JP4480747B2 - Heat exchanger for chiller - Google Patents

Heat exchanger for chiller Download PDF

Info

Publication number
JP4480747B2
JP4480747B2 JP2007232899A JP2007232899A JP4480747B2 JP 4480747 B2 JP4480747 B2 JP 4480747B2 JP 2007232899 A JP2007232899 A JP 2007232899A JP 2007232899 A JP2007232899 A JP 2007232899A JP 4480747 B2 JP4480747 B2 JP 4480747B2
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
heat exchange
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007232899A
Other languages
Japanese (ja)
Other versions
JP2008064451A (en
Inventor
キョン 錫 孔
Original Assignee
株式会社大日冷却機
キョン 錫 孔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大日冷却機, キョン 錫 孔 filed Critical 株式会社大日冷却機
Publication of JP2008064451A publication Critical patent/JP2008064451A/en
Application granted granted Critical
Publication of JP4480747B2 publication Critical patent/JP4480747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は小型冷却機設備に使用される冷却機用熱交換器に係り、更に詳しくは、内部に熱交換パイプ16が挿入された熱交換部11aと、冷却水の排出通路部11bと、を“U”字型通路で連通して棒形状の熱交換器本体11を形成し、前記熱交換パイプ16に冷媒注入用毛細管17を二重管の形態で挿入し、熱交換パイプ16の入口側に冷媒排出管18と冷媒注入用毛細管17とを挿入し、熱交換パイプ16と冷媒注入用毛細管17と冷媒排出管18とを一体化した配管に集積して配管構造を単純化し、熱交換器本体11の熱交換部11aと熱交換パイプ16との間に水の流れを渦流式で誘導する螺旋形仕切り20を設置し、熱交換パイプ16と冷媒注入用毛細管17との間に冷媒の流れを渦流で誘導する螺旋形仕切り23を設置することで、熱交換器10の体積を縮小した装置を構成し、配管連結部を通じた漏水の危険を減少させると共に、熱交換パイプ16の電熱面積当たり熱效率を向上させることによって、熱交換器の体積を縮小した冷却機用熱交換器に関するものである。   The present invention relates to a heat exchanger for a cooler used in a small cooler facility, and more specifically, includes a heat exchange part 11a having a heat exchange pipe 16 inserted therein, and a cooling water discharge passage part 11b. A bar-shaped heat exchanger body 11 is formed by communicating with a “U” -shaped passage, and a refrigerant injection capillary tube 17 is inserted into the heat exchange pipe 16 in the form of a double pipe. The refrigerant discharge pipe 18 and the refrigerant injection capillary 17 are inserted into the pipe, and the heat exchange pipe 16, the refrigerant injection capillary 17 and the refrigerant discharge pipe 18 are integrated into an integrated pipe to simplify the pipe structure, and the heat exchanger A spiral partition 20 is installed between the heat exchange part 11a of the main body 11 and the heat exchange pipe 16 to guide the flow of water in a vortex manner, and the refrigerant flows between the heat exchange pipe 16 and the refrigerant injection capillary 17. Installing spiral partition 23 to guide the vortex The volume of the heat exchanger 10 is reduced, and the volume of the heat exchanger is reduced by reducing the risk of water leakage through the pipe connection part and improving the heat efficiency per electric heating area of the heat exchange pipe 16. The present invention relates to a heat exchanger for a cooling machine.

一般に家庭で観賞魚を飼育するのに使用する観賞魚用水槽や、活魚料理店で活魚や各種海産物を高密度で保管するために使用する活魚水槽には、水槽の水温を一定に維持するための冷却設備が設置される。一般にこのような冷却設備には工業用や他の産業用に比べて小さな設備が用いられる。   In general, aquarium fish tanks used for raising ornamental fish at home and live fish tanks used to store live fish and various marine products at high density in live fish restaurants are used to maintain a constant water temperature in the aquarium. The cooling equipment is installed. In general, such cooling equipment is smaller than that for industrial use or other industries.

図1に示すように、従来の冷却機用熱交換器100は、ボックス形状を有する熱交換器本体110と、熱交換器本体110の上側に設置された冷却水流入管111と、冷却水排出管112と、熱交換器本体110の前方に設置された冷媒流入管113と、冷媒排出管114と、センサー連結管116と、を有する。前記センサー連結管116には電線118を具備する水温測定用センサー117が挿入される。   As shown in FIG. 1, a conventional heat exchanger 100 for a cooler includes a heat exchanger body 110 having a box shape, a cooling water inflow pipe 111 installed on the upper side of the heat exchanger body 110, and a cooling water discharge pipe. 112, a refrigerant inflow pipe 113 installed in front of the heat exchanger main body 110, a refrigerant discharge pipe 114, and a sensor connection pipe 116. A water temperature measuring sensor 117 having an electric wire 118 is inserted into the sensor connecting pipe 116.

また、熱交換器本体110の内部にはコイル状の熱交換パイプ115が設置され、熱交換パイプ115の両端が冷媒流入管113と冷媒排出管114とに接続され、熱交換パイプ115を通じた冷媒の流動を可能にする(例えば特許文献1参照)。同時にその外周部が冷却水の保持空間になり、水温測定用センサー117の検出部(図示せず)が冷却水保持空間に突出して水温を測定する。   In addition, a coiled heat exchange pipe 115 is installed inside the heat exchanger body 110, and both ends of the heat exchange pipe 115 are connected to the refrigerant inflow pipe 113 and the refrigerant discharge pipe 114, and the refrigerant through the heat exchange pipe 115 (See, for example, Patent Document 1). At the same time, the outer peripheral portion becomes a cooling water holding space, and a detection portion (not shown) of the water temperature measuring sensor 117 projects into the cooling water holding space to measure the water temperature.

図2に示すように、この構成の冷却機用熱交換器100は、熱交換装置200のケーシング210内部に挿入された熱交換器本体110と、コンプレッサー220と、放熱ファン240を具備する放熱器230と、によって構成される。冷媒流入管113と冷媒排出管114とが、冷媒配管によって放熱器230とコンプレッサー220とに夫々連結される。冷却水流入管111と冷却水排出管112とには冷却水の流入と排出のためのホース119が連結される。   As shown in FIG. 2, the heat exchanger 100 for a chiller having this configuration includes a heat exchanger body 110 inserted into the casing 210 of the heat exchange device 200, a compressor 220, and a heat radiating fan 240. 230. The refrigerant inflow pipe 113 and the refrigerant discharge pipe 114 are connected to the radiator 230 and the compressor 220 by refrigerant pipes, respectively. The cooling water inflow pipe 111 and the cooling water discharge pipe 112 are connected to a hose 119 for inflow and discharge of the cooling water.

コンプレッサー220による冷凍サイクルの作動によって、熱交換器本体110内部の熱交換パイプ115を通じて冷媒が吐出されると、冷却水流入管111から熱交換器本体110の内部に流入された水が一冷却され、冷却水排出管112を通じて熱交換器100から外部に供給されることで、観賞魚水槽や活魚水槽に冷却水が供給される(例えば特許文献1参照)。   When the refrigerant is discharged through the heat exchange pipe 115 inside the heat exchanger main body 110 by the operation of the refrigeration cycle by the compressor 220, the water flowing into the heat exchanger main body 110 from the cooling water inflow pipe 111 is cooled once, The cooling water is supplied to the aquarium fish tank and the live fish tank by being supplied from the heat exchanger 100 to the outside through the cooling water discharge pipe 112 (see, for example, Patent Document 1).

しかし、従来の冷却機用熱交換器100は、熱交換器本体110が箱型であり、体積が大きくなるという問題点があった。従って、熱交換器100とコンプレッサー220と放熱器230とを使って熱交換装置200を構成する場合、熱交換装置200の寸法が大きくなり、小型化した熱交換装置200を提供しにくいという問題点があった。
また、熱交換器100の熱交換器本体110が箱型であることによって、冷却水流入管111を通じて流入された冷却水が熱交換器本体110の内部で滞溜し、冷却水の流速が遅い状態で熱交換パイプ115と熱交換を行うために、熱交換パイプ115の冷却効率が低いという問題点があり、このために熱交換器100による冷却機の冷却性能が低いという問題点があった。
However, the conventional heat exchanger 100 for a cooler has a problem that the heat exchanger body 110 is box-shaped and the volume increases. Accordingly, when the heat exchange device 200 is configured using the heat exchanger 100, the compressor 220, and the radiator 230, the size of the heat exchange device 200 increases, and it is difficult to provide a miniaturized heat exchange device 200. was there.
Further, since the heat exchanger main body 110 of the heat exchanger 100 is box-shaped, the cooling water flowing in through the cooling water inflow pipe 111 is stagnated inside the heat exchanger main body 110, and the flow rate of the cooling water is slow. In order to exchange heat with the heat exchange pipe 115, there is a problem that the cooling efficiency of the heat exchange pipe 115 is low, and for this reason, there is a problem that the cooling performance of the cooler by the heat exchanger 100 is low.

冷却性能を向上させる目的で、熱交換パイプの電熱面積を広くするために熱交換パイプ115を数十回コイル状に巻いて熱交換器本体110を長くした熱交換器100を制作したが、これは冷却性能の向上を達成するよりは、熱交換器100の体積が大きくなり、熱交換パイプ115をコイル状に曲げるという難しい工程によって製造単価を上昇させる副作用を伴い、結局は熱交換パイプ115の素材になるステンレススチールとチタンとの無駄使いとなるものであった。   For the purpose of improving the cooling performance, in order to increase the electric heat area of the heat exchange pipe, the heat exchanger 100 was produced by winding the heat exchange pipe 115 into a coil shape several tens of times to make the heat exchanger body 110 longer. Rather than achieving improved cooling performance, the volume of the heat exchanger 100 becomes larger, with the side effect of increasing the manufacturing unit cost due to the difficult process of bending the heat exchange pipe 115 into a coil shape. It was a waste of stainless steel and titanium.

熱交換器本体110の内部を冷却水が流れるという熱交換器100の特性上、熱交換装置200の安全のためには、冷却水流入管111と、冷却水排出管112と、冷媒流入管113と、冷媒排出管114と、のような配管の連結部品に対する防水処理を確実する必要がある。漏水に対する危険性を解消するには、同一の防水処理条件下では配管の連結部品を小型化させることが最も望ましい方法と言える。   Due to the characteristics of the heat exchanger 100 in which cooling water flows inside the heat exchanger main body 110, a cooling water inflow pipe 111, a cooling water discharge pipe 112, a refrigerant inflow pipe 113, In addition, it is necessary to ensure waterproofing for the connecting parts of the piping such as the refrigerant discharge pipe 114. In order to eliminate the danger to water leakage, it can be said that it is the most desirable method to reduce the size of the connecting parts of the pipes under the same waterproof treatment conditions.

冷却水流入管111と冷却水排出管112には柔軟な材質のホース119が連結されるから、その密封作業は比較的容易である。一方、冷媒流入管113や冷媒排出管114には金属管が接続されるから、これに対する作業が困難であるので、熱交換器100で発生する漏水は主に冷媒配管の連結部品が原因となっていた。
このように、熱交換器製品には、小型でありながらも優秀な冷却性能を示すと同時に、冷却機用熱交換器の性能に支障をもたらさずに冷媒配管の連結部品を小型化して漏水の危険を軽減させ、更に製造単価を削減して競争力を高めることが要求されている。
Since a flexible material hose 119 is connected to the cooling water inflow pipe 111 and the cooling water discharge pipe 112, the sealing operation is relatively easy. On the other hand, since a metal pipe is connected to the refrigerant inlet pipe 113 and the refrigerant outlet pipe 114, it is difficult to work on the pipe, and therefore, water leakage generated in the heat exchanger 100 is mainly caused by the connecting parts of the refrigerant pipe. It was.
In this way, heat exchanger products exhibit excellent cooling performance despite their small size, while at the same time reducing the size of the refrigerant pipe connection parts without affecting the performance of the heat exchanger for the chiller. There is a demand to reduce the risk and further increase competitiveness by reducing the manufacturing unit price.

特開平11−169017号公報JP-A-11-169017

本発明は、前記のような問題点を解決するためになされたものであり、本発明による冷却機用熱交換器は、内部に熱交換パイプが挿入された熱交換部と冷却水の排出通路部とを“U”字型通路で連通して棒形状の熱交換器本体を形成し、前記熱交換パイプは内部に冷媒注入用毛細管を二重管の形態で挿入し、熱交換パイプの入口側に冷媒排出管と冷媒注入用毛細管とを挿入し、水の流れを渦流で誘導する螺旋形仕切りを熱交換器本体の熱交換部と熱交換パイプの間に設置し、冷媒の流れを渦流で誘導する螺旋形仕切りを熱交換パイプと冷媒注入用毛細管との間に設置することで、熱交換パイプと冷媒注入用毛細管と冷媒排出管とを単一化された配管で集積して配管構造を単純化させ、熱交換器の体積を縮小した装置を提供することをその技術的な課題とする。   The present invention has been made to solve the above-described problems, and a heat exchanger for a cooler according to the present invention includes a heat exchange section in which a heat exchange pipe is inserted and a discharge passage for cooling water. The heat exchange pipe is inserted into the inside of the heat exchange pipe in the form of a double pipe, and the inlet of the heat exchange pipe. A refrigerant discharge pipe and a refrigerant injection capillary tube are inserted on the side, and a spiral partition that guides the flow of water with a vortex is installed between the heat exchange section of the heat exchanger body and the heat exchange pipe to vortex the refrigerant flow. By installing a spiral partition that is guided by the heat exchanger between the heat exchange pipe and the refrigerant injection capillary tube, the heat exchange pipe, the refrigerant injection capillary tube, and the refrigerant discharge pipe are integrated into a single pipe. Its technology to provide a device with a reduced heat exchanger volume And challenges.

