JP4941838B2 - Double glazing - Google Patents

Double glazing Download PDF

Info

Publication number
JP4941838B2
JP4941838B2 JP2007301917A JP2007301917A JP4941838B2 JP 4941838 B2 JP4941838 B2 JP 4941838B2 JP 2007301917 A JP2007301917 A JP 2007301917A JP 2007301917 A JP2007301917 A JP 2007301917A JP 4941838 B2 JP4941838 B2 JP 4941838B2
Authority
JP
Japan
Prior art keywords
glass
spacer
sealing material
wall portion
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007301917A
Other languages
Japanese (ja)
Other versions
JP2008156217A (en
Inventor
徹 松井
栄亮 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007301917A priority Critical patent/JP4941838B2/en
Publication of JP2008156217A publication Critical patent/JP2008156217A/en
Application granted granted Critical
Publication of JP4941838B2 publication Critical patent/JP4941838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、建築物、輸送機械、産業用等に使用される複層ガラスに関する。   The present invention relates to a multi-layer glass used for buildings, transportation machines, industrial use and the like.

複層ガラスは、複数のガラス板を所定間隔で平行に配置し、その相互間に中空層が形成されるものである。一般には、ガラス板周辺部に間隔保持用のスペーサを配置して対向するガラス板を隔置し、このスペーサとそれぞれのガラス板との間に一次シール材を打設するとともに、隔置されたガラス板の相互の周縁部と前記スペーサとで画成される空間部に二次シール材を打設して空間部を密閉することにより構成される。また、スペーサ内には吸湿剤が収納されるとともに、この吸湿剤と前記中空層とを接触させるために、少なくとも一つ以上の通気孔がスペーサに形成されており、一次・二次の両シール材を通過してきた水蒸気ガスが、スペーサ内に収納された吸湿剤でもって吸着固定化されることにより、中空層である内部空気層の乾燥状態を所定の露点以下に保持する。   Multi-layer glass is a glass in which a plurality of glass plates are arranged in parallel at predetermined intervals, and a hollow layer is formed between them. In general, a spacer for spacing is arranged around the periphery of the glass plate to separate the opposing glass plates, and a primary sealant is placed between the spacer and each glass plate, and spaced apart. A secondary sealing material is placed in a space defined by the peripheral edges of the glass plates and the spacers to seal the space. In addition, a moisture absorbent is accommodated in the spacer, and at least one vent hole is formed in the spacer to bring the moisture absorbent into contact with the hollow layer, and both primary and secondary seals are formed. The water vapor gas that has passed through the material is adsorbed and fixed by the hygroscopic agent housed in the spacer, whereby the dry state of the internal air layer that is the hollow layer is kept below a predetermined dew point.

長期にわたる使用を経た複層ガラスは、初期よりスペーサ内部に保持・装填された吸湿剤の吸着能以上の水蒸気が透過し、内部へ浸透することにより、中空層の露点が上昇し、外部環境温度を超えた時点で、いわゆる内部結露を発生せしめ、複層ガラスが本来持つべき透明性を損ない寿命に達する。   Multi-layer glass that has been used for a long time has permeated water vapor that exceeds the adsorption capacity of the hygroscopic agent held and loaded inside the spacer from the beginning, and penetrated into the interior, increasing the dew point of the hollow layer and increasing the external environmental temperature. When the temperature exceeds the upper limit, so-called internal condensation occurs, and the transparency that the multi-layer glass should have is impaired and the service life is reached.

一次シール材としては、通常架橋処理されないブチルゴム、もしくは、ポリイソブチレンをベースとし、着色と補強を目的としたカーボンブラックなどのフィラーを含有せしめたものが用いられる。二次シール材としては、ポリサルファイド、シリコーン、ウレタンなどの硬化性エラストマをベースとし、ガラスとの接着性を発現するために適当な変性を加えられたものなどが使用される。   As the primary sealing material, butyl rubber which is not usually subjected to crosslinking treatment or a material based on polyisobutylene and containing a filler such as carbon black for the purpose of coloring and reinforcement is used. As the secondary sealing material, a material based on a curable elastomer such as polysulfide, silicone, urethane, etc., which has been appropriately modified in order to develop adhesiveness with glass is used.

スペーサとしては、通常はアルミニウムを主材質とする金属製スペーサが用いられる場合が多いが、特別に、複層ガラス周辺部の熱伝導を減じる必要がある場合は、熱伝導率の比較的小さい金属であるステンレス材や硬質樹脂からなるものも使用されている。   As a spacer, a metal spacer mainly made of aluminum is usually used. However, a metal having a relatively low thermal conductivity is required when it is necessary to reduce the heat conduction around the multilayer glass. Those made of stainless steel or hard resin are also used.

一次シール材は中空層の乾燥状態を保つ上で不可欠な材料であり、透湿抵抗が高いブチル系シーリング材が使用されることが多い。しかし、ブチル系シーリング材は、硬化することがなく、粘着力を有し、塑性流れの性質が相当大きな材料である。このため、荷重や変位が生じると、それだけ一次シール材自体が変位し、元通りに復元できない。例えば、建築物や輸送機械の開口部に設置される複層ガラスは、気温変化に起因する中空層の膨張収縮によるガラス板の変位、および風圧等によって生じるガラス板の変位を受ける。繰り返しガラス板の変位を受けた複層ガラスでは、一次シール材が中空層側に変位してしまい、小さく波打つ現象が知られている。中空層側に一次シール材がこのように移動してしまうと、結果として、透湿抵抗の低下につながり、中空層への水分の侵入を許し、その結果、内部結露が生じる温度が上昇することとなり、複層ガラスとしての耐久性の低下を引き起こす。   The primary sealing material is an indispensable material for maintaining the dry state of the hollow layer, and a butyl sealant having a high moisture permeability resistance is often used. However, a butyl sealant is a material that does not cure, has adhesive strength, and has a considerably large plastic flow property. For this reason, when a load or displacement occurs, the primary sealing material itself is displaced by that amount and cannot be restored to its original state. For example, a double-glazed glass installed in an opening of a building or a transport machine is subjected to a displacement of the glass plate due to expansion and contraction of the hollow layer due to a change in temperature and a displacement of the glass plate caused by wind pressure or the like. In a double-glazed glass that has been subjected to repeated displacement of the glass plate, a phenomenon in which the primary sealing material is displaced toward the hollow layer and undulates is known. If the primary sealing material moves in this way to the hollow layer side, it will lead to a decrease in moisture permeability resistance and allow moisture to enter the hollow layer, resulting in an increase in the temperature at which internal condensation occurs. As a result, the durability of the multi-layer glass is reduced.

特許文献1では、ある複層ガラスに、35℃から75℃まで昇温し、その後、75℃から35℃まで冷却するという温度履歴サイクルを加えることにより、従来の複層ガラスでは中空層の内部露点がばらつくことを示しており、その対策として、一次シール材がある所定の範囲の量を満たす必要があるとしている。これは一次シール材の初期厚みを大きくすることで、中空層内の体積膨張によって一次シール材に加わる変形量は同じでも変形量と初期厚みの比である歪みを小さくすることができ、シール破断の発生を防ぐことができることを示しているが、特許文献1の複層ガラスでは、スペーサフレームの両側面に一次シール材の少なくとも一部を受け入れる凹部を設けて複層ガラスが組み立てられた際に所望の最小厚さの一次シール材を適所に保持する構造であるため、スペーサ形状が複雑化しスペーサフレームの両側面と各々のガラス板との間に一次シール材を充填する際に、凹部付近に空隙が生じやすく、内部結露に対する複層ガラスの耐久性が低下するおそれがあった。   In Patent Document 1, by adding a temperature history cycle in which a certain multilayer glass is heated from 35 ° C. to 75 ° C. and then cooled from 75 ° C. to 35 ° C., in the conventional multilayer glass, the inside of the hollow layer It shows that the dew point varies, and as a countermeasure, the primary sealant needs to satisfy a certain range of amounts. By increasing the initial thickness of the primary seal material, the strain that is the ratio between the deformation amount and the initial thickness can be reduced even if the deformation amount applied to the primary seal material is the same due to the volume expansion in the hollow layer, and the seal rupture occurs. In the double-glazed glass of Patent Document 1, the concave glass for receiving at least part of the primary sealant is provided on both side surfaces of the spacer frame, and the double-glazed glass is assembled. Since the primary sealant with the desired minimum thickness is held in place, the spacer shape becomes complicated, and when filling the primary sealant between the both sides of the spacer frame and each glass plate, There was a possibility that voids were likely to occur, and the durability of the double-glazed glass against internal condensation could be reduced.

また、従来の金属スペーサを用いた先行技術を開示した特許の中には、特許文献2のように金属スペーサ自体が変形し、一次シール材の変形破断を抑制するとの技術が開示されている。ところが通常使用されている一次シール材は、特に中空層の体積膨張による引張り方向への歪みが加わる室温以上の温度環境の場合、引張り速度にも依存するが、ヤング弾性率はおよそ10〜10Paであることが知られている。その一方、スペーサに使用されている材質は金属であるが故に、同じ温度範囲領域では10〜1010Paであり、その差により一次シールに加わる歪み低減に対する大きな効果は期待できない。 Further, in a patent disclosing the prior art using a conventional metal spacer, a technique is disclosed in which the metal spacer itself is deformed as in Patent Document 2 to suppress deformation and fracture of the primary seal material. However, the primary sealing material that is usually used has a Young's modulus of approximately 10 6 to 10, although it depends on the tensile speed, particularly in a temperature environment of room temperature or higher where strain in the tensile direction due to volume expansion of the hollow layer is applied. It is known to be 8 Pa. On the other hand, since the material used for the spacer is metal, it is 10 9 to 10 10 Pa in the same temperature range region, and due to the difference, a great effect on reducing distortion applied to the primary seal cannot be expected.

特開平6−185267号公報JP-A-6-185267 特表2003−509324号公報Special table 2003-509324 gazette

本発明は、上記の事情に鑑みてなされたものであって、実際の使用環境下における、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス中空層の膨張・収縮によって生ずる複層ガラス周辺部の一次シール材の変形歪みを抑制し、スペーサ形状を複雑化させることなく、耐水蒸気透過性能低下を防止する複層ガラスを提供する。   The present invention has been made in view of the above circumstances, and is a multi-layer produced by expansion / contraction of a multi-layer glass hollow layer accompanying a repeated temperature change of heating / cooling of the multi-layer glass in an actual use environment. Disclosed is a multi-layer glass that suppresses deformation distortion of a primary sealant around a glass and prevents a decrease in water vapor permeation resistance without complicating a spacer shape.

発明は、前記目的を達成するために、対向する2枚のガラス板が、金属製または合成樹脂製のスペーサを介して隔置されるとともに、2枚のガラス板と対向するスペーサの各側面が一次シール材により2枚のガラス板にそれぞれ接着されて2枚のガラス板間に中空層が形成され、一次シール材の外側が二次シール材によって封止された複層ガラスにおいて、前記スペーサは、2つのガラス面と対向する側壁部を有し、該側壁部と前記ガラス面とが対向する領域のうち、少なくとも前記一次シール材と前記二次シール材とが接触する界面において、前記側壁部と前記ガラス面との幅が0.8mm〜1.0mmとなるように前記一次シール材が介在して前記スペーサと2枚のガラス板とがそれぞれ接着され、前記側壁部の一次シール材と接する区間において、前記側壁部がスペーサ内部に向かう凹部を有していないことを特徴とする複層ガラスを提供する。 In order to achieve the above object, according to the present invention, two glass plates facing each other are spaced apart via a metal or synthetic resin spacer, and each side surface of the spacer facing the two glass plates. Are bonded to two glass plates by a primary sealing material, a hollow layer is formed between the two glass plates, and the spacer is formed of a double-layer glass in which the outer side of the primary sealing material is sealed by a secondary sealing material. Has a side wall portion facing two glass surfaces, and at least in the region where the side wall portion and the glass surface oppose, at least at the interface where the primary sealing material and the secondary sealing material contact each other, the side wall The spacer and the two glass plates are bonded to each other with the primary sealing material interposed so that the width between the portion and the glass surface is 0.8 mm to 1.0 mm , Touch Between the side wall portion to provide a double glazing, characterized in that it does not have a recess towards the inner spacer.

発明によれば、スペーサの側壁部とガラス面とが対向する領域のうち、少なくとも前記一次シール材と前記二次シール材とが接触する界面において、側壁部とガラス面との幅が0.8mm〜1.0mmとなるように一次シール材が介在してスペーサと2枚のガラス板とがそれぞれ接着されるので、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス中空層の膨張・収縮によって生ずる複層ガラス周辺部の一次シール材の変形歪みが抑制され、耐水蒸気透過性能低下が防止される。また、本発明によれば、スペーサの側壁部とガラス面とが対向する領域で、一次シール材によりスペーサと2枚のガラス板とが接着される区間において、側壁部がスペーサ内部に向かう凹部を有していないため、スペーサ形状が複雑化することなく、一次シール材をスペーサフレームの両側面と各々のガラス板との間に一次シール材を充填する際に空隙が生じるおそれが少なく、内部結露に対する複層ガラスの耐久性に悪影響を与えることがない。 According to the present invention, in the region where the side wall portion of the spacer and the glass surface face each other, at least at the interface where the primary sealing material and the secondary sealing material are in contact, the width between the side wall portion and the glass surface is 0. The spacer and the two glass plates are bonded to each other with the primary sealing material interposed so that the thickness is 8 mm to 1.0 mm. Deformation distortion of the primary sealing material around the double-glazed glass caused by expansion / contraction is suppressed, and deterioration of the water vapor permeation resistance is prevented. Further, according to the present invention, in the region where the side wall portion of the spacer and the glass surface are opposed to each other, in the section where the spacer and the two glass plates are bonded by the primary sealant, the side wall portion is provided with the concave portion toward the inside of the spacer. Because it does not have a spacer shape, the primary sealant is not complicated, and there is little risk of voids when filling the primary sealant between both side surfaces of the spacer frame and each glass plate, and internal condensation It does not adversely affect the durability of the multi-layer glass.

記スペーサは、2つのガラス面と対向する側壁部と、前記中空層に接する内壁部と、前記内壁部に対向する後壁部とを有し、前記内壁部と前記後壁部とは前記側壁部に連結されて設けられ、2枚のガラス板の周縁部とスペーサ後壁部とで画成された空間部が二次シール材によって密閉されたことを特徴としている。 Before SL spacer includes a side wall portion facing the two glass surfaces, and the inner wall portion in contact with the hollow layer, and a rear wall facing the inner wall, wherein the said rear wall and said inner wall portion A space portion defined by the peripheral edge portion of the two glass plates and the spacer rear wall portion is sealed with a secondary sealing material.

発明によれば、2つのガラス面と対向する側壁部と、中空層に接する内壁部と、内壁部に対向する後壁部とを有し、内壁部と後壁部とが側壁部に連結されて設けられたスペーサの後壁部と、2枚のガラス板の周縁部とで画成された空間部が二次シール材によって密閉されるため、複層ガラスを構成する2枚のガラス板を拘束・保持する剛性が増すため、複層ガラス中空層の膨張・収縮によって生ずる複層ガラス周辺部の一次シール材の変形歪みがさらに抑制されるので、一次シール材と二次シール材とが接触する界面において、側壁部とガラス面との幅が0.8mm〜1.0mmとなるように一次シール材が介在してスペーサと2枚のガラス板とがそれぞれ接着されることと相俟って、複層ガラスの耐水蒸気透過性能低下がさらに効果的に防止される。 According to this invention, it has a side wall part facing two glass surfaces, an inner wall part in contact with the hollow layer, and a rear wall part facing the inner wall part, and the inner wall part and the rear wall part are connected to the side wall part. Since the space part defined by the rear wall part of the spacer provided and the peripheral part of the two glass plates is hermetically sealed by the secondary sealing material, the two glass plates constituting the multilayer glass Since the rigidity for restraining / holding is increased, the deformation distortion of the primary sealing material around the double-glazed glass caused by the expansion / contraction of the double-glazed glass hollow layer is further suppressed. Combined with the fact that the spacer and the two glass plates are bonded to each other with the primary sealant interposed so that the width between the side wall and the glass surface is 0.8 mm to 1.0 mm at the contacting interface. The water vapor transmission performance of multi-layer glass is more effectively reduced. It is locked.

前記スペーサは、前記側壁部の前記中空層側において、前記側壁部と前記ガラス面との幅が0.2mm以下になるように形状が設計されることを特徴としている。 The spacer is characterized in that the shape of the spacer is designed so that the width between the side wall and the glass surface is 0.2 mm or less on the hollow layer side of the side wall .

本発明に係る複層ガラスによれば、スペーサの側壁部とガラス面とが対向する領域のうち、少なくとも一次シール材と二次シール材とが接触する界面において、側壁部とガラス面との幅が0.8mm〜1.0mmとなるように一次シール材が介在してスペーサと2枚のガラス板とがそれぞれ接着されるので、実際の使用環境下における、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス中空層の膨張・収縮によって生ずる複層ガラス周辺部の一次シール材の変形歪みを抑制し、スペーサ形状を複雑化させることなく、耐水蒸気透過性能低下を防止できる。   According to the multilayer glass according to the present invention, at least in the region where the side wall portion of the spacer and the glass surface face each other, at the interface where the primary sealing material and the secondary sealing material are in contact, the width between the side wall portion and the glass surface. The spacer and the two glass plates are bonded to each other with the primary sealing material interposed so that the thickness becomes 0.8 mm to 1.0 mm, so that repeated heating and cooling of the multi-layer glass in the actual use environment The deformation distortion of the primary sealing material around the double-glazed glass caused by the expansion and contraction of the double-glazed glass layer due to the temperature change can be suppressed, and the water vapor permeation-resistant performance can be prevented from being lowered without complicating the spacer shape.

以下、図面に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る複層ガラス1の周縁部付近の概略断面図である。図1に示すように、本発明に係る複層ガラス1は2枚のガラス板2、2の相互間に所定の厚さの中空層8が形成されるようにガラス板2、2の周縁部にスペーサ3が配置される。外部からの水蒸気の進入を防ぐために、スペーサ3とガラス板2、2との間に低水蒸気透過性を有する材料からなる一次シール材6を介在させる。また、スペーサ3の外側に面する部位とガラス板2、2とで形成される空間に二次シール材7を粘着させる。二次シール材7は一次シール材6の外側に位置しており、一次シール材6と接触するように設けられている。   FIG. 1 is a schematic cross-sectional view of the vicinity of the peripheral edge of a multilayer glass 1 according to the present invention. As shown in FIG. 1, the multi-layer glass 1 according to the present invention has a peripheral portion of the glass plates 2 and 2 so that a hollow layer 8 having a predetermined thickness is formed between the two glass plates 2 and 2. The spacer 3 is disposed in In order to prevent the entrance of water vapor from the outside, a primary sealing material 6 made of a material having low water vapor permeability is interposed between the spacer 3 and the glass plates 2 and 2. Further, the secondary sealing material 7 is adhered to a space formed by the portion facing the outside of the spacer 3 and the glass plates 2 and 2. The secondary sealing material 7 is located outside the primary sealing material 6 and is provided in contact with the primary sealing material 6.

スペーサ3は、ガラス板2、2相互の間隔を保持するために配設されるものであり、ガラス板2の表面と対向する側壁部11と、中空層8に接する内壁部13と、内壁部13に対向する後壁部12とをもち、その中空14には内壁部13と接する複層ガラス中空層8内にある湿気を吸収するような乾燥剤(不図示)を封入することが可能であり、乾燥剤が封入される場合、スペーサ3内部と複層ガラス中空層8とを連通する通孔(不図示)が内壁部13に形成される。スペーサ3としては、アルミニウムを主材質とする金属製スペーサを使用する。また、複層ガラス周辺部の熱伝導を減じる必要がある場合は、熱伝導率の比較的小さい金属であるステンレス材や硬質樹脂からなるものを使用するのが好ましい。   The spacer 3 is disposed in order to maintain a space between the glass plates 2 and 2, and includes a side wall portion 11 facing the surface of the glass plate 2, an inner wall portion 13 in contact with the hollow layer 8, and an inner wall portion. The hollow 14 has a rear wall 12 that faces the inner wall 13, and a desiccant (not shown) that absorbs moisture in the multilayer glass hollow layer 8 in contact with the inner wall 13 can be enclosed. In addition, when the desiccant is sealed, a through hole (not shown) that communicates the inside of the spacer 3 and the multilayer glass hollow layer 8 is formed in the inner wall portion 13. As the spacer 3, a metal spacer mainly made of aluminum is used. Moreover, when it is necessary to reduce the heat conduction of the periphery of the multilayer glass, it is preferable to use a material made of a stainless material or a hard resin, which is a metal having a relatively low heat conductivity.

一次シール材6としては、通常架橋処理されないブチルゴム、もしくは、ポリイソブチレンをベースとし、着色と補強を目的としたカーボンブラックなどのフィラーを含有せしめたものが好適である。また、二次シール材7としては、ポリサルファイド、シリコーン、ウレタンなどの硬化性エラストマをベースとし、ガラスとの接着性を発現するために適当な変性を加えられたものなどが好適である。   The primary sealing material 6 is preferably a butyl rubber which is not usually subjected to crosslinking treatment or a polyisobutylene base containing a filler such as carbon black for the purpose of coloring and reinforcement. Further, as the secondary sealing material 7, a material based on a curable elastomer such as polysulfide, silicone, urethane, or the like, which has been appropriately modified in order to develop adhesiveness with glass is preferable.

スペーサ3の側壁部11とガラス板2とが対向する領域のうち、少なくとも一次シール材6と二次シール材7とが接触する界面において、側壁部11とガラス板2の中空層8側表面との幅aが0.8mm〜1.0mmとなるように一次シール材6が介在してスペーサ3と2枚のガラス板2、2とが接着されている。   In the region where the side wall portion 11 of the spacer 3 and the glass plate 2 face each other, at least at the interface where the primary sealing material 6 and the secondary sealing material 7 are in contact with each other, the side wall portion 11 and the surface of the glass plate 2 on the hollow layer 8 side The spacer 3 and the two glass plates 2 and 2 are bonded to each other with the primary sealing material 6 interposed so that the width a is 0.8 mm to 1.0 mm.

側壁部11とガラス板2の中空層8側表面との幅aは、片側だけでなく、左右両側の幅aがともに、0.8mm〜1.0mmとなるように一次シール材6が充填される必要がある。仮に幅aが、片側だけが0.8mm〜1.0mmの範囲にあり、他側が0.8mm未満となる場合、複層ガラスの加熱・冷却の繰り返し温度変化に伴う複層ガラス中空層の膨張・収縮によって生ずる負荷を、0.8mm未満の側の一次シール材6が集中的に受けることとなり、結果として一次シール材6が破断して耐水蒸気透過性能が低下し、複層ガラスとしての寿命が短くなってしまう。   The width a between the side wall 11 and the surface of the glass plate 2 on the hollow layer 8 side is filled with the primary sealant 6 so that the width a on both the left and right sides is 0.8 mm to 1.0 mm. It is necessary to If the width a is in the range of 0.8 mm to 1.0 mm on one side and less than 0.8 mm on the other side, the expansion of the multilayer glass hollow layer due to repeated temperature changes of heating and cooling of the multilayer glass -The primary sealing material 6 on the side of less than 0.8 mm is intensively subjected to the load caused by the shrinkage. As a result, the primary sealing material 6 is broken and the water vapor permeation resistance is lowered, and the life as a multilayer glass is obtained. Will be shorter.

図1に示すように、スペーサ3は、側壁部11の一次シール材6と接する区間において、側壁部11がスペーサ3内部に向かう凹部を有していないのが好ましい。特許文献1の複層ガラスでは、スペーサフレームの両側面に一次シール材の少なくとも一部を受け入れる凹部を設けて複層ガラスが組み立てられた際に所望の最小厚さの一次シール材を適所に保持する構造であるため、スペーサ形状が複雑化するばかりでなく、スペーサフレームの両側面と各々のガラス板との間に一次シール材を充填する際に、凹部付近に空隙が生じやすい。その結果、中空層の気密性が低下しやすく、内部結露に対する複層ガラスの耐久性が低下しやすいという問題があった。   As shown in FIG. 1, it is preferable that the spacer 3 does not have a concave portion toward the inside of the spacer 3 in a section in contact with the primary sealant 6 of the sidewall 11. In the double-glazed glass of Patent Document 1, a concave portion for receiving at least a part of the primary seal material is provided on both side surfaces of the spacer frame, and when the double-glazed glass is assembled, the primary seal material having a desired minimum thickness is held in place. Thus, the spacer shape is not only complicated, but also when the primary sealing material is filled between the both side surfaces of the spacer frame and the respective glass plates, voids are likely to be generated near the recesses. As a result, there is a problem that the airtightness of the hollow layer is likely to be reduced, and the durability of the double-glazed glass against internal condensation is likely to be reduced.

複層ガラス1を構成するガラス板2の構成やサイズ、製造環境や使用される環境にも依存するが、一次シール材6は、一次シール材6と二次シール材7とが接触する界面から側壁部11に沿って高さ方向に2mm以上の範囲(図1における高さb)にわたって、側壁部11とガラス板2の中空層8側表面との幅aが図1の左右両側ともに0.8mm〜1.0mmとなるように一次シール材6が介在してスペーサ3と2枚のガラス板2、2とがそれぞれ接着されるのが好ましい。高さbを2mm以上とすれば、長期の使用により、繰り返し温度変化に伴う加熱・冷却による複層ガラス1の中空層8の膨張・収縮によって生ずる複層ガラス1周辺部の一次シール材6の変形歪みが経年的に発生しても、一次シール材6が破断せず、従来品と比較して、耐水蒸気透過性能が長期にわたり維持されることが確認された。また、高さbを2mm以上とすれば、従来の複層ガラス製造装置で使用されている汎用ブチルシール塗布ラインにおいて、条件出しが比較的容易に行えるので、好ましい。   Although depending on the configuration and size of the glass plate 2 constituting the multilayer glass 1, the manufacturing environment, and the environment in which it is used, the primary sealing material 6 is from the interface between the primary sealing material 6 and the secondary sealing material 7. The width a between the side wall 11 and the surface of the glass plate 2 on the side of the hollow layer 8 over the range of 2 mm or more along the side wall 11 in the height direction (height b in FIG. 1) is 0. It is preferable that the spacer 3 and the two glass plates 2 and 2 are bonded to each other with the primary sealant 6 interposed so as to be 8 mm to 1.0 mm. If the height b is 2 mm or more, the primary sealing material 6 around the double-glazed glass 1 produced by expansion / contraction of the hollow layer 8 of the double-glazed glass 1 due to heating / cooling due to repeated temperature changes due to long-term use. Even when deformation strain occurs over time, it was confirmed that the primary sealant 6 was not broken and the water vapor permeation resistance was maintained for a long time as compared with the conventional product. In addition, it is preferable that the height b is 2 mm or more, since conditions can be determined relatively easily in a general-purpose butyl seal coating line used in a conventional multilayer glass manufacturing apparatus.

また、側壁部11の中空層8側は、幅aを0.8mm〜1.0mmとした場合に、側壁部11とガラス板2の中空層8側表面との幅cが0.2mm以下になるようにスペーサ3の形状が設計されているのが好ましい。このように、側壁部11の中空層8側において、側壁部11とガラス板2の中空層8側表面との幅cが、側壁部11下方の幅aよりも小さく設定されるため、温度変化や風圧による中空層8内の体積の膨張収縮により、一次シール材6が中空層8内へ流れ込むことが抑制され、一次シール材6が中空層8内へ漏れ出ることがなく、外観が悪化せず好ましい。   Moreover, the hollow layer 8 side of the side wall part 11 makes the width c of the side wall part 11 and the hollow layer 8 side surface of the glass plate 2 0.2 mm or less when the width a is 0.8 mm to 1.0 mm. It is preferable that the shape of the spacer 3 is designed so as to be. Thus, on the hollow layer 8 side of the side wall part 11, the width c between the side wall part 11 and the surface of the glass plate 2 on the hollow layer 8 side is set smaller than the width a below the side wall part 11. Due to the expansion and contraction of the volume in the hollow layer 8 due to the wind pressure, the primary sealing material 6 is prevented from flowing into the hollow layer 8, the primary sealing material 6 does not leak into the hollow layer 8, and the appearance deteriorates. It is preferable.

以下実施例をもとに、本発明の複層ガラスの好ましい実施の形態について詳説する。   Hereinafter, based on an Example, it explains in full detail about preferable embodiment of the multilayer glass of this invention.

[複層ガラスユニット製作]
呼び厚さ5mmのフロートガラス板を350×500mmの寸法に2枚切断し、市販のガラス洗浄機で洗浄した。次に、アルミニウム製で中空形状のスペーサに、その中空部分に乾燥剤を封入した後、自動折り曲げ機で内寸330×480mmの矩形に折り曲げ、スペーサ3の両端部を接合キーを用いて接合した。スペーサ3は、2枚のフロートガラス板に対向する側壁部と、中空層に接する内壁部と、内壁部に対向する後壁部とを有しており、内壁部と後壁部とは側壁部に連結して設けられていた。スペーサ3内部と複層ガラス中空層とを連通する通孔が内壁部に形成されていた。矩形に折り曲げられたスペーサ3のガラス板に対向する2面(側壁部)に、一次シール材としてブチルシール(横浜ゴム株式会社製SM−488)を汎用ブチルシール塗布ラインで所定量塗布して付着させた。このスペーサを、洗浄した前記フロートガラス板の1枚に貼付し、さらにもう1枚のフロートガラス板を重ねて全面に均一に荷重をかけ、2枚のフロートガラス板の外表面間の厚さを測定することで、一次シール材の厚さ(複層ガラスの板厚方向)を所定量に管理した。具体的には、2枚のフロートガラス板の外表面間の厚さを測定し、その厚さから、2枚のフロートガラス板の板厚(実測値)と、スペーサの幅(両側面(側壁部)間の距離)とを差し引き、その数値を2で除して、片側の一次シール材の幅aとみなした。ただし、後述する透湿寿命倍率を算出するにあたって、複層ガラスユニットを分解してスペーサ内部に充填した乾燥剤を採取する際に、スペーサ両側面における一次シール材の幅aを観察し、スペーサの両側で一次シール材の幅aに差異が認められるサンプルは除外して評価を行った。なお、一次シール材は、高さ方向に5mmの範囲にわたって設けられるように調整した。また、スペーサとしては、従来の標準的な厚さ(0.4mm)の一次シール材を両側に打設した場合に、中空層の幅が12mmとなる寸法のものを用いた。また、このスペーサは、両側面(側壁部)において、スペーサ内部に向かう凹部を有しておらず、両側面(側壁部)が直線状の形状のものであった。
[Multilayer glass unit production]
Two float glass plates having a nominal thickness of 5 mm were cut into dimensions of 350 × 500 mm and washed with a commercially available glass washer. Next, after a desiccant was sealed in the hollow portion of the aluminum spacer made of aluminum, it was bent into a rectangle with an inner dimension of 330 × 480 mm by an automatic folding machine, and both ends of the spacer 3 were joined using a joining key. . The spacer 3 has a side wall portion facing two float glass plates, an inner wall portion in contact with the hollow layer, and a rear wall portion facing the inner wall portion, and the inner wall portion and the rear wall portion are side wall portions. It was provided in connection with. A through hole communicating the inside of the spacer 3 and the multilayer glass hollow layer was formed in the inner wall portion. A predetermined amount of butyl seal (SM-488, manufactured by Yokohama Rubber Co., Ltd.) is applied as a primary sealant to the two surfaces (side walls) of the spacer 3 that are bent into a rectangle, facing the glass plate. I let you. This spacer is attached to one of the washed float glass plates, and another float glass plate is further stacked to apply a uniform load to the entire surface, and the thickness between the outer surfaces of the two float glass plates is set. By measuring, the thickness of the primary sealing material (in the thickness direction of the multilayer glass) was controlled to a predetermined amount. Specifically, the thickness between the outer surfaces of two float glass plates is measured, and from the thickness, the plate thickness (measured value) of the two float glass plates and the width of the spacer (both sides (side walls) Part) was subtracted, and the value was divided by 2 to obtain the width a of the primary sealant on one side. However, when calculating the moisture permeability lifetime magnification described later, when collecting the desiccant filled in the spacer by disassembling the multilayer glass unit, the width a of the primary sealant on both sides of the spacer is observed, Evaluation was performed excluding samples in which a difference in the width a of the primary sealant was observed on both sides. In addition, the primary sealing material was adjusted so that it might be provided over the range of 5 mm in the height direction. In addition, as the spacer, when a conventional primary sealing material having a standard thickness (0.4 mm) was placed on both sides, a spacer having a dimension of a hollow layer width of 12 mm was used. Moreover, this spacer did not have the recessed part which goes to the inside of a spacer in both sides | surfaces (side wall part), and both sides | surfaces (side wall part) were a thing of a linear shape.

最後に、組み上げた構造体周辺の一次シール材の外側に二次シール材として、ポリサルファイドシーラント(横浜ゴム株式会社製SM−8000)を塗布し、2枚のフロートガラス板の周縁部とスペーサ後壁部とで画成された空間部を密閉して、評価試験用の複層ガラスユニットを作成した。なお、本複層ガラスユニットは製作後、常温で1週間保持し、その後冷熱サイクル試験に使用した。なお、中空層には乾燥空気を封入し、複層ガラス製作時の温度は25〜30℃であった。   Finally, polysulfide sealant (SM-8000 manufactured by Yokohama Rubber Co., Ltd.) is applied as a secondary seal material to the outside of the primary seal material around the assembled structure, and the peripheral edge of the two float glass plates and the spacer rear wall The space part defined by the part was sealed to create a multi-layer glass unit for evaluation tests. In addition, this multilayer glass unit was hold | maintained at normal temperature for 1 week after manufacture, and was used for the thermal cycle test after that. The hollow layer was filled with dry air, and the temperature during the production of the double-glazed glass was 25 to 30 ° C.

[冷熱サイクル試験]
気温変化に起因する中空層の膨張収縮による一次シール材の伸縮変動は、複層ガラスユニットを冷熱サイクル試験槽で曝露することで再現できる。伸縮中の一次シール材の流動に関連する主要素としては、温度、変位、時間が挙げられ、これらを下記のように設定することが好ましい。
[Cool cycle test]
The expansion and contraction of the primary sealing material due to the expansion and contraction of the hollow layer due to the temperature change can be reproduced by exposing the multi-layer glass unit in the cold cycle test tank. The main elements related to the flow of the primary sealing material during expansion and contraction include temperature, displacement, and time, and these are preferably set as follows.

近年、複層ガラスの普及に伴い、一般に使用される複層ガラス寸法の多様化や合わせ複層ガラスの需要増加、中空層厚の拡大傾向等の背景から、一次シール材に0.2mm以上の変形が加わる条件下で複層ガラスが使用される例が増えている。そこで、上記の通り製作した評価試験用の複層ガラスユニットを、低温側は−10℃、高温側は標準厚さ(0.4mm)の一次シール材が中空層の膨張により、少なくとも1.5倍の機械的変形、すなわち0.2mmの変形量を生ずる(計算値)ような温度に設定し、高温側で少なくとも1.5時間の保持時間を設定して、一次シール材の温度が設定温度で安定するようにする。目安としては、高温側は、複層ガラスユニット製作温度から少なくともプラス30℃の温度に設定する。したがって、製作時の温度が25℃の場合には高温側を55℃に設定し、製作時の温度が30℃の場合には高温側を60℃に設定する。ただし、プレス時の空気抜き取り不良やガラス板の反り等、製作時に温度以外の要因で、中空層の内圧が大きく変動するような場合は、それらを排除するか、あるいは一次シール材の変形量で高温側の温度を調整する必要がある。なお、実環境において一次シール材(ブチルシール)は50℃以上となる場合があり、その際の流動性を再現させるために、少なくとも高温側の温度を50℃以上とするのが好ましい。加熱、冷却の条件としては、高温側で1.5時間保持した後、−10℃まで1時間で冷却し、その後高温側まで0.5時間で加熱する。だだし、曝露試験装置の加熱・冷却能力上、その設定が困難な場合は昇温・降温に2時間を要しても良い。試験に供する複層ガラスを室温から高温側に加熱、または、低温側に冷却して開始し、前記の加熱、冷却の条件に従う温度サイクルを400サイクル与える。   In recent years, with the widespread use of double-glazed glass, due to the diversification of commonly used double-glazed glass dimensions, increased demand for laminated double-glazed glass, and the tendency to expand hollow layer thickness, the primary sealing material has a thickness of 0.2 mm or more. An increasing number of cases where double glazing is used under conditions where deformation is applied. Therefore, the multilayer glass unit for the evaluation test manufactured as described above has a primary sealant of at least 1.5 ° C. on the low temperature side and a standard thickness (0.4 mm) on the high temperature side due to expansion of the hollow layer. Double the mechanical deformation, that is, set the temperature to produce a deformation amount of 0.2 mm (calculated value), set the holding time of at least 1.5 hours on the high temperature side, the temperature of the primary sealant is set temperature To stabilize. As a guide, the high temperature side is set to a temperature of at least plus 30 ° C. from the manufacturing temperature of the multi-layer glass unit. Therefore, when the temperature during manufacture is 25 ° C., the high temperature side is set to 55 ° C., and when the temperature during manufacture is 30 ° C., the high temperature side is set to 60 ° C. However, if the internal pressure of the hollow layer fluctuates greatly due to factors other than temperature during production, such as poor air extraction during the press or warping of the glass plate, eliminate them or use the deformation amount of the primary sealant. It is necessary to adjust the temperature on the high temperature side. In the actual environment, the primary sealing material (butyl seal) may be 50 ° C. or higher, and at least the temperature on the high temperature side is preferably 50 ° C. or higher in order to reproduce the fluidity at that time. As the conditions for heating and cooling, after holding on the high temperature side for 1.5 hours, it is cooled to −10 ° C. in 1 hour, and then heated to the high temperature side in 0.5 hours. However, if the setting is difficult due to the heating / cooling capability of the exposure test apparatus, it may take 2 hours to raise and lower the temperature. The multilayer glass to be used for the test is started by heating from room temperature to the high temperature side or cooling to the low temperature side, and 400 temperature cycles according to the heating and cooling conditions are given.

[透湿寿命倍率算出]
冷熱サイクル試験400サイクル経過後の複層ガラスユニットは、中空層の膨張収縮に伴う一次シール材の伸縮変動によって一次シール材に変形歪みが発生して流動化等が生じ、その機械特性低下や耐水蒸気透過性能低下などの悪影響が引き起こされる。実際に長期実環境で使用された複層ガラスを回収・断面形状を観察すると、初期封入された一次シール材の形状は製造直後のものとは大きく異なり、内部に大小さまざまな気泡を有したり、一部でシール部、特に一次シール材の破壊が顕著に観察されたりする場合がある。この場合、材料自体は十分な耐水蒸気透過性能を有しているにもかかわらず、実際の使用環境下において、一次シール材は破壊され、耐水蒸気透過性能を失ってしまう事態が発生している。
[Calculation of moisture permeability life magnification]
In the double glazing unit after 400 cycles of the thermal cycle test, deformation deformation occurs in the primary seal material due to expansion and contraction of the primary seal material accompanying expansion and contraction of the hollow layer, resulting in fluidization, etc. Adverse effects such as reduced water vapor transmission performance are caused. When collecting and observing the cross-sectional shape of the multi-layer glass that was actually used in a long-term actual environment, the shape of the primary sealing material initially sealed is very different from that immediately after manufacture, and there are various types of bubbles inside and outside. In some cases, the destruction of the seal portion, particularly the primary seal material, may be observed remarkably. In this case, even though the material itself has sufficient water vapor permeation resistance, the primary sealing material is destroyed and the water vapor permeation resistance is lost under the actual use environment. .

その結果、二次シール材を透過した水蒸気が一次シール材を徐々に透過し、初期よりスペーサ内部に保持・装填された乾燥剤の吸着能以上の水蒸気が透過し、中空層へ浸透することにより、中空層の露点が上昇し、外部環境温度を超えた時点で、いわゆる内部結露を発生せしめ、複層ガラスが本来持つべき透明性を損ない寿命に達する。すなわち、複層ガラスの寿命は、スペーサ、一次シール材、二次シール材を含めた封止部全体としての水蒸気透過性能またはガス透過性能と相関関係を有するものである。   As a result, the water vapor that has passed through the secondary sealing material gradually permeates through the primary sealing material. When the dew point of the hollow layer rises and exceeds the external environment temperature, so-called internal dew condensation occurs, and the transparency that the multilayer glass should originally have is lost and the life is reached. That is, the lifetime of the multilayer glass has a correlation with the water vapor permeation performance or gas permeation performance of the entire sealing portion including the spacer, the primary seal material, and the secondary seal material.

したがって、中空層内への水蒸気透過量を測定することにより、その複層ガラスユニットのおよその寿命を予測することが可能である。そこで、初期状態で標準的な厚さ(0.4mm)の一次シール材を有する複層ガラスユニット、および、初期状態で種々の厚さ(複層ガラスの板厚方向)の一次シール材を有する複層ガラスユニットの、冷熱サイクル試験400サイクル経過後の水蒸気透過量をそれぞれ測定し、それらの比を下記の式(1)に基いて計算し、種々の厚さ(複層ガラスの板厚方向)の一次シール材を有する複層ガラスユニットの透湿寿命倍率を得た。   Therefore, it is possible to predict the approximate lifetime of the multilayer glass unit by measuring the amount of water vapor permeated into the hollow layer. Therefore, a multilayer glass unit having a primary sealant with a standard thickness (0.4 mm) in the initial state, and a primary sealant having various thicknesses (in the thickness direction of the multilayer glass) in the initial state. The water vapor permeation amount after 400 cycles of the thermal cycle test of the multi-layer glass unit was measured, and the ratio was calculated based on the following formula (1). Various thicknesses (in the thickness direction of the multi-layer glass) ) Moisture permeable lifetime magnification of a multilayer glass unit having a primary sealant was obtained.

Figure 0004941838
Figure 0004941838

複層ガラスユニットの中空層内への水蒸気透過量は、中空形状のスペーサ内部に充填した乾燥剤を採取し、その含水率を測定することで求めることができる。式(1)の透湿寿命倍率は、標準的な厚さ(0.4mm)の一次シール材を有する複層ガラスユニットが示す透湿寿命に対する、種々の厚さの一次シール材を有する複層ガラスユニットが示す透湿寿命の大小を表わすものであり、この透湿寿命倍率を比較することにより、各複層ガラスユニットの寿命を相対比較できる。なお、水蒸気透過量を測定することに代えて、例えばEN1279−3に記載されたガス遺漏率測定装置を用いて複層ガラスのガス遺漏量を測定することにより、同様の評価を行うことができる。   The amount of water vapor permeated into the hollow layer of the multi-layer glass unit can be determined by collecting the desiccant filled inside the hollow spacer and measuring its moisture content. The moisture permeability life ratio of the formula (1) is a multilayer having primary seal materials of various thicknesses with respect to the moisture permeability life exhibited by the multilayer glass unit having a primary seal material of standard thickness (0.4 mm). It represents the magnitude of the moisture permeable life exhibited by the glass unit, and the life of each multilayer glass unit can be relatively compared by comparing the moisture permeable life magnification. In addition, instead of measuring the water vapor transmission rate, the same evaluation can be performed by measuring the gas leakage rate of the double-glazed glass using, for example, a gas leakage rate measuring device described in EN1279-3. .

[測定例]
片側の一次シール材の幅が0.38〜1.20mmとなる複層ガラスユニットを前記の方法により製作し、前記の冷熱サイクル試験に投入して、式(1)に基いて透湿寿命倍率を算出した。その結果を、横軸に一次シール材の初期設定厚さとし、縦軸を透湿寿命倍率とし、図2に示すグラフにプロットした。グラフ上の個々の点は、前記の方法により製作した個々の複層ガラスユニットについての冷熱サイクル試験の結果に対応している。
[Measurement example]
A multilayer glass unit having a width of the primary sealant on one side of 0.38 to 1.20 mm is manufactured by the method described above, and is supplied to the thermal cycle test. Was calculated. The results are plotted on the graph shown in FIG. 2 with the horizontal axis representing the initial set thickness of the primary sealing material and the vertical axis representing the moisture permeation life ratio. The individual points on the graph correspond to the results of the thermal cycle test for the individual multi-layer glass units produced by the above method.

透湿寿命倍率算出のため、複層ガラスユニットを分解してスペーサ内部に充填した乾燥剤を採取する際に、スペーサ両側面における一次シール材を観察した。その結果、一次シール材の初期設定厚さが0.8mm未満の試験体では、いずれも一次シール材の損傷が大きく、一次シール材が破断している箇所も見られた。一方、一次シール材の初期設定厚さが0.8mm以上の試験体では、いずれも一次シール材の損傷は小さく、一次シール材が破断している箇所は見当たらなかった。一次シール材の初期設定厚さが0.8mm以上の試験体では、一次シール材の目視確認結果に大きな違いが見られないのにかかわらず、図2に示すように、一次シール材の初期設定厚さが1mmを超える試験体で、初期設定厚さが厚くなるほど透湿寿命倍率が低下する傾向が確認された。これは、初期設定厚さが1mmを超える試験体では、中空層の膨張収縮に伴う一次シール材の伸縮変動によって生ずる変形歪みはあまり問題とならず、一次シール材の幅が大きくなることにより、一次シール材を透過して中空層へと到達しうる一次シール材の断面積(透湿面積)が増加することにより、冷熱サイクル試験の過程で中空層へと透過する水蒸気量が増加するためと考えられる。   In order to calculate the moisture permeation life ratio, the primary sealing material on both sides of the spacer was observed when the desiccant filled in the spacer was collected by disassembling the multilayer glass unit. As a result, in the test specimens having an initial set thickness of the primary sealing material of less than 0.8 mm, the damage to the primary sealing material was great, and there were some places where the primary sealing material was broken. On the other hand, in the test specimens having an initial set thickness of the primary sealing material of 0.8 mm or more, damage to the primary sealing material was small, and no portion where the primary sealing material was broken was found. As shown in FIG. 2, the initial setting of the primary sealing material is shown in FIG. 2 regardless of the fact that the visual confirmation result of the primary sealing material does not show a large difference in the specimen with the initial thickness of the primary sealing material of 0.8 mm or more. It was confirmed that the moisture permeability life ratio tends to decrease as the initial set thickness increases in the test specimen having a thickness exceeding 1 mm. This is because in the test specimen having an initial thickness exceeding 1 mm, deformation strain caused by expansion and contraction fluctuation of the primary seal material accompanying expansion and contraction of the hollow layer is not a problem, and the width of the primary seal material is increased. This is because the amount of water vapor that permeates into the hollow layer increases in the course of the thermal cycle test by increasing the cross-sectional area (moisture permeable area) of the primary sealing material that can penetrate the primary sealing material and reach the hollow layer. Conceivable.

この結果を踏まえ、図2のグラフにおいて、一次シール材の初期設定厚さが0.8mm未満の領域、0.8mm〜1.0mmの領域、1.0mm超の領域に分け、各領域のプロットについてそれぞれ最小二乗法により近似直線を求め、グラフ上に示した。なお、一次シール材の初期設定厚さが0.8mm未満の領域については、初期設定厚さが0.4mmで透湿寿命倍率が1となるように近似直線を求めた。図2の結果によれば、一次シール材の初期設定厚さが0.8mm未満では、初期設定厚さの増大に伴って透湿寿命は徐々に改善されるものの、試験体の分解サンプルの目視結果からも明らかなように、一次シール材の損傷状況に大きな変化は見られない。また、一次シール材の初期設定厚さが1.0mm超では、一次シール材の透湿面積増大の影響が大きくなり、複層ガラスの透湿寿命のさらなる向上は期待できない。これに対して、一次シール材の初期設定厚さを0.8〜1.0mm、さらに好ましくは0.86mm〜0.94mmとすることにより、標準的な厚さ(0.4mm)の一次シール材を備える従来の複層ガラスに対して、約2倍超の透湿耐久性を有する複層ガラスが得られる。   Based on this result, in the graph of FIG. 2, the initial set thickness of the primary sealant is divided into a region of less than 0.8 mm, a region of 0.8 mm to 1.0 mm, and a region of more than 1.0 mm, and plots of each region. An approximate straight line was obtained for each by the least square method and shown on the graph. In addition, about the area | region where the initial setting thickness of a primary sealing material is less than 0.8 mm, the approximate straight line was calculated | required so that the initial setting thickness might be 0.4 mm and a moisture-permeable life multiplication factor might be set to 1. According to the result of FIG. 2, when the initial set thickness of the primary sealing material is less than 0.8 mm, the moisture permeability life is gradually improved as the initial set thickness is increased, but the decomposition sample of the test specimen is visually checked. As is clear from the results, there is no significant change in the damage status of the primary sealing material. In addition, when the initial set thickness of the primary sealing material exceeds 1.0 mm, the influence of the increase in the moisture permeable area of the primary sealing material becomes large, and further improvement of the moisture permeable life of the multilayer glass cannot be expected. On the other hand, by setting the initial set thickness of the primary sealing material to 0.8 to 1.0 mm, more preferably 0.86 mm to 0.94 mm, a primary seal having a standard thickness (0.4 mm) is obtained. A double-glazed glass having moisture permeability durability of more than about twice that of a conventional double-glazed glass comprising a material is obtained.

[複層ガラスの外観比較]
片側の一次シール材の幅が0.8mmとなる複層ガラスを前記の方法により2体製作する。2体のうち1体は、スペーサ側壁部の複層ガラス中空層側は、側壁部とガラス面との幅が0.2mmとなるようにスペーサ形状を調整する。残る1体は、スペーサ側壁部の複層ガラス中空層側は、側壁部とガラス面との幅が0.8mmとなるようにスペーサ形状を調整する。
[Comparison of external appearance of multi-layer glass]
Two pieces of double-glazed glass having a width of the primary sealing material on one side of 0.8 mm are manufactured by the above method. One of the two bodies adjusts the spacer shape so that the width of the side wall portion and the glass surface is 0.2 mm on the side of the multilayer glass hollow layer of the spacer side wall portion. As for the remaining one body, the spacer shape is adjusted so that the width of the side wall portion and the glass surface is 0.8 mm on the side of the multilayer glass hollow layer of the spacer side wall portion.

これら2体の複層ガラスについて、前記の冷熱サイクル試験を行い、400サイクル経過後の複層ガラスの外観を確認する。その結果、スペーサ側壁部の複層ガラス中空層側において、側壁部とガラス面との幅を0.8mmとした複層ガラスは、一次シール材が複層ガラス中空層側へ漏れ出すのが確認され、外観上好ましくない。一方、スペーサ側壁部の複層ガラス中空層側において、側壁部とガラス面との幅を0.2mmとした複層ガラスは、一次シール材が複層ガラス中空層側へ漏れ出すのが確認されず、従来の複層ガラスと同様に外観上の問題は見られない。   About these 2 types of multilayer glass, the said thermal cycle test is performed and the external appearance of the multilayer glass after 400 cycles progress is confirmed. As a result, in the multilayer glass hollow layer side of the spacer side wall portion, it is confirmed that the primary sealing material leaks out to the multilayer glass hollow layer side in the multilayer glass having a width of 0.8 mm between the side wall portion and the glass surface. And is not preferable in appearance. On the other hand, in the multilayer glass hollow layer side of the spacer side wall portion, it is confirmed that the primary sealing material leaks out to the multilayer glass hollow layer side in the multilayer glass having a width of 0.2 mm between the side wall portion and the glass surface. In addition, no problem in appearance is seen as in the case of conventional double-glazed glass.

以上、本発明の実施の形態ないし実施例を図面により詳述してきたが、本発明は前記実施の形態ないし実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、複層ガラス1を構成するガラス板2として、通常のフロートガラス板を用いるほか、強化ガラス、合わせガラス、金属網入りガラス、熱線吸収ガラス、さらには、熱線反射ガラス、低反射率ガラスなどのように、表面に金属や他の無機物を薄くコーティングしたガラス板、有機ガラスと呼ばれるアクリル樹脂板、ポリカーボネート板などであり、特に限定されない。また、複層ガラス1は中空層8をアルゴンやクリプトン等の断熱ガスで置換したものや、3枚以上のガラス板2から構成されるものでもよい。スペーサは、少なくとも一次シール材と前記二次シール材とが接触する界面において、スペーサ側壁部とガラス面との幅が0.8mm〜1.0mmとなるように一次シール材が介在し得るものであれば、本発明の効果を奏する限りにおいて、各種の断面形状を適用できる。ただし、スペーサ側壁部の一次シール材と接する区間において、側壁部がスペーサ内部に向かう凹部を有していないのが好ましい。二次シール材としては、一次シール材の外側に設けられ、一次シール材と接触して封止するものであれば、その材質はもちろんのこと、定形あるいは不定形の区別、またその最終形状や、二次シール材が設けられる空間部(間隙)の形状は問わない。その他の構成についても、同様である。   As mentioned above, although embodiment thru | or example of this invention has been explained in full detail with drawing, this invention is not limited to the said embodiment thru | or example, Various in the range which does not deviate from the summary of this invention. Design changes can be made. For example, in addition to using a normal float glass plate as the glass plate 2 constituting the multilayer glass 1, tempered glass, laminated glass, glass with metal net, heat ray absorbing glass, heat ray reflecting glass, low reflectance glass, etc. As described above, there are no particular limitations, such as a glass plate whose surface is thinly coated with a metal or other inorganic material, an acrylic resin plate called an organic glass, or a polycarbonate plate. Further, the double-glazed glass 1 may be constituted by replacing the hollow layer 8 with a heat insulating gas such as argon or krypton, or composed of three or more glass plates 2. In the spacer, the primary sealing material can be interposed so that the width between the spacer side wall and the glass surface is 0.8 mm to 1.0 mm at least at the interface where the primary sealing material and the secondary sealing material are in contact with each other. If it exists, various cross-sectional shapes can be applied as long as the effects of the present invention are achieved. However, it is preferable that the side wall portion does not have a recess toward the inside of the spacer in the section in contact with the primary sealant of the spacer side wall portion. As the secondary sealing material, as long as it is provided on the outer side of the primary sealing material and seals in contact with the primary sealing material, not only the material but also the distinction between the fixed shape and the indefinite shape, and the final shape and The shape of the space (gap) where the secondary sealing material is provided is not limited. The same applies to other configurations.

本発明に係る複層ガラスの周縁部付近の概略断面図Schematic sectional view of the vicinity of the peripheral edge of the multilayer glass according to the present invention 冷熱サイクル試験に投入した複層ガラスユニットの一次シール材初期設定厚さと透湿寿命倍率との関係を示すグラフGraph showing the relationship between the initial thickness of the primary sealant and the moisture permeation life ratio of the multi-layer glass unit that was put into the thermal cycle test

符号の説明Explanation of symbols

1:複層ガラス、2:ガラス板、3:スペーサ、6:一次シール材、7:二次シール材、8、中空層、11:側壁部、12:外壁部、13:内壁部、14:中空。   1: multi-layer glass, 2: glass plate, 3: spacer, 6: primary sealing material, 7: secondary sealing material, 8, hollow layer, 11: side wall, 12: outer wall, 13: inner wall, 14: Hollow.

Claims (3)

対向する2枚のガラス板が、金属製または合成樹脂製のスペーサを介して隔置されるとともに、2枚のガラス板と対向するスペーサの各側面が一次シール材により2枚のガラス板にそれぞれ接着されて2枚のガラス板間に中空層が形成され、一次シール材の外側が二次シール材によって封止された複層ガラスにおいて、
前記スペーサは、2つのガラス面と対向する側壁部を有し、該側壁部と前記ガラス面とが対向する領域のうち、少なくとも前記一次シール材と前記二次シール材とが接触する界面において、前記側壁部と前記ガラス面との幅が0.8mm〜1.0mmとなるように前記一次シール材が介在して前記スペーサと2枚のガラス板とがそれぞれ接着され
前記側壁部の一次シール材と接する区間において、前記側壁部がスペーサ内部に向かう凹部を有していないことを特徴とする複層ガラス。
The two glass plates facing each other are separated by a spacer made of metal or synthetic resin, and each side surface of the spacer facing the two glass plates is respectively formed on the two glass plates by the primary sealing material. In a multilayer glass in which a hollow layer is formed between two glass plates by bonding and the outside of the primary sealing material is sealed with a secondary sealing material,
The spacer has a side wall portion facing two glass surfaces, and at least in the interface where the side wall portion and the glass surface oppose each other, the primary sealing material and the secondary sealing material are in contact with each other. The spacer and the two glass plates are bonded to each other with the primary sealing material interposed so that the width of the side wall portion and the glass surface is 0.8 mm to 1.0 mm ,
In the section in contact with the primary sealant of the side wall part, the side wall part does not have a recess toward the inside of the spacer .
前記スペーサは、2つのガラス面と対向する側壁部と、前記中空層に接する内壁部と、前記内壁部に対向する後壁部とを有し、前記内壁部と前記後壁部とは前記側壁部に連結されて設けられ、2枚のガラス板の周縁部とスペーサ後壁部とで画成された空間部が二次シール材によって密閉された請求項1に記載の複層ガラス。   The spacer includes a side wall portion facing two glass surfaces, an inner wall portion in contact with the hollow layer, and a rear wall portion facing the inner wall portion, and the inner wall portion and the rear wall portion are the side walls. The multi-layer glass according to claim 1, wherein a space portion defined by the peripheral edge portion of the two glass plates and the spacer rear wall portion is hermetically sealed by a secondary sealant. 前記スペーサは、前記側壁部の前記中空層側において、前記側壁部と前記ガラス面との幅が0.2mm以下になるように形状が設計される請求項1または2に記載の複層ガラス。The multilayer glass according to claim 1 or 2, wherein the spacer is designed so that a width between the side wall portion and the glass surface is 0.2 mm or less on the hollow layer side of the side wall portion.
JP2007301917A 2006-11-28 2007-11-21 Double glazing Active JP4941838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301917A JP4941838B2 (en) 2006-11-28 2007-11-21 Double glazing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006320209 2006-11-28
JP2006320209 2006-11-28
JP2007301917A JP4941838B2 (en) 2006-11-28 2007-11-21 Double glazing

Publications (2)

Publication Number Publication Date
JP2008156217A JP2008156217A (en) 2008-07-10
JP4941838B2 true JP4941838B2 (en) 2012-05-30

Family

ID=39657565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301917A Active JP4941838B2 (en) 2006-11-28 2007-11-21 Double glazing

Country Status (1)

Country Link
JP (1) JP4941838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023987A (en) * 2011-07-25 2013-02-04 Asahi Glass Co Ltd Fireproof double glazing
CN105042356A (en) * 2015-03-13 2015-11-11 杭州华普永明光电股份有限公司 LED module and lighting device
RU2679879C1 (en) * 2015-04-22 2019-02-13 Сэн-Гобэн Гласс Франс Method and device for manufacture of three-layer insulating glass unit
PL71450Y1 (en) * 2017-10-04 2020-06-15 Uniglass Polska Spolka Z Ograniczona Odpowiedzialnoscia Insulating glass pane
PL70973Y1 (en) * 2017-10-04 2019-08-30 Uniglass Polska Spolka Z Ograniczona Odpowiedzialnoscia Insulating glass pane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9218150D0 (en) * 1992-08-26 1992-10-14 Pilkington Glass Ltd Insulating units
JPH08231250A (en) * 1995-02-28 1996-09-10 Asahi Glass Co Ltd Multiple glass and multiple glass supporting structure

Also Published As

Publication number Publication date
JP2008156217A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4941838B2 (en) Double glazing
JP6495170B2 (en) Spacer system for installing vacuum insulated glass window units in window frames designed to accommodate thick insulated glass window units
US11802437B2 (en) Dynamic multi-pane insulating assembly and system
KR20160095128A (en) Double glazing having improved sealing
JP5067376B2 (en) Multi-layer glass unit
EP2597244A1 (en) Multi-layered window structure
JP2008138484A (en) Supporting structure of double glass
CA2151688A1 (en) Multiple glazing unit
EP3555406B1 (en) Flexible spacer for double-glazing
JP2018012637A (en) Method for producing double-layered glass
JP6550077B2 (en) Multiple glass shoji
WO2016068306A1 (en) Multilayer glass screen
WO2016098840A1 (en) Multilayer glass
US20220055347A1 (en) Dynamic multi-pane insulating assembly and system
JP6548248B1 (en) Double layer glass
WO2016098831A1 (en) Window
JPH10306658A (en) Double glazing panel
JP6893321B2 (en) Manufacturing method of glass panel unit and fittings equipped with it
JPH1192180A (en) Method for balancing internal and external pressures of double layer glass
JP2014205595A (en) Multi-layer window
JP4960733B2 (en) Secondary sealing material evaluation method for glass panels and double glazing
JP3841549B2 (en) Glass panel
AU2020256074B2 (en) Dynamic multi-pane insulating assembly and system
JP2017088442A (en) Spacer for multiple glass, and multiple glass
JPH10292984A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R151 Written notification of patent or utility model registration

Ref document number: 4941838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250