JP4479234B2 - Positive characteristic thermistor sorting method and sorting apparatus - Google Patents

Positive characteristic thermistor sorting method and sorting apparatus Download PDF

Info

Publication number
JP4479234B2
JP4479234B2 JP2003422455A JP2003422455A JP4479234B2 JP 4479234 B2 JP4479234 B2 JP 4479234B2 JP 2003422455 A JP2003422455 A JP 2003422455A JP 2003422455 A JP2003422455 A JP 2003422455A JP 4479234 B2 JP4479234 B2 JP 4479234B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
value
standard deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003422455A
Other languages
Japanese (ja)
Other versions
JP2005183674A (en
Inventor
修 中村
史朗 辻
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003422455A priority Critical patent/JP4479234B2/en
Publication of JP2005183674A publication Critical patent/JP2005183674A/en
Application granted granted Critical
Publication of JP4479234B2 publication Critical patent/JP4479234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、電圧を印加して検出した減衰電流波形により良品,不良品の選別を行う正特性サーミスタの選別方法および選別装置に関する。   The present invention relates to a screening method and a screening apparatus for a positive temperature coefficient thermistor that screens non-defective products and defective products based on an attenuation current waveform detected by applying a voltage.

従来、セラミックス素子を選別する方法として、突入電流を基準として、製品の良否判定を行う選別方法が提案されている(特許文献1参照)。   2. Description of the Related Art Conventionally, as a method for selecting ceramic elements, a selection method for determining whether a product is good or not based on an inrush current has been proposed (see Patent Document 1).

しかし、上記先行技術に係る選別方法は、表面温度に対する突入電流を検出するものであり、製品の良否判定では、十分な判定精度が得られなかった。   However, the selection method according to the above prior art detects an inrush current with respect to the surface temperature, and sufficient determination accuracy cannot be obtained in the quality determination of the product.

そこで、正特性サーミスタにおいて、電圧を印加すると自己発熱して抵抗値が増加する特性を検査することにより、良品,不良品の選別が行われている。   Therefore, in the positive temperature coefficient thermistor, a non-defective product and a defective product are selected by inspecting a characteristic in which a resistance value increases by self-heating when a voltage is applied.

つまり、従来の選別方法では、正特性サーミスタに電圧を印加し、電圧を印加することにより流れる電流の変化を捕らえ、電流が減衰しきった電圧印加終了直前にて電流測定を行い、製品の良否判定を行っていた。
特開平9−92504号
In other words, in the conventional sorting method, a voltage is applied to the positive temperature coefficient thermistor, the change in the flowing current is captured by applying the voltage, current measurement is performed immediately before the voltage application is completed, and the quality of the product is judged. Had gone.
JP-A-9-92504

従来の選別方法は、正特性サーミスタに、例えば45秒間電圧を印加して製品の良否判定を行っていた。このように、長時間電圧を印加しているため、選別作業がコスト高になるという問題があった。   In the conventional sorting method, the product quality is judged by applying a voltage to the positive temperature coefficient thermistor for 45 seconds, for example. As described above, since the voltage is applied for a long time, there is a problem in that the sorting operation is expensive.

また、長時間の印加時間を確保するために、試験機は多くの印加端子を有しており、設備が複雑で長大化し、設備費用が嵩むという問題があった。   In addition, in order to ensure a long application time, the tester has many application terminals, and there is a problem that the equipment is complicated and long, and the equipment cost is increased.

さらに、印加時間を確保するため、比較的低速度(例えば処理スピード:200個/分)にて運転しており、効率よく選別作業が行えないという問題があった。   Further, in order to secure the application time, the operation is performed at a relatively low speed (for example, processing speed: 200 / min), and there is a problem that the sorting operation cannot be performed efficiently.

本発明は、電圧の印加時間の短縮により、選別作業コストの削減、設備費用の低減、選別作業の効率化が図れる正特性サーミスタの選別方法および選別装置を提供することを目的とする。   An object of the present invention is to provide a screening method and a screening apparatus for a positive temperature coefficient thermistor that can reduce sorting work costs, equipment costs, and efficiency of sorting work by shortening the voltage application time.

本発明の正特性サーミスタの選別方法は、選別対象となる複数個の正特性サーミスタに電圧を印加して減衰電流波形を得る工程と、前記正特性サーミスタの減衰電流波形の平均値および標準偏差値を算出する工程と、前記平均値および標準偏差値より、平均値±n×標準偏差値(ここで、n=3〜6)を用いて上限値および下限値を算出する工程と、前記各正特性サーミスタの減衰電流波形が前記上限値および前記下限値の間の判定範囲内にあるか否かを判断し、当該判定範囲内にあるものを良品として選別する工程とを含むものである。   The positive temperature coefficient thermistor selection method of the present invention includes a step of applying a voltage to a plurality of positive temperature coefficient thermistors to be selected to obtain an attenuation current waveform, and an average value and a standard deviation value of the attenuation current waveform of the positive temperature coefficient thermistor. A step of calculating an upper limit value and a lower limit value from the average value and the standard deviation value using an average value ± n × standard deviation value (where n = 3 to 6), Determining whether the attenuation current waveform of the characteristic thermistor is within a determination range between the upper limit value and the lower limit value, and selecting those within the determination range as non-defective products.

本発明の正特性サーミスタの選別装置は、選別対象となる複数個の正特性サーミスタに電圧を印加して得られる減衰電流波形を検出する減衰電流検出手段と、前記正特性サーミスタの減衰電流波形の平均値および標準偏差値を算出し、前記平均値および標準偏差値より、平均値±n×標準偏差値(ここで、n=3〜6)を用いて上限値および下限値を算出する上下限設定手段と、前記各正特性サーミスタの減衰電流波形が前記上限値および前記下限値の間の判定範囲内にあるか否かを判断し、当該判定範囲内にあるものを良品として選別する選別手段とを備えたものである。   A screening device for a positive temperature coefficient thermistor according to the present invention comprises: a decay current detection means for detecting a current waveform obtained by applying a voltage to a plurality of positive temperature coefficient thermistors to be sorted; a decay current waveform of the positive temperature coefficient thermistor; Upper and lower limits for calculating an average value and a standard deviation value, and calculating an upper limit value and a lower limit value from the average value and the standard deviation value using an average value ± n × standard deviation value (where n = 3 to 6). A selection unit that determines whether the attenuation current waveform of each of the positive temperature coefficient thermistors is within a determination range between the upper limit value and the lower limit value, and selects those that are within the determination range as non-defective products It is equipped with.

前記平均値および標準偏差値は、例えば、正特性サーミスタの複数個の移動平均を用いて算出する。   The average value and the standard deviation value are calculated using, for example, a plurality of moving averages of positive characteristic thermistors.

また、正特性サーミスタの突入電流を検出し、当該検出した突入電流が規格範囲内にあるか否かを判断し、当該規格範囲内にあるものを良品として選別する構成を付加してもよい。   Further, a configuration may be added in which the inrush current of the positive temperature coefficient thermistor is detected, it is determined whether or not the detected inrush current is within a standard range, and those within the standard range are selected as non-defective products.

さらに、正特性サーミスタの過電流を検出し、当該過電流を検出した正特性サーミスタを不良品として選別する構成を付加してもよい。   Furthermore, a configuration may be added in which an overcurrent of the positive temperature coefficient thermistor is detected and the positive temperature coefficient thermistor that has detected the overcurrent is selected as a defective product.

本発明の正特性サーミスタの選別方法および選別装置によると、正特性サーミスタの減衰電流波形の平均値および標準偏差値より、平均値±n×標準偏差値(ここで、n=3〜6)を用いて上限値および下限値を算出し、各正特性サーミスタの減衰電流波形が上限値および下限値の間の判定範囲内にあるか否かを判断し、当該判定範囲内にあるものを良品として選別する。このように、正特性サーミスタが有している動的特性を、電流の時間的変化で捕らえ、電流の減衰度合いの違いを判断し異常なものを自動判定するので、短時間の電圧印加によって、正特性サーミスタの良否判定が行える。   According to the positive temperature coefficient thermistor selection method and apparatus of the present invention, the average value ± n × standard deviation value (where n = 3 to 6) is calculated from the average value and standard deviation value of the decay current waveform of the positive temperature coefficient thermistor. To calculate the upper limit value and the lower limit value, determine whether the decay current waveform of each positive temperature coefficient thermistor is within the judgment range between the upper limit value and the lower limit value, and determine that the product within the judgment range is a non-defective product Sort out. In this way, the dynamic characteristics possessed by the positive temperature coefficient thermistor are captured by the temporal change of the current, the difference in the degree of current attenuation is judged and the abnormal one is automatically judged, so by applying a short time voltage, The pass / fail judgment of the positive characteristic thermistor can be made.

また、予め決められた判定範囲で判定するのではなく、サンプリングによって求められた移動平均に基づく平均値および標準偏差値によって判定範囲を設定するので、微妙に異なる減衰電流波形の違いを精度良く判定できる。   In addition, the determination range is set based on the average value and standard deviation value based on the moving average obtained by sampling, instead of using a predetermined determination range, so it is possible to accurately determine the difference between slightly different attenuation current waveforms. it can.

さらに、正特性サーミスタの減衰電流波形検出に加え、突入電流検出や過電流検出による選別を行うことにより、より高精度な判定が行える。   Furthermore, in addition to detecting the decay current waveform of the positive temperature coefficient thermistor, more accurate determination can be made by performing selection by inrush current detection or overcurrent detection.

本発明の正特性サーミスタの選別方法および選別装置によれば、選別作業コストの削減、設備費用の低減、選別作業効率の向上が図れるという効果が得られる。   According to the positive temperature coefficient thermistor sorting method and sorting apparatus of the present invention, it is possible to obtain an effect of reducing sorting work cost, equipment cost, and sorting work efficiency.

本発明の実施の態様を図1ないし図7に基づいて説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は正特性サーミスタの選別装置のブロック図、図2は自動抵抗測定装置の概略図、図3は減衰電流波形の取り出し方法を示す説明図、図4は正特性サーミスタの減衰電流波形による選別に使用する判定範囲の設定の様子を示すグラフ、図5は異品種の正特性サーミスタの減衰電流波形のグラフ、図6は正特性サーミスタの突入電流検出の様子を示すグラフ、図7は正特性サーミスタの焼損検出の様子を示すグラフである。   FIG. 1 is a block diagram of a screening device for a positive temperature coefficient thermistor, FIG. 2 is a schematic diagram of an automatic resistance measuring device, FIG. 3 is an explanatory diagram showing a method for extracting an attenuation current waveform, and FIG. FIG. 5 is a graph showing the decay current waveform of a different type positive thermistor, FIG. 6 is a graph showing the inrush current detection of the positive thermistor, and FIG. 7 is the positive characteristic. It is a graph which shows the mode of the burning detection of a thermistor.

図1に示す正特性サーミスタの選別装置は、図2に示す自動抵抗測定装置に搭載されている。   The positive temperature coefficient thermistor sorting device shown in FIG. 1 is mounted on the automatic resistance measuring device shown in FIG.

図1,2において、11は自動抵抗測定装置、12は印加用電源、13はコンピュータ、14は印加リレー、15は焼損検出回路、21は電圧印加ライン、22は電流波形取出しライン、23は制御信号ライン、25は選別対象製品となる正特性サーミスタWを搬送する搬送用レール、26は最大処理速度が360個/分にて2個の正特性サーミスタWを同時に測定(2ピッチのタクト送り)する電圧印加兼測定端子、31は自動投入部、32は抵抗測定部、33は不良品抜取部である。   1 and 2, 11 is an automatic resistance measuring device, 12 is an application power source, 13 is a computer, 14 is an application relay, 15 is a burnout detection circuit, 21 is a voltage application line, 22 is a current waveform extraction line, and 23 is a control. Signal line, 25 is a rail for transporting a positive temperature coefficient thermistor W as a product to be selected, and 26 is a simultaneous measurement of two positive temperature coefficient thermistors W at a maximum processing speed of 360 pieces / minute (2-pitch tact feed). Voltage application / measurement terminal 31, 31 is an automatic input unit, 32 is a resistance measurement unit, and 33 is a defective product extraction unit.

自動抵抗測定装置11は、従来からある常温(25℃)での抵抗選別機能と、本発明の機能(減衰電流測定、突入電流検出あるいは過電流検出)を有し、本装置の処理フローは、抵抗選別機能→本発明の機能→不良品抜取となる。自動抵抗測定装置11は、抵抗選別結果と、本発明の機能での選別結果の全てが良品の場合、良品となる。   The automatic resistance measuring device 11 has a conventional resistance selection function at room temperature (25 ° C.) and the function of the present invention (attenuation current measurement, inrush current detection or overcurrent detection). Resistance selection function → function of the present invention → defective product sampling. The automatic resistance measuring device 11 is a non-defective product when both of the resistance selection result and the selection result by the function of the present invention are good products.

印加用電源12は、直流の定電圧電源(0〜60V,0〜50A,750W)にて構成されており、一定電圧を正特性サーミスタWに印加する。   The application power source 12 is constituted by a DC constant voltage power source (0 to 60 V, 0 to 50 A, 750 W), and applies a constant voltage to the positive temperature coefficient thermistor W.

コンピュータ13は、実装されたA/D変換器(アナログデータをディジタルデータに変換)にて減衰電流波形を検出する減衰電流検出手段と、当該検出値に基づいて判定範囲を設定する判定範囲設定手段と、減衰電流波形の変化度合いを判定して判定範囲内にあるものを良品として選別する選別手段とを有し、その選別結果を自動抵抗測定装置11に送る。また、電圧印加直後に流れる突入電流を検出し、規格範囲内にあるものを良品として選別する突入電流検出手段として機能し、その選別結果を自動抵抗測定装置11に送る。なお、減衰電流波形の測定は、電流測定の高速化のために電流メータを使用せず、A/D変換器で行い、図3に示すように、正特性サーミスタWに直列に接続された基準抵抗27の両端の電圧値を測定することによって行う。   The computer 13 includes an attenuation current detection unit that detects an attenuation current waveform with an A / D converter (converting analog data into digital data) and a determination range setting unit that sets a determination range based on the detection value. And a selection means for determining the degree of change in the attenuation current waveform and selecting those within the determination range as non-defective products, and sending the selection result to the automatic resistance measuring device 11. Further, it detects an inrush current that flows immediately after voltage application, functions as an inrush current detection means for selecting those within the standard range as non-defective products, and sends the selection result to the automatic resistance measuring device 11. The attenuation current waveform is measured by an A / D converter without using a current meter for speeding up the current measurement, and a reference connected in series to the positive temperature coefficient thermistor W as shown in FIG. This is done by measuring the voltage value across the resistor 27.

印加リレー14は、コンピュータ13の制御で、正特性サーミスタWへの電圧印加のON/OFFを行う。焼損検出(詳細は後述)またはコンピュータ13の突入電流検出(詳細は後述)で不良品と判定された正特性サーミスタWには、リレーをOFFして電圧を印加しない。   The application relay 14 turns on / off the voltage application to the positive temperature coefficient thermistor W under the control of the computer 13. The relay is turned off and no voltage is applied to the positive temperature coefficient thermistor W determined to be defective by burnout detection (details will be described later) or inrush current detection (details will be described later) of the computer 13.

焼損検出回路15は、正特性サーミスタWに電圧を印加中に、正特性サーミスタWのショート等により過電流が流れているかを監視する。過電流検知時には、即時印加リレー14をOFFし、正特性サーミスタWへの電圧印加を切断する。この過電流検出ならびに電圧切断の動作は、焼損検出回路(焼損検出手段)15にて直接行い、処理の高速化を図っている。過電流検知情報は、コンピュータ13を介して自動抵抗測定装置11に送られ、当該正特性サーミスタWを不良品として選別する。なお、焼損検出回路15は過電流検出のみ行い、電圧切断動作はコンピュータ13が行う構成であったり、あるいは焼損検出回路15をなくし、過電流検出ならびに電圧切断動作をコンピュータ13にて行う構成としてもよい。   The burnout detection circuit 15 monitors whether an overcurrent is flowing due to a short circuit of the positive temperature coefficient thermistor W while a voltage is being applied to the positive temperature coefficient thermistor W. When the overcurrent is detected, the immediate application relay 14 is turned off, and the voltage application to the positive temperature coefficient thermistor W is cut off. The overcurrent detection and voltage disconnection operations are directly performed by the burnout detection circuit (burnout detection means) 15 to increase the processing speed. The overcurrent detection information is sent to the automatic resistance measuring device 11 via the computer 13 and the positive characteristic thermistor W is selected as a defective product. The burnout detection circuit 15 may be configured to perform only overcurrent detection and the voltage disconnection operation may be performed by the computer 13 or may be configured to eliminate the burnout detection circuit 15 and perform the overcurrent detection and voltage disconnection operation by the computer 13. Good.

