JP2010194534A - Catalyst for reverse shift reaction, method for producing the same and method for producing synthetic gas - Google Patents

Catalyst for reverse shift reaction, method for producing the same and method for producing synthetic gas Download PDF

Info

Publication number
JP2010194534A
JP2010194534A JP2010020141A JP2010020141A JP2010194534A JP 2010194534 A JP2010194534 A JP 2010194534A JP 2010020141 A JP2010020141 A JP 2010020141A JP 2010020141 A JP2010020141 A JP 2010020141A JP 2010194534 A JP2010194534 A JP 2010194534A
Authority
JP
Japan
Prior art keywords
shift reaction
reverse shift
catalyst
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020141A
Other languages
Japanese (ja)
Other versions
JP5402683B2 (en
Inventor
Yoshinori Saito
芳則 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010020141A priority Critical patent/JP5402683B2/en
Publication of JP2010194534A publication Critical patent/JP2010194534A/en
Application granted granted Critical
Publication of JP5402683B2 publication Critical patent/JP5402683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for a reverse shift reaction which is excellent in durability at a high temperature, can suppress formation of a methanation reaction, efficiently forms the reverse shift reaction, is low in methane content and can efficiently produce a synthetic gas including carbon monoxide and unreacted hydrogen, and a method for producing the synthetic gas using the catalyst for the reverse shift reaction. <P>SOLUTION: A composition includes: a carbonate of an alkaline earth metal of at least one selected from the group consisting of Ca, Sr and Ba; and a composite oxide containing an alkaline earth metal of at least one selected from the group consisting of Ca, Sr and Ba and a component of at least one selected from the group consisting of Ti, Al, Zr, Fe, W and Mo. The composite oxide is ATiO<SB>3</SB>, AAl<SB>2</SB>O<SB>4</SB>, AZrO<SB>3</SB>, AFe<SB>2</SB>O<SB>4</SB>, AWO<SB>4</SB>, A<SB>2</SB>WO<SB>5</SB>and AMoO<SB>4</SB>(where A is an alkaline earth metal of at least one selected from the group consisting of Ca, Sr and Ba). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応の逆の反応である、二酸化炭素と水素から一酸化炭素と水蒸気を生成する反応に対する活性を有する逆シフト反応用触媒およびそれを用いた合成ガスの製造方法に関する。   The present invention relates to a reverse shift reaction catalyst having activity for a reaction of generating carbon monoxide and water vapor from carbon dioxide and hydrogen, which is the reverse reaction of the shift reaction of generating carbon dioxide and hydrogen from carbon monoxide and water vapor. The present invention relates to a method for producing synthesis gas using the same.

近年、二酸化炭素は地球温暖化の主要原因物質であることから、排出量の削減・有効利用が緊急の課題とされている。また、石油精製や石油化学などの技術分野からは炭化水素系ガスが発生するが、効率的により有効な物質に変換する方法が求められている。   In recent years, since carbon dioxide is a major causative substance of global warming, reduction and effective use of emissions has been an urgent issue. In addition, hydrocarbon-based gases are generated from technical fields such as petroleum refining and petrochemistry, but there is a need for a method for efficiently converting them into more effective substances.

このような状況の下で、水素と二酸化炭素を用いて逆シフト反応を行わせ、生成した一酸化炭素と未反応の水素からなる合成ガスを製造する方法が提案されている(特許文献1および2参照)。   Under such circumstances, a method has been proposed in which a reverse shift reaction is performed using hydrogen and carbon dioxide to produce a synthesis gas composed of generated carbon monoxide and unreacted hydrogen (Patent Document 1 and 2).

また、特許文献1の従来技術(段落0002)に示されているように、水蒸気改質後のガス中の二酸化炭素を分離し、改質器に戻す方法が知られている。   Further, as shown in the prior art of Patent Document 1 (paragraph 0002), a method is known in which carbon dioxide in the gas after steam reforming is separated and returned to the reformer.

ところで、水素を製造することを目的に、下記の式(1)で示される水性シフト反応を促進させるための触媒、いわゆるシフト反応用触媒については、多くの触媒が実用化されている。
CO + H2O → CO2 + H2 ……(1)
By the way, for the purpose of producing hydrogen, many catalysts have been put to practical use as catalysts for promoting the aqueous shift reaction represented by the following formula (1), that is, so-called shift reaction catalysts.
CO + H 2 O → CO 2 + H 2 (1)

また、シフト反応を促進させる触媒のうちの多くのものは、下記の式(2)で示される逆シフト反応用の触媒としての活性も有していると考えられる。
CO2 + H2 → CO + H2O ……(2)
Further, it is considered that many of the catalysts that promote the shift reaction also have activity as a reverse shift reaction catalyst represented by the following formula (2).
CO 2 + H 2 → CO + H 2 O (2)

ところで、この逆シフト反応は、反応により生成する合成ガスの組成(平衡組成)を考えると、600℃以上の高温で反応を行わせることが望ましい。しかしながら、600℃以上という温度は、通常、水性シフト反応を行わせる温度よりはるかに高温であるため、通常のシフト反応用の触媒を使用することは困難であるのが実情である。   By the way, this reverse shift reaction is desirably performed at a high temperature of 600 ° C. or higher in view of the composition (equilibrium composition) of the synthesis gas produced by the reaction. However, since the temperature of 600 ° C. or higher is usually much higher than the temperature at which the aqueous shift reaction is performed, it is actually difficult to use a catalyst for a normal shift reaction.