また本発明は、熱交換パイプによる熱交換部と冷却水の排出通路部とを“U”字型通路で連通して熱交換パイプによる集中的な冷却を行うようにすることで、熱交換器本体に熱交換パイプを直線形で挿入してその長さを短縮しても、冷却性能が低下しない機構にして熱交換パイプの製造に必要な資材を節約し、熱交換パイプを容易に製作できるようにして熱交換器の製造原価削減すると共に、水と冷媒の流れを渦流で誘導する螺旋形仕切りを熱交換器本体の熱交換部と熱交換パイプ、及び熱交換パイプと冷媒注入用毛細管の間に夫々設置することで、熱交換パイプによる冷却機の冷却性能を向上させることもまた他の技術的課題とする。   In addition, the present invention provides a heat exchanger by performing intensive cooling by the heat exchange pipe by communicating the heat exchange portion by the heat exchange pipe and the discharge passage portion of the cooling water through the “U” -shaped passage. Even if the heat exchange pipe is inserted into the main body in a straight line and its length is shortened, the mechanism that does not deteriorate the cooling performance is used to save materials necessary for manufacturing the heat exchange pipe, and the heat exchange pipe can be easily manufactured. In this way, the manufacturing cost of the heat exchanger is reduced, and the spiral partition that guides the flow of water and the refrigerant with a vortex is provided for the heat exchange section of the heat exchanger body and the heat exchange pipe, and the heat exchange pipe and the capillary tube for injecting the refrigerant. Another technical issue is to improve the cooling performance of the cooler by the heat exchange pipe by installing them respectively.

前記技術的課題を達成するための本発明は、水の流入管12と冷却された排出管13とを有する熱交換器本体11と、熱交換器本体11の内部に挿入され、冷媒が循環される熱交換パイプ16と、を有し、流入管12から流入した水を、熱交換パイプ16で冷却し、冷却水排出管13から排出する冷却機用熱交換器であって、熱交換器本体11は、外観視棒形状を有し、内部は、流入管12と連結する熱交換部11aと、排出管13と結合する排出通路部11bと、が下部で連通された“U”字型の流路を有し、熱交換器本体11の上部に突設された統合連結管14を貫通して、熱交換パイプ16の一端が熱交換部11aの下部まで挿入され、熱交換パイプ16は、一端が封鎖され、他端から冷媒注入用毛細管17が一端の直近まで挿入されて二重管を形成し、他端に設けられた入口は冷媒排出管18が挿入されパッキング16aによって封鎖され、熱交換器本体11の熱交換部11aの内側面と、熱交換パイプ16の外側面と、の間に水を渦流式で循環させるための螺旋形仕切り20を設置して熱交換部11aにおける水の流速を上げ、熱交換パイプ16の外側面の面積の縮小を可能にしたことを特徴とする。 The present invention for achieving the above technical problem, the heat exchanger body 11 and a discharge pipe 13 of the water cooling the inlet pipe 12 of water, is inserted into the heat exchanger body 11, the refrigerant a heat exchange pipe 16 to be circulated, have, inflow water from the inflow pipe 12, cooled in heat exchange pipe 16, a heat exchanger for cooling machine to discharge from the cooling water discharge pipe 13, heat exchanger The main body 11 has a bar shape, and the inside is a “U” shape in which a heat exchanging portion 11 a connected to the inflow pipe 12 and a discharge passage portion 11 b connected to the discharge pipe 13 are communicated at the lower part. The heat exchange pipe 16 is inserted into the lower part of the heat exchanging part 11a through the integrated connecting pipe 14 projecting from the upper part of the heat exchanger body 11 and having a mold type flow path. insert has one end sealed, to the nearest coolant injection capillary 17 at one end from the other end Is to form a double tube, an inlet provided at the other end is blocked by the packing 16a is inserted coolant discharge pipe 18, and the inner side surface of the heat exchange portion 11a of the heat exchanger body 11, the heat exchange pipe 16 A spiral partition 20 for circulating water in an eddy current manner is installed between the outer surface and the flow rate of water in the heat exchanging portion 11a to increase the area of the outer surface of the heat exchanging pipe 16. It is characterized by that.

更に本発明は、統合連結管14先端外周部にねじ部14aが形成され、ねじ部14aにOリング15aを介して漏水防止キャップ15が締結され、漏水防止キャップ15を貫いて熱交換パイプ16が挿入されることが好ましい。
また本発明は、熱交換パイプ16の内側面と冷媒注入用毛細管17の外側面との間に、冷媒注入用毛細管17から吐出されて冷媒排出管18に排出される冷媒を渦流式で循環させるための螺旋形仕切り23が設置され、螺旋形仕切り20による水の下降回転方向と、螺旋形仕切り23による冷媒の上昇回転方向と、を相互に反対方向にすることが好ましい。
Further, according to the present invention , the threaded portion 14a is formed on the outer periphery of the integrated connecting pipe 14 and the water leakage preventing cap 15 is fastened to the threaded portion 14a via the O-ring 15a. The heat exchange pipe 16 penetrates the water leakage preventing cap 15. It is preferably inserted.
In the present invention, the refrigerant discharged from the refrigerant injection capillary 17 and discharged to the refrigerant discharge pipe 18 is circulated between the inner side surface of the heat exchange pipe 16 and the outer side surface of the refrigerant injection capillary tube 17 in a vortex manner. is helical partition 23 is disposed for the downward direction of rotation of the water by the helical partition 20, the increase in the rotation direction of the refrigerant by helical partition 23, to Rukoto preferably in opposite directions to each other.

本発明による冷却機用熱交換器は、内部に熱交換パイプが挿入された熱交換部と、冷却水の排出通路部と、を“U”字型通路で連通して棒形状の熱交換器本体を形成し、前記熱交換パイプは内部に冷媒注入用毛細管を二重管の形態で挿入し、前記熱交換パイプの入口側に冷媒排出管と冷媒注入用毛細管とを挿入することで、熱交換器の体積を削減したことによって小型冷却機に好適に適用できる熱交換器を提供できる效果がある。   The heat exchanger for a cooler according to the present invention is a rod-shaped heat exchanger in which a heat exchanging portion in which a heat exchanging pipe is inserted and a cooling water discharge passage portion are communicated by a “U” -shaped passage. Forming a main body, the heat exchange pipe is inserted with a refrigerant injection capillary in the form of a double pipe, and a refrigerant discharge pipe and a refrigerant injection capillary are inserted into the inlet side of the heat exchange pipe, By reducing the volume of the exchanger, it is possible to provide a heat exchanger that can be suitably applied to a small cooler.

また、熱交換パイプと冷媒注入用毛細管と冷媒排出管とを単一化された統合連結管の集積して配管構造を単純化させると同時に、統合連結管の先端外周部にネジ部を形成し、ネジ部にOリングを介して漏水防止キャップを締結され、漏水防止キャップを貫いて熱交換パイプ16が挿入されるようにしたので、漏水の主な要因になる冷媒配管の連結部品を小型化させて連結部品を通じた漏水の危険を減少させる效果がある。 Further, simultaneously with the simplified integrated to the piping structure of the integrated connecting pipe is unified with the heat exchange pipe and the refrigerant injection capillary and the coolant discharge pipe, forming a screw portion on the tip outer peripheral portion of the integrated connecting pipe Since the water leakage prevention cap is fastened to the screw part via the O-ring, and the heat exchange pipe 16 is inserted through the water leakage prevention cap, the connecting parts of the refrigerant pipe, which is a major cause of water leakage, are downsized. This has the effect of reducing the risk of water leakage through the connecting parts.

また、本発明は熱交換パイプによる熱交換部と冷却水の排出通路部を“U”字型通路で連通することによって、熱交換パイプの外側面に沿って下降する冷却水と熱交換パイプの内部を上昇する冷媒とが対向冷却方式になることによって、熱交換部の内側で冷却水の迅速な冷却が行われ、熱交換パイプの伝熱面積当たり高い熱效率を出すことができる。   Further, the present invention connects the heat exchanging portion by the heat exchanging pipe and the cooling water discharge passage portion by the “U” -shaped passage, so that the cooling water descending along the outer surface of the heat exchanging pipe and the heat exchanging pipe By adopting a counter cooling system with the refrigerant rising in the interior, the cooling water is rapidly cooled inside the heat exchange section, and a high thermal efficiency per heat transfer area of the heat exchange pipe can be obtained.

また、水と冷媒の流れを渦流式で誘導する螺旋形仕切りを熱交換器本体の熱交換部と熱交換パイプ、及び熱交換パイプと冷媒注入用毛細管の間に夫々設置し、螺旋形仕切りによる水の下降回転方向と、螺旋形仕切りによる冷媒の上昇回転方向と、を相互に反対方向にすることすることで、熱交換パイプによる冷却機の冷却性能が向上した熱交換器を提供する效果がある。
これらの効果によって、熱交換器本体の長さを縮小しても冷却性能の低下をもたらさなくなり、熱交換パイプの製造に必要となる資材を節減して、熱交換パイプの製造工程を簡素化し、熱交換器の製造単価削減に寄与する效果がある。
Further, water and spiral partition heat exchanger heat exchanging portion and the heat exchange pipe of the body that the flow of refrigerant induced by vortex, and respectively installed between the heat exchange pipe and the refrigerant injection capillary, by helical partition and lowering the rotation direction of the water, the increase in the rotation direction of the refrigerant by helical partition mutually by it to the opposite direction, is Effect of providing a heat exchanger cooling performance of the cooling device by the heat exchange pipe is improved is there.
By these effects, even if the length of the heat exchanger body is reduced, the cooling performance will not be reduced, the material required for manufacturing the heat exchange pipe will be saved, the manufacturing process of the heat exchange pipe will be simplified, This has the effect of reducing the manufacturing cost of heat exchangers.

以下、前記の目的を達成するための本発明の詳細を、添付した図面を参照して説明する。
図3は本発明の一実施例による冷却機用熱交換器を示す斜視図であり、図4は図3の正面断面図であり、図5は図3の側面断面図であり、図6の(イ)及び(ロ)は水と冷媒との渦流式循環構造を示す要部斜視図であり、図7の(イ)及び(ロ)は本発明の他の実施例を示す冷却機用熱交換器の斜視図であり、図8は本発明による冷却機用熱交換器の設置状態図である。
Hereinafter, details of the present invention for achieving the above object will be described with reference to the accompanying drawings.
3 is a perspective view showing a heat exchanger for a cooler according to an embodiment of the present invention, FIG. 4 is a front sectional view of FIG. 3, FIG. 5 is a side sectional view of FIG. (A) and (b) are main part perspective views showing a vortex circulation structure of water and refrigerant, and (a) and (b) of FIG. 7 are heats for a cooler showing another embodiment of the present invention. FIG. 8 is a perspective view of the exchanger, and FIG. 8 is an installation state diagram of the heat exchanger for the cooler according to the present invention.

図3に示すように、本発明の冷却機用熱交換器10は、体積を縮小させるために、棒形状を有し、長さが延長された熱交換器本体11を有する。熱交換器本体11は、熱交換パイプ16による冷却を行う熱交換部11aと冷却水の排出のための排出通路部11bが“U”字型の通路で連通され、内部に一定な空間を確保することができるように熱交換器本体11の前、後面がふくらんだ形状である。   As shown in FIG. 3, the heat exchanger 10 for a chiller of the present invention has a heat exchanger body 11 having a bar shape and an extended length in order to reduce the volume. In the heat exchanger body 11, a heat exchanging portion 11a for cooling by the heat exchanging pipe 16 and a discharge passage portion 11b for discharging the cooling water are communicated with each other by a “U” -shaped passage to secure a constant space inside. The front and rear surfaces of the heat exchanger main body 11 are inflated so as to be able to.

熱交換部11aの冷却水の流入部に該当する熱交換器本体11の上端に冷却水流入管12が突設され、冷却水流入管12にはホースを連結させるためのホース連結部12aが設置されている。
また、排出通路部11bは熱交換器本体11の上端で横方向に伸長され、冷却水の排出部に該当する端部に冷却水排出管13が突設され、前記冷却水排出管13にはホースを連結させるためのホース連結部13aが設置されている。
A cooling water inflow pipe 12 protrudes from the upper end of the heat exchanger main body 11 corresponding to the cooling water inflow part of the heat exchanging part 11a, and the cooling water inflow pipe 12 is provided with a hose connecting part 12a for connecting a hose. Yes.
Further, the discharge passage portion 11b extends in the lateral direction at the upper end of the heat exchanger main body 11, and a cooling water discharge pipe 13 protrudes from an end corresponding to the cooling water discharge portion. A hose connecting portion 13a for connecting the hose is provided.

熱交換器本体11の上端部を横方向に伸長するのは、熱交換器本体11が棒形状であるために熱交換器本体11の上端部分に冷却水流入管12と冷却水排出管13とを同時に設置する空間がないためであるから、冷却水流入管12と冷却水排出管13とを隣接して設置することができるか、あるいは各ホース連結部12a、13aにホースを連結させる作業に支障がない場合には、熱交換器本体11の上端部を横方向に伸長する必要がないことは自明である。   The reason why the upper end portion of the heat exchanger main body 11 extends in the lateral direction is that the heat exchanger main body 11 has a rod shape, and therefore the cooling water inflow pipe 12 and the cooling water discharge pipe 13 are provided at the upper end portion of the heat exchanger main body 11. This is because there is no space to be installed at the same time, so that the cooling water inflow pipe 12 and the cooling water discharge pipe 13 can be installed adjacent to each other, or there is an obstacle to the work of connecting the hose to each of the hose connection parts 12a and 13a. If not, it is obvious that there is no need to extend the upper end of the heat exchanger body 11 laterally.

熱交換器本体11の上端前方側には冷却水流入管12に近接して統合連結管14及びセンサー連結管19が設置され、センサー連結管19を通じて水温測定用センサーのセンサーチップが冷却水と接触するように挿入される。熱交換器本体11の上端部は前記熱交換部11aが概略三角形態を有しながら一定長さ程度前方側に突出形成されているので、これらを設置する空間を確保することができる。前記センサー連結管19は冷却水排出管13と接した排出通路部11bに設置することもできる。   An integrated connecting pipe 14 and a sensor connecting pipe 19 are installed in front of the upper end of the heat exchanger body 11 in the vicinity of the cooling water inflow pipe 12, and the sensor chip of the water temperature measuring sensor comes into contact with the cooling water through the sensor connecting pipe 19. To be inserted. The upper end portion of the heat exchanger main body 11 is formed so as to protrude forward by a certain length while the heat exchanging portion 11a has a substantially triangular shape, so that a space for installing these can be secured. The sensor connection pipe 19 may be installed in the discharge passage portion 11 b in contact with the cooling water discharge pipe 13.

統合連結管14の先端部外周に形成されたねじ部14aに漏水防止キャップ15が締結され、漏水防止キャップ15を貫いて熱交換パイプ16が挿入される。熱交換パイプ16の入口は冷媒注入用毛細管17及び冷媒排出管18がパッキング16aによって封鎖される。即ち、熱交換器本体11の熱交換部11aに沿って、統合連結管14、熱交換パイプ16、冷媒注入用毛細管17、及び冷媒排出管18を一体化して集積した。   The water leakage prevention cap 15 is fastened to the screw portion 14 a formed on the outer periphery of the distal end portion of the integrated connection pipe 14, and the heat exchange pipe 16 is inserted through the water leakage prevention cap 15. The inlet of the heat exchange pipe 16 is sealed with a refrigerant injection capillary 17 and a refrigerant discharge pipe 18 by a packing 16a. That is, the integrated connecting pipe 14, the heat exchange pipe 16, the refrigerant injection capillary 17, and the refrigerant discharge pipe 18 are integrated and integrated along the heat exchange portion 11 a of the heat exchanger body 11.

本発明による熱交換器10の内部構造は、図4及び図5にそれぞれ示すように、熱交換器本体11の内部に沿って熱交換部11aと排出通路部11bとが熱交換器本体11をなすフレームによって両側に分割された状態で“U”字型の通路をなすように連通され、熱交換部11a上部に突設された統合連結管14の内側に熱交換パイプ16が“逆L字型”で挿入され、熱交換パイプ16の内部には冷媒注入用毛細管17が挿入されて二重管を成す。   As shown in FIGS. 4 and 5, the internal structure of the heat exchanger 10 according to the present invention includes a heat exchanger 11 a and a discharge passage 11 b along the inside of the heat exchanger main body 11. The heat exchange pipe 16 is connected to the inside of the integrated connecting pipe 14 projecting from the upper part of the heat exchanging portion 11a so as to form a “U” -shaped passage in a state of being divided on both sides by the formed frame. The refrigerant | coolant injection | pouring capillary 17 is inserted in the inside of the heat exchange pipe 16, and a double pipe | tube is comprised.

熱交換パイプ16の入口は冷媒排出管18及び冷媒注入用毛細管17とともにパッキング16aによって密封され、熱交換パイプ16の末端部も封鎖される。熱交換パイプ16の末端部まで延長された冷媒注入用毛細管17から吐出された冷媒が、熱交換パイプ16の内部空間を上昇した後、熱交換パイプ16の入口と連結した冷媒排出管18から排出されることで、冷媒の流動空間が形成される。   The inlet of the heat exchange pipe 16 is sealed together with the refrigerant discharge pipe 18 and the refrigerant injection capillary 17 by the packing 16a, and the end of the heat exchange pipe 16 is also sealed. The refrigerant discharged from the refrigerant injection capillary tube 17 extended to the end of the heat exchange pipe 16 rises in the internal space of the heat exchange pipe 16 and then is discharged from the refrigerant discharge pipe 18 connected to the inlet of the heat exchange pipe 16. As a result, a refrigerant flow space is formed.

図4及び図5の熱交換器本体11の上端側に破線で表示した部分は、冷却水流入管12及び冷却水排出管13と連通される冷却水流入通路21及び冷却水排出通路22を示すものである。本来は図面に表れないが理解を助けるために表示したものである。
前記漏水防止キャップ15はOリング15aを介して統合連結管14の先端部に締結されているが、このような漏水防止構造を冷却水流入管12と冷却水排出管13とに形成されたホース連結部12a、13aに適用することができる。
4 and FIG. 5, a portion indicated by a broken line on the upper end side of the heat exchanger main body 11 shows the cooling water inflow passage 21 and the cooling water discharge passage 22 communicated with the cooling water inflow pipe 12 and the cooling water discharge pipe 13. It is. Although it does not originally appear in the drawing, it is displayed to aid understanding.
The water leakage prevention cap 15 is fastened to the tip of the integrated connection pipe 14 via an O-ring 15a. Such a water leakage prevention structure is connected to a hose formed in the cooling water inflow pipe 12 and the cooling water discharge pipe 13. It can be applied to the sections 12a and 13a.

また、図4及び図5に示す螺旋形仕切り20は、冷却水流入管12及び冷却水流入通路21を通って熱交換部11aの内部に流入された水を渦流式で回転下降させるためのものである。このように螺旋形仕切り20を形成すると、熱交換パイプ16に沿って下降する水の流れを渦流式で誘導して冷媒による水の冷却性能を向上させることができる。   The spiral partition 20 shown in FIGS. 4 and 5 is used to rotate and descend the water that has flowed into the heat exchange section 11a through the cooling water inflow pipe 12 and the cooling water inflow passage 21 in a vortex manner. is there. When the spiral partition 20 is formed in this way, the flow of water descending along the heat exchange pipe 16 can be guided in a vortex manner to improve the water cooling performance by the refrigerant.

図6の(イ)に示すように、前記螺旋形仕切り20は熱交換パイプ16の外周面に沿って設置される。前記螺旋形仕切り20は熱交換器本体11と一体で射出成形することも、熱交換パイプ16と一体で形成することもできるが、熱交換器本体11と一体で射出成形する方が製造が容易であり、好ましい。   As shown in FIG. 6A, the spiral partition 20 is installed along the outer peripheral surface of the heat exchange pipe 16. The spiral partition 20 can be injection-molded integrally with the heat exchanger body 11 or can be formed integrally with the heat-exchange pipe 16, but it is easier to manufacture by injection-molding integrally with the heat exchanger body 11. It is preferable.

また、図6の(ロ)に示すように、前記熱交換パイプ16の内側面と冷媒注入用毛細管17の外側面の間に冷媒注入用毛細管17から吐出されて冷媒排出管18に吐出される冷媒を渦流式で循環及び上昇させるための螺旋形仕切り23を設置し、冷媒による水の冷却性能をよりさらに向上させることができる。前記螺旋形仕切り23は熱交換パイプ16と一体で形成することも、熱交換パイプ16と一体で形成することもできる。
螺旋形仕切り20による水の下降回転方向と、螺旋形仕切り23による冷媒の上昇回転方向と、を相互に反対方向にすることが冷却性能の向上にはより好ましい。
Also, as shown in FIG. 6B, the refrigerant is injected from the refrigerant injection capillary 17 between the inner surface of the heat exchange pipe 16 and the outer surface of the refrigerant injection capillary 17 and is discharged to the refrigerant discharge pipe 18. A spiral partition 23 for circulating and raising the refrigerant in a vortex manner can be installed to further improve the cooling performance of water by the refrigerant. The spiral partition 23 can be formed integrally with the heat exchange pipe 16 or can be formed integrally with the heat exchange pipe 16.
It is more preferable to improve the cooling performance by making the downward rotation direction of water by the spiral partition 20 and the upward rotation direction of the refrigerant by the spiral partition 23 opposite to each other.

上記の本発明の一実施例では、前記熱交換器本体11が直線の棒形状を有するものを例示したが、図7の(イ)及び(ロ)に示すように、熱交換器本体11の外部及び内部構造はそのままにした状態で、熱交換器本体11の外観形状のみを“L”字型または“コ”の字型に延長して熱交換に必要な伝熱面積を拡大する、すなわち、熱交換部11a及びその内部に挿入される熱交換パイプ16の長さを伸長することもできる。   In the above embodiment of the present invention, the heat exchanger main body 11 has a straight rod shape. However, as shown in FIGS. Extending only the external shape of the heat exchanger main body 11 to the “L” shape or the “U” shape with the external and internal structures being left unchanged, that is, the heat transfer area required for heat exchange is expanded. The length of the heat exchanging portion 11a and the heat exchanging pipe 16 inserted therein can also be extended.

以下、本発明の冷却機用熱交換器の作用を添付された図面を参照して詳細に説明する。
図8に示すように、コンプレッサー220と放熱ファン240を具備する放熱器230と本発明による熱交換器10とを、熱交換装置200のケーシング210内部に挿入し、冷媒注入用毛細管17と冷媒排出管18とを、放熱器230とコンプレッサー220とそれぞれ連結すると共に、冷却水流入管12と冷却水排出管13とに冷却水の流入と排出のためのホースを連結設置する。
Hereinafter, the operation of the heat exchanger for a cooler according to the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIG. 8, the heat exchanger 230 according to the present invention and the heat exchanger 230 having the compressor 220 and the heat radiating fan 240 are inserted into the casing 210 of the heat exchanging device 200, and the refrigerant injection capillary 17 and the refrigerant discharge are inserted. The pipe 18 is connected to the radiator 230 and the compressor 220, and hose for cooling water inflow and discharge is connected to the cooling water inflow pipe 12 and the cooling water discharge pipe 13.

本発明による熱交換器10を、熱交換装置200のケーシング210に設置する場合、本発明による熱交換器10が棒形状であるので体積が小さくなるだけでなく、コンプレッサー220や放熱器230が設置されて余った狭い空間に熱交換器10を設置することで、ケーシング210を縮小して、熱交換器10を小型化することができる。   When the heat exchanger 10 according to the present invention is installed in the casing 210 of the heat exchange device 200, the heat exchanger 10 according to the present invention has a rod shape, so that not only the volume is reduced, but also the compressor 220 and the radiator 230 are installed. By installing the heat exchanger 10 in an excessively narrow space, the casing 210 can be reduced and the heat exchanger 10 can be downsized.

本発明による熱交換器10をコンプレッサー220及び放熱器230と共に設置した後、コンプレッサー220を駆動して冷凍サイクルを作動させると、コンプレッサー220から放熱器230を経て冷媒注入用毛細管17に流入した冷媒が、熱交換パイプ16の末端部で吐出されて熱交換パイプ16に沿って上昇すると共に、冷却水流入管12に流入した水が熱交換器本体11の熱交換部11a内側に沿って下降することによって、熱交換部11aの内部の熱交換パイプ16によって水が冷却がされる。
熱交換パイプ16を上昇しながら冷却に使用された冷媒は熱交換パイプ16の入口側に連結された冷媒排出管18から排出され、コンプレッサー220に再流入する。冷却された水は、排出通路部11bから冷却水排出管13に排出される。
After the heat exchanger 10 according to the present invention is installed together with the compressor 220 and the radiator 230, when the compressor 220 is driven to operate the refrigeration cycle, the refrigerant flowing from the compressor 220 through the radiator 230 into the refrigerant injection capillary 17 is discharged. As the water discharged into the end portion of the heat exchange pipe 16 rises along the heat exchange pipe 16 and flows into the cooling water inflow pipe 12, the water falls along the inside of the heat exchange section 11 a of the heat exchanger body 11. The water is cooled by the heat exchange pipe 16 inside the heat exchange part 11a.
The refrigerant used for cooling while ascending the heat exchange pipe 16 is discharged from the refrigerant discharge pipe 18 connected to the inlet side of the heat exchange pipe 16 and flows into the compressor 220 again. The cooled water is discharged from the discharge passage portion 11b to the cooling water discharge pipe 13.

本発明による熱交換器10は、熱交換パイプ16による熱交換部11aと冷却水の排出通路部11bとが“U”字型の通路で連通されているので、熱交換パイプ16の外周を下降する水と、熱交換パイプ16の内部を上昇する冷媒とが対向冷却方式によって熱交換部11aの内側で効率的に熱交換し、迅速な冷却水の冷却が行われる。   In the heat exchanger 10 according to the present invention, the heat exchanging portion 11a by the heat exchanging pipe 16 and the cooling water discharge passage portion 11b communicate with each other through a "U" -shaped passage. The water that rises and the refrigerant that rises inside the heat exchange pipe 16 efficiently exchange heat inside the heat exchange unit 11a by the counter cooling method, and cooling of the cooling water is performed quickly.

本発明の熱交換器10は、熱交換器本体11に熱交換パイプ16を直線形で挿入することによって熱交換パイプ16の長さを縮小させても冷却性能の低下させないので、熱交換パイプ16の製造資材を節約することができる。
また、熱交換パイプ16の長さを伸張して伝熱面積を拡大する場合に、コイル状の熱交換器を用いる場合はパイプを数十回巻き込む難しい作業が必要であるが、本発明の場合は線形の熱交換パイプ16を冷媒注入用毛細管17とともに直角に曲げる作業を1回ないし3回行えば良く、大型の熱交換器を容易に且つ安価に製造できる。
Since the heat exchanger 10 of the present invention does not deteriorate the cooling performance even if the length of the heat exchange pipe 16 is reduced by inserting the heat exchange pipe 16 into the heat exchanger body 11 in a straight line, the heat exchange pipe 16 Can save manufacturing materials.
Further, when the heat transfer pipe 16 is extended to expand the heat transfer area, when using a coiled heat exchanger, a difficult work of winding the pipe several tens of times is necessary. The linear heat exchange pipe 16 and the refrigerant injection capillary 17 need only be bent once or three times, and a large heat exchanger can be manufactured easily and inexpensively.

図6の(イ)及び(ロ)に示すように、熱交換器本体11の熱交換部11aと熱交換パイプ16との間に水を渦流式で回転下降させる螺旋形仕切り20を設置し、熱交換パイプ16と冷媒注入用毛細管17との間に冷媒を渦流式で回転上昇させる螺旋形仕切り23を設置した場合、水と冷媒の熱交換作用をさらに促進させることができ、これによって熱交換パイプ16による冷却水の冷却性能をより大きく向上することができる。   As shown in (a) and (b) of FIG. 6, a spiral partition 20 is installed between the heat exchange part 11 a of the heat exchanger body 11 and the heat exchange pipe 16 to rotate and descend water in a vortex manner. When a spiral partition 23 is installed between the heat exchange pipe 16 and the refrigerant injection capillary 17 to rotate and lift the refrigerant in a vortex manner, the heat exchange action of water and the refrigerant can be further promoted, thereby heat exchange. The cooling performance of the cooling water by the pipe 16 can be greatly improved.

更に、従来の技術内容で既に説明したように、熱交換器本体11の内部に冷却水が保存されているという熱交換器10の特性上、熱交換装置200の安全のためには配管の連結部品に対する漏水問題を解決しなければならない。本発明による熱交換器10は冷媒注入用毛細管17と冷媒排出管18とが熱交換パイプ16の内部に挿入されているから、漏水の主な要因になる冷媒配管の連結部品を従来の場合と比べて縮小することができる。これによって熱交換器10の構造を単純化させることができるだけでなく、冷媒配管の連結部品による漏水の危険も減少させることができる。   Further, as already described in the conventional technical contents, because of the characteristic of the heat exchanger 10 that the cooling water is stored in the heat exchanger main body 11, the piping of the heat exchanger 200 is connected for safety. The water leakage problem for parts must be solved. In the heat exchanger 10 according to the present invention, the refrigerant injection capillary 17 and the refrigerant discharge pipe 18 are inserted into the heat exchange pipe 16, so that the connecting parts of the refrigerant pipe which are the main causes of water leakage are different from the conventional case. It can be reduced in comparison. Thereby, not only can the structure of the heat exchanger 10 be simplified, but also the risk of water leakage due to the connecting parts of the refrigerant piping can be reduced.

以上、本発明を実施例によって詳細に説明したが、本発明は実施例によって限定されるものではなく、本発明が属する技術分野において通常の知識を有するものであれば本発明の思想と精神を離れることなく、本発明を修正または変更できる。   The present invention has been described in detail with reference to the embodiments. However, the present invention is not limited to the embodiments, and the spirit and spirit of the present invention can be used as long as it has ordinary knowledge in the technical field to which the present invention belongs. The present invention can be modified or changed without leaving.

従来の冷却機用熱交換器を示す一部切開斜視図である。It is a partially cutaway perspective view showing a conventional heat exchanger for a cooler. 従来の冷却機用熱交換器が熱交換装置に設置された状態を示す側断面図である。It is a sectional side view which shows the state in which the conventional heat exchanger for coolers was installed in the heat exchange apparatus. 本発明の一実施例による冷却機用熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger for coolers by one Example of this invention. 図3の正面断面図である。FIG. 4 is a front sectional view of FIG. 3. 図3の側面断面図である。FIG. 4 is a side sectional view of FIG. 3. (イ)及び(ロ)は、水と冷媒の渦流式循環構造を示す要部斜視図である。(A) And (b) is a principal part perspective view which shows the vortex-type circulation structure of water and a refrigerant | coolant. (イ)及び(ロ)は、本発明の他の実施例を示す冷却機用熱交換器の斜視図である。(A) and (B) are perspective views of a heat exchanger for a cooler showing another embodiment of the present invention. 本発明による冷却機用熱交換器の設置状態図である。It is an installation state figure of the heat exchanger for refrigerators by the present invention.

符号の説明Explanation of symbols

10 熱交換器
11 熱交換器本体
11a 熱交換部
11b 排出通路部
12 冷却水流入管
13 冷却水排出管
12a、13a ホース連結部
14 統合連結管
14a ねじ部
15 漏水防止キャップ
15a Oリング
16 熱交換パイプ
16a パッキング
17 冷媒注入用毛細管
18 冷媒排出管
19 センサー連結管
20、23 螺旋形仕切り
21 冷却水流入通路
22 冷却水排出通路
200 熱交換装置
210 ケーシング
220 コンプレッサー
230 放熱器
240 放熱ファン
DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Heat exchanger main body 11a Heat exchange part 11b Discharge passage part 12 Cooling water inflow pipe 13 Cooling water discharge pipe 12a, 13a Hose connection part 14 Integrated connection pipe 14a Screw part 15 Water leakage prevention cap 15a O-ring 16 Heat exchange pipe 16a Packing 17 Refrigerant injection capillary 18 Refrigerant discharge pipe 19 Sensor connecting pipe 20, 23 Helical partition 21 Cooling water inflow passage 22 Cooling water discharge passage 200 Heat exchange device 210 Casing 220 Compressor 230 Radiator 240 Radiation fan

Claims (4)

水の流入管(12)と冷却された排出管(13)とを有する熱交換器本体(11)と、前記熱交換器本体(11)の内部に挿入され、冷媒が循環される熱交換パイプ(16)と、を有し、前記流入管(12)から流入した水を前記熱交換パイプ(16)で冷却し前記排出管(13)から排出する冷却機用熱交換器であって、
前記熱交換器本体(11)は外観視棒形状を有し、内部は、前記流入管(12)と連結する熱交換部(11a)と、前記排出管(13)と結合する排出通路部(11b)と、が下部で連通された“U”字型の流路を有し、
前記熱交換器本体(11)の上部に突設された統合連結管(14)を貫通して、前記熱交換パイプ(16)の一端が前記熱交換部(11a)の下部まで挿入され、
前記熱交換パイプ(16)は、一端が封鎖され、他端から冷媒注入用毛細管(17)が一端の直近まで挿入されて二重管を形成し、他端に設けられた入口は冷媒排出管(18)が挿入されパッキング(16a)によって封鎖され
前記熱交換器本体(11)の前記熱交換部(11a)の内側面と、前記熱交換パイプ(16)の外側面と、の間に水を渦流式で循環させるための螺旋形仕切り(20)を設置して前記熱交換部(11a)における水の流速を上げ、前記熱交換パイプ(16)の外側面の面積の縮小を可能にしたことを特徴とする冷却機用熱交換器
Inlet pipe of the water (12) and the discharge pipe of the cooling water (13) heat exchanger body (11) having a, is inserted inside the heat exchanger body (11), heat refrigerant is circulated includes a replacement pipe (16), and the water flowing from the inlet pipe (12), cooled in the heat exchange pipe (16), in cooler heat exchanger for discharging from said discharge pipe (13) There,
The heat exchanger body (11) has a bar shape in appearance, and the inside includes a heat exchange section (11a) connected to the inflow pipe (12) and a discharge passage section ( coupled to the discharge pipe (13)). 11b) has a “U” -shaped channel communicated at the bottom ,
One end of the heat exchange pipe (16) is inserted to the lower part of the heat exchange part (11a) through the integrated connecting pipe (14) protruding from the upper part of the heat exchanger body (11) ,
One end of the heat exchange pipe (16) is sealed, and a capillary tube for refrigerant injection (17) is inserted from the other end to the vicinity of one end to form a double tube, and an inlet provided at the other end is a refrigerant discharge tube. (18) is inserted and sealed by packing (16a) ,
A spiral partition (20) for circulating water in a vortex manner between the inner surface of the heat exchange part (11a) of the heat exchanger body (11) and the outer surface of the heat exchange pipe (16). ) was established to increase the flow rate of water in the heat exchanging portion (11a), a heat exchanger for cooling machine being characterized in that to allow a reduction in the area of the outer surface of the heat exchange pipe (16).
前記統合連結管(14)の先端外周部にねじ部(14a)が形成され、前記ねじ部(14a)にOリング(15a)を介して漏水防止キャップ(15)が締結され、前記漏水防止キャップ(15)を貫いて熱交換パイプ(16)が挿入されたことを特徴とする請求項1に記載の冷却機用熱交換器。A screw part (14a) is formed on the outer periphery of the tip of the integrated connecting pipe (14), and a water leak prevention cap (15) is fastened to the screw part (14a) via an O-ring (15a). The heat exchanger for a chiller according to claim 1, wherein a heat exchange pipe (16) is inserted through (15). 前記熱交換パイプ(16)の内側面と前記冷媒注入用毛細管(17)の外側面との間に、前記冷媒注入用毛細管(17)から吐出されて前記冷媒排出管(18)に排出される冷媒を渦流式で循環させるための螺旋形仕切り(23)が設置されることを特徴とする請求項1または2に記載の冷却機用熱交換器。   Between the inner surface of the heat exchange pipe (16) and the outer surface of the refrigerant injection capillary (17), the refrigerant is injected from the refrigerant injection capillary (17) and discharged to the refrigerant discharge pipe (18). The heat exchanger for a cooler according to claim 1 or 2, wherein a spiral partition (23) for circulating the refrigerant in a vortex manner is installed. 前記螺旋形仕切り(20)による水の下降回転方向と、前記螺旋形仕切り(23)による冷媒の上昇回転方向と、を相互に反対方向にすることを特徴とする請求項3に記載の冷却機用熱交換器。The cooling machine according to claim 3, wherein the downward rotation direction of the water by the spiral partition (20) and the upward rotation direction of the refrigerant by the spiral partition (23) are opposite to each other. Heat exchanger.
JP2007232899A 2006-09-07 2007-09-07 Heat exchanger for chiller Active JP4480747B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060086469A KR100741162B1 (en) 2006-09-07 2006-09-07 Heat-exchanger for a cooler

Publications (2)

Publication Number Publication Date
JP2008064451A JP2008064451A (en) 2008-03-21
JP4480747B2 true JP4480747B2 (en) 2010-06-16

Family

ID=38499132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232899A Active JP4480747B2 (en) 2006-09-07 2007-09-07 Heat exchanger for chiller

Country Status (4)

Country Link
US (1) US20080060788A1 (en)
JP (1) JP4480747B2 (en)
KR (1) KR100741162B1 (en)
CN (1) CN100523699C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944275B1 (en) * 2009-07-02 2010-02-25 주식회사 대일 Apparatus for cooling fish water in a container for transport of live-fish
JP6087713B2 (en) * 2013-04-24 2017-03-01 株式会社神戸製鋼所 Compression device
KR101920067B1 (en) * 2018-01-30 2019-02-08 하이에어공조 주식회사 Shell and spiral coil type heat exchanger of assembly block structure type for sea water
CN109839016B (en) * 2018-04-09 2024-04-19 国家电网公司 Guide rod, sleeve and converter transformer system
KR102090762B1 (en) * 2018-11-19 2020-03-18 한국원자력의학원 Rotating Tube Target Module for Neutron Generation
AU2022396191A1 (en) * 2021-11-25 2024-05-02 MIZRAHI, Hagai Plumbing fittings box and leak detection system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818015A (en) * 1981-07-24 1983-02-02 Daido Steel Co Ltd Radiant tube
JP2543041Y2 (en) * 1993-05-17 1997-08-06 シーケーディ株式会社 Heat exchanger for dehumidifier
US5542467A (en) * 1993-07-06 1996-08-06 Societe E'etudes Et De Constructions Aero-Navales Safety annular heat exchanger for incompatible fluids
KR100508280B1 (en) 1996-03-29 2005-11-21 미츠이 조센 가부시키 가이샤 High temperature air heater, passage wall structure of heat exchanger, manufacturing method of passage wall of heat exchanger and waste treatment device
US5749242A (en) * 1997-03-24 1998-05-12 Mowery; Timothy W. Evaporator for an ice making machine
JPH10267567A (en) * 1997-03-28 1998-10-09 Toshiba Corp Heat exchanger
JP3768345B2 (en) * 1997-12-09 2006-04-19 三菱電機エンジニアリング株式会社 Aquarium cooler for ornamental fish
US6206090B1 (en) * 1999-05-20 2001-03-27 Pratt & Whitney Canada Corp. Concentric fuel/oil filters and heat exchanger package
JP2000346569A (en) * 1999-06-02 2000-12-15 Kubota Corp Heat exchanger
US20050139344A1 (en) * 2002-02-27 2005-06-30 Butler Barry L. Internal water tank solar heat exchanger
US7256999B1 (en) * 2004-04-12 2007-08-14 Frontline Systems Heat collector plate for an electronic display

Also Published As

Publication number Publication date
CN100523699C (en) 2009-08-05
US20080060788A1 (en) 2008-03-13
KR100741162B1 (en) 2007-07-20
CN101140146A (en) 2008-03-12
JP2008064451A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4480747B2 (en) Heat exchanger for chiller
KR100994416B1 (en) Heat transfer tube for supplying hot water
JP5462816B2 (en) Water heater
US20090250198A1 (en) Hot water corrugated heat transfer tube
EP2844941B1 (en) Heat exchanger
CN104412059B (en) Heat exchanger
US10024603B2 (en) Double tubing condensation exchanger for heating water and/or for producing sanitary hot water
CN101655295A (en) Refrigerant heat exchanger
JP3772881B2 (en) Heat pump heat source machine
CN201177377Y (en) Air source heat pump water heater
JP2009243798A (en) Heater for water for hot-water supply system, and hot-water supply system
US20150345827A1 (en) Hot water tank attached to boiler
JP2007271194A (en) Heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
CN101634508B (en) Heat pump water heater
CN209279408U (en) A kind of wall hanging water heater with the heating of cast aluminium heater
JP2008076003A (en) Water cooling jacket for cooling tank
CN213811853U (en) Titanium pipe heat transfer device that constant temperature heat pump swimming pool machine was used
JP2007271228A (en) Hot water storage type electric water heater
JP2014016058A (en) Device for performing heat exchange between water and refrigerant, and heat pump hot water supply device
JP2006001130A (en) Mold temperature regulating system
KR200460090Y1 (en) Cooling tank for cold water ionizer and purifier
JP2008122033A (en) Gas cooler for hot water supply system
KR20100000664A (en) The heat-exchanger for a cooler
JP2003075080A (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250