コンピュータ13での判定処理について説明する。   A determination process in the computer 13 will be described.

コンピュータ13にて行っている判定項目には、減衰波形検出と突入電流検出の2つあり、2個の正特性サーミスタWを同時に処理し、各々の判定結果を自動抵抗測定装置11に送り、自動抵抗測定装置11にて不良品を選別する。   There are two judgment items performed by the computer 13; attenuation waveform detection and inrush current detection. Two positive characteristic thermistors W are processed simultaneously, and each judgment result is sent to the automatic resistance measuring device 11 to automatically The resistance measuring device 11 sorts out defective products.

まず、減衰波形検出について説明する。   First, attenuation waveform detection will be described.

減衰波形検出は、正特性サーミスタWに電圧を印加したときに流れる減衰電流波形が、図4で示す上下限値の範囲(判定範囲)内にあるか否かにて判定する。   The attenuation waveform detection is performed by determining whether or not the attenuation current waveform that flows when a voltage is applied to the positive temperature coefficient thermistor W is within the upper and lower limit value range (determination range) shown in FIG.

図4は、正特性サーミスタWの減衰電流波形を示しており、横軸は電圧印加時間(秒)、縦軸は電流(A)であり、実線は平均電流、破線は標準偏差、一点鎖線は上限、二点鎖線は下限を示している。   FIG. 4 shows the decay current waveform of the positive temperature coefficient thermistor W. The horizontal axis is the voltage application time (seconds), the vertical axis is the current (A), the solid line is the average current, the broken line is the standard deviation, and the alternate long and short dash line is The upper limit and the two-dot chain line indicate the lower limit.

減衰電流波形の上下限値は、電圧印加時間中に0.010秒以下の間隔で25ポイントのサンプリングを行い、各ポイント毎に電流の平均および標準偏差を算出し、平均値±n×標準偏差値(ここで、n=3〜6)にて設定する。なお、n=3〜6のいずれの値を用いるかは、予め品名毎に決定されている。   The upper and lower limits of the decay current waveform are sampled at 25 points at intervals of 0.010 seconds or less during the voltage application time, the average and standard deviation of the current are calculated for each point, and the average value ± n × standard deviation The value is set (here, n = 3 to 6). Note that which value of n = 3 to 6 is determined in advance for each product name.

図4の例では、サンプリング開始位置が0.035秒、サンプリング間隔が0.005秒、サンプリングポイント数が25であり、これらの値は予め品名毎に決定されている。   In the example of FIG. 4, the sampling start position is 0.035 seconds, the sampling interval is 0.005 seconds, and the number of sampling points is 25. These values are determined in advance for each product name.

平均値および標準偏差値は、50個の正特性サーミスタWの移動平均により算出する。   The average value and the standard deviation value are calculated by a moving average of 50 positive characteristic thermistors W.

ロット開始直後は、各サンプリングポイントでの電流値を蓄積し、正特性サーミスタWの測定個数が12個になった時点で、最大値と最少値を除く10個にて、平均値および標準偏差値を算出する。この平均値および標準偏差値に基づいて上下限値を算出し、12個の正特性サーミスタWを一括判定する。判定結果は自動抵抗測定装置11に送られ、上下限値から外れる不良品は自動的に抜取られる。   Immediately after the start of the lot, the current value at each sampling point is accumulated, and when the number of measured positive characteristic thermistors W reaches 12, the average value and standard deviation value are obtained at 10 pieces excluding the maximum and minimum values. Is calculated. Upper and lower limit values are calculated based on the average value and the standard deviation value, and the twelve positive characteristic thermistors W are collectively determined. The determination result is sent to the automatic resistance measuring device 11, and defective products that deviate from the upper and lower limit values are automatically extracted.

測定個数が50個になるまでは、その時々の測定個数にて平均値および標準偏差値を算出する。この平均値および標準偏差値に基づいて上下限値を算出し、正特性サーミスタWを判定する。測定個数が13個になった時、先の上下限値(N=10個での算出結果)でまず判定を行い、良品である場合、最大値と最少値を除く11個にて平均値、標準偏差値および上下限値を算出する。   Until the number of measurement reaches 50, the average value and the standard deviation value are calculated with the number of measurement at that time. The upper and lower limit values are calculated based on the average value and the standard deviation value, and the positive characteristic thermistor W is determined. When the number of measured items reaches 13, the determination is first made with the previous upper and lower limit values (calculation results with N = 10), and in the case of a non-defective product, the average value is obtained with 11 items excluding the maximum value and the minimum value. Standard deviation values and upper and lower limits are calculated.

測定個数が50個以降においては、50個での移動平均を用いる。例えば、測定個数が51個目になった時は2個目から51個目までの50個、測定個数が52個目になった時は3個目から52個目までの50個を用いて、平均値および標準偏差値ならびに上下限値を算出し判定を行う。あるいは、51個目以降については、51〜100個目までの50個、101〜150個目までの50個、というような区切りにて、平均値および標準偏差値ならびに上下限値を算出し判定を行うようにしてもよい。   When the number of measurement is 50 or more, the moving average of 50 is used. For example, when the number of measurement is 51st, 50 pieces from the second to the 51st are used, and when the number of measurement is 52nd, 50 pieces from the 3rd to the 52nd are used. The average value, standard deviation value, and upper and lower limit values are calculated and judged. Alternatively, for the 51st and subsequent items, the average value, the standard deviation value, and the upper and lower limit values are calculated and determined by dividing 50 items from the 51st to 100th items and 50 items from the 101st to 150th items. May be performed.

なお、平均値および標準偏差値の算出に使う電流値は、測定結果が良品の正特性サーミスタWのみを使用する。例えば、測定個数が13個になった時、12個目までの判定範囲での判定の結果、不良品となった正特性サーミスタWは外して算出する。   In addition, only the positive characteristic thermistor W whose measurement result is a good product is used as the current value used for calculating the average value and the standard deviation value. For example, when the number of measurement becomes 13, the positive characteristic thermistor W that has become a defective product as a result of the determination in the determination range up to the 12th is excluded and calculated.

良品,不良品の判定は、減衰電流のサンプリング領域中において、規定回数以上、上下限値の範囲を外れたものを不良品とする。すなわち、前記正特性サーミスタWにおいて、各サンプリングポイントにて上下限値の範囲を外れているか否かを測定し、外れているサンプリングポイントの数と、品名ごとに予め設定されている規定回数とを比較する。比較の結果、外れている数が規定回数以上の場合、不良品と判断する。なお、減衰電流の測定はワーク送りのタクトタイム内で行われる。   In determining whether the product is non-defective or defective, a product that falls outside the range of the upper and lower limit values more than the specified number of times in the sampling region of the attenuation current is determined as a defective product. That is, in the positive temperature coefficient thermistor W, it is measured whether or not each sampling point is out of the range of the upper and lower limit values, and the number of out of sampling points and the specified number of times set in advance for each product name are determined. Compare. As a result of comparison, if the number of deviations is equal to or greater than the specified number, it is determined as a defective product. The attenuation current is measured within the work feeding tact time.

耐電レベルの低いもの(不良品)は、正常品と比較して減衰電流波形がずれているが、レベルによりそのずれ方に違いが生じる。すなわち、正常品に近いものは減衰電流波形も近くなる。また、耐電レベルにも分布があり、正常品の範囲がある。よって、不良品の判定では、上下限値から外れるポイントが非常に少なく、ほぼ正常品と判断できるものまで不良品と判定される。また、ノイズにより値が振れた場合も正常品を不良品と判定する恐れがある。そこで、上下限値から規定回数以上外れたもののみを不良品と判定することにした。なお、規定回数はデータを取って決定した。   A product having a low withstand voltage level (defective product) has a different attenuation current waveform as compared with a normal product, but a difference occurs in the deviation method depending on the level. That is, an attenuation current waveform is close to a normal product. In addition, there is a distribution in the withstand voltage level, and there is a range of normal products. Therefore, in the determination of defective products, there are very few points that deviate from the upper and lower limit values, and even products that can be determined to be almost normal products are determined to be defective products. In addition, even if the value fluctuates due to noise, there is a possibility that a normal product is determined as a defective product. Therefore, only those that deviate from the upper and lower limit values more than the specified number of times are determined to be defective. The specified number of times was determined by taking data.

なお、図5は、異品種の正特性サーミスタの減衰電流波形のグラフを示している。すなわち、従来の抵抗選別機能のみでは不完全であった異品種検出を、減衰特性も合わせて判定することにより、さらに精度良く判定することが可能となる。ここで、異品種とは、常温での抵抗値が同等で、減衰特性の異なるもの(減衰電流波形のグラフの傾きの異なるもの)である。このように、抵抗選別の結果は良品であっても、減衰特性による判断の結果、一点鎖線の丸印51にて囲まれた範囲において、減衰電流波形が下限値から外れていることが判り、不良品と判断することができ、判断精度が向上する。   FIG. 5 shows a graph of the attenuation current waveform of different types of positive temperature coefficient thermistors. That is, it is possible to determine with higher accuracy by determining the detection of different types, which is incomplete with only the conventional resistance selection function, together with the attenuation characteristics. Here, the different varieties are those having the same resistance value at normal temperature and different attenuation characteristics (different inclinations of the graphs of the attenuation current waveform). Thus, even if the result of resistance selection is a non-defective product, it can be seen that the attenuation current waveform deviates from the lower limit value within the range surrounded by the dot-and-dash circle 51 as a result of the determination based on the attenuation characteristics. It can be determined as a defective product, and the determination accuracy is improved.

次に、突入電流検出について説明する。   Next, inrush current detection will be described.

図6に、正特性サーミスタWに電圧を印加した直後からの減衰電流波形を示す。突入電流検出には、突入時(正特性サーミスタWに電圧を印加後、5msec経過後。ただし、±1msecの変動あり)の電流値上下限値を定めておく。ここで、5msecとは、印加リレーが確実にオン状態になるまでの時間である。電圧印加後、5msecまでの時間は、焼損破壊した製品の検出のみを行う。   FIG. 6 shows the decay current waveform immediately after the voltage is applied to the positive temperature coefficient thermistor W. For inrush current detection, the upper and lower limits of the current value at the time of inrush (after 5 msec has elapsed since the voltage was applied to the positive temperature coefficient thermistor W. However, there is a variation of ± 1 msec) are determined. Here, 5 msec is the time until the applied relay is reliably turned on. During the time up to 5 msec after applying the voltage, only the burned-down product is detected.

上限値62の設定目的は、過電流からの検出設備の保護、ならびに製品の不良検出(焼損しないまでも突入電流が異常に高い製品の検出)である。また、下限値63の設定目的は、電圧印加なしの検出である。   The purpose of setting the upper limit 62 is to protect the detection equipment from overcurrent and to detect a product defect (detection of a product having an abnormally high inrush current even if it does not burn out). The purpose of setting the lower limit 63 is detection without voltage application.

すなわち、突入電流測定ポイント61が、上限値62と下限値63との間(規格範囲)にあるか否かを判断し、焼損破壊した製品の検出と、焼損に至らなくても焼損破壊前の耐圧性能しか持たない不良品を除去できる。なお、規格範囲は、品名毎に予め設定しておく。   That is, it is determined whether or not the inrush current measurement point 61 is between the upper limit value 62 and the lower limit value 63 (standard range). Defective products with only pressure resistance can be removed. The standard range is set in advance for each product name.

焼損検出回路15での判定処理について説明する。   A determination process in the burnout detection circuit 15 will be described.

焼損検出回路15では、ショート電流などの過電流を電気回路で連続監視する。   The burnout detection circuit 15 continuously monitors an overcurrent such as a short current with an electric circuit.

図7に、正特性サーミスタWの焼損時の電流波形を示す。図7中、72は予め設定された過電流検出レベルを示しており、図中の一点鎖線の丸印71に示すように、正特性サーミスタWの電流値が過電流検出レベル72を超えた時、焼損検出回路15にて、直接印加リレー14を動作させ、正特性サーミスタWの印加電圧を切断する。このように、コンピュータ13を介さずに、直接印加リレー14を切断動作させることで、切断動作の高速化を図っている。なお、過電流検出レベル72は、品名毎に予め決められており、その値がコンピュータ13によって焼損検出回路15に設定される。   FIG. 7 shows a current waveform when the positive temperature coefficient thermistor W burns out. In FIG. 7, 72 indicates a preset overcurrent detection level, and when the current value of the positive temperature coefficient thermistor W exceeds the overcurrent detection level 72 as indicated by a dashed line 71 in the figure. In the burnout detection circuit 15, the direct application relay 14 is operated to cut off the applied voltage of the positive temperature coefficient thermistor W. Thus, the cutting operation is speeded up by directly cutting the application relay 14 without using the computer 13. The overcurrent detection level 72 is determined in advance for each product name, and the value is set in the burnout detection circuit 15 by the computer 13.

過電流検出情報はコンピュータ13にも送られ、さらにコンピュータ13から自動抵抗測定装置11に送られ、自動抵抗測定装置11にて当該過電流が検出された正特性サーミスタWが選別される。   The overcurrent detection information is also sent to the computer 13, and further sent from the computer 13 to the automatic resistance measuring device 11, and the automatic resistance measuring device 11 selects the positive characteristic thermistor W from which the overcurrent is detected.

この過電流検出は、減衰波形検出や突入電流検出とは異なり、電圧印加開始から終了までの電流を連続(常時)監視し、焼損品の検出と、過電流から選別装置を保護する。   Unlike the attenuation waveform detection and inrush current detection, this overcurrent detection continuously (always) monitors the current from the start to the end of voltage application to detect burned-out products and protect the sorting device from overcurrent.

このように構成された正特性サーミスタWの選別方法および選別装置によると、減衰過程における電流の変化を捕らえて良否判定することにより、品位を落とさず印加時間を短縮できる。すなわち、0.1秒以下の減衰過程電流の変化にて、正特性サーミスタWの良否判定が行え、選別作業コストの削減ならびに正特性サーミスタWにかかるストレスの軽減が図れる。   According to the positive characteristic thermistor W sorting method and sorting apparatus configured as described above, it is possible to shorten the application time without degrading the quality by capturing the change in the current in the decay process and determining whether the current is good or bad. That is, whether the positive temperature coefficient thermistor W is good or bad can be determined by a change in the attenuation process current of 0.1 seconds or less, so that the selection work cost can be reduced and the stress on the positive temperature coefficient thermistor W can be reduced.

また、印加時間の短縮により、耐電圧試験機の印加端子が少なくて済み、設備の小型化が図れ、設備費用を低減できる。小型化により、取付けスペースを取らず、高速な自動抵抗測定装置11への搭載が可能となった。   In addition, the application time can be shortened, so that the number of application terminals of the withstand voltage tester can be reduced, the equipment can be downsized and the equipment cost can be reduced. Due to the miniaturization, it is possible to mount on the high-speed automatic resistance measuring device 11 without taking up a mounting space.

また、印加時間の短縮により、高速(例えば処理スピード:360個/分)にて運転でき、選別作業効率の向上が図れ、生産期間を短縮できる。   Further, by shortening the application time, it is possible to operate at a high speed (for example, processing speed: 360 pieces / minute), the sorting work efficiency can be improved, and the production period can be shortened.

また、予め決められた判定範囲で判定するのではなく、サンプリングによって求められた移動平均に基づく平均値および標準偏差値によって判定範囲を設定するので、微妙に異なる減衰電流波形の違いを精度良く判定できる。   In addition, the determination range is set based on the average value and standard deviation value based on the moving average obtained by sampling, instead of using a predetermined determination range, so it is possible to accurately determine the difference between slightly different attenuation current waveforms. it can.

さらに、正特性サーミスタWの減衰電流波形検出に加え、突入電流検出や過電流検出による選別を行うことにより、より高精度な判定が行える。   Furthermore, in addition to detecting the decay current waveform of the positive temperature coefficient thermistor W, more accurate determination can be performed by performing selection by inrush current detection or overcurrent detection.

なお、本発明の正特性サーミスタの選別方法および選別装置は、減衰波形検出、突入電流検出および焼損検出のうち、少なくとも減衰波形検出のみを行うものであればよい。   It should be noted that the positive characteristic thermistor sorting method and sorting apparatus of the present invention need only perform at least attenuation waveform detection among attenuation waveform detection, inrush current detection, and burnout detection.

本発明の正特性サーミスタの選別方法および選別装置は、電圧を印加することにより自己発熱して抵抗値が増加する正の特性を利用し、過電流の抑制や温度検知の用途に用いられるサーミスタの選別方法ならびにサーミスタの選別装置として有用である。   The positive temperature coefficient thermistor selection method and apparatus of the present invention use a positive characteristic in which resistance increases as a result of self-heating by applying a voltage, and thermistors used for applications such as overcurrent suppression and temperature detection. It is useful as a sorting method and a thermistor sorting device.

本発明の実施の形態における正特性サーミスタの選別装置のブロック図The block diagram of the screening device of the positive temperature coefficient thermistor in the embodiment of the present invention 本発明の実施の形態における自動抵抗測定装置の概略図Schematic diagram of automatic resistance measuring device in an embodiment of the present invention 本発明の実施の形態における減衰電流波形の取り出し方法を示す説明図Explanatory drawing which shows the extraction method of the attenuation | damping current waveform in embodiment of this invention 本発明の実施の形態における正特性サーミスタの減衰電流波形による選別に使用する判定範囲の設定の様子を示すグラフThe graph which shows the mode of the setting of the judgment range used for selection by the attenuation | damping current waveform of the positive temperature coefficient thermistor in embodiment of this invention 本発明の実施の形態における異品種の正特性サーミスタの減衰電流波形のグラフGraph of attenuation current waveform of positive temperature coefficient thermistor of different varieties in embodiment of the present invention 本発明の実施の形態における正特性サーミスタの突入電流検出の様子を示すグラフThe graph which shows the mode of the inrush current detection of the positive temperature coefficient thermistor in embodiment of this invention 本発明の実施の形態における正特性サーミスタの焼損検出の様子を示すグラフThe graph which shows the mode of the burning detection of the positive temperature coefficient thermistor in embodiment of this invention

符号の説明Explanation of symbols

11 自動抵抗測定装置
12 印加用電源
13 コンピュータ
14 印加リレー
15 焼損検出回路
W 正特性サーミスタ
11 Automatic Resistance Measuring Device 12 Power Supply for Application 13 Computer 14 Application Relay 15 Burnout Detection Circuit W Positive Characteristic Thermistor

Claims (8)

選別対象となる複数個の正特性サーミスタに電圧を印加して減衰電流波形を得る工程と、
前記正特性サーミスタの減衰電流波形の平均値および標準偏差値を算出する工程と、
前記平均値および標準偏差値より、平均値±n×標準偏差値(ここで、n=3〜6)を用いて上限値および下限値を算出する工程と、
前記各正特性サーミスタの減衰電流波形が前記上限値および前記下限値の間の判定範囲内にあるか否かを判断し、当該判定範囲内にあるものを良品として選別する工程と、を含む正特性サーミスタの選別方法。
Applying a voltage to a plurality of positive temperature coefficient thermistors to be selected to obtain an attenuated current waveform;
Calculating an average value and a standard deviation value of the decay current waveform of the positive temperature coefficient thermistor;
From the average value and the standard deviation value, a step of calculating an upper limit value and a lower limit value using an average value ± n × standard deviation value (where n = 3 to 6),
Determining whether or not the decay current waveform of each positive characteristic thermistor is within a determination range between the upper limit value and the lower limit value, and selecting those within the determination range as non-defective products. Selection method for characteristic thermistors.
前記平均値および標準偏差値は、正特性サーミスタの複数個の移動平均を用いて算出する、ことを特徴とする請求項1に記載の正特性サーミスタの選別方法。 The method for selecting a positive temperature coefficient thermistor according to claim 1, wherein the average value and the standard deviation value are calculated using a plurality of moving averages of the positive temperature coefficient thermistor. 正特性サーミスタの突入電流を検出する工程と、当該検出した突入電流が規格範囲内にあるか否かを判断し、当該規格範囲内にあるものを良品として選別する工程と、を含む請求項1または請求項2に記載の正特性サーミスタの選別方法。 2. A step of detecting an inrush current of a positive temperature coefficient thermistor, and a step of determining whether or not the detected inrush current is within a standard range, and selecting a product within the standard range as a non-defective product. Or the screening method of the positive temperature coefficient thermistor of Claim 2. 正特性サーミスタの過電流を検出し、当該過電流を検出した正特性サーミスタを不良品として選別する工程を含む請求項1ないし請求項3のいずれかに記載の正特性サーミスタの選別方法。 4. The method of selecting a positive temperature coefficient thermistor according to claim 1, further comprising a step of detecting an overcurrent of the positive temperature coefficient thermistor and selecting the positive temperature coefficient thermistor detecting the overcurrent as a defective product. 選別対象となる複数個の正特性サーミスタに電圧を印加して得られる減衰電流波形を検出する減衰電流検出手段と、
前記正特性サーミスタの減衰電流波形の平均値および標準偏差値を算出し、前記平均値および標準偏差値より、平均値±n×標準偏差値(ここで、n=3〜6)を用いて上限値および下限値を算出する判定範囲設定手段と、
前記各正特性サーミスタの減衰電流波形が前記上限値および前記下限値の間の判定範囲内にあるか否かを判断し、当該判定範囲内にあるものを良品として選別する選別手段と、を備えた正特性サーミスタの選別装置。
Attenuating current detecting means for detecting an attenuating current waveform obtained by applying a voltage to a plurality of positive characteristic thermistors to be selected;
An average value and a standard deviation value of the decay current waveform of the positive temperature coefficient thermistor are calculated, and an upper limit is calculated from the average value and the standard deviation value using an average value ± n × standard deviation value (where n = 3 to 6). Determination range setting means for calculating a value and a lower limit;
Screening means for determining whether or not the decay current waveform of each of the positive temperature coefficient thermistors is within a determination range between the upper limit value and the lower limit value, and selecting those within the determination range as non-defective products Positive characteristic thermistor sorting device.
前記平均値および標準偏差値は、正特性サーミスタの複数個の移動平均を用いて算出する、ことを特徴とする請求項5に記載の正特性サーミスタの選別装置。 6. The screening apparatus for a positive temperature coefficient thermistor according to claim 5, wherein the average value and the standard deviation value are calculated using a plurality of moving averages of the positive temperature coefficient thermistor. 正特性サーミスタの突入電流を検出し、当該検出した突入電流が規格範囲内にあるか否かを判断し、当該規格範囲内にあるものを良品として選別する突入電流検出手段を備えた請求項5または請求項6に記載の正特性サーミスタの選別装置。 6. An inrush current detecting means for detecting an inrush current of a positive temperature coefficient thermistor, determining whether the detected inrush current is within a standard range, and selecting a product within the standard range as a non-defective product. Or the screening device of the positive temperature coefficient thermistor of Claim 6. 正特性サーミスタの過電流を検出し、当該過電流を検出した正特性サーミスタを不良品として選別する焼損検出手段を備えた請求項5ないし請求項7のいずれかに記載の正特性サーミスタの選別装置。 8. A screening device for a positive temperature coefficient thermistor according to claim 5, further comprising burnout detection means for detecting an overcurrent of the positive temperature coefficient thermistor and selecting the positive temperature coefficient thermistor detecting the overcurrent as a defective product. .
JP2003422455A 2003-12-19 2003-12-19 Positive characteristic thermistor sorting method and sorting apparatus Expired - Lifetime JP4479234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422455A JP4479234B2 (en) 2003-12-19 2003-12-19 Positive characteristic thermistor sorting method and sorting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422455A JP4479234B2 (en) 2003-12-19 2003-12-19 Positive characteristic thermistor sorting method and sorting apparatus

Publications (2)

Publication Number Publication Date
JP2005183674A JP2005183674A (en) 2005-07-07
JP4479234B2 true JP4479234B2 (en) 2010-06-09

Family

ID=34783325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422455A Expired - Lifetime JP4479234B2 (en) 2003-12-19 2003-12-19 Positive characteristic thermistor sorting method and sorting apparatus

Country Status (1)

Country Link
JP (1) JP4479234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855317B (en) * 2023-02-21 2023-06-16 山东省科学院海洋仪器仪表研究所 Device and method for testing response speed of thermistor temperature sensor

Also Published As

Publication number Publication date
JP2005183674A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US6807507B2 (en) Electrical over stress (EOS) monitor
JP4479234B2 (en) Positive characteristic thermistor sorting method and sorting apparatus
JP3179394B2 (en) Electrical inspection device and electrical inspection method for printed wiring board
US6911831B2 (en) Method for automatically changing current ranges
US6794859B2 (en) Automatic multimeter
JP2009258099A (en) Method for inspecting insulation property of capacitor
CN112444733B (en) Chip aging state detection method and device
US6476631B1 (en) Defect screening using delta VDD
JP5018474B2 (en) Semiconductor device test apparatus and semiconductor device test method
JP6633949B2 (en) Substrate inspection device and substrate inspection method
JP2001035759A (en) Apparatus for measuring impedance of capacitor
JP2001338851A (en) Method and apparatus for test of capacitor
JP4079865B2 (en) Method and apparatus for inspecting electrical characteristics of electrical components
JP5474685B2 (en) Pseudo-discharge generator and circuit board inspection device
JP6121154B2 (en) Inspection apparatus and inspection method
Anton et al. Measuring complex for testing pulsed thermoelectronic training of electronic components
JP2008175598A (en) Noise testing device
JP2996520B2 (en) Semiconductor inspection equipment
JP4334207B2 (en) Power supply detection method and apparatus
JP2006226845A (en) Tracking detector
KR0125710B1 (en) Humidity sensor checking method of microwave oven
CN115047318A (en) Method and device for identifying micro-short, computer equipment and storage medium
SU1596287A1 (en) Method of checking reliability of elements of radioelectronic equipment
JP2000208380A (en) Method for selecting multilayer ceramic capacitor
KR20230089426A (en) Substrate inspecting device using artificial intelligence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

EXPY Cancellation because of completion of term