalytic activity of the obtained solid solution was examined. For comparison, Ga 2 O 3 alone was baked and nitrided at 950 ° C. for 10 hours in an ammonia stream of 2.5 × 10 5 mm 3 / min to produce GaN, and the activity and the like were compared. In the photocatalytic reaction, 0.3 g of Zn 0.05 Ga 0.95 O 0.05 N 0.95 each carrying NiO (1 wt%) + Cr 2 O 3 (0.5 wt%) was added to pure water. And irradiated with light having a wavelength longer than 190 nm by a 450 W high pressure mercury lamp. As shown in FIG. 1, GaN exhibits little activity, whereas Zn 0.05 Ga 0.95 O 0.05 N 0.95 can decompose water to generate hydrogen and oxygen. It was confirmed that it functions as a photocatalyst. By entering Zn, water can be completely decomposed.
実施例1で得られたZn0.05Ga0.95O0.05N0.95の組成の固溶体とGaNの前記測定装置による吸収スペクトルを図2に示す。図2にから、Ga2O3を窒化して得られたGaNは380nmまでの紫外領域に吸収をもつのに対して、ZnOとGa2O3を混合して窒化して得られたZn0.05Ga0.95O0.05N0.95においては470nmまでの可視光領域に吸収をもつことが確認できた。図3にGaNとZn0.05Ga0.95O0.05N0.95のXRDパターン(a)及び(100)面の回折ピークシフト(b)を示す。これらの測定結果からZnOのGaNへの固溶構造が推測できる。さらに、Zn0.05Ga0.95O0.05N0.95にNiO(1重量%)+Cr2O3(0.5重量%)を担持した触媒0.3gを純水中に懸濁し、450Wの高圧水銀灯を光源とし亜硝酸ナトリウム溶液フィルターを通して400nmより長波長の光を照射することで、光触媒活性を調べた。図4に示すように、Zn0.05Ga0.95O0.05N0.95は可視光照射により水を分解して水素と酸素を生成させることができる光触媒として機能することが分かった。 FIG. 2 shows absorption spectra of the solid solution obtained in Example 1 having a composition of Zn 0.05 Ga 0.95 O 0.05 N 0.95 and GaN using the above-described measuring apparatus. From FIG. 2, GaN obtained by nitriding Ga 2 O 3 has absorption in the ultraviolet region up to 380 nm, whereas Zn 0 obtained by nitriding by mixing ZnO and Ga 2 O 3. .05 Ga 0.95 O 0.05 N 0.95 was confirmed to have absorption in the visible light region up to 470 nm. FIG. 3 shows the XRD pattern (a) and diffraction peak shift (b) of the (100) plane of GaN and Zn 0.05 Ga 0.95 O 0.05 N 0.95 . From these measurement results, a solid solution structure of ZnO in GaN can be estimated. Further, 0.3 g of a catalyst supporting NiO (1 wt%) + Cr 2 O 3 (0.5 wt%) on Zn 0.05 Ga 0.95 O 0.05 N 0.95 was suspended in pure water. The photocatalytic activity was examined by irradiating light with a wavelength longer than 400 nm through a sodium nitrite solution filter using a 450 W high pressure mercury lamp as a light source. As shown in FIG. 4, Zn 0.05 Ga 0.95 O 0.05 N 0.95 was found to function as a photocatalyst capable of decomposing water by visible light irradiation to generate hydrogen and oxygen. .
実施例1で得られたZn0.05Ga0.95O0.05N0.95の組成の固溶体にNiO(1.5重量%)+Cr2O3(0.5重量%)を担持させた触媒0.3gを純水420mL中に懸濁し、450W 高圧水銀灯を用い、パイレックス製ジャケットを透して290nmより長波長側の光を照射することにより光水分解触媒活性を測定した。図5に水素および酸素の生成特性を示した。 NiO (1.5 wt%) + Cr 2 O 3 (0.5 wt%) was supported on the solid solution with the composition of Zn 0.05 Ga 0.95 O 0.05 N 0.95 obtained in Example 1. Then, 0.3 g of the catalyst was suspended in 420 mL of pure water, and photocatalytic activity was measured by irradiating light having a wavelength longer than 290 nm through a Pyrex jacket using a 450 W high pressure mercury lamp. FIG. 5 shows the generation characteristics of hydrogen and oxygen.
実施例1で得られたZn0.05Ga0.95O0.05N0.95の組成の固溶体にNiO(1.5重量%)を担持させた触媒0.3gを純水420mL中に懸濁し、450W 高圧水銀灯を用い、パイレックス製ジャケットを透して290nmより長波長側の光を照射することにより光水分解触媒活性を測定した。
図6に水素および酸素の生成特性を示した。
In 420 mL of pure water, 0.3 g of a catalyst in which NiO (1.5 wt%) was supported on the solid solution having the composition of Zn 0.05 Ga 0.95 O 0.05 N 0.95 obtained in Example 1 was used. The photocatalytic activity was measured by suspending and irradiating light having a wavelength longer than 290 nm through a Pyrex jacket using a 450 W high pressure mercury lamp.
FIG. 6 shows the generation characteristics of hydrogen and oxygen.
ZnOとGa2O3を2:1のモル比の混合物を2.5×105mm3/分のアンモニア気流中下、950℃で10時間焼成し窒化する。これによってZn0.05Ga0.95O0.05N0.95の組成で表される材料が得られる。前記材料をRu3(CO)12をテトラヒドロフラン(THF)数mLに溶かした溶液に浸し、湯浴中で蒸発乾固する。これを空気中、400℃で3時間焼成しRuO2を担持させる。このとき担持量は1重量%である。このようにして合成したRuO2を1重量%担持させた材料0.3gを純水420dm3中に懸濁させ450W高圧水銀灯を光源として石英製ジャケットを透して290nmより長波長側の光を照射し光水分解触媒活性を測定した。図7に示すように水素と酸素の同時生成が見られた。 A mixture of ZnO and Ga 2 O 3 at a molar ratio of 2: 1 is baked and nitrided at 950 ° C. for 10 hours in an ammonia stream of 2.5 × 10 5 mm 3 / min. As a result, a material represented by a composition of Zn 0.05 Ga 0.95 O 0.05 N 0.95 is obtained. The material is immersed in a solution of Ru 3 (CO) 12 in several mL of tetrahydrofuran (THF) and evaporated to dryness in a hot water bath. This is calcined in air at 400 ° C. for 3 hours to carry RuO 2 . At this time, the loading amount is 1% by weight. 0.3 g of the material carrying 1% by weight of the synthesized RuO 2 was suspended in 420 dm 3 of pure water, and a 450 W high-pressure mercury lamp was used as a light source to transmit light having a wavelength longer than 290 nm through a quartz jacket. Irradiated to measure photocatalytic activity. As shown in FIG. 7, simultaneous generation of hydrogen and oxygen was observed.
窒化処理における焼成温度を750℃及び950℃として得られた(ZnO)X(GaN)1−X、ここでXは0.3(750℃)または0.03(950℃)の光水分解触媒化合物のX線回折(XRD)パターンを図8に、そして吸収スペクトルを図9(750℃)及び10(950℃)に示す。また、前記各光水分解触媒にNiOを1.5重量%担持したもの0.3gを純水420mL中に懸濁し、450W 高圧水銀灯を光源としてりパイレックス製ジャケットを透して290nmより長波長側の光を照射し光水分解触媒活性を測定した。図11(750℃焼成)及び図12(950℃焼成)に水素および酸素の生成特性を示した。 (ZnO) x (GaN) 1-x obtained by setting the calcination temperatures in the nitriding treatment to 750 ° C. and 950 ° C., where X is 0.3 (750 ° C.) or 0.03 (950 ° C.) The X-ray diffraction (XRD) pattern of the compound is shown in FIG. 8, and the absorption spectra are shown in FIGS. 9 (750 ° C.) and 10 (950 ° C.). In addition, 0.3 g of NiO supported on each light water splitting catalyst is suspended in 420 mL of pure water, and a 450 W high-pressure mercury lamp is used as a light source, passing through a Pyrex jacket, a wavelength longer than 290 nm. The water photocatalytic activity was measured. FIG. 11 (firing at 750 ° C.) and FIG. 12 (firing at 950 ° C.) show the generation characteristics of hydrogen and oxygen.
比較例1
ZnOとGa2O3を2:1のモル比の混合物を空気中で950℃、10時間焼成する。これによってZnGa2O4の組成で表される材料が得られる。図13に示すように可視光領域には吸収を持たない。当然のことながら可視光照射下では光触媒活性を示さない。このことからZnおよびGaを含む酸化物には窒素を組み込むことにより本発明の可視光応答性が生じることが推測できる。
Comparative Example 1
A mixture of ZnO and Ga 2 O 3 in a molar ratio of 2: 1 is fired in air at 950 ° C. for 10 hours. Thereby, a material represented by a composition of ZnGa 2 O 4 is obtained. As shown in FIG. 13, there is no absorption in the visible light region. Naturally, it does not show photocatalytic activity under visible light irradiation. From this, it can be presumed that the visible light responsiveness of the present invention is produced by incorporating nitrogen into the oxide containing Zn and Ga.
本発明の光水分解触媒は犠牲薬を要することなく、可視光領域の光エネルギーを利用して水素及び酸素を発生させることができることから、実用的な光水分解による水素生産システム設計を可能にするものである。 The photo-hydrolysis catalyst of the present invention can generate hydrogen and oxygen using light energy in the visible light region without requiring a sacrificial agent, thus enabling a practical hydrogen production system design by photo-hydrolysis. To do.
Claims (4)
The photo-water decomposition catalyst according to claim 3, wherein NiO, NiO and Cr 2 O 3 or RuO 2 are supported as a co-catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380939A JP3834777B2 (en) | 2003-11-11 | 2003-11-11 | Water splitting catalyst composed of gallium nitride solid solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380939A JP3834777B2 (en) | 2003-11-11 | 2003-11-11 | Water splitting catalyst composed of gallium nitride solid solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005144210A true JP2005144210A (en) | 2005-06-09 |
JP3834777B2 JP3834777B2 (en) | 2006-10-18 |
Family
ID=34690471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003380939A Expired - Fee Related JP3834777B2 (en) | 2003-11-11 | 2003-11-11 | Water splitting catalyst composed of gallium nitride solid solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3834777B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007052512A1 (en) * | 2005-11-04 | 2007-05-10 | National University Corporation Nagaoka University Of Technology | Catalyst for water decomposition by light and process for producing the same |
JP2007185605A (en) * | 2006-01-13 | 2007-07-26 | Univ Of Tokyo | Promoter for photocatalyst and photocatalytic material |
WO2011162372A1 (en) * | 2010-06-25 | 2011-12-29 | 国立大学法人京都工芸繊維大学 | Photocatalyst material and photocatalyst device |
CN102389828A (en) * | 2011-10-01 | 2012-03-28 | 浙江大学 | Preparation and application of high-dispersity ZnO/GaN solid solution |
JP2012187520A (en) * | 2011-03-10 | 2012-10-04 | Mitsubishi Chemical Holdings Corp | Photocatalyst immobilized material for water decomposition and method of producing hydrogen and/or oxygen |
JP2014223629A (en) * | 2014-08-27 | 2014-12-04 | 三菱化学株式会社 | Electrode for photolytic water decomposition reaction using photocatalyst |
CN104549397A (en) * | 2014-12-15 | 2015-04-29 | 黑龙江大学 | Preparation method of beta-Ga2O3/SiC nanometer composite material |
CN104925763A (en) * | 2014-03-23 | 2015-09-23 | 浙江大学 | Nanometer hollow structure of multi-metal nitrogen oxide as well as preparation method and application of nanometer hollow structure |
CN106319557A (en) * | 2015-07-07 | 2017-01-11 | 中国科学院大连化学物理研究所 | Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method |
CN109573943A (en) * | 2018-12-11 | 2019-04-05 | 中国汽车技术研究中心有限公司 | The method and apparatus for producing hydrogen are catalyzed in a kind of old and useless battery removal process simultaneously |
CN112777565A (en) * | 2019-11-05 | 2021-05-11 | 中国科学院大连化学物理研究所 | Semiconductor photocatalytic water splitting method capable of inhibiting reverse reaction |
CN113398976A (en) * | 2021-07-02 | 2021-09-17 | 上海电力大学 | Monoatomic catalyst for photocatalytic total hydrolysis and preparation method thereof |
CN113941356A (en) * | 2021-10-29 | 2022-01-18 | 南方科技大学 | Photocatalyst, and synthesis method and application thereof |
CN115121278A (en) * | 2022-07-19 | 2022-09-30 | 上海科技大学 | Construction method and application of Z-type photocatalytic water decomposition reaction system based on GaN-ZnO solid solution |
US11626524B2 (en) | 2016-05-31 | 2023-04-11 | Fujitsu Limited | Method for manufacturing photoexcitable material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106824242A (en) * | 2017-01-19 | 2017-06-13 | 京东方科技集团股份有限公司 | The preparation method and material for air purification of a kind of material for air purification |
-
2003
- 2003-11-11 JP JP2003380939A patent/JP3834777B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007052512A1 (en) * | 2005-11-04 | 2007-05-10 | National University Corporation Nagaoka University Of Technology | Catalyst for water decomposition by light and process for producing the same |
JP2007125496A (en) * | 2005-11-04 | 2007-05-24 | Nagaoka Univ Of Technology | Optical water decomposition catalyst and its manufacturing method |
JP2007185605A (en) * | 2006-01-13 | 2007-07-26 | Univ Of Tokyo | Promoter for photocatalyst and photocatalytic material |
JP4714873B2 (en) * | 2006-01-13 | 2011-06-29 | 国立大学法人 東京大学 | Cocatalyst for photocatalyst and photocatalyst material |
WO2011162372A1 (en) * | 2010-06-25 | 2011-12-29 | 国立大学法人京都工芸繊維大学 | Photocatalyst material and photocatalyst device |
JP2012187520A (en) * | 2011-03-10 | 2012-10-04 | Mitsubishi Chemical Holdings Corp | Photocatalyst immobilized material for water decomposition and method of producing hydrogen and/or oxygen |
CN102389828A (en) * | 2011-10-01 | 2012-03-28 | 浙江大学 | Preparation and application of high-dispersity ZnO/GaN solid solution |
CN104925763A (en) * | 2014-03-23 | 2015-09-23 | 浙江大学 | Nanometer hollow structure of multi-metal nitrogen oxide as well as preparation method and application of nanometer hollow structure |
JP2014223629A (en) * | 2014-08-27 | 2014-12-04 | 三菱化学株式会社 | Electrode for photolytic water decomposition reaction using photocatalyst |
CN104549397A (en) * | 2014-12-15 | 2015-04-29 | 黑龙江大学 | Preparation method of beta-Ga2O3/SiC nanometer composite material |
CN106319557A (en) * | 2015-07-07 | 2017-01-11 | 中国科学院大连化学物理研究所 | Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method |
US11626524B2 (en) | 2016-05-31 | 2023-04-11 | Fujitsu Limited | Method for manufacturing photoexcitable material |
CN109573943A (en) * | 2018-12-11 | 2019-04-05 | 中国汽车技术研究中心有限公司 | The method and apparatus for producing hydrogen are catalyzed in a kind of old and useless battery removal process simultaneously |
CN112777565A (en) * | 2019-11-05 | 2021-05-11 | 中国科学院大连化学物理研究所 | Semiconductor photocatalytic water splitting method capable of inhibiting reverse reaction |
CN112777565B (en) * | 2019-11-05 | 2022-11-22 | 中国科学院大连化学物理研究所 | Semiconductor photocatalytic water splitting method capable of inhibiting reverse reaction |
CN113398976A (en) * | 2021-07-02 | 2021-09-17 | 上海电力大学 | Monoatomic catalyst for photocatalytic total hydrolysis and preparation method thereof |
CN113941356A (en) * | 2021-10-29 | 2022-01-18 | 南方科技大学 | Photocatalyst, and synthesis method and application thereof |
CN113941356B (en) * | 2021-10-29 | 2023-11-28 | 南方科技大学 | Photocatalyst, and synthesis method and application thereof |
CN115121278A (en) * | 2022-07-19 | 2022-09-30 | 上海科技大学 | Construction method and application of Z-type photocatalytic water decomposition reaction system based on GaN-ZnO solid solution |
CN115121278B (en) * | 2022-07-19 | 2024-04-12 | 上海科技大学 | Construction method and application of Z-type photocatalytic water splitting reaction system based on GaN-ZnO solid solution |
Also Published As
Publication number | Publication date |
---|---|
JP3834777B2 (en) | 2006-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3834777B2 (en) | Water splitting catalyst composed of gallium nitride solid solution | |
JP4437230B2 (en) | Tantalum-based oxynitride photocatalyst and method for producing the same | |
JP4982736B2 (en) | A water splitting catalyst by light and a method for producing the same. | |
Do et al. | Preparation of basalt fiber@ perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction | |
CN109012144B (en) | Hexaaluminate composite oxide material in H2Application of S in catalytic decomposition reaction | |
Abe et al. | Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R= Y, rare earth) with pyrochlore structure | |
JP2010194534A (en) | Catalyst for reverse shift reaction, method for producing the same and method for producing synthetic gas | |
Chen et al. | Effect of synthesis atmosphere on photocatalytic hydrogen production of NaNbO3 | |
Pap et al. | Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species | |
Maziviero et al. | Synthesis of alumina by microwave-assisted combustion method using low fuel content and its use as catalytic support for dry reforming of methane | |
JP2004275946A (en) | Perovskite type multicomponent oxide visible light responsive photocatalyst, hydrogen manufacturing method using the same and harmful chemical substance decomposing method | |
JPH09510657A (en) | Photocatalyst, method for producing the same, and method for producing hydrogen using the same | |
JP2009214033A (en) | Photocatalyst and method for reducing nitrate ion and nitrite ion | |
Ambrožová et al. | Photocatalytic decomposition of N2O over ceramics cordierite/CeO2 nanoparticles | |
JP5517805B2 (en) | Visible light responsive photocatalyst, water splitting photocatalyst, hydrogen generation device, and water splitting method | |
JP3834776B2 (en) | Catalyst for photo-water splitting containing germanium nitride structure | |
WO2003068393A1 (en) | Photocatalyst comprising titanium fluoride nitride for water decomposition with visible light irradiation | |
CN104190431B (en) | A kind of preparation method of SCTON type visible photocatalysis water catalyst for producing oxygen | |
JP4090827B2 (en) | Photocatalyst using composite oxide containing metal ions in d10s2 and d0 electronic states | |
JP5647080B2 (en) | Carbon dioxide reduction method | |
RU2660648C1 (en) | Nanostructured catalyst for obtaining synthesis gas by carbon-acid reforming of methane and method of its obtaining | |
JPH10194703A (en) | Catalyst for producing synthesis gas and production of synthesis gas | |
JP5800719B2 (en) | Hydrogen production catalyst and hydrogen production method using the same | |
JP2019098245A (en) | Manufacturing method of photocatalyst | |
JP2012071291A (en) | Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060713 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |