JP4480865B2 - シンチレーション検出器及びベータプラス線を検出する方法 - Google Patents
シンチレーション検出器及びベータプラス線を検出する方法 Download PDFInfo
- Publication number
- JP4480865B2 JP4480865B2 JP2000238223A JP2000238223A JP4480865B2 JP 4480865 B2 JP4480865 B2 JP 4480865B2 JP 2000238223 A JP2000238223 A JP 2000238223A JP 2000238223 A JP2000238223 A JP 2000238223A JP 4480865 B2 JP4480865 B2 JP 4480865B2
- Authority
- JP
- Japan
- Prior art keywords
- scintillator
- source
- photodetector
- light
- side scintillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measurement Of Radiation (AREA)
- Nuclear Medicine (AREA)
Description
【発明の属する技術分野】
本発明は,特にポジトロンCT装置の付属品であり,血中の放射能濃度を連続的にモニターする,いわゆる血中放射能連続モニター装置に利用されるシンチレーション検出器に関するものである。
【0002】
【従来の技術】
医学・医療に利用されるコンピュータトモグラフィー(CT:Computer Tomography )の一種に,ポジトロンCT,いわゆるPET(Positron Emission Tomography)がある。ポジトロンCTは,ポジトロン(陽電子)が消滅することによって生成されるガンマ線を検出し,定量的な画像を得る装置である。ポジトロン(陽電子)を放出する放射性核種で標識した放射性薬剤を生体に投与するなどしておけば,ポジトロンCTにより,その薬剤の分布状況,ひいては代謝状況などを画像化することができる。
ただし,ポジトロンCTにより得られる画像のままでは,その量に次元はない。ポジトロンCTにより得られる画像から,酸素代謝量や,血流量,ぶどう糖代謝量などの物理量を求めるには,例えば血中の放射線濃度を連続的にモニターする血中放射能連続モニター装置などが必要となる。
血中放射能連続モニター装置には,プラスチックシンチレータを光電子増倍管に光学結合したシンチレーション検出器を用いるのが最も一般的である。このシンチレーション検出器では,生体の血管から引き出された血液を通すチューブがプラスチックシンチレータの表面に配置され,チューブ内の血液から放射されるベータプラス線(ポジトロン)が検出される。
【0003】
【発明が解決しようとする課題】
上述のようなプラスチックシンチレータを用いた前記シンチレーション検出器を用いる場合,生体内でポジトロンが消滅することによって生成されたガンマ線がプラスチックシンチレータに入射し,ノイズとなってしまうことがある。この影響を避けるために,放射性核種が例えば最もエネルギーの高い15Oに限定され,またガンマ線による発光パルスより高い電圧に設定された閾値を用いて測定が行われるため,感度が低下するという問題があった。
他方式の装置として,2個のBGOシンチレーション検出器を用いて,チューブ内のポジトロンの消滅によって生成されたガンマ線を同時に計数することにより血中放射能濃度を測定する装置もあるが,この方式の装置においても,生体からのガンマ線を遮蔽するための吸収係数の高い遮蔽体,例えば鉛の厚みを大きくする必要があり,検出器の肥大化,重量増大を招くため,事実上生体の近傍で測定を行うことは困難であった。
本発明は,このような従来の技術における課題を鑑みてなされたものであり,生体などから放出されたガンマ線の影響を避けるために,利用する放射性核種の制限を受けたり,感度を低下させる必要が生じたりしない,比較的小型,軽量の血中放射能連続モニター装置を実現し得るシンチレーション検出器を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上述の目的を達成するために,本発明は,放射線の入射によって発光するシンチレータと,前記シンチレータと光学的に結合された光検出器とを具備したシンチレーション検出器であって,前記シンチレータが,検出対象となるベータプラス線の線源に近設された線源側シンチレータと,前記線源側シンチレータと発光減衰時間が異なり,前記線源側シンチレータと前記光検出器とを光学的に結合する光検出器側シンチレータとを含み,前記線源側シンチレータ,及び前記光検出器側シンチレータの発光に応じた前記光検出器の検出結果に基づいて,前記線源側シンチレータの発光が,前記検出対象となるベータプラス線によるものを含むか否かを判別し得るようにしてなるシンチレーション検出器として構成されている。
この発明では,放射線の入射によって発光するシンチレータに,検出対象となるベータプラス線の線源に近設された線源側シンチレータと,前記線源側シンチレータと発光減衰時間が異なり,前記線源側シンチレータと光検出器とを光学的に結合する光検出器側シンチレータとが含まれる。
前記線源側シンチレータに検出対象となるベータプラス線が入射した場合には,前記線源側シンチレータでベータプラス線(ポジトロン)が消滅することによって生成されるガンマ線が2本正反対方向に放出されることから,そのうちの一本のガンマ線は前記光検出器側シンチレータに入射し,前記光検出器側シンチレータは発光することになる。
前記線源側シンチレータの発光,及び前記光検出器側シンチレータの発光は,重畳して前記光検出器の検出結果に表れるが,前記線源側シンチレータと前記光検出器側シンチレータとでは,発光減衰時間が異なるので,前記線源側シンチレータと前記光検出器側シンチレータの発光を区別することが可能である。
そして,前記線源側シンチレータ,及び前記光検出器側シンチレータ双方に発光が十分認められれば,その発光は前記検出対象となるベータプラス線によるものを含むと判別することができる。
その他の場合,例えば前記線源側シンチレータや前記光検出器側シンチレータのみが発光した場合には,生体からのガンマ線などによるものであると判別することができる。
このように,本発明に係るシンチレーション検出器では,シンチレータの発光がベータプラス線によるものを含むか否かを判別することが可能であるため,放射性核種に制限を設けたり,感度を低下させる必要がなく,また鉛などによるガンマ線の遮蔽を少なくできるので比較的小型で軽量な装置を実現することが可能となる。
【0005】
【発明の実施の形態】
以下,添付図面を参照して,本発明の実施の形態につき説明し,本発明の理解に供する。なお,以下の実施の形態は,本発明の具体例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るシンチレーション検出器の全体構成,及び要部構成を説明するための図である。
図1に示す如く,本発明の実施の形態に係るシンチレーション検出器は,プラスチックシンチレータ(線源側シンチレータの一例)11,BGOシンチレータ(光検出器側シンチレータの一例)12を含むシンチレータ1,光電子増倍管(光検出器の一例であり,以下PMT(:Photo Multiplier Tube )と記載する)2を具備し,PMT2の出力は信号処理装置3に接続されている。
本発明の実施の形態に係るシンチレーション検出器は,例えば前記血中放射能連続モニター装置に用いられるものであり,プラスチックシンチレータ11には,生体の血管から引き出された血液を通すチューブ4を収容するための溝111が形成されている。チューブ4を流れる血液には,ポジトロンを放出する放射性核種(本発明における線源の具体例)が含まれており,プラスチックシンチレータ11は,このポジトロンを検出するためのものである。ポジトロンは,チューブ4から様々な方向に放出されるが,溝111にチューブ4を収容しておけば,チューブ4の周囲の大部分がプラスチックシンチレータ11に囲まれることになり,プラスチックシンチレータ11により多くのポジトロンを入射させ,検出感度を向上させることができる。
プラスチックシンチレータ11は,BGOシンチレータ12を介して,PMT2に光学的に結合されており,プラスチックシンチレータ11に放射線が入射したときの発光は,BGOシンチレータ12を通じてPMT2に入射する。
また,プラスチックシンチレータ11の上面や側面の内壁に反射層を設けておけば,プラスチックシンチレータ11の上部で発光があっても,その発光はPMT2に入射することになる。
BGOシンチレータ12は,ガンマ線を検出するために用いられる。BGOシンチレータ12も,PMT2に光学的に結合されており,BGOシンチレータ12にガンマ線が入射したときの発光も,PMT2に入射する。
【0006】
BGOシンチレータ12に入射することになるガンマ線は,主に2つある。生体中などでポジトロンが消滅することによって生成されたガンマ線と,プラスチックシンチレータ11でポジトロンが消滅することによって生成されたガンマ線である。エネルギーを失ったポジトロンは,図1に示す如く,2本の511keVのガンマ線(γ)を正反対方向に放出する。
生体中などでポジトロンが消滅することによって生成されたガンマ線は,従来のシンチレーション検出器において,ノイズとなっていたものである。
プラスチックシンチレータ11でポジトロンが消滅することによって生成されたガンマ線は,プラスチックシンチレータ11の発光とおおいに相関がある。プラスチックシンチレータ11の吸収係数は小さく,BGOシンチレータ12はプラスチックシンチレータ11に隣接して配置されているので,プラスチックシンチレータ11で生成されたガンマ線のほとんど半分はBGOシンチレータ12に入射することになるからである。
従って,プラスチックシンチレータ11とBGOシンチレータ12の双方が十分に発光していると,プラスチックシンチレータ11の発光は,検出対象であるポジトロンによるものである可能性が極めて高い。
プラスチックシンチレータ11の発光も,BGOシンチレータ12の発光も,PMT2に入射するが,プラスチックシンチレータ11の発光減衰時間は約20ナノ秒と比較的短く,一方BGOの発光減衰時間は300ナノ秒と比較的長いため,PMT2の出力がいずれかのシンチレータ,又は両方のシンチレータの発光によるものか,容易に判別することができる。
プラスチックシンチレータ11のみが発光していたり,BGOシンチレータ12のみが発光していることが,PMT2の出力から判別された場合には,それらの発光は,ノイズとなるガンマ線によるものである可能性が高い。
プラスチックシンチレータ11の発光が,検出対象であるポジトロンによるものを含むか否かの判別は,例えば信号処理装置3によってなされる。
【0007】
以下,信号処理装置3の動作を説明する。なお,図2はPMT2の出力例とそのときの信号処理装置3の動作を時系列に示すタイムチャートである。
図2(a)は,PMT2の出力例を示す。図2(a)には,急激に立ち上がり直ぐに減衰する波形と,徐々に減衰する波形とが重畳された波形が示されている。前者が,プラスチックシンチレータ11によるものであり,後者がBGOシンチレータ12によるものである。
信号処理装置3は,まずPMT2の出力波形の強度と閾値とを比較する。PMT2の出力波形の強度が閾値よりも大きい場合には,ポジトロンかガンマ線によりプラスチックシンチレータ11が発光したものとされる。この場合には,信号処理装置3は,プラツチックシンチレータ11による出力が減衰した後の波形の強度を調べることを意味するフラグを設定する(図2(b))。予めプラスチックシンチレータ11について信号処理装置3に発光減衰時間が記憶されており,前記フラグが設定されると,プラスチックシンチレータ11による波形が最大となったときと前記発光減衰時間とを用いて,信号処理装置3により,プラスチックシンチレータ11による出力が減衰した時間が定められる。信号処理装置3には,BGOシンチレータ12の発光減衰時間も予め記憶されており,図2(c)に示す如く,プラスチックシンチレータ11による出力が減衰した時間からBGOシンチレータ12による出力が減衰するまでの時間が定められる。次に,この定められた時間域のはじまりの時間から各時間ステップ毎に順次信号処理装置3により積分演算が行われる。積分演算により求められる積分波形を示すのが図2(d)である。各時間ステップ毎に積分演算を行いながら,積分演算を行う前記時間域が終了すると,信号処理装置3により,その時間の積分波形の強度と前記閾値とは異なる別の閾値とを比較することを表すフラグが設定される(図2(e)参照)。このフラグが設定されると,その時間の積分波形の強度と前記別の閾値との比較が行われ,その時間の積分波形の強度が前記別の閾値よりも大きい場合には,プラスチックシンチレータ11の発光はポジトロンによるものであるとの判別が信号処理装置3によりされる。一方,その時間の積分波形の強度が前記別の閾値以下である場合には,プラスチックシンチレータ11の発光はノイズとなるガンマ線によるものであるとの判別が信号処理装置3によりされる。いずれにしても,積分演算を行う前記時間域が終了した後のフラグが設定された後,図2(f)に示す如く,積分演算を終了することを指示するリセット信号が生成され,信号処理装置3による積分演算処理が終了する。
【0008】
信号処理装置3を用いたこの例では,プラスチックシンチレータ11による出力とBGOシンチレータ12による出力の積分値がそれぞれ前記閾値,前記別の閾値よりも大きい場合に,プラスチックシンチレータ11の発光は,ポジトロンによるものであるとの判別がなされる。
また,プラスチックシンチレータ11による出力が前記閾値以下である場合や,プラスチックシンチレータ11による出力が前記閾よりも大きくても,BGOシンチレータ12による出力の積分値が前記別の閾値以下である場合には,プラスチックシンチレータ11が発光していても,その発光はポジトロンによるものではないとの判別がなされる。
このように,本発明の実施の形態に係るシンチレーション検出器では,シンチレータの発光がポジトロンによるものを含むか否かを判別することが可能であるため,放射性核種に制限を設けたり,感度を低下させる必要がなく,また鉛などによるガンマ線の遮蔽を少なくできるので比較的小型で軽量な装置を実現することが可能となる。
なお,前記実施の形態では,線源側シンチレータにプラスチックシンチレータ11を,光検出器側シンチレータにBGOシンチレータ12をそれぞれ用いたが,これに限られるものではない。さらに,線源側シンチレータと光検出器側シンチレータの発光減衰時間は異なればよく,線源側シンチレータの発光減衰時間が光検出器側シンチレータの発光減衰時間より大きくても小さくてもよい。ただし,線源側シンチレータの吸収係数は小さく,光検出器側シンチレータの吸収係数は大きいのが好ましい。
また,前記実施の形態では,光検出器にPMTを用いたが,これに限られるものではなく,アバランシェフォトダイオードやフォトダイオードなどの他の光電変換手段を用いることもできる。
また,前記実施の形態では,線源側シンチレータに形成された溝にチューブを収容したが,溝の代わりに線源側シンチレータに孔を形成し,この孔にチューブを挿通させるようにしてもよい。また,線源側シンチレータに形成されるチューブを収容するための溝又は孔を曲線形状にすれば,検出器内に存在する血液の総量を増加することができ感度を向上させることができる。
また,前記実施の形態では,ポジトロンが線源側シンチレータで消滅することによって生成された対のガンマ線のうち一方のみを光検出器側シンチレータにより検出していた。これについて,例えば前記チューブ(,すなわち本発明における線源)を挟んで前記光検出器側シンチレータと対向する位置に,ガンマ線を検出するための他のシンチレータと,前記他のシンチレータに光学的に結合された他の光検出器とを配置し,前記光検出器,及び前記他の光検出器に基づいて,前記線源側シンチレータの発光が,前記検出対象となるベータプラス線によるものを含むか否かを判別し得るようにすれば,前記線源側シンチレータでベータプラス線(ポジトロン)が消滅することによって生成される一対のガンマ線の双方について,前記光検出器,及び前記他の光検出器により検出を行うことが可能となるため,ガンマ線に対する検出感度をさらに向上させ,前記判別の信頼性を向上させることができる。
【0009】
【発明の効果】
以上説明した通り,本発明に係るシンチレーション検出器では,シンチレータの発光がベータプラス線によるものを含むか否かを判別することが可能であるため,放射性核種に制限を設けたり,感度を低下させる必要がなく,また鉛などによるガンマ線の遮蔽を少なくできるので比較的小型で軽量な装置を実現することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るシンチレーション検出器の概略構成及び要部構成を説明するための図。
【図2】 本発明の実施の形態に係るシンチレーション検出器を用いた線源の判別方法を説明するための図。
【符号の説明】
1…シンチレータ
2…PMT
4…チューブ
11…プラスチックシンチレータ
12…BGOシンチレータ
111…溝
Claims (2)
- 放射線の入射によって発光するシンチレータと,前記シンチレータと光学的に結合された光検出器と,該光検出器の検出信号を処理する信号処理装置と,を具備したシンチレーション検出器であって,
前記シンチレータが,検出対象となるベータプラス線の線源に近設された線源側シンチレータと,前記線源側シンチレータと発光減衰時間が異なり,前記線源側シンチレータと前記光検出器とを光学的に結合する光検出器側シンチレータと,を含み,
前記信号処理装置が,前記線源側シンチレータ,及び前記光検出器側シンチレータの発光に応じた前記光検出器の検出結果に基づいて,前記線源側シンチレータ及び前記光検出器側シンチレータ双方に発光が認められた場合に,前記線源側シンチレータの発光が,前記検出対象となるベータプラス線によるものを含むと判別してなるシンチレーション検出器。 - 放射線の入射によって発光するシンチレータと光学的に結合された光検出器の検出信号に基づいてベータプラス線を検出する方法であって,
前記シンチレータが,検出対象となるベータプラス線の線源に近設された線源側シンチレータと,前記線源側シンチレータと発光減衰時間が異なり,前記線源側シンチレータと前記光検出器とを光学的に結合する光検出器側シンチレータと,を含む状況下で,
前記線源側シンチレータ,及び前記光検出器側シンチレータの発光に応じた前記光検出器の検出結果に基づいて,前記線源側シンチレータ及び前記光検出器側シンチレータ双方に発光が認められた場合に,前記線源側シンチレータの発光が,前記検出対象となるベータプラス線によるものを含むと判別してなるベータプラス線を検出する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000238223A JP4480865B2 (ja) | 2000-08-07 | 2000-08-07 | シンチレーション検出器及びベータプラス線を検出する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000238223A JP4480865B2 (ja) | 2000-08-07 | 2000-08-07 | シンチレーション検出器及びベータプラス線を検出する方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002048869A JP2002048869A (ja) | 2002-02-15 |
JP2002048869A5 JP2002048869A5 (ja) | 2007-09-20 |
JP4480865B2 true JP4480865B2 (ja) | 2010-06-16 |
Family
ID=18729959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000238223A Expired - Lifetime JP4480865B2 (ja) | 2000-08-07 | 2000-08-07 | シンチレーション検出器及びベータプラス線を検出する方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4480865B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5376623B2 (ja) * | 2008-04-25 | 2013-12-25 | 国立大学法人 奈良先端科学技術大学院大学 | 放射線検出器 |
US9423514B2 (en) * | 2011-12-02 | 2016-08-23 | Koninklijke Philips N.V. | Detection apparatus comprising two scintillators for detecting X-ray radiation |
JP5660505B2 (ja) * | 2012-03-19 | 2015-01-28 | 長崎県公立大学法人 | 放射線測定装置、およびこれを用いた管理システム、多項目監視システム |
-
2000
- 2000-08-07 JP JP2000238223A patent/JP4480865B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002048869A (ja) | 2002-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9069089B2 (en) | Methods and systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography | |
CA2252993C (en) | Detector assembly for multi-modality scanners | |
JP4766407B2 (ja) | 放射線線量計および放射線線量計算プログラム | |
JP3976772B2 (ja) | 熱中性子束モニタ | |
US8660236B2 (en) | Method and apparatus for detecting low and high x-ray flux | |
US20020195565A1 (en) | PET scanner | |
WO2007043137A9 (ja) | 核医学診断装置 | |
US7381956B2 (en) | Detector element for spatially resolved detection of gamma radiation | |
US6858847B1 (en) | Circuit and method for energy discrimination of coincident events in coincidence detecting gamma camera system | |
US20080121806A1 (en) | Wavelength shifting lightguides for optimal photodetection in light-sharing applications | |
US6281504B1 (en) | Diagnostic apparatus for nuclear medicine | |
JP5376623B2 (ja) | 放射線検出器 | |
KR101174485B1 (ko) | Pet 장치 및 pet 장치의 신호 처리 방법 | |
JP4480865B2 (ja) | シンチレーション検出器及びベータプラス線を検出する方法 | |
JP2007529750A (ja) | 陽電子放出断面撮影におけるランダム同時発生を否認する方法および機器 | |
JP3979599B2 (ja) | 核医学撮像装置 | |
US5015861A (en) | Lead carbonate scintillator materials | |
Yamamoto et al. | Optical fiber-based ZnS (Ag) detector for selectively detecting alpha particles | |
JP2003329774A (ja) | 入力関数持続モニタ | |
JP4814808B2 (ja) | 核医学撮像装置 | |
KR20060109380A (ko) | 3개 이상의 결정층이 형성된 섬광검출기 및 이를 이용한양전자 방출 단층촬영장치 | |
US20040159791A1 (en) | Pet/spect nuclear scanner | |
KR102399325B1 (ko) | 감마선의 반응 위치를 구별하여 검출하는 방사선 검출기 및 이를 포함하는 핵 의학 영상 장치 | |
JP4737104B2 (ja) | 光子検出器の位置情報算出方法及びそれを用いたポジトロンct装置 | |
JP4997603B2 (ja) | 陽電子画像の感度を向上させる方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070802 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100317 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160326 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |