JP4479059B2 - Radio wave absorber with frequency selectivity - Google Patents

Radio wave absorber with frequency selectivity Download PDF

Info

Publication number
JP4479059B2
JP4479059B2 JP2000160444A JP2000160444A JP4479059B2 JP 4479059 B2 JP4479059 B2 JP 4479059B2 JP 2000160444 A JP2000160444 A JP 2000160444A JP 2000160444 A JP2000160444 A JP 2000160444A JP 4479059 B2 JP4479059 B2 JP 4479059B2
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
frequency
wavelength
frequency selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000160444A
Other languages
Japanese (ja)
Other versions
JP2001339191A (en
Inventor
英実 中島
隆司 宮本
晶彦 伊藤
晋 江森
晃 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2000160444A priority Critical patent/JP4479059B2/en
Publication of JP2001339191A publication Critical patent/JP2001339191A/en
Application granted granted Critical
Publication of JP4479059B2 publication Critical patent/JP4479059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)
  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電波吸収体に関するもので、特に特定周波数の電波を選択的に遮蔽する電波吸収体に関するものである。
【0002】
【従来の技術】
近年、事業所内PHSや無線LANの利用が広がりを見せるなか、情報の漏洩防止や外部からの侵入電波による誤動作やノイズ防止といった点から、オフィス内での電波環境を整えることが不可欠になっており、そのような電波環境の整備用部材として、既に種々のタイプのものが提案されている。
【0003】
例えば、特公平6−99972号公報には、金属やフェライトなどの電磁シ−ルド部材をビルの躯体に付加することで、広い周波数帯域で任意の周波数の電波を使って情報通信が出来る電磁シ−ルド・インテルジェントビルを提供することが述べられている。
【0004】
しかし、前記特許に示されたこのような鉄板、金属網、金属メッシュ、金属箔などの電波反射体やフェライトなどの電波吸収体を電磁シ−ルド部材として用いたものでは、それらの電磁シ−ルド性に周波数選択性が無いため、遮蔽しようとする周波数以外の電波まで遮断してしまう。
【0005】
その結果、ビル内外を通じて使用される携帯電話、ポケットベル、AM・FMラジオ等の放送電波などの公衆通信電波の重要情報まで遮断されてしまう。また、前記電波反射体はテレビ電波を反射し、受信障害(ゴ−ストの発生)の原因となるため用いることが出来る箇所が制限される。さらに、電磁シ−ルド部材間の隙間によってシ−ルド性能が大きく低下するため、個々の部材が持つシ−ルド性能を十分発揮させるには、部材間の接続や接地など施工面での厳密性が要求される。
【0006】
また、特開平10−169039号公報には、前述のような問題点を解消するもので、線状のアンテナ素子を定期的に配列させることで遮蔽しようとする特定周波数の電波のみを遮蔽し、部材間の接続や接地も必要ないという優れたものである。
【0007】
しかし、その遮蔽は電波到来方向への反射、いわゆる反射損失によるものが大部分であるため外部からの侵入には効果があるが、オフィス内部にて電磁シールド部材が遮蔽しようとする特定周波数とほぼ同じ周波数帯を用いた複数の無線機器による通信システム(いわゆる無線LAN)においては各無線機器の電波が反射し、その結果、反射波による干渉などの影響で無線機器の感度低下・混信等の通信回線性能を低下させる場合があるのが問題である。
【0008】
特開平5−335832号公報には、このようなオフィス内部における電波の反射波に起因する問題を解消するため、即ち特定周波数の電波を選択的に吸収する構成がしめされており、具体的には、抵抗皮膜と電波反射体とを誘電体(厚さがこの誘電体内における電波波長の4分の1)を挟んで配置し特定周波数の電波のみを選択的に吸収する、いわゆるλ/4型電波吸収体に関するものである。
【0009】
しかし、この電波吸収体にも以下に述べるような欠点がある。即ち、抵抗皮膜側からの到来する遮蔽しようとする電波については吸収量が大きく、周波数選択性にも優れるが、誘電体の裏側を金属箔や金属網などの電波反射体で裏打ちしているため、遮蔽しようとする周波数以外の電波は反射してしまい、透過することが出来ない。即ちその周波数選択性は抵抗皮膜側から到来する電波の反射成分に対して効果を発揮するものである。
【0010】
また、到来電波がλ/4型電波吸収体に斜めに入射した場合、誘電体を透過する長さが電波波長の4分の1以上となるので、吸収特性が劣化する。つまり、電波吸収体に指向性を有している。さらに反射体側から到来する電波に対しては周波数に関係なく反射してしまい、建物の窓や壁面に使用した場合に上述したテレビ電波受信障害の原因となる可能性がある。さらに、λ/4型電波吸収体は遮蔽周波数が低いほど誘電体層の厚みは増加し、施工時に取り扱いしにくいものになってしまう。
【0011】
ほかにも特開平9−162589号公報に示されている様に、これは、導電体より大きく絶縁体より小さい電気抵抗値を持つエレメントを配列させて到来電波を吸収するものである。
【0012】
この発明にも電波吸収の効果はあるが、以下に述べるような欠点もある。それは、先ずエレメントの長さが到来電波の周波数と無関係で構成されたものとすると、電波吸収特性において周波数選択性が全く得られない。
【0013】
また、エレメントの長さを吸収すべき周波数の電波の波長の1/2より若干短くすると、効率よく吸収できるとされているが、エレメントに導電体より大きく絶縁体より小さい電気抵抗値を持つ物質が用いられているため、そのエレメントが作り出す半波長ダイポールアンテナにおいて、アンテナの損失抵抗が増加し、結果的に通常の半波長ダイポールアンテナと比較して受信効率が低下してしまう。また、抵抗分の増加に伴いアンテナ素子の共振特性が平坦となり、電波吸収の周波数選択性が低下する問題もある。
【0014】
【発明が解決しようとする課題】
本発明は、上記のような従来の電波吸収体が持つ不都合を解消することを目的としたものである。
【0015】
即ち、電波吸収体間の接続や接地の必要がない施工性に優れた電波吸収体であり、この電波吸収体を用いてオフィスなどを形成した場合に、室内での専用通信(事業所PHSや無線LANなど)に使用する電波の室内壁面での反射波による干渉などの影響で無線機器の感度低下・混信等 通信回線性能を低下させることが無く、また室外への漏洩電波および外部からの侵入電波が無くなり、情報のセキュリティが向上する。
【0016】
さらに、上記以外の電波は双方向に透過して外部との通信や公共放送の受信が可能になる。建物の窓や壁面に使用したときはテレビ電波の受信障害の源となることもない。また、薄く加工することが可能なので取り扱いが簡単になる。このような電波吸収体を提供することを目的としたものである。
【0017】
【課題を解決するための手段】
本発明は、前記の目的を達成するためのものであって、少なくとも、フィルムと、前記フィルムの一方の面に配設された遮蔽しようとする電波の周波数に対応した特定の長さを有する多数の導電性素子とを備える電波吸収体において、前記導電性素子の一部に切り欠き部を設け、前記切り欠き部の両端に電極を設け、前記フィルムの他方の面の前記電極と重なる位置に他の電極を設け、前記他の電極間を抵抗体で接続することを特徴とする周波数選択性を有する電波吸収体を提供するものである。
抵抗体を用いたこの構成では、遮蔽しようとする到来電波のエネルギーが配設された各導電性素子に誘起し、そのエネルギーが抵抗体にて熱変換され消費される。よって、到来電波は吸収されたことになる。また、到来電波の方向には、殆ど無関係であり全方位において吸収性能を発揮する。また、このような構成にすることによって、導電性素子と抵抗体は誘電体膜を挟んで存在しているので誘電体膜を薄くすることにより電波吸収体をフィルム状に形成することが可能となる。
ここで切り欠き部とは、導電性がその両端間で働かない場所をいい。高抵抗物質による部分でも、一切部材自体がない部分を構成する部分でも構わない。
【0020】
請求項記載の発明は、請求項1の導電性素子が開放端を持ち、前記開放端間の長さが遮蔽しようとする電波波長の約2分の1(但し、前記電波波長は前記フィルム中での波長)であり、前記導電性素子の長さの中点に前記抵抗体を持つことを特徴とする請求項記載の周波数選択性を有する電波吸収体、また請求項記載の発明は、請求項1の導電性素子が環状で、その周囲の長さが遮蔽しようとする電波波長(但し、前記電波波長は前記フィルム中での波長)にほぼ等しことを特徴とする請求項記載の周波数選択性を有する電波吸収体を提供するものである。
【0021】
このような構成にすることで、遮蔽目的の到来電波を効率良く吸収することが出来る。また、環状である導電性素子、つまり環状導電性素子の形状によりあらゆる到来電波の偏波面に対して有効であり、さらに高効率の吸収が可能になる。
【0022】
請求項及び記載の発明は、請求項1乃至4記載の導電性素子に箔や線形状の金属素子を用いたことを特徴とした周波数選択性を有する電波吸収体を提供するものである。
【0023】
導電性素子に抵抗率の低い金属素子を用いることによって、遮蔽しようとする到来電波の選択性が向上し、遮蔽電波と透過電波の周波数が近傍しているときには有効な手段となる。
【0024】
【発明の実施の形態】
以下、本発明を図面を用いて詳細に説明する。
図1は、本発明に係る1つの実施例の周波数選択性を有する電波吸収体の正面図である。図2は、図1の断面図を示したものであり、電波吸収体10は、導電性素子13を配設した周波数選択性面14と支持体または保護材15からなる。
【0025】
なお、図1において、本発明に於ける導電性素子13は中点で分離される。
【0026】
図3は図1に示す導電性素子13の1素子の横断面図である。図3に示すように、電波吸収面14は、フィルム16の片方の面に2つのエレメント17a、17b、2つのエレメント17a、17bの対向する位置に電極パッド18a,18bを設け、また、フィルム16のの他方の面に電極パッド18a,18bに重なる位置に同じく電極パッド19a,19bをそれぞれ設け、電極パッド19a,19bをまたいで負荷抵抗20を形成してある。
【0027】
結果として、図4に示すように、図3に示した電極パッド18a,18bと電極パッド19a,19bによって、フィルム16を誘電体とするコンデンサ21a、21bが形成されアンテナ素子を構成する。
【0028】
ここで導電性素子13を支持体または保護材15の表面に直接設け、バインダを介して皮膜状の負荷抵抗20を貼付したものでも良く、他の高分子フィルムやガラス、セラミックス、紙などの上に導電性素子13を設けたものでも、エレメント17a、17bと負荷抵抗20との間に誘電媒質を設けコンデンサを形成する等の手段により静電容量体を形成したものであれば良い。
その静電容量体は、その両端間で静電容量が発生する部分をいい。市販のコンデンサーのほか、誘電体膜を挟む構造により静電容量が発生するコンデンサーでも構わない。
【0029】
電波が到来している空間に、接地されていない金属棒や金属ワイヤ−などの導体を置いた場合、一部の電波は吸収され、他は導体中を流れる交流電流が作る電磁界との相互作用によって反射される。この時電波の吸収量と反射量との比(吸収量/反射量)は導体のインピ−ダンスによって変わり、インピ−ダンスがほぼ0であればその比もほぼ0(全反射)となる。
【0030】
しかし、本発明における図4に示す構成はアンテナエレメント中間部にコンデンサ21a、21bを介した半波長ダイポールアンテナ素子の構成であり、その受信入力部分に負荷抵抗20が接続されたものである。よってアンテナエレメントで受信された電波のエネルギーは負荷抵抗20で熱エネルギーに変換される。
【0031】
従って、到来電波を吸収したことと等価である。本発明では、2つのエレメント17a、17bの長さ、電極パッド18a,18bと電極パッド19a,19bにより形成されるコンデンサ21a、21bの容量値、負荷抵抗20の抵抗値は遮蔽しようとする到来電波が効率よく吸収されるような値に設定されている。
【0032】
また、この吸収は直接導体の表面に入射する電波に対してだけでなく、その導体周囲の電波に対しても起こる(但し、導体から離れれば離れる程、吸収量は少なくなる)。いわば、半波長ダイポールアンテナ素子における実効開口面積に依存している。よって、各アンテナ素子の実効開口面積および各アンテナ素子間の相互作用を考慮して最適なアンテナ素子間隔を形成すれば、到来電波の吸収効率が上がり透過電波が減少する。
【0033】
また、半波長ダイポールアンテナの特性上、ほぼ無指向性であるため到来電波の方向には左右されない。
【0034】
一般に半波長ダイポールアンテナにおいて、エレメントの直線方向と電波の電界成分方向が一致したとき、つまり偏波面が同じであるとき受信電力は最大になる。従って、図1に示すようにアンテナ素子を横一列に配置した場合は特定方向の偏波面の電波に対して特に有効である。
【0035】
しかし、実際の到来電波の偏波面は一定でなく、様々な偏波面が存在している。そこで図5に示すようにアンテナ素子形状をY字型構成としたり、図6に示すのような環状型にすることであらゆる偏波面の到来電波に対応することが出来る。これらの形状は限定されるものでもなく、例えば図示していないが、アンテナ素子を図1の様に横一列ではなく縦・横・斜め等の配置を組み合わせたものであってもよい。
【0036】
導体と電波の相互作用(吸収、反射)は導体と電波が共振する場合に大きくなる。即ち図1から図5に示すように開放端を持つ線形状の導体を配列した面では、導体の開放端間の距離が電波波長のおおよそ2分の1の場合に効率よく共振し、相互作用が大きくなる。言い換えるとこの長さの導体と共振しない波長(周波数)の電波にとっては、この面は反射・吸収面とはならずにその大部分が透過する。
【0037】
図1のような直線形状の場合には導電性素子の長さが電波波長のおおよそ2分の1になり、図5のように枝分かれを持つ形状では中心点から開放端までの距離が電波波長のおおよそ4分の1となる。それらの中心点に負荷抵抗を接続することで吸収特性を持たせた。
【0038】
また、図6のような環状の導体を配した場合には、導電性素子である環状導体の周囲長が電波波長とほぼ等しい場合に効率よく共振し、この配列面が特定周波数の電波に対する吸収面となる。環状導体の場合には、一部を切り欠き、その間を抵抗体で接続した。
【0039】
さらに、導電性素子であるアンテナエレメントに用いる導体に抵抗率の低い金属素子を使用することで、共振特性がシャープになり遮蔽しようとする到来電波の選択性が向上する。よって、遮蔽電波と透過電波の周波数が近接している場合などには有効な方法である。
【0040】
本発明は、以上に述べたような導電性素子である線状導体の持つ性質を利用したもので、遮蔽しようとする周波数の電波(但し、その波長は誘電体中での波長)と共振するような長さの中点に抵抗体を持つアンテナ素子を配列することで電波吸収面としたものである。
【0041】
このような電波吸収面の吸収特性は、実際にはアンテナ素子における到来電波の受信能力で決まり、加えて、アンテナ素子の中央に配置させる抵抗体が効率よく熱エネルギーに変換させるかで決まる。つまり、アンテナ素子の放射インピーダンスと抵抗体を整合させることが重要である。
【0042】
また、実用上は、遮蔽しようとする周波数の電波に対する吸収特性と周波数選択性を考慮して、導電性素子の線幅、厚さ、個々の導電性素子間の間隔が決定される。
【0043】
ここでは図1から図6に、3種類の導電性素子を図示したが、導電性素子の形状がこれらに限定されるものでないことは、前記の説明で明らかである。
【0044】
また、これまで記載した本発明の説明においては遮蔽しようとする到来電波を一つの周波数に限定して説明したが、複数の周波数の到来電波を遮蔽する目的で、それぞれの到来電波周波数に対応した本発明におけるアンテナ素子を多数配設させた電波吸収体も本発明に含まれるものとする。
【0045】
なお、本発明の電波吸収体を用いて電波遮蔽室などを作る場合、電波吸収面として個々に独立した導電性素子の配列面を用いているため、電波吸収体同士の接続や接地は必要ない。このことは施工性を極めて簡便にするもので本発明の電波吸収体の大きな利点である。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明によれば、電波吸収体間の接続や接地の必要がない施工性に優れた電波吸収体を供給できる。そして、薄い構造の電波吸収体に仕上げることもできる。
【0047】
また、本発明の電波吸収体は、双方の面から到来し、遮蔽しようとする周波数の電波のエネルギーを導電性素子に接続された抵抗体によって吸収し、さらにその他の周波数の電波(電磁波)は双方向に透過させるという性質を有している。
【0048】
また、到来電波の方向には殆ど無関係であり全方位において吸収性能を発揮するため、本発明の電波吸収体を用いて建物や部屋を形成すると、内部での専用通信(事業所PHSや無線LANなど)に使用する電波の屋内での反射や屋外からの侵入に起因する無線機器の感度低下・混信等の通信回線性能の低下、および情報の漏洩が防止できるとともに、外部との必要な通信や公共放送の受信、電波吸収体に起因する外部へのテレビ電波受信障害の発生源となることの防止、などが可能である。
【0049】
また建物内で部屋の間仕切りとして用いた場合、間仕切りを挟んだ二つの部屋で、同一周波数の電波を用いる事が出来るため、周波数チャンネルの不足といった問題が解消出来る。
【図面の簡単な説明】
【図1】本発明に係わる周波数選択性を有する電波吸収体の電波吸収面(導電性素子配列面)を示す正面図である。
【図2】本発明に係わる周波数選択性を有する電波吸収体の図1に係る実施例の断面図である。
【図3】図1に示すアンテナ素子の横断面図である。
【図4】図3に示すアンテナ素子の電気的等価回路図である。
【図5】本発明に係わる周波数選択性を有する電波吸収体の他の電波吸収面(導電性素子配列面)を示す正面図である。
【図6】本発明に係わる周波数選択性を有する電波吸収体の他の電波吸収面(導電性素子配列面)を示す正面図である。
【符号の説明】
13…導電性素子
14…周波数選択性面
15…支持体または保護材
16…フィルム
17a,17b…エレメント
18a,18b,19a,19b…電極パッド
20…負荷抵抗
21a,21b…コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber that selectively shields radio waves of a specific frequency.
[0002]
[Prior art]
In recent years, it has become indispensable to prepare the radio environment in the office from the viewpoints of preventing information leakage and malfunction and noise due to invading radio waves from the outside as the use of PHS and wireless LAN in offices is spreading. Various types of members have already been proposed as members for maintaining such a radio wave environment.
[0003]
For example, in Japanese Patent Publication No. 6-99972, an electromagnetic shield member such as metal or ferrite is added to a building frame so that information communication can be performed using radio waves of an arbitrary frequency in a wide frequency band. -It is stated that Ludo Intelgent Building will be provided.
[0004]
However, in the case where a radio wave reflector such as an iron plate, a metal net, a metal mesh, a metal foil or a radio wave absorber such as ferrite as shown in the patent is used as an electromagnetic shield member, those electromagnetic shields are used. Since there is no frequency selectivity, the radio wave other than the frequency to be shielded is blocked.
[0005]
As a result, important information on public communication radio waves such as broadcast radio waves such as mobile phones, pagers, and AM / FM radios used throughout the building is blocked. In addition, the radio wave reflector reflects a TV radio wave and causes reception trouble (ghosting), so that the locations where it can be used are limited. Furthermore, since the shield performance is greatly reduced by the gaps between the electromagnetic shield members, the strictness in construction, such as connection between members and grounding, is necessary to fully demonstrate the shield performance of each member. Is required.
[0006]
Japanese Patent Laid-Open No. 10-169039 eliminates the above-described problems, and shields only radio waves of a specific frequency to be shielded by periodically arranging linear antenna elements. It is excellent that connection between members and grounding are not necessary.
[0007]
However, since the shielding is mostly due to reflection in the direction of arrival of radio waves, so-called reflection loss, it is effective for intrusion from the outside, but it is almost the same as the specific frequency that the electromagnetic shielding member tries to shield inside the office. In a communication system (so-called wireless LAN) using a plurality of wireless devices using the same frequency band, the radio waves of each wireless device are reflected, and as a result, communication such as reduced sensitivity of radio devices and interference due to interference caused by reflected waves. The problem is that the line performance may be degraded.
[0008]
JP-A-5-335832 discloses a configuration for selectively absorbing radio waves of a specific frequency in order to solve such problems caused by reflected waves inside the office. Is a so-called λ / 4 type in which a resistive film and a radio wave reflector are disposed with a dielectric (thickness is ¼ of the radio wave wavelength in the dielectric) between them to selectively absorb only radio waves of a specific frequency. It relates to a radio wave absorber.
[0009]
However, this radio wave absorber also has the following drawbacks. In other words, the radio wave coming from the resistive film side that is going to be shielded has a large amount of absorption and excellent frequency selectivity, but the back side of the dielectric is backed by a radio wave reflector such as a metal foil or a metal net. The radio wave other than the frequency to be shielded is reflected and cannot be transmitted. That is, the frequency selectivity exhibits an effect on the reflected component of the radio wave coming from the resistance film side.
[0010]
In addition, when the incoming radio wave is incident on the λ / 4 type radio wave absorber obliquely, the length of transmission through the dielectric is not less than ¼ of the radio wave wavelength, so that the absorption characteristics are deteriorated. That is, the radio wave absorber has directivity. Furthermore, radio waves coming from the reflector side are reflected regardless of the frequency, and when used on a building window or wall surface, this may cause the above-mentioned television radio wave reception failure. Furthermore, in the λ / 4 type wave absorber, the lower the shielding frequency, the greater the thickness of the dielectric layer, making it difficult to handle during construction.
[0011]
In addition, as disclosed in Japanese Patent Laid-Open No. 9-162589, this is to absorb incoming radio waves by arranging elements having electrical resistance values larger than the conductor and smaller than the insulator.
[0012]
This invention also has the effect of absorbing radio waves, but has the following drawbacks. First, if the length of the element is configured independently of the frequency of the incoming radio wave, no frequency selectivity can be obtained in the radio wave absorption characteristics.
[0013]
In addition, if the length of the element is slightly shorter than half the wavelength of the radio wave of the frequency to be absorbed, it is said that the element can be efficiently absorbed. Therefore, in the half-wave dipole antenna created by the element, the loss resistance of the antenna is increased, and as a result, the reception efficiency is lowered as compared with a normal half-wave dipole antenna. In addition, as the resistance increases, the resonance characteristics of the antenna element become flat, and there is a problem that the frequency selectivity of radio wave absorption is lowered.
[0014]
[Problems to be solved by the invention]
The object of the present invention is to eliminate the disadvantages of the conventional wave absorber as described above.
[0015]
In other words, it is a radio wave absorber excellent in workability that does not require connection or grounding between radio wave absorbers. When an office or the like is formed using this radio wave absorber, dedicated communication in the room (such as business office PHS or Radio equipment used for wireless LAN etc.) will not degrade the sensitivity of wireless devices due to interference caused by reflected waves on the indoor wall of the room, interference, etc. Communication line performance will not deteriorate, and leaked radio waves outside and intrusion from outside The radio wave is lost and the security of information is improved.
[0016]
Furthermore, radio waves other than those described above can be transmitted in both directions to communicate with the outside and receive public broadcasts. When used on a building window or wall, it does not cause a TV reception problem. Moreover, since it can be processed thinly, handling becomes easy. The object is to provide such a radio wave absorber.
[0017]
[Means for Solving the Problems]
The present invention is for achieving the above-described object, and has at least a film and a specific length corresponding to the frequency of the radio wave to be shielded disposed on one surface of the film. in wave absorber and a conductive element, a portion in the cutout portion of the conductive element is provided, the electrodes provided at both ends of the notch, a position overlapping the electrode of the other surface of the film Another object is to provide a radio wave absorber having frequency selectivity, characterized in that another electrode is provided and the other electrodes are connected by a resistor .
In this configuration using the resistor, the energy of the incoming radio wave to be shielded is induced in each conductive element provided, and the energy is converted into heat and consumed by the resistor. Therefore, incoming radio waves are absorbed. Moreover, it is almost irrelevant to the direction of incoming radio waves and exhibits absorption performance in all directions. In addition, with such a configuration, the conductive element and the resistor are present with the dielectric film interposed therebetween, so that the radio wave absorber can be formed into a film by thinning the dielectric film. Become.
Here, the notch means a place where conductivity does not work between both ends. It may be a portion made of a high resistance material or a portion constituting a portion where no member itself is present.
[0020]
According to a second aspect of the invention, the conductive element according to claim 1 having an open end, approximately one-half wave wavelength distance between the open end is to shield (However, the radio wave is the film a medium wavelength in), wave absorber having frequency selectivity according to claim 1, characterized by having the resistor at the midpoint of the length of the conductive elements, also third aspect of the present invention the conductive element according to claim 1 is annular, wave wavelength (however, the radio wave wavelength is the wavelength in said film in) the length of its circumference is to shield, characterized in that substantially have equal to claims An electromagnetic wave absorber having frequency selectivity according to Item 1 is provided.
[0021]
With such a configuration, incoming radio waves for shielding can be efficiently absorbed. In addition, the shape of the annular conductive element, that is, the shape of the annular conductive element is effective for the plane of polarization of all incoming radio waves, and enables more efficient absorption.
[0022]
The inventions according to claims 4 and 5 provide a radio wave absorber having frequency selectivity, characterized in that a foil or a linear metal element is used for the conductive element according to claims 1 to 4. .
[0023]
By using a metal element having a low resistivity as the conductive element, the selectivity of the incoming radio wave to be shielded is improved, which is an effective means when the frequencies of the shielded radio wave and the transmitted radio wave are close.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view of a radio wave absorber having frequency selectivity according to one embodiment of the present invention. FIG. 2 shows a cross-sectional view of FIG. 1, and the radio wave absorber 10 includes a frequency selective surface 14 provided with a conductive element 13 and a support or protective material 15.
[0025]
In FIG. 1, the conductive element 13 in the present invention is separated at the midpoint.
[0026]
FIG. 3 is a cross-sectional view of one element of the conductive element 13 shown in FIG. As shown in FIG. 3, the radio wave absorbing surface 14 is provided with electrode pads 18 a and 18 b on one side of the film 16 at positions where the two elements 17 a and 17 b and the two elements 17 a and 17 b face each other. Similarly, electrode pads 19a and 19b are provided at positions overlapping the electrode pads 18a and 18b on the other surface, respectively, and a load resistor 20 is formed across the electrode pads 19a and 19b.
[0027]
As a result, as shown in FIG. 4, the electrode pads 18a and 18b and the electrode pads 19a and 19b shown in FIG. 3 form capacitors 21a and 21b using the film 16 as a dielectric, thereby constituting an antenna element.
[0028]
Here, the conductive element 13 may be provided directly on the surface of the support or the protective material 15 and a film-like load resistor 20 may be attached via a binder, or on other polymer film, glass, ceramics, paper, etc. Even if the conductive element 13 is provided, a capacitive body may be formed by a means such as providing a dielectric medium between the elements 17a and 17b and the load resistor 20 to form a capacitor.
The capacitance body is a portion where capacitance is generated between both ends. In addition to a commercially available capacitor, a capacitor that generates capacitance due to a structure sandwiching a dielectric film may be used.
[0029]
When a conductor such as a metal rod or metal wire that is not grounded is placed in a space where radio waves arrive, some radio waves are absorbed and others interact with the electromagnetic field created by the alternating current flowing in the conductor. Reflected by action. At this time, the ratio (absorption amount / reflection amount) between the radio wave absorption amount and the reflection amount varies depending on the impedance of the conductor, and if the impedance is almost zero, the ratio is also almost zero (total reflection).
[0030]
However, the configuration shown in FIG. 4 in the present invention is a configuration of a half-wave dipole antenna element through capacitors 21a and 21b at the antenna element intermediate portion, and a load resistor 20 is connected to the reception input portion thereof. Therefore, the radio wave energy received by the antenna element is converted into thermal energy by the load resistor 20.
[0031]
Therefore, it is equivalent to absorbing incoming radio waves. In the present invention, the length of the two elements 17a and 17b, the capacitance values of the capacitors 21a and 21b formed by the electrode pads 18a and 18b and the electrode pads 19a and 19b, and the resistance value of the load resistor 20 are incoming radio waves to be shielded. Is set to a value that is efficiently absorbed.
[0032]
Further, this absorption occurs not only for radio waves directly incident on the surface of the conductor but also for radio waves around the conductor (however, the farther away from the conductor, the smaller the amount of absorption). In other words, it depends on the effective aperture area in the half-wave dipole antenna element. Therefore, if the optimum antenna element interval is formed in consideration of the effective aperture area of each antenna element and the interaction between each antenna element, the absorption efficiency of incoming radio waves increases and the transmitted radio waves decrease.
[0033]
In addition, because of the characteristics of the half-wave dipole antenna, it is almost omnidirectional and is not affected by the direction of incoming radio waves.
[0034]
In general, in a half-wave dipole antenna, the received power is maximized when the linear direction of the element coincides with the electric field component direction of the radio wave, that is, when the plane of polarization is the same. Therefore, when antenna elements are arranged in a horizontal row as shown in FIG. 1, it is particularly effective for radio waves having a plane of polarization in a specific direction.
[0035]
However, the polarization plane of the actual incoming radio wave is not constant, and there are various polarization planes. Therefore, it is possible to cope with incoming radio waves of any plane of polarization by adopting a Y-shaped configuration as shown in FIG. 5 or an annular shape as shown in FIG. These shapes are not limited. For example, although not shown, the antenna elements may be arranged in a combination of vertical, horizontal, and diagonal arrangements as shown in FIG.
[0036]
The interaction (absorption, reflection) between the conductor and the radio wave is increased when the conductor and the radio wave resonate. That is, as shown in FIG. 1 to FIG. 5, the surface on which linear conductors having open ends are arranged resonates efficiently when the distance between the open ends of the conductors is approximately one half of the radio wave wavelength. Becomes larger. In other words, for a radio wave having a wavelength (frequency) that does not resonate with the conductor of this length, this surface does not become a reflection / absorption surface, but most of the surface is transmitted.
[0037]
In the case of the linear shape as shown in FIG. 1, the length of the conductive element is approximately one half of the radio wave wavelength, and in the shape having a branch as shown in FIG. 5, the distance from the center point to the open end is the radio wave wavelength. It becomes approximately one quarter of. Absorption characteristics were given by connecting a load resistance to the center point.
[0038]
In addition, when the annular conductor as shown in FIG. 6 is arranged, it efficiently resonates when the circumference of the annular conductor, which is a conductive element, is substantially equal to the radio wave wavelength, and this array surface absorbs radio waves of a specific frequency. It becomes a surface. In the case of an annular conductor, a part was cut out and a resistor was connected between them.
[0039]
Furthermore, by using a metal element having a low resistivity as the conductor used for the antenna element which is a conductive element, the resonance characteristics become sharp and the selectivity of incoming radio waves to be shielded is improved. Therefore, this method is effective when the frequencies of the shielded radio wave and the transmitted radio wave are close to each other.
[0040]
The present invention utilizes the properties of the linear conductor, which is a conductive element as described above, and resonates with a radio wave having a frequency to be shielded (however, the wavelength is a wavelength in a dielectric). A radio wave absorbing surface is formed by arranging antenna elements having resistors at midpoints of such a length.
[0041]
The absorption characteristic of such a radio wave absorption surface is actually determined by the reception capability of the incoming radio wave in the antenna element, and in addition, it is determined by efficiently converting the resistor disposed at the center of the antenna element into thermal energy. That is, it is important to match the radiation impedance of the antenna element with the resistor.
[0042]
In practice, the line width and thickness of the conductive elements and the spacing between the individual conductive elements are determined in consideration of the absorption characteristics and frequency selectivity for the radio wave having the frequency to be shielded.
[0043]
Here, three types of conductive elements are shown in FIGS. 1 to 6, but it is apparent from the above description that the shape of the conductive elements is not limited to these.
[0044]
In the description of the present invention described so far, the incoming radio wave to be shielded is limited to one frequency. However, for the purpose of shielding incoming radio waves of a plurality of frequencies, each incoming radio wave frequency is supported. A radio wave absorber in which a large number of antenna elements according to the present invention are arranged is also included in the present invention.
[0045]
In addition, when making a radio wave shielding room using the radio wave absorber of the present invention, since the arrangement surface of the conductive elements that are independent from each other is used as the radio wave absorber surface, connection and grounding of the radio wave absorbers are not necessary. . This greatly simplifies the workability and is a great advantage of the radio wave absorber of the present invention.
[0046]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to supply a radio wave absorber excellent in workability that does not require connection or grounding between the radio wave absorbers. And it can also be finished in a thin wave absorber.
[0047]
Further, the radio wave absorber of the present invention absorbs the energy of the radio wave coming from both sides and having the frequency to be shielded by the resistor connected to the conductive element, and the radio wave (electromagnetic wave) of other frequencies is It has the property of transmitting in both directions.
[0048]
In addition, since it is almost irrelevant to the direction of incoming radio waves and exhibits absorption performance in all directions, when a building or room is formed using the radio wave absorber of the present invention, internal dedicated communication (business office PHS or wireless LAN) Etc.), it is possible to prevent deterioration of communication line performance such as reduced sensitivity and interference of wireless devices due to indoor reflection of radio waves and intrusion from outdoors, and leakage of information, as well as necessary communication with the outside It is possible to receive public broadcasts and prevent the occurrence of disturbances in the reception of external TV radio waves caused by radio wave absorbers.
[0049]
In addition, when used as a room partition in a building, radio waves having the same frequency can be used in two rooms sandwiching the partition, so that the problem of insufficient frequency channels can be solved.
[Brief description of the drawings]
FIG. 1 is a front view showing a radio wave absorption surface (conductive element array surface) of a radio wave absorber having frequency selectivity according to the present invention.
2 is a cross-sectional view of the embodiment according to FIG. 1 of a radio wave absorber having frequency selectivity according to the present invention.
3 is a cross-sectional view of the antenna element shown in FIG.
4 is an electrical equivalent circuit diagram of the antenna element shown in FIG. 3. FIG.
FIG. 5 is a front view showing another radio wave absorption surface (conductive element array surface) of a radio wave absorber having frequency selectivity according to the present invention.
FIG. 6 is a front view showing another radio wave absorption surface (conductive element array surface) of a radio wave absorber having frequency selectivity according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 13 ... Conductive element 14 ... Frequency selective surface 15 ... Support body or protective material 16 ... Film 17a, 17b ... Element 18a, 18b, 19a, 19b ... Electrode pad 20 ... Load resistance 21a, 21b ... Capacitor

Claims (5)

少なくとも、フィルムと、前記フィルムの一方の面に配設された遮蔽しようとする電波の周波数に対応した特定の長さを有する多数の導電性素子とを備える電波吸収体において、
前記導電性素子の一部に切り欠き部を設け、
前記切り欠き部の両端に電極を設け、
前記フィルムの他方の面の前記電極と重なる位置に他の電極を設け、
前記他の電極間を抵抗体で接続する
ことを特徴とする周波数選択性を有する電波吸収体。
At least, the film and, in the radio wave absorber and a number of conductive elements having a specific length corresponding to the frequency of the radio wave to be one shielded disposed on a surface of said film,
A notch is provided in a part of the conductive element,
Provide electrodes at both ends of the notch,
Provide another electrode at a position overlapping the electrode on the other side of the film,
A radio wave absorber having frequency selectivity, wherein the other electrodes are connected by a resistor .
前記導電性素子が開放端を持ち、前記開放端間の長さが遮蔽しようとする電波波長の約2分の1(但し、前記電波波長は前記フィルム中での波長)であり、前記導電性素子の長さの中点に前記抵抗体を持つことを特徴とする請求項記載の周波数選択性を有する電波吸収体。Wherein the conductive element has an open end, said open about half of the electric wave wavelength length is to shield between end 1 (however, the radio wave wavelength is the wavelength in said film in), and the conductive wave absorber having a frequency selectivity of claim 1, wherein the component having a resistor at the midpoint of the length of the element. 前記導電性素子が環状であり、その周囲の長さが遮蔽しようとする電波波長(但し、前記電波波長は前記フィルム中での波長)にほぼ等しことを特徴とする請求項記載の周波数選択性を有する電波吸収体。Wherein the conductive element is annular, wave wavelength (however, the radio wave wavelength is the wavelength in said film in) the length of its circumference is to shield according to claim 1, wherein the substantially have equal to A radio wave absorber with frequency selectivity. 前記導電性素子に箔を用いことを特徴とする請求項1乃至何れかに記載の周波数選択性を有する電波吸収体。Wave absorber having frequency selectivity according to any one of claims 1 to 3, characterized in that Ru with foil to the conductive elements. 前記導電性素子に線形状の金属素子を用いことを特徴とする請求項1乃至何れかに記載の周波数選択性を有する電波吸収体。Wave absorber having frequency selectivity according to any one of claims 1 to 4, characterized in that Ru using the linear-shaped metal element to the conductive element.
JP2000160444A 2000-05-30 2000-05-30 Radio wave absorber with frequency selectivity Expired - Fee Related JP4479059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160444A JP4479059B2 (en) 2000-05-30 2000-05-30 Radio wave absorber with frequency selectivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160444A JP4479059B2 (en) 2000-05-30 2000-05-30 Radio wave absorber with frequency selectivity

Publications (2)

Publication Number Publication Date
JP2001339191A JP2001339191A (en) 2001-12-07
JP4479059B2 true JP4479059B2 (en) 2010-06-09

Family

ID=18664634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160444A Expired - Fee Related JP4479059B2 (en) 2000-05-30 2000-05-30 Radio wave absorber with frequency selectivity

Country Status (1)

Country Link
JP (1) JP4479059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717030B2 (en) 2010-11-18 2014-05-06 International Business Machines Corporation Controlling electromagnetic radiation in a data center
EP3716406B1 (en) * 2017-12-29 2024-02-28 Kuang-chi Cutting Edge Technology Ltd. Controllable wave-absorbing metamaterial
CN115173056B (en) * 2022-05-20 2023-08-08 电子科技大学 Low RCS broadband radome based on antenna reciprocity principle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521226Y2 (en) * 1971-09-01 1977-01-12
US4638324A (en) * 1984-12-10 1987-01-20 Hazeltine Corporation Resistive loop angular filter
JPS6212998U (en) * 1985-07-09 1987-01-26
JPH01143297A (en) * 1987-11-28 1989-06-05 Nippon Television Network Corp Absorber of vhf and uhf band radio wave
JPH0392003A (en) * 1989-09-05 1991-04-17 Toshiba Corp Radio wave reflection suppressing structure for travelling object
JPH05299931A (en) * 1992-04-03 1993-11-12 Nec Corp Radio wave absorbing body
JPH067299U (en) * 1992-06-29 1994-01-28 株式会社フジタ Electromagnetic wave absorption sheet
JPH08274538A (en) * 1995-04-04 1996-10-18 Canon Inc Radio wave shielding device
JPH09162589A (en) * 1995-12-07 1997-06-20 Takenaka Komuten Co Ltd Radio wave absorbent and radio wave absorbing method
JPH11204984A (en) * 1998-01-14 1999-07-30 Nippon Paint Co Ltd Frequency selective electromagnetic wave shield material
JPH11261280A (en) * 1998-03-11 1999-09-24 Fujiki Hanji Radio wave absorbent
JP2000022479A (en) * 1998-07-06 2000-01-21 Murata Mfg Co Ltd Chip type radio wave absorbing element and electronic equipment loading the element
JP2000049487A (en) * 1998-07-29 2000-02-18 Hitachi Ltd Method and apparatus for absorption of electromagnetic waves as well as electronic component and electronic apparatus

Also Published As

Publication number Publication date
JP2001339191A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
US6034638A (en) Antennas for use in portable communications devices
US8421696B2 (en) Dual polarization antenna structure, radome and design method thereof
JP2001522558A (en) Antenna for wireless communication device
KR100315537B1 (en) Window glass with electronic shield performance
WO2000051201A1 (en) Apparatus for suppressing mutual interference between antennas
US20110175783A1 (en) Multilayer antenna
GB2112579A (en) Multiband dipoles and ground plane antennas
JP2020009829A (en) Radio wave absorption structure
JP4474759B2 (en) Radio wave shield with multiple frequency selectivity
JP6965989B2 (en) Electromagnetic wave propagation control member, electromagnetic wave propagation control structure, sash with electromagnetic wave propagation control member, and window structure
JP4479059B2 (en) Radio wave absorber with frequency selectivity
JP4154942B2 (en) Film type electromagnetic wave absorber
JP4857501B2 (en) Radio wave absorber
JP2018174449A (en) Electromagnetic field band stop filter
JP2000323920A (en) Frequency selective radio wave shield body
JP4857500B2 (en) Radio wave absorber
JP5196667B2 (en) Broadband wireless antenna
JP4259078B2 (en) Building materials
JP2005079247A (en) Electric wave absorber
US20140106812A1 (en) Caduceus-style coil for reduction of radiation and production of longitudinal waves
JP2004363138A (en) Wave absorber/reflector
JP2001053484A (en) Wave absorber having frequency selectivity
CN114696078B (en) Antenna device and electronic apparatus
JP3949292B2 (en) antenna
CN220797088U (en) Antenna device and terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees