JP4479690B2 - Multi-layer glass spacer, multi-layer glass - Google Patents

Multi-layer glass spacer, multi-layer glass Download PDF

Info

Publication number
JP4479690B2
JP4479690B2 JP2006106429A JP2006106429A JP4479690B2 JP 4479690 B2 JP4479690 B2 JP 4479690B2 JP 2006106429 A JP2006106429 A JP 2006106429A JP 2006106429 A JP2006106429 A JP 2006106429A JP 4479690 B2 JP4479690 B2 JP 4479690B2
Authority
JP
Japan
Prior art keywords
glass
hollow
spacer
moisture
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006106429A
Other languages
Japanese (ja)
Other versions
JP2007277052A (en
Inventor
省吾 小寺
祥孝 松山
崇 澁谷
徹 松井
栄亮 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006106429A priority Critical patent/JP4479690B2/en
Publication of JP2007277052A publication Critical patent/JP2007277052A/en
Application granted granted Critical
Publication of JP4479690B2 publication Critical patent/JP4479690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Landscapes

  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は断熱を目的とした複層ガラスにおけるシール部分のスペーサ構造・構成形態に関する。   The present invention relates to a spacer structure / configuration of a seal portion in a multilayer glass for the purpose of heat insulation.

複層ガラスは、通常複数のガラス単板を所定の間隔で平行に配置せしめるようにガラス周辺部を固定・接着・封着等を行ったものを指す。通常はガラス単板のみを用いる場合が多いが、合せ硝子を構成板とする場合や、透明有機材料からなる単板を組みあわせたものやガラスが破壊しにくくするなどの理由で透明有機材料を積層された積層板を少なくとも1つの構成板とする場合なども含まれる。   The double-glazed glass usually refers to a glass peripheral part fixed, adhered, sealed or the like so that a plurality of glass single plates are arranged in parallel at a predetermined interval. Usually, only glass single plates are often used, but transparent organic materials are used for reasons such as using laminated glass as a component plate, combining single plates made of transparent organic materials, or making glass difficult to break. The case where a laminated plate is used as at least one component plate is also included.

複層ガラスが使用される目的は主に窓ガラス自体からの熱の出入りを抑制する、いわゆる断熱効果を窓全体へ付与することである場合が一般的で、複層化され周辺を固定・接着・封着されることにより、複数枚のガラス板間に外部から隔絶された中空層である内部空気層を形成せしめることが必要となる。このとき、その内部空気層は結露防止を図り、複層ガラス自体の透明性を保持するために、内部空気層を乾燥状態に維持することが重要である。   The purpose of using double glazing is generally to prevent heat from entering and exiting the window glass itself, and to provide a so-called heat insulation effect to the entire window. -By sealing, it is necessary to form an internal air layer which is a hollow layer isolated from the outside between a plurality of glass plates. At this time, it is important to maintain the internal air layer in a dry state in order to prevent condensation in the internal air layer and maintain the transparency of the multilayer glass itself.

このような複層ガラスの効果を長期間維持するには適切なガラス周辺シール構造を有していることが必要である。図7は従来のシール構成の複層ガラス1の概略断面説明図である。図7に示すように、その構成はガラス板を平行にかつ所定の厚みに維持することを目的とするスペーサ3、そのスペーサ3とガラス板2との密着性を長期にわたって維持し、かつ、前述の長期にわたる内部空気層の乾燥状態保持を実現するための低水蒸気透過性を有する材料からなる1次シール6、そして、これらの部材とガラスを接着・固定することを目的とする2次シール7からなる。   In order to maintain the effect of such multi-layer glass for a long period of time, it is necessary to have an appropriate glass periphery sealing structure. FIG. 7 is a schematic cross-sectional explanatory diagram of a multi-layer glass 1 having a conventional seal configuration. As shown in FIG. 7, the structure maintains the glass plate in parallel and in a predetermined thickness, maintains the adhesion between the spacer 3 and the glass plate 2 over a long period of time, and A primary seal 6 made of a material having low water vapor permeability for maintaining the dry state of the internal air layer over a long period of time, and a secondary seal 7 for bonding and fixing these members and glass Consists of.

1次シール6としては、通常架橋処理されないブチルゴム、もしくは、ポリイソブチレンをベースとし、着色と補強を目的としたカーボンブラックなどのフィラーを含有せしめたものが用いられる。2次シールとしては、ポリサルファイド、シリコーン、ウレタンなどの硬化性エラストマをベースとし、ガラスとの接着性を発現するために適当な変性を加えられたものなどが使用される。   As the primary seal 6, butyl rubber which is not usually subjected to crosslinking treatment or a material based on polyisobutylene and containing a filler such as carbon black for the purpose of coloring and reinforcement is used. As the secondary seal, a material based on a curable elastomer such as polysulfide, silicone, urethane, etc., which has been appropriately modified in order to develop adhesiveness with glass is used.

スペーサ3としては、通常はアルミを主材質とする金属製スペーサが用いられる場合が多いが、特別に、複層ガラス周辺部の熱伝導を減じる必要がある場合は、熱伝導率の比較的小さい金属であるステンレス材や硬質樹脂からなるものも使用されている。   As the spacer 3, a metal spacer mainly made of aluminum is usually used in many cases. However, when it is necessary to reduce the heat conduction around the multi-layer glass, the heat conductivity is relatively small. A material made of stainless steel or hard resin, which is a metal, is also used.

図7に示すように、スペーサ3はその断面内にさらに中空部9を有し、その中に粒状ゼオライトなどの水蒸気吸着剤を含有せしめることが可能な形態をとる。このような水蒸気吸着剤は複層ガラス内部空気層内の乾燥状態を所定の露点以下に保持するために非常に大きな役割を果たしている。即ち、このような形態の複層ガラスの場合、1次・2次の両シール材を通過してきた水蒸気ガスが、スペーサ内に保持された水蒸気吸着剤でもって吸着固定化されることにより、内部空気層内を乾燥状態に保持しているためである。   As shown in FIG. 7, the spacer 3 further has a hollow portion 9 in its cross section, and takes a form in which a water vapor adsorbent such as granular zeolite can be contained. Such a water vapor adsorbent plays a very important role in keeping the dry state in the air layer inside the double-glazed glass below a predetermined dew point. In other words, in the case of such a double-layer glass, the water vapor gas that has passed through both the primary and secondary sealing materials is adsorbed and fixed by the water vapor adsorbent held in the spacer, so that This is because the inside of the air layer is kept dry.

それゆえ、長期にわたる使用を経た複層ガラスは、初期よりスペーサ内部に保持・装填された水蒸気吸着剤の吸着能以上の水蒸気が透過し、内部へ浸透することにより、内部空気層の露点が上昇し、外部環境温度を超えた時点で、いわゆる内部結露を発生せしめ、複層ガラスが本来持つべき透明性を損ない寿命に達する。   Therefore, double-layer glass that has been used for a long time has permeated water beyond the adsorption capacity of the water vapor adsorbent held and loaded in the spacer from the beginning, and penetrated into the interior, increasing the dew point of the internal air layer. However, when the external environmental temperature is exceeded, so-called internal condensation occurs, and the transparency that the double-glazed glass originally has is impaired and the life is reached.