また、一般的な水蒸気改質触媒中でも逆シフト反応は進行するが、加圧条件下においては、水蒸気改質反応の逆反応である、下記の式(3)のメタネーションが起こり、メタンが生成して一酸化炭素濃度が低下するという問題点がある。
CO + 3H2 → CH4 + H2O……(3)
In addition, the reverse shift reaction proceeds even in a general steam reforming catalyst, but under pressurized conditions, methanation of the following formula (3), which is the reverse reaction of the steam reforming reaction, occurs to produce methane. As a result, there is a problem that the concentration of carbon monoxide decreases.
CO + 3H 2 → CH 4 + H 2 O (3)

特開平6−211502号公報Japanese Patent Laid-Open No. 6-21502 特開平4−244035号公報Japanese Patent Laid-Open No. 4-244035

本発明は、上記実情に鑑みてなされたものであり、高温での使用が可能で、メタネーション反応の生成を抑制して、効率よく逆シフト反応を生成させて、メタン含有率の低い、一酸化炭素と水素からなる合成ガスを得ることが可能な逆シフト反応用触媒および該逆シフト反応用触媒を用いた合成ガスの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, can be used at high temperatures, suppresses the formation of methanation reaction, efficiently generates a reverse shift reaction, and has a low methane content. An object of the present invention is to provide a reverse shift reaction catalyst capable of obtaining a synthesis gas composed of carbon oxide and hydrogen, and a synthesis gas production method using the reverse shift reaction catalyst.

上記課題を解決するために、本発明の逆シフト反応用触媒は、
二酸化炭素と水素から一酸化炭素と水蒸気を生成させるために用いられる逆シフト反応用触媒であって、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属の炭酸塩と、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分を含む複合酸化物と
を含有することを特徴としている。
In order to solve the above problems, the reverse shift reaction catalyst of the present invention is
A reverse shift reaction catalyst used to generate carbon monoxide and water vapor from carbon dioxide and hydrogen,
At least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba;
At least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba, and a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo. It is characterized by containing.

また、前記複合酸化物が、ATiO3,AAl24,AZrO3,AFe24,AWO4,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属)であることを特徴としている。 The composite oxide is at least one selected from the group consisting of ATiO 3 , AAl 2 O 4 , AZrO 3 , AFe 2 O 4 , AWO 4 , A 2 WO 5 , AMoO 4 (A is Ca, Sr and Ba). A kind of alkaline earth metal).

また、本発明の逆シフト反応用触媒の製造方法は、
二酸化炭素と水素から一酸化炭素と水蒸気を生成させるために用いられる逆シフト反応用触媒の製造方法であって、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分との複合酸化物を合成する工程と、
前記複合酸化物に二酸化炭素を吸収させて炭酸塩を生成させる工程と
を含むことを特徴としている。
The method for producing the reverse shift reaction catalyst of the present invention comprises:
A method for producing a reverse shift reaction catalyst used for producing carbon monoxide and water vapor from carbon dioxide and hydrogen,
A composite oxide of at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba and at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo is synthesized. And a process of
And a step of causing the composite oxide to absorb carbon dioxide to form a carbonate.

また、本発明の合成ガスの製造方法は、二酸化炭素と水素を含む原料ガスを、700℃以上の温度条件で、請求項1または2記載の逆シフト反応用触媒と接触させて、逆シフト反応させることを特徴としている。   The method for producing a synthesis gas according to the present invention includes a source gas containing carbon dioxide and hydrogen brought into contact with the reverse shift reaction catalyst according to claim 1 or 2 under a temperature condition of 700 ° C. or higher. It is characterized by letting.

本発明の逆シフト反応用触媒は、Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属の炭酸塩と、Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分を含む複合酸化物とを含有しており、この逆シフト反応用触媒を用いることにより、高温条件下で、メタネーション反応を抑制しつつ、水素と二酸化炭素の逆シフト反応を効率よく生成させることが可能になり、一酸化炭素と水素を含む合成ガスを効率よく製造することが可能になる。   The reverse shift reaction catalyst of the present invention comprises at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba, and at least one alkali selected from the group consisting of Ca, Sr and Ba. Containing an earth metal and a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo, and using this reverse shift reaction catalyst, It is possible to efficiently produce a reverse shift reaction of hydrogen and carbon dioxide while suppressing the methanation reaction under high temperature conditions, and it is possible to efficiently produce synthesis gas containing carbon monoxide and hydrogen. Become.

ところで、既に述べたようにシフト反応は、下記の式(1)に示すように、COとH2Oを原料として、H2とCO2を生成させる反応である。
CO + H2O → CO2 + H2 ……(1)
このとき、CO2、H2、CO、H2Oの組成は化学平衡によって支配され、水素製造プロセスでは、上記の式(1)の反応が進行しやすい低温で行われる。
As described above, the shift reaction is a reaction for generating H 2 and CO 2 using CO and H 2 O as raw materials as shown in the following formula (1).
CO + H 2 O → CO 2 + H 2 (1)
At this time, the composition of CO 2 , H 2 , CO, and H 2 O is governed by chemical equilibrium, and the hydrogen production process is performed at a low temperature at which the reaction of the above formula (1) easily proceeds.

そして、高温域においては、逆の方向の反応、すなわち、下記の式(2)で示す、逆シフト反応が生起する。
CO2 + H2 → CO + H2O ……(2)
In the high temperature range, a reaction in the opposite direction, that is, a reverse shift reaction shown by the following formula (2) occurs.
CO 2 + H 2 → CO + H 2 O (2)

よって、H2とCO2を原料としてCO濃度の高い合成ガスを得たい場合には、通常のシフト反応プロセスより高温で、上記式(2)の逆シフト反応を進行させればよい。 Therefore, when it is desired to obtain a synthesis gas having a high CO concentration using H 2 and CO 2 as raw materials, the reverse shift reaction of the above formula (2) may be advanced at a higher temperature than the normal shift reaction process.

なお、上記の式(2)では、COとH2Oが生成することになるが、上述のようにCO2、H2、CO、H2Oの組成は化学平衡によって支配されるので、得られるガスの組成は反応温度と原料ガスのCO2/H2比によって決まる。合成ガスを得るためには反応後のガスから未反応のCO2と生成したH2Oを取り除けばよい。原料ガスのH2の比率が高いほど得られる合成ガスのH2比率を高くすることができる。 In the above formula (2), CO and H 2 O are produced. As described above, the composition of CO 2 , H 2 , CO, and H 2 O is governed by the chemical equilibrium. The composition of the gas to be produced is determined by the reaction temperature and the CO 2 / H 2 ratio of the raw material gas. In order to obtain synthesis gas, unreacted CO 2 and generated H 2 O may be removed from the gas after the reaction. The higher the H 2 ratio of the source gas, the higher the H 2 ratio of the synthesis gas obtained.

本発明の逆シフト反応用触媒は、上述のような、700℃を越えるような高温(例えば、700℃〜1100℃)で、上記の式(2)の反応を生じさせる触媒として活性を有する。   The reverse shift reaction catalyst of the present invention has activity as a catalyst for causing the reaction of the above formula (2) at a high temperature exceeding 700 ° C. (for example, 700 ° C. to 1100 ° C.) as described above.

また、本発明の逆シフト反応用触媒において、複合酸化物として、ATiO3,AAl24,AZrO3,AFe24,AWO4,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属)を含有させるようにした場合、使用中に炭酸塩が焼結することを抑制し、水素と二酸化炭素から、一酸化炭素と水素を含む合成ガスを効率よく製造することが可能になる。 In the reverse shift reaction catalyst of the present invention, ATiO 3 , AAl 2 O 4 , AZrO 3 , AFe 2 O 4 , AWO 4 , A 2 WO 5 , AMoO 4 (A is Ca, Sr and When containing at least one alkaline earth metal selected from the group consisting of Ba), it suppresses sintering of carbonate during use, and carbon monoxide and hydrogen from hydrogen and carbon dioxide. It becomes possible to produce the synthesis gas containing efficiently.

また、本発明の逆シフト反応用触媒の製造方法は、Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分との複合酸化物を合成した後、複合酸化物に二酸化炭素を吸収させて炭酸塩を生成させるようにしているので、合成された複合酸化物の表面に炭酸塩が生成して、表面が炭酸塩により被覆された状態となり、触媒活性の高い逆シフト反応用触媒を効率よく製造することが可能になる。   Further, the method for producing a reverse shift reaction catalyst of the present invention comprises at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba, and a group consisting of Ti, Al, Zr, Fe, W and Mo. After synthesizing a composite oxide with at least one component selected from the above, carbon dioxide is absorbed into the composite oxide so as to generate carbonate, so that the carbonate is formed on the surface of the synthesized composite oxide. Is generated, and the surface is covered with carbonate, so that a reverse shift reaction catalyst having high catalytic activity can be efficiently produced.

また、本発明の合成ガスの製造方法のように、二酸化炭素と水素を含む原料ガスを、700℃以上の温度条件で、請求項1または2記載の逆シフト反応用触媒と接触させて、逆シフト反応させることにより、利用価値の高い合成ガスを効率よく製造することができる。   Further, as in the synthesis gas production method of the present invention, a raw material gas containing carbon dioxide and hydrogen is brought into contact with the reverse shift reaction catalyst according to claim 1 or 2 under a temperature condition of 700 ° C. or higher to reverse the reaction gas. By performing a shift reaction, a synthesis gas with high utility value can be efficiently produced.

本発明の実施例において、逆シフト反応試験を行うのに用いた試験装置の概略構成を示す図である。In the Example of this invention, it is a figure which shows schematic structure of the test apparatus used in order to perform a reverse shift reaction test. 本発明の実施例において、触媒AおよびDを用いて行った逆シフト反応試験における反応後のガス組成と、各条件における平衡ガス組成を示す図である。In the Example of this invention, it is a figure which shows the gas composition after reaction in the reverse shift reaction test performed using the catalyst A and D, and the equilibrium gas composition in each condition.

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

[逆シフト反応用触媒の製造]
(1)逆シフト反応用触媒Aの製造
(a)BaCO3とTiO2を、モル比2.0:1.0となるように秤量し、ボールミルにより混合した後に乾燥を行った。
(b)次に、この混合物にバインダーを加えて直径2〜5mmの球状に造粒した。
(c)得られた粒状体を空気中にて1100℃で1h焼成し、複合酸化物(Ba2TiO4)を得た。
(d)それからこの複合酸化物(Ba2TiO4)を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、BaCO3とBaTiO3の混合体である逆シフト反応用触媒Aを得た。
[Production of reverse shift reaction catalyst]
(1) Production of reverse shift reaction catalyst A
(a) BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 2.0: 1.0, mixed by a ball mill, and then dried.
(b) Next, a binder was added to this mixture and granulated into a spherical shape having a diameter of 2 to 5 mm.
(c) The obtained granular material was fired in air at 1100 ° C. for 1 h to obtain a composite oxide (Ba 2 TiO 4 ).
(d) Then, this composite oxide (Ba 2 TiO 4 ) is fired in a 20% CO 2, 80% N 2 stream under conditions of 700 ° C. and 1 h to obtain a mixture of BaCO 3 and BaTiO 3 . A reverse shift reaction catalyst A was obtained.

なお、焼成前後の試料の重量変化およびXRD測定結果から、上記(d)の工程で、Ba2TiO4の全てがBaCO3とBaTiO3へと分解し、結果としてBaCO3とBaTiO3のモル比が1.0:1.0の混合体(逆シフト反応用触媒)が得られていることを確認した。 Incidentally, the results calcined weight change and XRD measurements before and after the sample, in the above described process (d), all Ba 2 TiO 4 was decomposed into BaCO 3 and BaTiO 3, the molar ratio of BaCO 3 and BaTiO 3 as a result It was confirmed that a 1.0: 1.0 mixture (catalyst for reverse shift reaction) was obtained.

(2)逆シフト反応用触媒Bの製造
(a)SrCO3とTiO2を、モル比2.0:1.0となるように秤量し、ボールミルにより混合した後に乾燥を行った。
(b)次に、この混合物にバインダーを加えて直径2〜5mmの球状に造粒した。
(c)得られた粒状体を空気中にて1100℃で1h焼成し、複合酸化物(Sr2TiO4)を得た。
(d)それからこの複合酸化物(Sr2TiO4)を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、SrCO3とSrTiO3の混合体である逆シフト反応用触媒Bを得た。
(2) Production of reverse shift catalyst B
(a) SrCO 3 and TiO 2 were weighed so as to have a molar ratio of 2.0: 1.0, mixed by a ball mill, and then dried.
(b) Next, a binder was added to this mixture and granulated into a spherical shape having a diameter of 2 to 5 mm.
(c) The obtained granular material was fired in air at 1100 ° C. for 1 h to obtain a composite oxide (Sr 2 TiO 4 ).
(d) Then, this composite oxide (Sr 2 TiO 4 ) is fired in a 20% CO 2, 80% N 2 stream under conditions of 700 ° C. and 1 h to obtain a mixture of SrCO 3 and SrTiO 3 . The reverse shift reaction catalyst B was obtained.

なお、焼成前後の試料の重量変化およびXRD測定結果から、上記(d)の工程で、Sr2TiO4の全てがSrCO3とSrTiO3へと分解し、結果としてSrCO3とSrTiO3のモル比が1.0:1.0の混合体(逆シフト反応用触媒)が得られていることを確認した。 Incidentally, the results calcined weight change and XRD measurements before and after the sample, in the above described process (d), all of Sr 2 TiO 4 was decomposed into SrCO 3 and SrTiO 3, the molar ratio of SrCO 3 and SrTiO 3 as a result It was confirmed that a 1.0: 1.0 mixture (catalyst for reverse shift reaction) was obtained.

(3)逆シフト反応用触媒Cの製造
(a)BaCO3とAl23を、モル比2.0:1.0となるように秤量し、ボールミルにより混合した後に乾燥を行った。
(b)次に、この混合物にバインダーを加えて直径2〜5mmの球状に造粒した。
(c)得られた粒状体を空気中にて1100℃で1h焼成し、複合酸化物(Ba2Al25)を得た。
(d)それからこの複合酸化物(Ba2Al25)を、20%CO2、80%N2気流中にて、700℃、1hの条件で焼成することにより、BaCO3とBaAl24の混合体である逆シフト反応用触媒Cを得た。
(3) Production of catalyst C for reverse shift reaction
(a) BaCO 3 and Al 2 O 3 were weighed so as to have a molar ratio of 2.0: 1.0, mixed by a ball mill, and then dried.
(b) Next, a binder was added to this mixture and granulated into a spherical shape having a diameter of 2 to 5 mm.
(c) The obtained granular material was fired in air at 1100 ° C. for 1 h to obtain a composite oxide (Ba 2 Al 2 O 5 ).
(d) Then, this composite oxide (Ba 2 Al 2 O 5 ) is baked under conditions of 700 ° C. and 1 h in a 20% CO 2, 80% N 2 stream to obtain BaCO 3 and BaAl 2 O. A reverse shift reaction catalyst C, which was a mixture of 4 , was obtained.

なお、焼成前後の試料の重量変化およびXRD測定結果から、上記(d)の工程で、Ba2Al25の全てがBaCO3とBaAl24へと分解し、結果としてBaCO3とBaAl24のモル比が1.0:1.0の混合体(逆シフト反応用触媒)が得られていることを確認した。 From the weight change of the sample before and after firing and the XRD measurement results, in the step (d), all of Ba 2 Al 2 O 5 was decomposed into BaCO 3 and BaAl 2 O 4 , and as a result, BaCO 3 and BaAl It was confirmed that a mixture (catalyst for reverse shift reaction) having a molar ratio of 2 O 4 of 1.0: 1.0 was obtained.

(4)比較用の触媒(比較例)Dの用意
比較のため、逆シフト反応用に対する触媒活性を持たない石英砂を用意して、これを比較例の触媒Dとした。
(5)比較用の触媒(比較例)Eの用意
Al23とNiを主成分とする、メタンの水蒸気改質触媒(市販品)を用意して、これを比較例の触媒Eとした。
(4) Preparation of Comparative Catalyst (Comparative Example) D For comparison, quartz sand having no catalytic activity for reverse shift reaction was prepared, and this was designated as Comparative Catalyst D.
(5) Preparation of catalyst for comparison (comparative example) E A methane steam reforming catalyst (commercially available product) comprising Al 2 O 3 and Ni as main components was prepared, and this was used as catalyst E of comparative example. .

[逆シフト反応試験および特性の評価]
(1)大気圧での逆シフト反応試験
本発明の実施例にかかる逆シフト反応用触媒Aと、比較例の触媒Dを用いて、大気圧下で、二酸化炭素と水素を含む原料ガスから、一酸化炭素と水蒸気を生成させる逆シフト反応試験を行い、触媒Aと触媒Dの特性を比較し、評価した。
[Reverse shift reaction test and evaluation of characteristics]
(1) Reverse shift reaction test at atmospheric pressure Using a reverse shift reaction catalyst A according to an example of the present invention and a catalyst D of a comparative example, from a source gas containing carbon dioxide and hydrogen at atmospheric pressure, A reverse shift reaction test for generating carbon monoxide and water vapor was performed, and the characteristics of Catalyst A and Catalyst D were compared and evaluated.

逆シフト反応試験は、図1に示す試験装置を用いて、以下に説明する方法により行った。
図1に示すように、ここで用いた試験装置は、外部にヒーター2を備えた内径 22mm、長さ300mmのステンレス製の反応管1と、反応管1にガスを供給するためのガス入口4と、反応管1からガスを排出させるためのガス出口5と、反応管内の圧力を調整するための圧力調整器6とを備えている。
The reverse shift reaction test was performed by the method described below using the test apparatus shown in FIG.
As shown in FIG. 1, the test apparatus used here includes a stainless steel reaction tube 1 having an inner diameter of 22 mm and a length of 300 mm provided with a heater 2, and a gas inlet 4 for supplying gas to the reaction tube 1. And a gas outlet 5 for discharging gas from the reaction tube 1 and a pressure regulator 6 for adjusting the pressure in the reaction tube.

そして、反応管1に、上記のようにして製造した逆シフト反応用触媒(触媒AとD)3をそれぞれ5cc充填し、ヒーター2により、表1に示す所定の温度(700℃、750℃、800℃)に加熱し、反応管1のガス入口4から水素(H2)と二酸化炭素(CO2)の混合ガス(H2:CO2=63:37(容積比))を5NL/hの割合(SV(空間速度)=1000h-1)で2時間流通させた。
なお、試験中は、圧力調整器6は開放状態とし、大気圧(1気圧)の条件で、上述のように、2時間の逆シフト反応試験を行わせた。
Then, 5 cc of each of the reverse shift reaction catalysts (catalysts A and D) 3 produced as described above was filled in the reaction tube 1, and the heaters 2 used the predetermined temperatures (700 ° C., 750 ° C., was heated to 800 ° C.), (mixture gas of H 2) and carbon dioxide (CO 2) (H 2: CO 2 = 63: 37 ( volume ratio) hydrogen from a gas inlet 4 of the reaction tube 1) of 5 NL / h It was circulated for 2 hours at a ratio (SV (space velocity) = 1000 h −1 ).
During the test, the pressure regulator 6 was opened, and the reverse shift reaction test for 2 hours was performed under the atmospheric pressure (1 atm) condition as described above.

そして、試験中は反応管1のガス出口5から排出されるガスを分析装置に導入してガス組成を分析し、得られたガス組成(測定値)を、平衡計算を行って求めた平衡ガス組成(計算値)と比較した。   During the test, the gas discharged from the gas outlet 5 of the reaction tube 1 is introduced into the analyzer to analyze the gas composition, and the obtained gas composition (measured value) is the equilibrium gas obtained by performing the equilibrium calculation. It was compared with the composition (calculated value).

表1に触媒AおよびDを用いて行った逆シフト反応試験における、反応温度と反応後のガス組成の関係を示す。
また、図2に触媒AおよびDを用いて行った逆シフト反応試験における反応後のガス組成(測定値)と、各条件における平衡ガス組成(計算値)を示す。
Table 1 shows the relationship between the reaction temperature and the gas composition after the reaction in the reverse shift reaction test conducted using the catalysts A and D.
FIG. 2 shows the gas composition (measured value) after the reaction in the reverse shift reaction test conducted using the catalysts A and D and the equilibrium gas composition (calculated value) under each condition.

すなわち、図2の1番上のグラフは、触媒AおよびDを用いた場合の、反応後のガス中のH2濃度と温度との関係、および各温度でのH2の平衡濃度を示している。
図2の上から2番目のグラフは、触媒AおよびDを用いた場合の、反応後のガス中のCO2濃度と温度との関係、および各温度でのCO2の平衡濃度を示している。
図2の上から3番目のグラフは、触媒AおよびDを用いた場合の、反応後のガス中のCO濃度と温度との関係、および各温度でのCOの平衡濃度を示している。
図2の上から4番目のグラフは、触媒AおよびDを用いた場合の、反応後のガス中のCH4濃度と温度との関係、および各温度でのCH4の平衡濃度を示している。
なお、図2の各グラフにおいて、点線は各成分についての平衡濃度(計算値)を示している。
That is, the top graph in FIG. 2 shows the relationship between the H 2 concentration in the gas after reaction and the temperature and the equilibrium concentration of H 2 at each temperature when the catalysts A and D are used. Yes.
The second graph from the top in FIG. 2 shows the relationship between the CO 2 concentration in the gas after reaction and the temperature, and the equilibrium concentration of CO 2 at each temperature when the catalysts A and D are used. .
The third graph from the top in FIG. 2 shows the relationship between the CO concentration in the gas after reaction and the temperature, and the equilibrium concentration of CO at each temperature when the catalysts A and D are used.
The fourth graph from the top in FIG. 2 shows the relationship between CH 4 concentration and temperature in the gas after reaction and the equilibrium concentration of CH 4 at each temperature when catalysts A and D are used. .
In each graph of FIG. 2, the dotted line indicates the equilibrium concentration (calculated value) for each component.

Figure 2010194534
Figure 2010194534

表1および図2に示すように、触媒D(活性のない石英砂)を用いた場合、反応後のガスは、各成分濃度が平衡濃度(計算値)とは大きくずれているが、BaCO3とBaTiO3からなる触媒Aを用いた場合には、ほぼ平衡組成に近いガスが得られており、本発明の実施例にかかる逆シフト反応用触媒Aが、逆シフト反応に対する触媒活性を有していることがわかる。 As shown in Table 1 and 2, when using a catalyst D (activity without quartz sand), the gas after the reaction, each ingredient concentration deviates significantly from the equilibrium concentration (calculated value), BaCO 3 When the catalyst A composed of BaTiO 3 is used, a gas almost in equilibrium composition is obtained, and the reverse shift reaction catalyst A according to the example of the present invention has catalytic activity for the reverse shift reaction. You can see that

(2)5気圧の加圧下での逆シフト反応試験
本発明の実施例にかかる逆シフト反応用触媒A,B,Cと、比較例の触媒Eを用いて、5気圧の加圧下で、二酸化炭素と水素を含む原料ガスから、一酸化炭素と水蒸気を生成させる逆シフト反応試験を行い、触媒A,B,Cと触媒Eの特性を比較し、評価した。
(2) Reverse shift reaction test under pressure of 5 atm Using the catalysts A, B, and C for reverse shift reaction according to the examples of the present invention and the catalyst E of Comparative Example, carbon dioxide was added under pressure of 5 atm. A reverse shift reaction test for generating carbon monoxide and water vapor from a raw material gas containing carbon and hydrogen was conducted, and the characteristics of the catalysts A, B, C and the catalyst E were compared and evaluated.

逆シフト反応試験は、図1に示す試験装置を用い、反応管1に、上記のようにして製造した逆シフト反応用触媒(触媒A,B,CとE)3をそれぞれ5cc充填し、ヒーター2により、700℃に加熱し、反応管1のガス入口4から水素(H2)と二酸化炭素(CO2)の混合ガス(H2:CO2=63:37(容積比))を10NL/hの割合(SV(空間速度)=2000h-1)で2時間流通させることにより行った。
なお、試験中は圧力調整器6を操作することで反応管1内の圧力を5気圧に保持した。
また、試験中は反応管1のガス出口5から排出されるガスを分析装置に導入してガス組成を分析し、得られたガス組成(測定値)を、平衡計算を行って求めた平衡ガス組成(計算値)と比較した。
In the reverse shift reaction test, 5 cc each of the reverse shift reaction catalysts (catalysts A, B, C, and E) 3 produced as described above were filled in the reaction tube 1 using the test apparatus shown in FIG. 2 is heated to 700 ° C., and a mixed gas of hydrogen (H 2 ) and carbon dioxide (CO 2 ) (H 2 : CO 2 = 63: 37 (volume ratio)) is supplied from the gas inlet 4 of the reaction tube 1 to 10 NL / It was carried out by circulating for 2 hours at a ratio of h (SV (space velocity) = 2000 h −1 ).
During the test, the pressure in the reaction tube 1 was maintained at 5 atm by operating the pressure regulator 6.
In addition, during the test, the gas discharged from the gas outlet 5 of the reaction tube 1 is introduced into the analyzer to analyze the gas composition, and the obtained gas composition (measured value) is the equilibrium gas obtained by performing the equilibrium calculation. It was compared with the composition (calculated value).

表2に、各触媒を用いて、5気圧の加圧下で行った逆シフト反応試験における、反応後におけるガス組成(測定値)と、平衡ガス組成(計算値)を示す。
なお、この5気圧、700℃という条件は、平衡ガス組成においても、メタネーション反応により生成するメタン(CH4)が5.9%(vol%)の割合で存在するような条件である。
Table 2 shows the gas composition (measured value) and the equilibrium gas composition (calculated value) after the reaction in the reverse shift reaction test conducted under the pressure of 5 atm using each catalyst.
The conditions of 5 atm and 700 ° C. are conditions in which methane (CH 4 ) produced by the methanation reaction is present at a rate of 5.9% (vol%) even in the equilibrium gas composition.

Figure 2010194534
Figure 2010194534

表2より、市販のメタンの水蒸気改質触媒である比較例の触媒Eを用いた場合には、反応後の生成ガスは5.7%のCH4を含有していることがわかる。
これは、市販のCH4の水蒸気改質触媒である比較例の触媒Eが、逆シフト反応に対して触媒活性を有する一方、改質反応の逆反応であるメタネーションに対しても活性を有するため、反応後の生成ガスが、メタネーションも含めて平衡組成とほぼ同じガス組成(すなわち、5.7%のメタン(CH4)を含むガス組成)となったものと考えられる。
From Table 2, when using the catalyst E of Comparative Example is a steam reforming catalyst commercially available methane product gas after reaction is seen to contain 5.7% of CH 4.
This is because the catalyst E of the comparative example which is a commercially available CH 4 steam reforming catalyst has catalytic activity for the reverse shift reaction, but also has an activity for methanation which is the reverse reaction of the reforming reaction. Therefore, it is considered that the product gas after the reaction has almost the same gas composition as the equilibrium composition including methanation (that is, a gas composition containing 5.7% methane (CH 4 )).

一方、触媒A〜Cを用いた場合、反応後の生成ガスはCH4をほとんど含有していないことがわかる。これは、メタン改質活性を持たない本発明の実施例にかかる触媒A〜Cは、逆シフト反応のみを選択的に進行させるため、5気圧、700℃という、高温、加圧条件下でもメタン(CH4)の生成を抑えることができたものと考えられる。
また、表2より、触媒A〜Cを用いた場合、メタン(CH4)濃度が低く、H2濃度の高い、利用価値の高い合成ガスが得られることがわかる。
On the other hand, when using the catalyst A through C, the product gas after the reaction it can be seen that hardly contains CH 4. This is because the catalysts A to C according to the examples of the present invention having no methane reforming activity allow only the reverse shift reaction to proceed selectively. It is thought that the generation of (CH 4 ) could be suppressed.
Moreover, it can be seen from Table 2 that when catalysts A to C are used, synthesis gas having a low methane (CH 4 ) concentration, a high H 2 concentration, and a high utility value can be obtained.

また、合成ガスを原料に用いる液体燃料などの化学合成においては、一般に合成圧力が高いほど転化率が増加することが知られている。そのため、この化学合成プロセスの前段の、合成ガスの製造プロセス(逆シフト反応プロセス)においても、加圧プロセスを採用することが望まれるが、本発明によればその要請に応えることが可能になる。
また、前段の、合成ガスの製造プロセス(逆シフト反応プロセス)から、化学合成プロセスまでのプロセス全体を加圧条件で行うことにより、設備全体の小型化を図ることが可能になる。
In addition, in chemical synthesis of liquid fuel or the like using synthesis gas as a raw material, it is generally known that the conversion rate increases as the synthesis pressure increases. For this reason, it is desirable to employ a pressurization process in the synthesis gas production process (reverse shift reaction process) before the chemical synthesis process. However, according to the present invention, it is possible to meet the demand. .
Further, by performing the entire process from the synthesis gas production process (reverse shift reaction process) to the chemical synthesis process in the previous stage under a pressurized condition, it is possible to reduce the size of the entire facility.

したがって、高温、加圧条件においてもメタン(CH4)の生成を抑えて、メタン含有率の低い、一酸化炭素と水素を高い割合で含む合成ガスを効率よく製造することが可能な本発明の触媒および本発明の合成ガスの製造方法は、極めて有意義であるということができる。 Therefore, the production of methane (CH 4 ) is suppressed even under high temperature and pressure conditions, and the present invention is capable of efficiently producing a synthesis gas having a low methane content and a high proportion of carbon monoxide and hydrogen. It can be said that the production method of the catalyst and the synthesis gas of the present invention is extremely significant.

また、上記実施例では、アルカリ土類金属として、Ba、Srを用いた場合を例にとって説明したが、アルカリ土類金属としてCaを用いた場合にも同様の作用効果が得られることを確認している。   In the above embodiment, the case where Ba or Sr is used as the alkaline earth metal is described as an example. However, it is confirmed that the same effect can be obtained when Ca is used as the alkaline earth metal. ing.

また、上記実施例では、アルカリ土類金属とともに複合酸化物を構成する成分として、Ti,Alを用いた場合について説明したが、Ti,Alに代えて、Zr,Fe,W、Moを用いた場合にも、同様の作用効果が得られることを確認している。   In the above-described embodiment, the case where Ti and Al are used as the components constituting the composite oxide together with the alkaline earth metal has been described. However, Zr, Fe, W, and Mo were used instead of Ti and Al. Even in this case, it has been confirmed that the same effect can be obtained.

本発明はさらにその他の点においても上記の実施例に限定されるものではなく、逆シフト反応用触媒の製造方法や、本発明の逆シフト反応用触媒を用いる場合の逆シフト反応の具体的な条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above examples in other respects as well, and is a specific example of a method for producing a reverse shift reaction catalyst or a reverse shift reaction when using the reverse shift reaction catalyst of the present invention. With respect to conditions and the like, various applications and modifications can be made within the scope of the invention.

1 反応管
2 ヒーター
3 逆シフト反応用触媒
4 反応管のガス入口
5 反応管のガス出口
6 圧力調整器
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Heater 3 Reverse shift reaction catalyst 4 Gas inlet of reaction tube 5 Gas outlet of reaction tube 6 Pressure regulator

Claims (4)

二酸化炭素と水素から一酸化炭素と水蒸気を生成させるために用いられる逆シフト反応用触媒であって、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属の炭酸塩と、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分を含む複合酸化物と
を含有することを特徴とする逆シフト反応用触媒。
A reverse shift reaction catalyst used to generate carbon monoxide and water vapor from carbon dioxide and hydrogen,
At least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba;
At least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba, and a composite oxide containing at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo. A reverse shift reaction catalyst characterized by containing.
前記複合酸化物が、ATiO3,AAl24,AZrO3,AFe24,AWO4,A2WO5,AMoO4(AはCa,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属)であることを特徴とする、請求項1記載の逆シフト反応用触媒。 The composite oxide is at least one selected from the group consisting of ATiO 3 , AAl 2 O 4 , AZrO 3 , AFe 2 O 4 , AWO 4 , A 2 WO 5 , AMoO 4 (A is Ca, Sr and Ba). The catalyst for reverse shift reaction according to claim 1, wherein the catalyst is an alkaline earth metal). 二酸化炭素と水素から一酸化炭素と水蒸気を生成させるために用いられる逆シフト反応用触媒の製造方法であって、
Ca,SrおよびBaからなる群より選ばれる少なくとも1種類のアルカリ土類金属と、Ti,Al,Zr,Fe,WおよびMoからなる群より選ばれる少なくとも1種類の成分との複合酸化物を合成する工程と、
前記複合酸化物に二酸化炭素を吸収させて炭酸塩を生成させる工程と
を含むことを特徴とする逆シフト反応用触媒の製造方法。
A method for producing a reverse shift reaction catalyst used for producing carbon monoxide and water vapor from carbon dioxide and hydrogen,
A composite oxide of at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba and at least one component selected from the group consisting of Ti, Al, Zr, Fe, W and Mo is synthesized. And a process of
And a step of causing the composite oxide to absorb carbon dioxide to produce a carbonate.
二酸化炭素と水素を含む原料ガスを、700℃以上の温度条件で、請求項1または2記載の逆シフト反応用触媒と接触させて、逆シフト反応させることを特徴とする合成ガスの製造方法。   A method for producing a synthesis gas, comprising subjecting a raw material gas containing carbon dioxide and hydrogen to a reverse shift reaction catalyst according to claim 1 or 2 under a temperature condition of 700 ° C. or more to cause a reverse shift reaction.
JP2010020141A 2009-02-02 2010-02-01 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas Active JP5402683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020141A JP5402683B2 (en) 2009-02-02 2010-02-01 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009021691 2009-02-02
JP2009021691 2009-02-02
JP2010020141A JP5402683B2 (en) 2009-02-02 2010-02-01 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas

Publications (2)

Publication Number Publication Date
JP2010194534A true JP2010194534A (en) 2010-09-09
JP5402683B2 JP5402683B2 (en) 2014-01-29

Family

ID=42819826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020141A Active JP5402683B2 (en) 2009-02-02 2010-02-01 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas

Country Status (1)

Country Link
JP (1) JP5402683B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065194A1 (en) * 2009-11-27 2011-06-03 株式会社村田製作所 Anti-shift reaction catalyst, and process for production of synthetic gas using same
WO2012153762A1 (en) * 2011-05-11 2012-11-15 株式会社村田製作所 Reverse shift reaction catalyst, and method for producing synthetic gas using same
WO2013135707A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for producing a carbon monoxide-containing gas mixture at high temperatures on mixed metal oxide catalysts comprising noble metals
WO2013135662A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts
WO2013135663A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal
JP2016501823A (en) * 2012-12-21 2016-01-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Parallel production of hydrogen, carbon monoxide and carbon-containing products
CN107429266A (en) * 2015-03-20 2017-12-01 积水化学工业株式会社 The production method and device of organic substance
WO2023286722A1 (en) * 2021-07-12 2023-01-19 積水化学工業株式会社 Reaction vessel, gas production device, gas production system, and gas production method
WO2023100835A1 (en) * 2021-11-30 2023-06-08 積水化学工業株式会社 Apparatus for producing olefin compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3120939A1 (en) 2018-12-03 2020-06-11 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084785A1 (en) * 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof
JP2008169049A (en) * 2007-01-05 2008-07-24 Iwatani Internatl Corp Method and apparatus for producing carburizing gas containing high concentration carbon monoxide
JP2008189480A (en) * 2007-02-01 2008-08-21 Iwatani Internatl Corp Method and apparatus for manufacturing high concentration hydrogen and synthesis gas with high concentration carbon monoxide
JP2008208148A (en) * 2007-02-23 2008-09-11 Iwatani Internatl Corp Method for producing syngas having high carbon monoxide concentration and production apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169049A (en) * 2007-01-05 2008-07-24 Iwatani Internatl Corp Method and apparatus for producing carburizing gas containing high concentration carbon monoxide
WO2008084785A1 (en) * 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof
JP2008189480A (en) * 2007-02-01 2008-08-21 Iwatani Internatl Corp Method and apparatus for manufacturing high concentration hydrogen and synthesis gas with high concentration carbon monoxide
JP2008208148A (en) * 2007-02-23 2008-09-11 Iwatani Internatl Corp Method for producing syngas having high carbon monoxide concentration and production apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065194A1 (en) * 2009-11-27 2011-06-03 株式会社村田製作所 Anti-shift reaction catalyst, and process for production of synthetic gas using same
US8540898B2 (en) 2009-11-27 2013-09-24 Murata Manufacturing Co., Ltd. Catalyst for reverse shift reaction and method for producing synthesis gas using the same
WO2012153762A1 (en) * 2011-05-11 2012-11-15 株式会社村田製作所 Reverse shift reaction catalyst, and method for producing synthetic gas using same
WO2013135707A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for producing a carbon monoxide-containing gas mixture at high temperatures on mixed metal oxide catalysts comprising noble metals
WO2013135662A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts
WO2013135663A1 (en) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal
JP2016501823A (en) * 2012-12-21 2016-01-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Parallel production of hydrogen, carbon monoxide and carbon-containing products
CN107429266A (en) * 2015-03-20 2017-12-01 积水化学工业株式会社 The production method and device of organic substance
WO2023286722A1 (en) * 2021-07-12 2023-01-19 積水化学工業株式会社 Reaction vessel, gas production device, gas production system, and gas production method
WO2023100835A1 (en) * 2021-11-30 2023-06-08 積水化学工業株式会社 Apparatus for producing olefin compound

Also Published As

Publication number Publication date
JP5402683B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402683B2 (en) Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
JP5105007B2 (en) Reverse shift reaction catalyst and synthesis gas production method using the same
JP4420127B2 (en) Carbon dioxide reforming catalyst and method for producing the same
CN101678329B (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
Franchini et al. Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming
KR101529906B1 (en) Process for operating hts reactor
JP5141765B2 (en) Carbon dioxide reforming method
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
WO2012153762A1 (en) Reverse shift reaction catalyst, and method for producing synthetic gas using same
CN112203761A (en) Hydrocarbon reforming catalyst and hydrocarbon reforming device
JP2014073436A (en) Hydrocarbon reforming catalyst, as well as hydrocarbon reforming method and tar reforming method using the same
JP2010015860A (en) Reformer for fuel cell
KR20240021895A (en) Method for producing synthesis gas
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
RU2660648C1 (en) Nanostructured catalyst for obtaining synthesis gas by carbon-acid reforming of methane and method of its obtaining
JP4776403B2 (en) Hydrocarbon reforming catalyst
JP2024500507A (en) Methane reforming catalyst and its manufacturing method
JP2024503471A (en) Methane reforming catalyst and its manufacturing method
JP5242086B2 (en) Hydrogen production ethanol reforming catalyst and hydrogen production method
Bracciale et al. Steam reforming of model compounds from biomass fermentation over nanometric ruthenium modified nickel-lanthanum perovskites catalysts
RU2424974C2 (en) Method of processing light hydrocarbons to synthetic gas
JPWO2008038484A1 (en) Carbon dioxide separation and recovery method
JP2015229125A (en) Method for pretreating hydrocarbon reforming catalyst, hydrocarbon reforming catalyst, and method for reforming hydrocarbon
JP2009102209A (en) Method for producing hydrogen and ethanol reforming catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150