一方、実際の使用環境下において、複層ガラスは加熱・冷却の繰り返し温度履歴が加えられることが知られている。このような場合、複層ガラスの中空層に封止された内部空気層はその内部空気層が封入された温度以上にさらされると膨張方向へ、また封入温度以下にさらされると収縮方向へその内部空気層体積が変化し、その複層ガラスを構成するガラス板を外側、もしくは内側へ変形させる。このとき複層ガラス周辺部でガラス板やスペーサを固定・接着・封着している1次・2次両シールに変形歪みを発生せしめ、両者の機械特性低下や耐水蒸気透過性能低下などの悪影響を引き起こすこともよく知られている。   On the other hand, it is known that in a practical use environment, a multilayer glass is subjected to repeated heating and cooling temperature history. In such a case, the internal air layer sealed in the hollow layer of the double-glazed glass is expanded in the expansion direction when the internal air layer is exposed to a temperature higher than the sealing temperature, and is contracted in the contraction direction when the temperature is lower than the sealing temperature. The volume of the internal air layer changes, and the glass plate constituting the multilayer glass is deformed outward or inward. At this time, both primary and secondary seals that fix, adhere and seal glass plates and spacers at the periphery of the multi-layer glass cause deformation distortion, and adverse effects such as deterioration of both mechanical properties and water vapor permeation resistance performance. It is also well known to cause

実際に長期実環境で使用された複層ガラスを回収・断面形状を観察すると、初期封入された1次シールの形状は製造直後のものとは大きく異なり、内部に大小さまざまな気泡を有したり、一部でシール部、特に1次シール部の破壊が顕著に観察されたりする場合がある。この場合、材料自体は十分な耐水蒸気透過性能を有しているにもかかわらず、実際の使用環境下において、シール、特に1次シールは破壊され、耐水蒸気透過性能を失ってしまう事態が発生している。   When collecting and observing the cross-sectional shape of the multi-layer glass that has actually been used in a long-term real environment, the shape of the primary sealed initial seal is very different from that immediately after manufacture, and there are various types of bubbles inside and outside. In some cases, the destruction of the seal portion, particularly the primary seal portion, may be observed remarkably. In this case, even though the material itself has sufficient water vapor permeation resistance, the seal, particularly the primary seal, is destroyed in the actual use environment, and the water vapor permeation performance is lost. is doing.

特開平6−185267号公報では、ある複層ガラスに、35℃から75℃まで昇温し、その後、75℃から35℃まで冷却するという温度履歴サイクルを加えることにより、従来の複層ガラスでは空気層内部露点がばらつくことを示しており、その対策として、その1次シールがある所定の範囲の量を満たす必要があるとしている。これは1次シールの初期厚みを大きくすることで、空気層内の体積膨張によって1次シールに加わる変形量は同じでも変形量と初期厚みの比である歪みを小さくすることができ、シール破断の発生を防ぐことができるということを示している。ただ、この場合も、1次シールそのものへ歪みが加わること自体はさけられず、発明者がのべるような品質の安定には効果がみられるものの、製造直後の1次シールのもつ耐水蒸気透過性が保持されず、耐久性という観点では不充分なものであった。   In Japanese Patent Laid-Open No. 6-185267, a conventional multilayer glass has a temperature history cycle of heating from 35 ° C. to 75 ° C. and then cooling from 75 ° C. to 35 ° C. It shows that the dew point inside the air layer varies, and as a countermeasure, the primary seal needs to satisfy an amount within a predetermined range. By increasing the initial thickness of the primary seal, the strain that is the ratio of the deformation and the initial thickness can be reduced even if the amount of deformation applied to the primary seal by the volume expansion in the air layer is the same, and the seal breaks. It is shown that the occurrence of can be prevented. However, in this case as well, the distortion itself is not added to the primary seal itself, and although the effect of stabilizing the quality as invented by the inventor is effective, the water vapor permeability resistance of the primary seal immediately after manufacture is seen. Was not maintained and was insufficient from the viewpoint of durability.

従来の金属スペーサを用いた先行技術を開示した特許の中には、特表2003−509324号公報・特表昭61−500737号公報のように金属スペーサ自体が変形し、1次シールの変形破断を抑制するとの技術が開示されている。ところが通常使用されている1次シールは、特に空気層の体積膨張による引張り方向への歪みが加わる室温以上の温度環境の場合、引張り速度にも依存するが、ヤング弾性率はおよそ10〜10Paであることが知られている。その一方、スペーサに使用されている材質は金属であるが故に、同じ温度範囲領域では10〜1010Paであり、その差によりこの場合も1次シールに加わる歪みを低減することは違いないが、弾性率差が示すようにあまり大きな効果は期待できない。 Among the patents disclosing the prior art using the conventional metal spacer, the metal spacer itself is deformed as shown in Japanese Patent Publication No. 2003-509324 and Japanese Patent Publication No. 61-5000737, and the primary seal is deformed and fractured. A technique for suppressing the above is disclosed. However, the primary seal that is usually used has a Young's modulus of approximately 10 6 to 10, although it depends on the tensile speed, particularly in a temperature environment of room temperature or higher where strain in the tensile direction due to volume expansion of the air layer is applied. It is known to be 8 Pa. On the other hand, since the material used for the spacer is a metal, it is 10 9 to 10 10 Pa in the same temperature range, and the difference between them will also reduce the strain applied to the primary seal. However, as shown by the difference in elastic modulus, it cannot be expected to have a significant effect.

この問題に対し、国際公開第01/27429号パンフレットでは従来の1次シールの変形に対しても、その耐水蒸気透過性能の低下を防ぐ目的で、1次シール内に変形に対応し得る構造を付与した例を提案している。しかしながら、昨今は複層ガラスの製造は自動化されており、このような製造自動化ラインにおいて帯鋼状のものをガラス板の周辺に配置することは困難である。製造ラインへの適応性の有無はコストを含めた複層ガラスの商品性に大きな影響を与え、これに適用できないようであれば商品性に重大な欠陥があるといわざるを得ない。更に、複層ガラスは矩形形状がもっとも主流であり、国際公開第01/27429号パンフレットで提案されている帯鋼状1次シール形状では、特にコーナー部対応が困難である。   In response to this problem, the pamphlet of International Publication No. 01/27429 has a structure that can cope with the deformation in the primary seal in order to prevent the deterioration of the water vapor permeation performance against the deformation of the conventional primary seal. Proposed examples are proposed. However, in recent years, the production of double-glazed glass has been automated, and it is difficult to arrange a strip-like one around the glass plate in such a production automation line. The presence or absence of adaptability to the production line has a great influence on the merchantability of the multi-layer glass including the cost, and if it cannot be applied to this, it must be said that there is a serious defect in the merchantability. Furthermore, the double-glazed glass has the most main rectangular shape, and it is particularly difficult to cope with the corner portion in the strip-like primary seal shape proposed in the pamphlet of International Publication No. 01/27429.

特開昭55−101690号公報のように金属スペーサを用いない断面形状をもつ樹脂スペーサを用いた複層ガラスの場合は、前述のような温度履歴による耐水蒸気透過性能の低下は発生しにくいと考えられるが、このタイプの複層ガラスでは従来のアルミスペーサを用いた複層ガラス用に開発されてきた高生産性自動化ラインへの適用ができないため、同スペーサを用いた複層ガラスに比し工業生産性に劣る。   In the case of a double-glazed glass using a resin spacer having a cross-sectional shape that does not use a metal spacer as disclosed in JP-A-55-101690, it is difficult to cause a decrease in water vapor permeation resistance due to temperature history as described above. This type of double-glazed glass cannot be applied to the high-productivity automated line that has been developed for double-glazed glass using conventional aluminum spacers. Inferior industrial productivity.

以上のように、これまで高耐久・高性能と低コストをそれぞれ掲げて提案されている先行発明は多々存在するが、すべて両者を同時に解決したとはいいがたい。   As described above, there are many prior inventions that have been proposed with high durability, high performance, and low cost, but it is difficult to say that both have been solved at the same time.

特開平6−185267号公報JP-A-6-185267 特表2003−509324号公報Special table 2003-509324 gazette 特表昭61−500737号公報JP-T 61-500737 国際公開第01/27429号パンフレットInternational Publication No. 01/27429 Pamphlet 特開昭55−101690号公報JP-A-55-101690

本発明は、上記の事情に鑑みてなされたものであって、複層ガラスのスペーサであって、複層ガラスの内部空気層を乾燥状態に維持する従来の機能を有し、実際の使用環境下における、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス空気層の膨張・収縮によって複層ガラス周辺部の1次シールに変形歪みを発生させることなく、機械特性低下や耐水蒸気透過性能低下などの悪影響を引き起こすこともない複層ガラスのスペーサ、複層ガラスを提供する。 The present invention has been made in view of the above circumstances, and is a multilayer glass spacer, which has a conventional function of maintaining the inner air layer of the multilayer glass in a dry state, and is used in an actual use environment. Below, mechanical properties are reduced and water vapor resistance is reduced without causing deformation distortion in the primary seal at the periphery of the double-glazed glass due to expansion and contraction of the double-glazed glass air layer due to repeated temperature changes in heating and cooling of the double-glazed glass. spacer insulating glass nor to cause adverse effects such as transmission performance degradation, providing a multi-layer glass.

前記目的を達成する為に請求項1に記載の発明は、複層ガラスを構成するガラス板相互間に中空層を形成すべく介在配置される複層ガラス用のスペーサであって、前記スペーサは、ガラス板相互の間隔を保持する中空間隔保持部材と、外部から中空層への水分浸入を防ぐ機能を有する防湿層と、を有し、中空間隔保持部材の外側に面する部位を覆うように防湿層が配置されて中空間隔保持部材と複層ガラスの2次シールとが直接接触しないように構成され、前記防湿層が可とう性を有するフィルム状部材からなり、前記防湿層は前期中空間隔保持部材と、前期中空間隔保持部材の外側に面する部位の少なくとも一部分において固定され、かつ前記中空間隔保持部材の外側に面する部位から中空間隔保持部材とガラス板とが対向する部位まで延伸されたガラス変形追従部を有し、前記ガラス変形追従部が、中空間隔保持部材とは固定されずに独立していることを特徴とする複層ガラス用のスペーサを提供する。 In order to achieve the above object, the invention according to claim 1 is a double-glazed glass spacer disposed so as to form a hollow layer between the glass plates constituting the double-glazed glass, A hollow interval holding member that holds the gap between the glass plates, and a moisture-proof layer that has a function of preventing moisture from entering the hollow layer from the outside, so as to cover a portion facing the outside of the hollow interval holding member moisture barrier is configured so that the secondary seal of the double glazing and the hollow spacing member is arranged not in direct contact, the moisture barrier layer is made of film-like member having flexibility, the moisture barrier year hollow spacing a holding member, is fixed at least in part of a portion facing outside of the previous period hollow spacing member, and extending from the portion facing the outside of the hollow spacing member to the site where the hollow spacing member and the glass plate facing Is has a glass deformation follower was, the glass deformation follower is the hollow spacing member to provide a spacer for insulating glass, characterized in that independent without being fixed.

請求項に記載の発明は、請求項1における複層ガラス用のスペーサが、前記中空間隔保持部材が金属であることを特徴とする。 According to a second aspect of the invention, the spacer for insulating glass, which definitive to claim 1, wherein said hollow spacing member is metal.

請求項に記載の発明は、請求項1からのいずれか1項における複層ガラス用のスペーサが、防湿層が下記(1)から(3)に示すいずれかのフィルムであることを特徴とする。(1)金属フィルム。(2)金属蒸着フィルムを少なくとも1層に有する有機多層化フィルム。(3)有機フィルムであって、前記有機フィルムの片側を60℃ 90%RHに、反対側を60℃ 0%RHに保持したときの透湿量が4×10−3g/m・hr以下である有機フィルム。 The invention described in claim 3 is characterized in that the spacer for double-glazed glass according to any one of claims 1 to 2 is such that the moisture-proof layer is any one of the following films (1) to (3). And (1) Metal film. (2) An organic multilayer film having a metal vapor deposited film in at least one layer. (3) An organic film having a moisture permeability of 4 × 10 −3 g / m 2 · hr when one side of the organic film is held at 60 ° C. and 90% RH and the other side is held at 60 ° C. and 0% RH. An organic film that is:

請求項に記載の発明は、請求項1からのいずれか1項における複層ガラス用のスペーサが、前記防湿層を形成するフィルムの弾性率をeMPa、断面2次モーメントをIcm、中空間隔保持部材の外側に面する部位から中空間隔保持部材とガラス板とが対向する部位まで延伸された前記ガラス変形追従部の防湿層フィルムの長さをLcmとした時に、e・I/Lが1.25MPa以下であることを特徴とする。 According to a fourth aspect of the present invention, in the multilayer glass spacer according to any one of the first to third aspects, the elastic modulus of the film forming the moisture-proof layer is eMPa, the cross-sectional second moment is Icm 4 , and the hollow is formed. When the length of the moisture-proof layer film of the glass deformation following portion stretched from the portion facing the outside of the spacing member to the portion where the hollow spacing member and the glass plate face each other is expressed as e · I / L 4 Is 1.25 MPa or less.

請求項に記載の発明は、請求項1からのいずれか1項における複層ガラス用のスペーサが、複層ガラスに介在配置される際、曲げ加工により矩形の形状に加工されることを特徴とする。 The invention according to claim 5 is that when the spacer for multilayer glass according to any one of claims 1 to 4 is disposed in the multilayer glass, the spacer is processed into a rectangular shape by bending. Features.

請求項に記載の発明は、すくなくとも2枚のガラス板と、前記ガラス板相互間に中空層が形成されるように前記ガラス板の周縁部に介在配置されるスペーサと、前記スペーサと前記ガラス板との間に介在される1次シール材と、前記スペーサの中空層に直面しない側の基底面と前記ガラス板の周縁部とで形成される凹部に充填された2次シール材と、を備えた複層ガラスであって、前記スペーサは、前記ガラス板相互の間隔を保持する中空間隔保持部材と、外部から中空層への水分浸入を防ぐ機能を有する防湿層を有し、前記スペーサが複層ガラスに組み込まれる際に中空間隔保持部材の外側に面する部位を覆うように防湿層が配置されて中空間隔保持部材と複層ガラスの2次シールとが直接接触しないように構成され、前記防湿層が可とう性を有するフィルム状部材からなり、かつ前記中空間隔保持部材の外側に面する部位から中空間隔保持部材と前記ガラス板とが対向する部位まで延伸されたガラス変形追従部を有し、前記ガラス変形追従部と前記ガラス板との間に1次シール材を介在させて前記ガラス板と請求項1からのいずれか1項に記載のスペーサとが粘接着されていることを特徴とする複層ガラスを提供する。 According to a sixth aspect of the present invention, there is provided at least two glass plates, a spacer interposed between the glass plates so that a hollow layer is formed between the glass plates, the spacer and the glass. A primary sealing material interposed between the plate and a secondary sealing material filled in a recess formed by a base surface on the side not facing the hollow layer of the spacer and the peripheral edge of the glass plate, The spacer includes a hollow space holding member that holds a space between the glass plates, and a moisture-proof layer that has a function of preventing moisture from entering the hollow layer from the outside. The moisture-proof layer is arranged so as to cover the portion facing the outside of the hollow space holding member when incorporated in the double glass, and the hollow space holding member and the secondary seal of the double glass are configured not to contact directly, The moisture barrier is acceptable A glass deformation follower extending from a portion facing the outside of the hollow space holding member to a portion where the hollow space holding member and the glass plate are opposed to each other, the glass deformation 6. A composite material comprising a glass substrate and a spacer according to any one of claims 1 to 5 , wherein a primary sealant is interposed between the follower and the glass plate. Provide layer glass.

請求項に記載の発明は、請求項における複層ガラスが、前記ガラス変形追従部と前記ガラス板との間に存在する前記1次シールの厚み/長さの比が0.15以下であることを特徴とする。 According to a seventh aspect of the present invention, in the multilayer glass according to the sixth aspect , the thickness / length ratio of the primary seal existing between the glass deformation follower and the glass plate is 0.15 or less. It is characterized by being.

本発明によれば、複層ガラスの内部空気層を乾燥状態に維持する従来の機能を有し、実際の使用環境下において、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス空気層の膨張・収縮による複層ガラス周辺部の1次シールに変形歪みを発生させることなく、また機械特性低下や耐水蒸気透過性能低下などの悪影響を引き起こすこともないので、製品寿命の長い複層ガラスが提供できる。   According to the present invention, it has the conventional function of maintaining the internal air layer of the double-glazed glass in a dry state. Multilayer with a long product life because it does not cause deformation distortion in the primary seal around the multilayer glass due to the expansion and contraction of the layer, and does not cause adverse effects such as deterioration of mechanical properties and water vapor permeation resistance. Glass can be provided.

以下添付図面に従って、本発明の複層ガラスの好ましい実施の形態について詳説する。図1は本発明に係るスペーサ3と複層ガラス1の概略断面説明図である。   Hereinafter, preferred embodiments of the double-glazed glass of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional explanatory view of a spacer 3 and a multilayer glass 1 according to the present invention.

図1に示すように、本発明に係る複層ガラス1は2枚のガラス板2、2の相互間に所定の厚みの中空層8が形成されるようにガラス板2、2の周縁部にスペーサ3が配置される。外部からの水蒸気の進入を防ぐために、スペーサ3とガラス板2、2との間に低水蒸気透過性を有する材料からなる1次シール6を介在させる。また、ガラス板2、2、スペーサ3、および1次シールを接着、固定させるためにスペーサ3の外側に面する部位とガラス板2、2とで形成される凹部に2次シール7を粘着させる。   As shown in FIG. 1, the multi-layer glass 1 according to the present invention is formed on the periphery of the glass plates 2 and 2 so that a hollow layer 8 having a predetermined thickness is formed between the two glass plates 2 and 2. A spacer 3 is arranged. In order to prevent entry of water vapor from the outside, a primary seal 6 made of a material having low water vapor permeability is interposed between the spacer 3 and the glass plates 2 and 2. Further, in order to adhere and fix the glass plates 2, 2, the spacer 3, and the primary seal, the secondary seal 7 is adhered to the concave portion formed by the portion facing the outside of the spacer 3 and the glass plates 2, 2. .

スペーサ3は、ガラス板2、2相互の間隔を保持する中空間隔保持部材4と、外部から中空層への水分浸入を防ぐ機能と可とう性を有するフィルム状部材からなる防湿層5で構成される。   The spacer 3 is composed of a glass plate 2, a hollow space holding member 4 that holds the space between each other, and a moisture-proof layer 5 made of a film-like member having a function of preventing moisture from entering the hollow layer from the outside and flexibility. The

中空間隔保持部材4は、一辺の両端に略直角を有する断面6角形状の長尺物であり、その略直角を両端に有する面を中空層8側に配置される。このようにすることにより、ガラス板2、2が略平行に保持される。また、スペーサ3は、通常複層ガラス1として組み立てられた際に中空層8側になる面を基準に曲げ加工により矩形にされるので、このように中空間隔保持部材4の外側に面する部位に鋭角を配さないことが好ましい。なお、矩形状のスペーサ3を組み立てる際に、矩形の角部にはキー材を使用して繋いでもよいが、生産性の観点より曲げ加工を行うことがより好ましい。   The hollow spacing member 4 is a long object having a hexagonal cross section having a substantially right angle at both ends of one side, and a surface having the substantially right angle at both ends is disposed on the hollow layer 8 side. By doing in this way, the glass plates 2 and 2 are hold | maintained substantially parallel. Further, since the spacer 3 is formed into a rectangular shape by bending with respect to the surface on the side of the hollow layer 8 when the spacer 3 is normally assembled as the double-glazed glass 1, the portion facing the outside of the hollow spacing member 4 in this way It is preferable not to place an acute angle on the surface. When the rectangular spacer 3 is assembled, the corners of the rectangle may be connected using a key material, but it is more preferable to perform bending from the viewpoint of productivity.

また中空間隔保持部材4は、その断面内に中空部9を有し、その中に粒状ゼオライトなどの水蒸気吸着剤(図示せず)を含有させ、中空層8側の面に複数の水蒸気吸着剤の径よりも小さな開口部4aを有している。1次シール6、2次シール7の両シール材を通過して中空層8に侵入した水蒸気ガスは、前記開口部4aを通して水蒸気吸着剤で吸着固定化され、中空層8は乾燥状態に保持される。なお、中空間隔保持部材4の材料は、通常アルミを主材質とする金属であるが、ステンレス材および硬質樹脂でもよいが、耐水性、軽量化、強度、加工性の観点よりアルミを主材質とする金属が特によい。   Moreover, the hollow space | interval holding member 4 has the hollow part 9 in the cross section, contains water vapor | steam adsorption agents (not shown), such as a granular zeolite, in it, and the several water vapor | steam adsorption agent on the surface at the side of the hollow layer 8 The opening 4a is smaller than the diameter. The water vapor gas that has passed through both the sealing materials of the primary seal 6 and the secondary seal 7 and has entered the hollow layer 8 is adsorbed and fixed by the water vapor adsorbent through the opening 4a, and the hollow layer 8 is kept dry. The The material of the hollow spacing member 4 is usually a metal whose main material is aluminum, but stainless steel and hard resin may be used, but aluminum is the main material from the viewpoint of water resistance, weight reduction, strength, and workability. The metal to do is particularly good.

防湿層5は、複層ガラス1として組み立てられた際に、中空間隔保持部材4の外側に面する部位4c、即ち中空層8と反対側の部位と、中空間隔保持部材4とガラス板2とが対向する部位4bに配され、中空間隔保持部材4の外側に面する部位において、中空間隔保持部材4と2次シール7とが直接接触しないように配置される。防湿層5は中空間隔保持部材4と中空間隔保持部材4の外側に面する部位4cの少なくとも一部分において粘着または接着加工により固定される。また、防湿層5の中空間隔保持部材4の外側に面する部位4cから延伸されたガラス変形追従部5aは、複層ガラスとして組み立てられた際、中空間隔保持部材4と固定されず、1次シール6を介してガラス板2に固定される。このような構造にすることで、外部と中空層8は防湿層5と低水蒸気透過性を有する材料からなる1次シール6で仕切られるので、外部から水蒸気ガスはほとんど進入しない。   When the moisture-proof layer 5 is assembled as the multilayer glass 1, the portion 4 c facing the outside of the hollow space holding member 4, that is, the portion opposite to the hollow layer 8, the hollow space holding member 4 and the glass plate 2 Are arranged in the facing part 4b and are arranged so that the hollow gap holding member 4 and the secondary seal 7 are not in direct contact with each other at the part facing the outside of the hollow gap holding member 4. The moisture-proof layer 5 is fixed by adhesion or adhesion processing in at least a part of the hollow space holding member 4 and the portion 4c facing the outside of the hollow space holding member 4. Further, the glass deformation follow-up portion 5a extended from the portion 4c facing the outside of the hollow space holding member 4 of the moisture-proof layer 5 is not fixed to the hollow space holding member 4 when assembled as a double-glazed glass. It is fixed to the glass plate 2 through a seal 6. With this structure, the outside and the hollow layer 8 are partitioned by the moisture-proof layer 5 and the primary seal 6 made of a material having low water vapor permeability, so that almost no water vapor gas enters from the outside.

複層ガラス1が中空層8が封入された温度以上にさらされて膨張し、ガラス板2が外側に広がろうとする際、ガラス追従部5aはガラス板2に追従するので、1次シール6と防湿層5の一部であるガラス追従部5aは剥離することがなく、1次シール6が損傷することもない。また、防湿層5は中空間隔保持部材4と中空間隔保持部材4の外側に面する部位4cの少なくとも一部分において粘着または接着加工により固定されているので、製造工程におけるハンドリングが容易で、自動化ラインへ適用できる。   Since the glass follower 5a follows the glass plate 2 when the multi-layer glass 1 is exposed to a temperature higher than the temperature at which the hollow layer 8 is sealed and expands and the glass plate 2 tries to spread outward, the primary seal 6 And the glass follower 5a which is a part of the moisture-proof layer 5 is not peeled off, and the primary seal 6 is not damaged. Further, since the moisture-proof layer 5 is fixed by adhesion or adhesion processing in at least a part of the hollow space holding member 4 and the portion 4c facing the outside of the hollow space holding member 4, it is easy to handle in the manufacturing process and to an automated line. Applicable.

防湿層5の材質は、金属フィルム、金属蒸着フィルムを少なくとも1層に有する有機多層化フィルム、または有機フィルムであって有機フィルムの片側を60℃90%RHに、反対側を60℃0%RHに保持したときの透湿量が4×10−3g/m・hr以下である有機フィルムであることが好ましい。 The material of the moisture-proof layer 5 is a metal film, an organic multilayer film having at least one metal vapor-deposited film, or an organic film. One side of the organic film is 60 ° C. and 90% RH, and the other side is 60 ° C. and 0% RH. Preferably, the organic film has a moisture permeability of 4 × 10 −3 g / m 2 · hr or less.

また、これらフィルムの弾性率をeMPa、断面2次モーメントをIcm、中空間隔保持部材4の外側に面する部位4cから中空間隔保持部材4とガラス板2とが対向する部位まで延伸されたガラス変形追従部5aの長さをLcmとした時に、e・I/Lが0.25MPa以下であることが好ましい。e・I/Lが0.25MPaを越えると、特に中空層8が膨張する温度領域において、ガラス追従部5aがガラスの変形に追従できないので、1次シール6が破断する恐れがある。なお、防湿層5の厚みは、材質により異なるが、例えば軟質アルミニウムでは0.005mm以上、0.2mm以下であることが好ましい。 Further, the elastic modulus of these films is eMPa, the second moment of section is Icm 4 , and the glass stretched from the portion 4c facing the outside of the hollow interval holding member 4 to the portion where the hollow interval holding member 4 and the glass plate 2 face each other. When the length of the deformation follower 5a is Lcm, e · I / L 3 is preferably 0.25 MPa or less. If e · I / L 3 exceeds 0.25 MPa, the primary seal 6 may break because the glass follower 5a cannot follow the deformation of the glass, particularly in the temperature region where the hollow layer 8 expands. In addition, although the thickness of the moisture-proof layer 5 changes with materials, it is preferable that it is 0.005 mm or more and 0.2 mm or less, for example in soft aluminum.

図2は本発明に係るスペーサ3の製造方法の一例を示す説明図である。図2(a)〜(c)に示すように、(a)まず、可とう性を有するフィルムからなる防湿層5の一部分にあらかじめ粘着または接着加工を施し、(b)その粘着または接着加工部11に、スペーサ3の表面のうち複層ガラスに組み込まれる際に中空間隔保持部材4の外側に面する部位4cのみが接触するように一体化させ、(c)フィルムの他の部分を中空間隔保持部材4とガラス板2とが対向する部位4bの外周に巻きつける。このようにして、ガラス板2相互の間隔を保持する中空間隔保持部材4と、外部から中空層8への水分浸入を防ぐ機能を有する防湿層5とを有し、防湿層5が中空間隔保持部材4と複層ガラス1の2次シール7とを直接接触させないために中空間隔保持部材4の外側に面する部位4cを覆うように配置され、また防湿層5が前記中空間隔保持部材4の外側に面する部位4cから中空間隔保持部材4とガラス板2とが対向する部位4bまで延伸されてかつ中空間隔保持部材4と独立したガラス変形追従部5aを有するスペーサ3を得ることができる。   FIG. 2 is an explanatory view showing an example of a manufacturing method of the spacer 3 according to the present invention. As shown in FIGS. 2 (a) to 2 (c), (a) First, a part of the moisture-proof layer 5 made of a flexible film is preliminarily adhered or bonded, and (b) the adhesive or bonded part. 11 is integrated so that only the portion 4c facing the outside of the hollow space holding member 4 is brought into contact with the surface of the spacer 3 when it is incorporated into the multilayer glass, and (c) the other part of the film is formed into the hollow space. The holding member 4 and the glass plate 2 are wound around the outer periphery of a portion 4b facing each other. Thus, it has the hollow space | interval holding member 4 which hold | maintains the space | interval of the glass plates 2, and the moisture proof layer 5 which has a function which prevents the water | moisture content permeation into the hollow layer 8 from the outside, and the moisture proof layer 5 maintains a hollow space | interval. The member 4 and the secondary seal 7 of the multilayer glass 1 are arranged so as to cover the portion 4c facing the outside of the hollow space holding member 4 so that the member 4 and the secondary seal 7 of the multilayer glass 1 are not in contact with each other. It is possible to obtain the spacer 3 having the glass deformation follower 5a that extends from the portion 4c facing the outside to the portion 4b where the hollow interval holding member 4 and the glass plate 2 face each other and independent of the hollow interval holding member 4.

1次シール6としては、通常架橋処理されないブチルゴム、もしくは、ポリイソブチレンをベースとし、着色と補強を目的としたカーボンブラックなどのフィラーを含有せしめたものが好適である。また、2次シールとしては、ポリサルファイド、シリコーン、ウレタンなどの硬化性エラストマをベースとし、ガラスとの接着性を発現するために適当な変性を加えられたものなどが好適である。   The primary seal 6 is preferably butyl rubber which is not usually subjected to a crosslinking treatment or a polyisobutylene base containing a filler such as carbon black for the purpose of coloring and reinforcement. Further, as the secondary seal, a material based on a curable elastomer such as polysulfide, silicone, urethane, or the like, which has been appropriately modified in order to exhibit adhesiveness with glass is preferable.

また、ガラス変形追従部5aとガラス板2との間に介在する1次シール6は、耐透湿の観点と粘着力の観点の両方からスペーサ3の外側から中空層8方向の長さL6は長いほどよく、スペーサ3とガラス板2の間隔と同等である厚みt6は薄いほどよい。実質上の耐久性を有するためには、t6/L6の比が0.15以上であることが特によい。   Further, the primary seal 6 interposed between the glass deformation follow-up portion 5a and the glass plate 2 has a length L6 in the direction of the hollow layer 8 from the outside of the spacer 3 from both the viewpoint of moisture permeation resistance and the viewpoint of adhesive strength. The longer the thickness, the better, and the thinner the thickness t6 that is equivalent to the distance between the spacer 3 and the glass plate 2, the better. In order to have substantial durability, the ratio of t6 / L6 is particularly preferably 0.15 or more.

図3は本発明に係る別の例のスペーサ3と複層ガラス1の概略断面説明図である。図3(a)は、防湿層5をスペーサ3のスペーサ3とガラス板2とが対向する部位の少なくとも一部のかしめ部12でかしめた例であり、図3(b)は、ガラス変形追従部5aを、中空間隔保持部材4の中空層側の面の一部分を覆うところまで延長した例であり、図3(c)は、中空間隔保持部材4の中空層8側の面に、スペーサ3のスペーサ3とガラス板2とが対向する部位からガラス板2側にガラス板2に接しない所定長さ突出するフラットバー13を配設し、またガラス変形追従部5aを、このフラットバー13に密接した位置でガラス板2側に略直角にガラス板2に接しない所定長さ曲げ加工した例であり、いずれも、スペーサ3の曲げ加工、および複層ガラス製造におけるスペーサ3のハンドリングを容易にするものである。   FIG. 3 is a schematic cross-sectional explanatory view of another example of the spacer 3 and the multilayer glass 1 according to the present invention. FIG. 3A is an example in which the moisture-proof layer 5 is caulked with at least a part of the caulking portion 12 in a portion where the spacer 3 of the spacer 3 and the glass plate 2 face each other, and FIG. FIG. 3C shows an example in which the portion 5a is extended to cover a part of the surface of the hollow space holding member 4 on the hollow layer side. FIG. 3C shows the spacer 3 on the surface of the hollow space holding member 4 on the hollow layer 8 side. A flat bar 13 projecting a predetermined length that does not contact the glass plate 2 is disposed on the glass plate 2 side from a portion where the spacer 3 and the glass plate 2 face each other, and the glass deformation follow-up portion 5a is disposed on the flat bar 13. This is an example in which the glass plate 2 is bent at a close position at a substantially right angle so as not to contact the glass plate 2, both of which facilitate bending of the spacer 3 and handling of the spacer 3 in the production of multilayer glass. To do.

なお、本発明におけるスペーサ3は、ガラス板2相互の間隔を保持する機能と外部から中空層への水分浸入を防ぐ機能と内部水蒸気吸着機能とガラス板2に追従して1次シールに負荷を掛けない機能を有するものであればその具体的な形状に特に制限はない。   The spacer 3 in the present invention has a function of maintaining the distance between the glass plates 2, a function of preventing moisture from entering the hollow layer from the outside, an internal water vapor adsorption function, and a load on the primary seal following the glass plate 2. There is no particular limitation on the specific shape as long as it has a function not to be applied.

以下実施例をもとに、本発明の複層ガラスの好ましい実施の形態について詳説する。
図4は本発明の実施例に係る中空間隔保持部材4の断面図であり、図5は本発明の実施例に係る複層ガラスの構成の説明図である。図4に示すように、中空間隔保持部材4の断面において、複層ガラスとして組み立てられた際に、中空間隔保持部材4の中空層に面する部位の長さをA、ガラス板2と平行に対向する部位4bの長さをB、ガラス板2に対向し、かつ中空間隔保持部材4の外側に面する部位4cのガラス板2と平行方向の長さをC、中空間隔保持部材4の外側に面する部位4cのうち、ガラス板2と略直角の部位の長さをD、中空間隔保持部材4の厚みをEとしたとき、本実施例ではA=11.0mm、B=4.6mm、C=2.4mm、D=6.5mm、E=0.6mmとした。なお、断面形状は左右対称である。
Hereinafter, based on an Example, it explains in full detail about preferable embodiment of the multilayer glass of this invention.
FIG. 4 is a cross-sectional view of the hollow spacing member 4 according to the embodiment of the present invention, and FIG. As shown in FIG. 4, in the cross section of the hollow space holding member 4, the length of the portion facing the hollow layer of the hollow space holding member 4 is set to A and parallel to the glass plate 2 when assembled as a multilayer glass. The length of the facing portion 4b is B, the length in the direction parallel to the glass plate 2 of the portion 4c facing the glass plate 2 and facing the outside of the hollow space holding member 4 is C, and the outside of the hollow space holding member 4 4c, the length of the portion substantially perpendicular to the glass plate 2 is D, and the thickness of the hollow spacing member 4 is E. In this embodiment, A = 11.0 mm, B = 4.6 mm. C = 2.4 mm, D = 6.5 mm, E = 0.6 mm. The cross-sectional shape is symmetrical.

まず、図4に示す断面形状を有する中空間隔保持部材4を押出し成型機によって作成すし、図2に示す方法で中空間隔保持部材4に防湿層5を接着して、スペーサ3を作成した。なお、中空間隔保持部材4の材質はアルミニウム(Al)と硬質ポリ塩化ビニル(硬質PVC)の2種類とし、防湿層5の材質はアルミニウムフィルム(Alフィルム)、粘着材が塗布されたアルミニウムフィルム(Alフィルム2)、粘着剤が塗布されたSUSフィルム(SUSフィルム)、ポリエチレンテレフタレート/アルミニウム蒸着フィルム/ポリエチレンテレフタレート(PET/Al蒸着フィルム/PET)(厚み構成12μm/12μm/12μm)、粘着剤が塗布されたポリスチレンフィルム(PSフィルム)の4種類とした。このうち粘着材塗布の方法としては、ロール状に巻き取られた各々のフィルムを連続的に繰り出しながら、フィルムの幅方向の中央部11.3mm幅に、ヘキサンに重量濃度1%の濃度で溶解させたポイソブチレン溶液を連続的に塗布し、乾燥させて作成した。   First, the hollow interval holding member 4 having the cross-sectional shape shown in FIG. 4 was prepared by an extrusion molding machine, and the moisture-proof layer 5 was adhered to the hollow interval holding member 4 by the method shown in FIG. The hollow spacing member 4 is made of two materials, aluminum (Al) and hard polyvinyl chloride (hard PVC). The moisture-proof layer 5 is made of an aluminum film (Al film) and an aluminum film coated with an adhesive ( Al film 2), SUS film (SUS film) coated with pressure-sensitive adhesive, polyethylene terephthalate / aluminum vapor-deposited film / polyethylene terephthalate (PET / Al vapor-deposited film / PET) (thickness structure 12 μm / 12 μm / 12 μm), pressure-sensitive adhesive coated Four types of polystyrene films (PS films) were used. Among these, as a method of applying the adhesive material, each film wound in a roll shape is continuously fed out and dissolved in hexane at a concentration of 1% by weight in the center of the film in the width direction of 11.3 mm. The prepared poisobutylene solution was continuously applied and dried.

防湿層5を有するアルミニウム製のスペーサ3はバイヤー社製自動折り曲げ機で内寸330×480mmの矩形に折り曲げ、中空間隔保持部材4の中空部に水蒸気吸収剤である粒状3Aゼオライトを1g入れた後、スペーサ3の両端部を市販のアルミスペーサ用接合キーを用いて接合し図5に示すような矩形とした。また、防湿層5を有する硬質ポリ塩化ビニル製のスペーサ3は長さ330mmを2本、480mmを2本切りだし、空間隔保持部材4の中空部に水蒸気吸収剤である粒状3Aゼオライトを1g入れた後、市販のコーナーキーを用いて矩形化した。   After the aluminum spacer 3 having the moisture-proof layer 5 is bent into a rectangle having an inner dimension of 330 × 480 mm by a buyer's automatic folding machine, 1 g of granular 3A zeolite as a water vapor absorbent is placed in the hollow portion of the hollow spacing member 4. The both ends of the spacer 3 were joined using a commercially available aluminum spacer joining key to form a rectangle as shown in FIG. Further, the spacer 3 made of hard polyvinyl chloride having the moisture-proof layer 5 is cut into two pieces of 330 mm in length and two pieces of 480 mm, and 1 g of granular 3A zeolite as a water vapor absorbent is put in the hollow portion of the air gap holding member 4. After that, it was rectangularized using a commercially available corner key.

なお粒状3Aゼオライトは封入前に100℃2時間以上加熱処理し、十分吸着能が活性化された状態で封入した。また、各実施例および比較例に用いた中空間角保持部材4の寸法および材質、防湿層5に用いた寸法および材質は表1に示す。   The granular 3A zeolite was heat-treated at 100 ° C. for 2 hours or more before encapsulation, and encapsulated in a state where the adsorption ability was sufficiently activated. Table 1 shows the dimensions and materials of the medium space angle holding member 4 used in each example and comparative example, and the dimensions and materials used for the moisture-proof layer 5.

次に、厚み5mmのフロートガラス板を350×500mmの寸法に2枚切断し、市販のガラス洗浄機で洗浄した。次に、上記で製作した矩形のスペーサ3に、汎用ブチルシール塗布ラインでブチルシール(横浜ゴム社製SM488)を塗布して、ガラス板2に対向する2面に2.5g/mの重量で付着させた。このスペーサ3を洗浄した前記ガラス板の1枚に貼付し、さらにもう1枚のガラスを重ねて全面に均一に荷重をかけ、ガラス板2、2間の厚みを22.0mmとした。最後に、組み上げた構造体周辺にポリサルファイドシーラント(横浜ゴム社製SM8000)を塗布し、評価試験用の複層ガラス1を作成した。なお、本複層ガラス1は作成後、温度20〜30℃の範囲で1週間保持し、その後評価試験に使用した。   Next, two float glass plates having a thickness of 5 mm were cut into a size of 350 × 500 mm and washed with a commercially available glass washer. Next, a butyl seal (SM488 manufactured by Yokohama Rubber Co., Ltd.) is applied to the rectangular spacer 3 manufactured as described above using a general-purpose butyl seal application line, and a weight of 2.5 g / m is applied to two surfaces facing the glass plate 2. Attached. The spacer 3 was affixed to one of the cleaned glass plates, and another glass was further stacked to apply a load uniformly over the entire surface, so that the thickness between the glass plates 2 and 2 was 22.0 mm. Finally, a polysulfide sealant (SM8000 manufactured by Yokohama Rubber Co., Ltd.) was applied around the assembled structure to produce a multilayer glass 1 for evaluation tests. In addition, this multilayer glass 1 was hold | maintained for 1 week in the temperature range of 20-30 degreeC after preparation, and used for the evaluation test after that.

耐久性評価試験は、まず、上記の通り作成した評価試験用の複層ガラス1をASTM E773でウェザーサイクル試験として規定される温度サイクルを10回加え、常温まで放置した後、複層ガラス1の中空層8の露点をJIS R3209に準拠する方法で測定し、初期露点とした。なお、UV照射や水散布はせず、温度変化のみとした。   In the durability evaluation test, first, the multilayer glass 1 for evaluation test prepared as described above was subjected to a temperature cycle defined as a weather cycle test by ASTM E773 10 times, and allowed to stand at room temperature. The dew point of the hollow layer 8 was measured by a method based on JIS R3209, and used as the initial dew point. Note that UV irradiation and water spraying were not performed, and only temperature changes were made.

その後、60℃90%RHの温湿度環境に保持したチャンバー内へ複層ガラス1を投入し、10日間保持し、その後取り出して、その内部空気層の露点を前述と同様の方法で測定した。この60℃90%RH/10日の温湿度暴露後の空気層内露点が0℃を超えるまでこの操作を繰り返し行い、初めて0℃を超えた点をその複層ガラス試験体の寿命日数とした。なお、図6はASTM E773でウェザーサイクル試験として規定される温度サイクルの制御パターン図である。   Thereafter, the multi-layer glass 1 was put into a chamber maintained in a temperature and humidity environment of 60 ° C. and 90% RH, held for 10 days, and then taken out, and the dew point of the internal air layer was measured by the same method as described above. This operation was repeated until the dew point in the air layer after exposure to temperature and humidity at 60 ° C. and 90% RH / 10 days exceeded 0 ° C., and the point at which the temperature exceeded 0 ° C. for the first time was defined as the life of the multilayer glass specimen. . FIG. 6 is a control pattern diagram of a temperature cycle defined as a weather cycle test by ASTM E773.

次に、ハンドリング評価試験として、従来のスペーサ3を用いる汎用複層ガラス製造ラインへ、前述の実施例で説明した本発明に係るスペーサ3を投入して、そのライン適合性を評価した。評価基準は、5m長さのスペーサ3を10本、サイズ350×500mm、厚さ5mmのフロートガラス20枚を準備し、10枚連続で複層ガラスを試作した場合における、10枚中8〜10枚の製造に問題が生じなかったものを○、4枚〜7枚に問題が生じなかったものを△、3枚以下しか製造できなかったものを×として評価した。   Next, as a handling evaluation test, the spacer 3 according to the present invention described in the above-described embodiment was introduced into a general-purpose multilayer glass production line using the conventional spacer 3, and the line compatibility was evaluated. Evaluation criteria are 10 pieces of spacers 3 of 5 m length, 20 pieces of float glass having a size of 350 × 500 mm, and a thickness of 5 mm. The case where no problem occurred in the production of the sheets was evaluated as “B”, the case where no problem occurred in the 4th to 7th sheets was evaluated as “Δ”, and the case where only 3 or less sheets could be produced was evaluated as “X”.

表1〜表3は上記実施例および比較例の評価結果である。   Tables 1 to 3 show the evaluation results of the above examples and comparative examples.

Figure 0004479690
Figure 0004479690

Figure 0004479690
Figure 0004479690

Figure 0004479690
Figure 0004479690

表1〜3より、実施例1〜8のスペーサ3の構成における寿命は、従来品である比較例1と比して10倍以上になっていることが分かる。また、ハンドリング性の観点から実施例1のスペーサ3の構成においては、従来のスペーサ3を用いる汎用複層ガラス製造ライン改造が必要であるが、実施例2〜7のスペーサ3の構成では、前記製造ラインの大幅な改造は必要がないと考えられる。   From Tables 1 to 3, it can be seen that the lifetime in the configuration of the spacer 3 of Examples 1 to 8 is 10 times or more that of Comparative Example 1 which is a conventional product. Moreover, in the structure of the spacer 3 of Example 1 from a viewpoint of handling property, a general-purpose multilayer glass production line remodeling using the conventional spacer 3 is necessary. However, in the structure of the spacer 3 of Examples 2 to 7, It seems that no major modification of the production line is necessary.

これら評価結果より本発明の複層ガラスのスペーサは、複層ガラスの内部空気層を乾燥状態に維持する従来の機能を有し、実際の使用環境下における、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス空気層の膨張・収縮によって複層ガラス周辺部の1次シールに変形歪みを発生させることがないので、複層ガラスの寿命を少なくとも2倍にすることが可能であることが確認できた。また、従来の複層ガラス製造自動ラインにも対応可能であることが確認できた。   From these evaluation results, the multilayer glass spacer of the present invention has a conventional function of maintaining the inner air layer of the multilayer glass in a dry state, and repeats heating and cooling of the multilayer glass in an actual use environment. It is possible to at least double the life of the double-glazed glass because deformation and distortion are not generated in the primary seal around the double-glazed glass due to the expansion / contraction of the double-glazed air layer accompanying the temperature change. I was able to confirm. Moreover, it has been confirmed that it can be applied to the conventional automatic production line for double-glazed glass.

本発明に係るスペーサと複層ガラスの概略断面説明図である。It is a schematic sectional explanatory drawing of the spacer and multilayer glass which concern on this invention. 本発明に係るスペーサの製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the spacer which concerns on this invention. 本発明に係る別の例のスペーサと複層ガラス1の概略断面説明図である。It is a schematic sectional explanatory drawing of the spacer of another example which concerns on this invention, and the multilayer glass 1. FIG. 図4は本発明の実施例に係る中空間隔保持部材の断面図である。FIG. 4 is a cross-sectional view of a hollow spacing member according to an embodiment of the present invention. 本発明の実施例に係る複層ガラスの構成の説明図である。It is explanatory drawing of the structure of the multilayer glass which concerns on the Example of this invention. 図6はASTM E773でウェザーサイクル試験として規定される温度サイクルの制御パターン図である。FIG. 6 is a control pattern diagram of a temperature cycle defined as a weather cycle test by ASTM E773. 従来のシール構成の複層ガラスの概略断面説明図である。It is a schematic cross-section explanatory drawing of the double glazing of the conventional sealing structure.

1:複層ガラス、2:ガラス板、3:スペーサ、4:中空間隔保持部材、4a:開口部
5:防湿層、5a:ガラス変形追従部、6:1次シール、7:2次シール、8:中空層
9:中空部、11:粘着加工部、12:かしめ部、13:フラットバー。
1: double glass, 2: glass plate, 3: spacer, 4: hollow spacing member, 4a: opening 5: moisture-proof layer, 5a: glass deformation follow-up part, 6: 1 primary seal, 7: secondary seal, 8: Hollow layer 9: Hollow part, 11: Adhesion processed part, 12: Caulking part, 13: Flat bar.

Claims (7)

複層ガラスを構成するガラス板相互間に中空層を形成すべく介在配置される複層ガラス用のスペーサであって、前記スペーサは、ガラス板相互の間隔を保持する中空間隔保持部材と、外部から中空層への水分浸入を防ぐ機能を有する防湿層と、を有し、中空間隔保持部材の外側に面する部位を覆うように防湿層が配置されて中空間隔保持部材と複層ガラスの2次シールとが直接接触しないように構成され、前記防湿層が可とう性を有するフィルム状部材からなり、前記防湿層は前期中空間隔保持部材と、前期中空間隔保持部材の外側に面する部位の少なくとも一部分において固定され、
かつ前記中空間隔保持部材の外側に面する部位から中空間隔保持部材とガラス板とが対向する部位まで延伸されたガラス変形追従部を有し、前記ガラス変形追従部が、中空間隔保持部材とは固定されずに独立していることを特徴とする複層ガラス用のスペーサ。
A spacer for a double-glazed glass that is disposed so as to form a hollow layer between the glass plates constituting the double-glazed glass, the spacer being a hollow gap holding member that holds the gap between the glass plates, and an external A moisture-proof layer having a function of preventing moisture from entering into the hollow layer, and the moisture-proof layer is disposed so as to cover a portion facing the outside of the hollow space-holding member. The moisture-proof layer is composed of a flexible film-like member that is not in direct contact with the next seal, and the moisture-proof layer is formed of a hollow space holding member and a portion facing the outside of the hollow space holding member. Fixed at least in part,
And it has a glass deformation follow-up part extended from a part facing the outside of the hollow space holding member to a part where the hollow space holding member and the glass plate face each other, and the glass deformation follow-up part is a hollow space holding member. A spacer for multilayer glass, characterized by being independent without being fixed .
前記中空間隔保持部材が金属であることを特徴とする請求項1に記載の複層ガラス用のスペーサ。 The spacer for multilayer glass according to claim 1, wherein the hollow spacing member is a metal. 前記防湿層が下記(1)から(3)に示すいずれかのフィルムであることを特徴とする請求項1からのいずれか1項に記載の複層ガラス用のスペーサ。
(1)金属フィルム。
(2)金属蒸着フィルムを少なくとも1層に有する有機多層化フィルム。
(3)有機フィルムであって、前記有機フィルムの片側を60℃ 90%RHに、反対側を60℃ 0%RHに保持したときの透湿量が4×10−3g/m・hr以下である有機フィルム。
The spacer for multi-layer glass according to any one of claims 1 to 2 , wherein the moisture-proof layer is any one of the following films (1) to (3).
(1) Metal film.
(2) An organic multilayer film having a metal vapor deposited film in at least one layer.
(3) An organic film having a moisture permeability of 4 × 10 −3 g / m 2 · hr when one side of the organic film is held at 60 ° C. and 90% RH and the other side is held at 60 ° C. and 0% RH. An organic film that is:
前記防湿層を形成するフィルムの弾性率をeMPa、断面2次モーメントをIcm、中空間隔保持部材の外側に面する部位から中空間隔保持部材とガラス板とが対向する部位まで延伸された前記ガラス変形追従部の防湿層フィルムの長さをLcm、とした時に、e・I/Lが1.25MPa以下であることを特徴とする請求項1からいずれか1項に記載の複層ガラス用のスペーサ。 The glass forming the moisture-proof layer has an elastic modulus of eMPa, a cross-sectional second moment of Icm 4 , and the glass stretched from a portion facing the outside of the hollow interval holding member to a portion where the hollow interval holding member and the glass plate face each other. The multilayer glass according to any one of claims 1 to 3 , wherein e · I / L 4 is 1.25 MPa or less when the length of the moisture-proof layer film of the deformation following portion is Lcm. Spacer. 複層ガラスに介在配置される際、曲げ加工により矩形の形状に加工されることを特徴とする請求項1からのいずれか1項に記載の複層ガラス用のスペーサ。 The spacer for multilayer glass according to any one of claims 1 to 4 , wherein the spacer for multilayer glass is processed into a rectangular shape by bending when interposing the multilayer glass. すくなくとも2枚のガラス板と、前記ガラス板相互間に中空層が形成されるように前記ガラス板の周縁部に介在配置されるスペーサと、前記スペーサと前記ガラス板との間に介在される1次シール材と、前記スペーサの中空層に直面しない側の基底面と前記ガラス板の周縁部とで形成される凹部に充填された2次シール材と、を備えた複層ガラスであって、前記スペーサは、前記ガラス板相互の間隔を保持する中空間隔保持部材と、外部から中空層への水分浸入を防ぐ機能を有する防湿層を有し、前記スペーサが複層ガラスに組み込まれる際に中空間隔保持部材の外側に面する部位を覆うように防湿層が配置されて中空間隔保持部材と複層ガラスの2次シールとが直接接触しないように構成され、前記防湿層が可とう性を有するフィルム状部材からなり、かつ前記中空間隔保持部材の外側に面する部位から中空間隔保持部材と前記ガラス板とが対向する部位まで延伸されたガラス変形追従部を有し、前記ガラス変形追従部と前記ガラス板との間に1次シール材を介在させて前記ガラス板と請求項1からのいずれか1項に記載のスペーサとが粘接着されていることを特徴とする複層ガラス。 At least two glass plates, a spacer interposed at the periphery of the glass plate so that a hollow layer is formed between the glass plates, and 1 interposed between the spacer and the glass plate A secondary glass comprising a secondary sealing material, and a secondary sealing material filled in a recess formed by a base surface on the side not facing the hollow layer of the spacer and a peripheral edge of the glass plate, The spacer has a hollow interval holding member that holds the gap between the glass plates, and a moisture-proof layer that has a function of preventing moisture from entering the hollow layer from the outside, and is hollow when the spacer is incorporated into the multilayer glass. The moisture-proof layer is arranged so as to cover the portion facing the outside of the spacing member, and the hollow spacing member and the secondary seal of the double-glazed glass are not in direct contact with each other, and the moisture-proof layer has flexibility. Film-like part And a glass deformation follow-up portion that extends from a portion facing the outside of the hollow interval holding member to a portion where the hollow interval holding member and the glass plate face each other, the glass deformation following portion and the glass plate The glass sheet and the spacer according to any one of claims 1 to 5 are adhesively bonded to each other with a primary sealant interposed therebetween. 前記ガラス変形追従部と前記ガラス板との間に存在する前記1次シールの厚み/長さの比が0.15以下であることを特徴とする請求項に記載の複層ガラス。 The multilayer glass according to claim 6 , wherein a ratio of thickness / length of the primary seal existing between the glass deformation follower and the glass plate is 0.15 or less.
JP2006106429A 2006-04-07 2006-04-07 Multi-layer glass spacer, multi-layer glass Active JP4479690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106429A JP4479690B2 (en) 2006-04-07 2006-04-07 Multi-layer glass spacer, multi-layer glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106429A JP4479690B2 (en) 2006-04-07 2006-04-07 Multi-layer glass spacer, multi-layer glass

Publications (2)

Publication Number Publication Date
JP2007277052A JP2007277052A (en) 2007-10-25
JP4479690B2 true JP4479690B2 (en) 2010-06-09

Family

ID=38678904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106429A Active JP4479690B2 (en) 2006-04-07 2006-04-07 Multi-layer glass spacer, multi-layer glass

Country Status (1)

Country Link
JP (1) JP4479690B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2909299C (en) * 2007-11-13 2017-08-15 Guardian Ig, Llc Sealed unit and spacer
WO2012011177A1 (en) * 2010-07-22 2012-01-26 東邦シートフレーム株式会社 Multi-layered window structure
CA2958613C (en) 2014-09-25 2019-05-07 Saint-Gobain Glass France Spacer for insulating glazing units
JP6452822B2 (en) * 2014-12-08 2019-01-16 サン−ゴバン グラス フランスSaint−Gobain Glass France Double glazing
EP3230058B1 (en) 2014-12-08 2022-02-23 Saint-Gobain Glass France Laminated glass with low thickness for a head-up display (hud)
RU2684996C2 (en) 2015-03-02 2019-04-16 Сэн-Гобэн Гласс Франс Remote by glass fiber distance-type frame for sealed double-glazed unit
CA2980680C (en) 2015-04-22 2019-12-31 Saint-Gobain Glass France Method and device for producing a triple insulating glazing unit
CZ307960B6 (en) * 2015-10-06 2019-09-18 Jiří Dobrovolný Spacer frame
JP6918587B2 (en) * 2017-06-12 2021-08-11 株式会社竹中工務店 Double glazing
JP7155858B2 (en) * 2018-09-21 2022-10-19 大日本印刷株式会社 Gas barrier film for resin spacer for double glazing, resin spacer for double glazing, and double glazing

Also Published As

Publication number Publication date
JP2007277052A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4479690B2 (en) Multi-layer glass spacer, multi-layer glass
JP4529956B2 (en) Multi-layer glass spacer, multi-layer glass, and method for manufacturing multi-layer glass spacer
KR102056036B1 (en) Spacer for insulating glazing units
US5270084A (en) Insulating glass unit
JPS61242933A (en) Multiple glass window unit
SE508620C2 (en) Glazing unit and methods for its manufacture
KR20140035884A (en) Spacer, connector and insulating glazing
EP3505716A1 (en) Barrier window spacer with enhanced durability
JP5495046B2 (en) Double glazing
JP2018535379A (en) Door for refrigerated cabinet
JP4941838B2 (en) Double glazing
JP2002201049A (en) Laminated glass
JPH10306658A (en) Double glazing panel
JPH1121149A (en) Low-pressure double layer glass panel and its manufacture
JP7451904B2 (en) Gas barrier film for resin spacers for double glazing, resin spacers for double glazing, and double glazing
JP2008064575A (en) Test object for testing adhesiveness and adhesiveness testing method using it
JP6548248B1 (en) Double layer glass
JP6890308B2 (en) Glass panel unit and glass window
JP3382709B2 (en) Double glazing for structural silicone construction
JP3128529U (en) Double glazing
WO2005049521A1 (en) Spacer for multi-layered glass and multi-layered glass
JP3841549B2 (en) Glass panel
JP3221216U (en) 3 layer double glazing
JPH10330134A (en) Production of low-pressure multiple glass
JP6558844B1 (en) Sheet glass unit for producing double-glazed glass and method for producing double-glazed glass using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250