JP4478225B2 - Transmission vehicle - Google Patents

Transmission vehicle Download PDF

Info

Publication number
JP4478225B2
JP4478225B2 JP04847998A JP4847998A JP4478225B2 JP 4478225 B2 JP4478225 B2 JP 4478225B2 JP 04847998 A JP04847998 A JP 04847998A JP 4847998 A JP4847998 A JP 4847998A JP 4478225 B2 JP4478225 B2 JP 4478225B2
Authority
JP
Japan
Prior art keywords
transmission
actuator
wheel
elastic means
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04847998A
Other languages
Japanese (ja)
Other versions
JPH11210850A (en
Inventor
謙吉 小野木
Original Assignee
東京自動機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京自動機工株式会社 filed Critical 東京自動機工株式会社
Priority to JP04847998A priority Critical patent/JP4478225B2/en
Priority to US09/231,840 priority patent/US6120400A/en
Priority to EP99100769A priority patent/EP0931960B1/en
Priority to DE69910851T priority patent/DE69910851T2/en
Publication of JPH11210850A publication Critical patent/JPH11210850A/en
Application granted granted Critical
Publication of JP4478225B2 publication Critical patent/JP4478225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)
  • Gear-Shifting Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工作機械などの産業機械、車両、モータ等に設ける無段変速機に使われる可変径伝達車に関する。
【0002】
【従来の技術】
図1は、無段階に変速比(すなわち入力回転数N1と出力回転数N0の比N1/N0)を変えることのできる無段変速機の概念断面図である。この種の無段変速機の技術は、例えば日本特許第2,562,081号に記載されており周知である。
【0003】
この変速機の特色は、従動側伝達車1にスプリング3が使われていることである。この変速機の動作原理は、従動(出力)側伝達車1および駆動(入力)側伝達車2に伝達体4を巻掛けておき回動する。そこで駆動側伝達車2の第一(可動)円板車2aを第二(固定)円板車2bに向って、回転中に両者の円板車の相対距離が収縮または伸長できる様に、弾性手段3より大きな押圧力を軸受5を介して外部のハンドル12などの変速動力供給源からネジ軸6を経て付与する構造である。
【0004】
このとき伝達体4は、伝達車1、2での接触半径が押圧力に応じて変化し押圧力を増せば増速するが、逆に装置6の押圧力を減らせば弾性手段3の加圧力が優先して減速し始め、自動的に伝達体4の位置は弾性手段3の作用で自動調芯する位置にて安定伝達する。
【0005】
然し乍ら、この種変速機を適用する産業機械では、一般的に低速域および高速域のいずれの領域でも所定の伝達馬力Q0を伝達することが要求される場合が多いが、実際にはこの構造原理では、変速領域の全域で所定馬力Q0を安定して伝達することは不可能である。
【0006】
その理由を図2および図3で説明する。図2はこの変速機の動作説明図で、図3は弾性手段3の加圧特性図である。図2は従動側伝達車1における伝達体4の接触半径rを最低速時半径rLおよび最高速時半径rHを夫々実線および破線で示している。また図3は弾性手段3が、第一円板車1aによる順方向の圧縮に伴って加圧力を増大し、正方向の加圧傾斜特性(本明細書では正特性と略す)を持つことを示す。
【0007】
通常、伝達車1が伝達する所定馬力Qは、回転数NとトルクTの関係は
Q〔W〕=1.027×N〔rpm〕×T〔kgm〕
で示される。そこで正特性の弾性手段3では、高速域に入るに従って回転数Nも加圧力も大きくなるが伝達体との接触面積は減るので、最高速時に最大の伝達馬力Qmaxを伝達するが、低速域に到るに従って動力Qの伝達能力は回転数Nも加圧力も同時に低下するが接触面積は増すので、結果的にトルクTの変化は少なくほぼ一定だが伝動能力は出力回転数Nの低下に伴い急速に降下する。
【0008】
すなわち、このことは低速域で伝達馬力を強制的に増大させると、伝達体4の張力Tは必要以上に増大し負担が増す。さらに図2のように伝達車1の接触面SLが最高速時の面積SHに比して著しく増大しているにも拘らず、回転数Nも低いときには図3のように弾性手段3の加圧力も全く脆弱である。従って摩擦表面でスリップを招き接触摩擦圧による発熱で短期に伝達体4は焼損し切断する。
【0009】
よってこの種変速機は、産業機械の中でも送風機、ポンプ等のように伝達動力Qが回転数Nの三乗低減(N3 )法則に従うもの、或いは低速域での伝達馬力を必要としないもの等、所謂特殊な性質をもつ産業機械にしか適用できないという欠陥があった。やむなく、低馬力伝達時であっても現状では枠番を数枠上げて大型の変速機を選定せざるを得ず極めて不経済であった。
【0010】
然して、最大の問題点は、伝達トルクの確保が果せずこの種変速機が低速域で所定動力の伝達能力を発揮できないため、それを必要としている一般産業機械自体の能力を発揮できないことであり、特に例えば百馬力以上の大容量の無段変速の動力伝達機に至っては、全くその道が開かれてないのが現状である。
【0011】
【発明が解決しようとする課題】
この発明は、正特性の性質をもつ弾性手段を利用しながら、実装運転上は伝達車の少なくとも一方の円板車に弾性手段を経由して印加する弾性加圧力が例えば低速域に行くほど増大し高速域に行くほど減少するように、弾性手段に外部からの指令に応じて押圧力を加えるためのアクチェータの加圧機構を改良する事により、円板車と伝達体間の接触摩擦圧を変化させて結果的に伝達車に任意の伝達トルクを連続的に可変付与させる事が可能な可変径の伝達車を提供することである。
【0012】
【課題を解決するための手段】
この発明は、圧縮に対し弾性加圧力を増す弾性手段と、加圧機構からの押圧力と弾性手段の該加圧力とを互に直列重畳させて該加圧力を該一方円板車に印加する際に該加圧力と押圧力とが伝達車の回転軸芯方向に印加するように弾性手段を伝達車と同軸にかつ加圧機構を伝達車と同軸または平行に配し与えた指令の逆転阻止機構をもつアクチェータとによって、外部の指令に応じて弾性手段の圧縮での弾性加圧力による接触摩擦圧を増減制御することで伝達トルクを該伝達車に可変に付与したことを特徴とする伝達車である。
【0013】
【発明の実施の形態】
上記アクチェータは、本来順方向の圧縮に対して加圧力を増大する加圧特性をもつ弾性手段に対して、結果的に最高速時の最大荷重とほぼ同等かまたは少なくともそれ以上の押圧力を逆方向、すなわち例えば高速域に到るのに応じて減少させまた低速域に到るのに応じて増大させる方向として回転数に対し負方向の加圧傾斜特性(速比に対しは正特性)に伝達車の接触摩擦圧を比例動作で加圧することができるので、低速域での回転数NL〔rpm〕に対しても増々大きな伝達トルクTL〔kgm〕を確保できる。そのため低速域での動力伝達能力が低下することもなく、むしろアクチェータの押圧力を増すことによって、所定の伝達馬力を維持できる。
【0014】
特に伝達体の伸び摩耗ないし伝達車の摩擦接触面の摩耗など、この種の変速機独特の誤差要因に対し、低速域では大きな加圧力でまた高速域では小さな加圧力で弾性手段が自動調芯して安定するので、これ等の誤差要因に対しても円滑に動力伝達の機能を果す。またこの機能は回転中の負荷側或いは原動機側からの衝撃振動も滑らかに吸収する。
【0015】
【実施例】
〔第1実施例〕
図4は、本発明の第1実施例伝達車を適用した無段変速機の断面図である。図4において、1および2は伝達車で、いずれも加圧機構14b、24b及び24cで加圧される摺動円板車すなわち第一円板車1a、2aと、固定円板車すなわち第二円板車1b、2bとを相対向して配置され、両伝達車1、2間に伝達体4が巻掛けされる点は図1の場合と同じである。図4では、動作説明の理解の都合上、中心線を境界として各伝達車1、2と伝達体4との接触半径rが、右側で最大径、左側で最小径に便宜的に描かれ、作図上途中の無端伝達体4の連結の描写は省略されている。また図面上キー構造、潤滑構造などの詳細は省いて画くことにする。
【0016】
駆動側伝達車2は、固定円板10に取付けた原動機11としてここでは誘導電動機の軸端を入力軸7として装備される。図1と同様に変速指令の供給源9として手動のハンドル12は、連結棒13とジョイント8とで連結された変速押圧アクチェータ6の加圧機構14bが軸受5を介して第一円板車2aと連結している。変速押圧アクチェータ6は、ここでは逆転阻止の特質をもつ台形ネジ軸を有するスクリュジャッキの加圧ジャッキ機構が使われ、更に逆転阻止の特質を持つとして周知のウォームおよびウォームホイールでなるウォーム伝達機14aを内蔵したジャッキ本体14を変速機本体10に固定し、加圧連結体15aおよびネジ軸15がハンドル12に応じて上下動する構造である。
【0017】
一方、従動側伝達車1には本発明の伝達車の技術思想が適用されている。伝達車1が装備されている回転軸、即ち変速機10の出力軸20は、軸芯と同軸に貫通孔21が施されると共に軸受22、23で片持支持され、全体を軸枠29で本体10に支持されている。
【0018】
変速逆押圧アクチェータ25は、この例では逆方向に働く変速押圧アクチェータ6のスクリュジャッキと構成が多少異なった加圧ジャッキ機構を有している。逆転阻止の特質をもつウォームおよびウォームホイールのウォーム伝達機24aを内蔵したジャッキ本体24と、台形ネジ軸26、さらに、本例では二つの送りナットで示した加圧連結体27、28とで二つの加圧機構が構成され、各ナット27、28には基準位置を確保する回り止めレバー27a、28aが施されている。ネジ軸26は出力軸20の貫通孔21を貫通され、孔21を突出する端部に互に逆ネジの関係にたつネジ溝26aおよび26bが施され、それぞれの送りナット27および28がネジ軸26の回動により互に逆方向に進むように配置される。このジャッキ本体24のウォーム伝達機24aの一端は、ヒンジ16bが施され、もう1つのジャッキ本体14のウォーム伝達機14aに施したヒンジ16aとの間で連結棒17および伸縮部18をもった連結手段19で両者は結合され、互にアクチェータ6、24間で変速動力および変速比信号の双方を変速指令として同期させながらリンク伝達している。
【0019】
この変速逆押圧アクチェータ25は、上述以外にさらに二つの点で変速押圧アクチェータ6と加圧機構の働きが異っている。第1相異点は、アクチェータ25のウォーム伝達機24aの回動に伴って、アクチェータ25のネジ軸は原則として回転するだけである。第2の相異点は、図6に示す様に、ネジ軸26の端部とウォームホイール43とがスプライン軸で係合されている点である。これによりウォームホイール43の回転動力の伝達だけでなく、後述するように微調整作用の目的で、ネジ軸26は弾性手段30の弾性振動に伴い僅かな量の上下動が可能な構造にしてある。
【0020】
なお、本実施例の変速逆押圧アクチェータ25は、弾性手段30の押圧移動分即ち第二変位量L2を押圧するネジ溝26aおよび加圧連結体の送りナット27で形成した第二加圧ジャッキ機構としての第二アクチェータ25aと、また伝達車1の円板車1aを単に変速移動分即ち第一変位量L1を変位させるためネジ溝26bおよび加圧連結体28で形成した第一加圧ジャッキ機構としての第一アクチェータ25bとが、共通した単一のネジ軸26およびジャッキ24で付勢動力源として共用した例の加圧機構を示した。然し変速比信号を変速指令の供給源9等から連動して得られる限り、この両者の付勢動力源を全く別体に分離してもよい。
【0021】
図5は、本実施例の弾性手段30の拡大断面図である。この弾性手段30は、直径が、順次大きくなる四つのコイルスプリング33a、33b、33c、33dを伝達車1の回転軸20と同軸で同心円状に予め加圧状態で収納し底蓋36およびケース35により単一の構造物とした弾性手段である。なおスプリングは他の如何なる形状でも良い。後述の図10のように環状板バネを単一形状に連結してもよいが、本実施例では図7に示す様に比例動作に近似する階段特性を得るために送りナット27の送り量に応じて、各スプリングに施した連動環37a、37b、37c、37dが順次連結しながら加圧力を階段状に加算するカスケード構造になっている。
【0022】
本実施例では、本来単一のコイルスプリングだけでは形成することの出来ない押圧力を小さな空間で確保するため、弾性手段30は特殊な構造を採用している。すなわち、ケース35の内部は階段状当接部38a、38b、38c、38dが施され、各当接部38の最内径が各連動環37の最内径より大きいので、各連動環は突出している。この突出部分が、送りナット27の変位に伴って隣接の連動環37と係止し、順次押圧力を増していく構造である。以上の構成により、変速機10の回転動力は、伝達車1と一体に形成されたシーブ41から他の伝達体40を介して出力され、図示しないフライス盤、ボール盤などの主軸に連結される。
【0023】
次に第1実施例伝達車の作用を図2を借りて、図4から図7に従って説明する。図4において、変速機10の初期状態を最高速状態と仮定すると、従動側および駆動側の各伝達車1、2の第一円板車1a、2aが図中のHIGHの位置にあるときの状態である。
【0024】
この状態よりハンドル12を操作し、減速する方向に回動したと仮定すると、変速押圧アクチェータ6の加圧機構によりネジ軸15はそれ自体が下方に降下して、円板車2aへの押圧を解除し始める。このとき伝達車1の第一円板車1aは、軸受5、送りナット28、リードスクリュ26および送りナット27によって常時加圧されている。しかも弾性手段30のスプリング33の中の第1番スプリング33aのみが単独で常時加圧している。この初期加圧力P11(=Pmin最低加圧力)は予め送りナット27の位置決め操作で調整された加圧力である。
【0025】
図4に示す従動側伝達車1の左半分の断面図は、この減速操作前の最高速時の初期状態を示している。従って減速操作して伝達車2への位置決め操作するアクチェータ6の押圧が解除し始めると、従動側円板車1aの加圧力が駆動側伝達車2の押圧力より大きくなるので、伝達体4の接触半径rHは従動車1の側で増しrH′になり、駆動車2の側での接触半径は減る方向に作用するので伝達車1の回転数は減速する。
【0026】
この時ハンドル12の回動力は、駆動側押圧アクチェータ6のウォーム軸から連結手段19を経て変速逆押圧アクチェータ25の各加圧機構にも加わる。そこで第二従動アクチェータ25aの送りナット27は上昇し始め、第1番スプリング33aへの押圧力を増す。同時に第一従動アクチェータ25bの送りナット28は、ネジ溝26aと26bが互に逆ネジなので、逆に降下し第一円板車1aを、第二アクチェータ25aによって増大した押圧力を直列に重畳させながら、更に強い加圧力で下方に印加する。そこで第二円板車1bとの相対距離を収縮とすることになり、同時に弾性加圧力も伝達車2と逆方向に増大し接触摩擦圧も増大するので伝達車1のトルクは増大する。
【0027】
その結果、変速機10としての変速比は増し始め最高速状態から減速しているにも拘わらず、伝達車1の第一円板車1aへの加圧力は逆に増大することを意味している。このことは、図7のとおり伝達車1への弾性手段3が示す加圧力特性が、変速比に対し正の傾きを有する正特性であるのに対し、本願発明の伝達車1への弾性手段30が示す加圧力特性は、図7の第1番スプリング33aの特性線Iが示す様に、伝達車1の回転数に対しては逆に負の傾きを有する負特性になっていることを示す。従って、変速逆押圧アクチェータ25が、元来は正特性の弾性手段30を逆に負特性の加圧特性として作用していることを意味している。
【0028】
続いて、ハンドル12を更に減速操作すると、ナット27に加わる押圧力が増大して特性線IのP10に達した所で弾性手段30の第1番スプリング33aに予め溶接固着した連動環38aが第2番スプリング33bに当接し、それ以後二つのスプリング33aおよび33bが同時に協働し始める。このことは図7の特性図に示す如く、ネジ軸26を経て第一円板車1aに印加される加圧力は階段的に急上昇してP21に至り、特性線Iから特性線IIに移行することになる。続いて更に減速操作すると特性線IIに沿って加圧力は第1、第2のスプリングの和の特性線IIに従って負の傾斜に沿って増大していく。
【0029】
以下、同様にハンドル12を最低速状態にまで減速操作すると、上述と同様の動作を順次繰り返えす。図4において、従動側および駆動側の各伝達車1、2の第一円板車1a、2aが同図のLOWの位置まで達したことになると、このとき、弾性手段30のすべてのスプリング33a、33b、33c、33dは、図5の右半分に示す様に、全押圧状態に到るので、最低速状態における全スプリング荷重の総和としての加圧力P40は最大加圧力Pmax となり、その加圧特性図は図7のように負の傾きの特性になりトルクTも最大になる。
【0030】
次に、逆にハンドル12を増速操作する場合を述べる。この場合は上述した減速操作のときの動作と全く反対になる。最低速状態から増速するときは、従動車1に最大加圧力Pmaxが印加されているが、変速比が最大減速比εmaxであるので、駆動車2の第一円板車2aに供給する押圧力は、減速比εmaxの割合だけ軽減した押圧力が変速押圧アクチェータ6から確保されれば、増速操作は行われ得る。従ってハンドル12の増速操作によって伝達車1の第一円板車1aへの加圧力は図7の階段状特性線に沿って降下し始め、順次増速するに従い減少して行く。
【0031】
上述の如く、本実施例では、順方向の圧縮に伴って加圧力が増大する通常の弾性手段と、この加圧力に直列重畳させた押圧力を供給するアクチェータ25との両者から変速比に対応した加圧力を印加し、両総合加圧力が、第一円板車1aと固定本体10との間に印加することによって、回転数に対し負特性の加圧力を第一円板車1aに印加し従動車1の軸トルクを任意に選定するものである。このことは変速逆押圧アクチェータの押圧力が、伝達車1における第一および第二円板車1a、1bの相対距離Dmが収縮摺動し減速するのに応じて増大し、逆に相対距離Dmが伸長摺動し増速するのに応じて減少するように作用していることを示す。従って明らかに従来例としての図3の特性線と相異しており、このアクチェータ25は弾性手段30の加圧力が従動車1の回転数に対して負特性を付与することを示す。
【0032】
伝達車1への加圧力特性線Aを印加する場合には、実装運転上における伝達体4の張力は、同図7の特性線Bのように特性線A以下で使用し伝達トルクを連続的に比例制御することになるが、両者の圧力差が大きくなると、伝達中の発熱が増しまた伝達効率も悪化する。従って理想的には階段状特性Aよりは、トルクを連続的に比例制御する実装特性線Bの変動幅を想定して、これに近いリニヤ特性の加圧力特性を後述のように実装特性線Bより大きい特性線A′として施すのが望しいので、各種の許容可能な伝動容量の微調整にも利用できる利点がある
【0033】
図2に示したように、この種の変速機では、最低速時の接触面積SLまたは接触摩擦圧は最高速時のSHの数倍を既に自動的に確保していることを意味する。そのため結果的に伝達体4から伝達車回転軸が受ける該回転軸トルク即ち伝達トルクTとしては、回転数Nの減少に伴って逆に増大できるので、この伝達トルクが接触摩擦圧の効果により任意かつ可変に制御されたことを示す。
【0034】
このことは、先に述べた関係式に従い回転数N又は速比と伝達トルクTとを同期して夫々の伝達車に付与すれば伝達馬力Qを一定に確保できることを示している。ちなみに、図7の加圧特性線Dは、図3の従来例と全く同様に、単一のスプリング33aのみ使用し、しかも変速逆押圧アクチェータ25を採用しない場合の正特性の加圧特性を示す。
【0035】
次に図4および図6に従って、変速機構の誤差要因および負荷側衝撃要因等の自動調芯機能について説明する。ここで、変速機出力への誤差要因には、各種存在するが、代表的なものとして例えば、(1) 伝達体4の伸び、(2)伝達体4の接触面の劣化摩耗、(3) 円板車1a、1bの接触面の寸法摩耗、さらに(4)ジャッキ部ホイール摩耗等がある。いずれの場合にも、結果的には伝達体4に常時加圧力が付与されているので、従動側伝達車1において、回転中にこれを自動的に押圧調芯する。
【0036】
図6は、図4のウォーム本体24の内部構造図である。例えば図4の伝達車1が最高速度の外部指令時のHIGH(左半分に示す)状態のとき、伝達体4aが破線4a′まで伸びていたものと仮定する。このとき該当している第1番加圧スプリング33aがネジ軸26aを送りナット27が下方向に押圧している。そこでジャッキ本体24内のウォームホイール43は、ネジ軸26の下端部に施したスプライン軸部26cと回動可能に連結している。
【0037】
そこでネジ軸26全体は、伝達体4a′の伸びの微量分Mだけホイール43を貫通して下方に移動し、回転しながら自動調芯する。また、低速域では大きい加圧力で逆に高速域では小さな加圧力でそれぞれ同様の自動調芯が機能する。このことは変速域でそれぞれ加圧量が変速比に応じて変化するので、いずれの変速域でも接触圧が不安定になることが無く、スリップやベルトの伝達上の乱れが全て吸収できることを意味している。
【0038】
特にこの自動調芯機能は、高速時は弱い押圧力でまた低速時には強い押圧力で誤差を吸収するので、回転中の伝達動作が乱れることなく、安定して調芯する利点は、永年使用による誤差要因をすべて吸収する効果として、伝達車に実用的なの価値を与えている。更にこの機能は負荷側の突発的負荷変動である振動衝撃が印加されたときにも、或いは原動機11の側で発生した場合にも、同様に弾性手段30およびネジ軸26がこれを即座に吸収して自動復帰させる機能も果たす。
【0039】
〔第2実施例〕
図8は、本発明の第2実施例の伝達車1の断面図である。図4の実施例との相異点は次のとおりである。(1)弾性手段30の一端が固定本体10でなく第一円板車に直接装着され、しかも直接該円板車を加圧していること。(2)アクチェータ25のネジ軸26には1ヶ所で、しかも長いネジ溝26dが施されていること、(3)加圧連結体としての送りナット28のストロークは、第二アクチェータとしての弾性手段30の押圧移動分L2と、第一アクチェータとしての円板車1aの変速移動分L1とが単一のリード部26b上で共用して移動を行うため、その結果として両移動分の和のストロークL0(=L1+L2)が必要で大幅に増している。このためネジ溝が駆動アクチェータより長い加圧ジャッキ機構で構成されること、(4)弾性手段30が円板車1aを直接加圧しているので図6のようなネジ溝26とウォームホイール43間にスプライン結合が不用で微動不可能に固定してあること、さらに(5)弾性手段30のスプリングが5本存在していること、等が挙げられる。この実施例の動作は、外部制御動力源で制御されるが図4の実施例とほぼ同等であるので、詳細説明は省略する。
【0040】
〔第3実施例〕
図9は、本発明の第3実施例の伝達車1の断面図である。図中、加圧力を増すため三つのスプリング30a、30b、30cが第一円板車1に直接装着され同時に加圧される。本願では複数のスプリングは全て同一動作なので一体として単一のスプリング30として定義する。逆押圧アクチェータ25の加圧ジャッキ機構は、シリンダおよびプランジャと変速比手段を有する圧力流体ジャッキで構成し周知の変速手段54および流体ポジショナ53で変速比信号を供給処理する変速比手段からの圧力流体で押圧力を調節された流体圧アクチェータで示された例である。この実施例の特徴は、図7の階段状に示した特性線(A)が、階段状ではなく、正確な直線状のリニヤ特性(A′)の比例動作になることである。回転数に対し負特性の傾斜量は、ポンプ等をもち油圧等の供給処理する変速手段54、供給圧状態量を検出しサーボ制御する制御装置であるポジショナ53の変速比手段から流路47、48を経由して加圧連結体としてのプランジャ46と圧力室45の圧力、面積等と、弾性手段30のバネ圧とで決まる。またこの加圧機構では低速から高速までの加圧速度が早くすることが可能なので、応答性が早くしかも大きい加圧力が得られる利点がある。また内燃原動機を回転入力した際には、入力回転数の変動に応じて弾性手段30への押圧力を変速比信号以外の制御要素で変化させる事も要求され、該回転数信号または圧力室の圧力の検出器53aを導入して、変速比と共にカスケード制御を加えてもよい。
【0041】
〔第4実施例〕
図10は、本発明の第4実施例伝達車1の断面図を示す。図9の場合と同様に、油圧または空圧などの圧力流体ポンプ及び変速比手段等によるリニヤ特性の加圧ジャッキ機構をもつ伝達車1の例である。但し、この場合にも図4と同様に圧力流体を階段的に供給すれば、階段的加圧特性も可能である。図9の例との相異点は次の通りである。すなわち、(1)弾性手段30のメンバがリニヤな正特性ではないが錐環状板バネの59a,59bの複合体の複数組合せたものである。また(2)変速逆押圧アクチェータ25が固定本体10に固定され加圧ジャッキ機構ユニット60と加圧連結体としてのプランジャ61と第1連動連結体56、第2連動連結体55で構成され、(3)弾性手段30とアクチェータ25の間は軸受5でラジアル回転力を分離し圧力流体ジャッキ60を非回転にしたことである。ポンプ、シリンダおよびプランッジャを有する圧力流体ジャッキ60は周知なので詳細は省く。
【0042】
〔第5実施例〕
図11は、本発明の第5実施例伝達車1の断面図を示す。この例は、変速アクチェータ25を電気的に加圧制御するサーボ式逆押圧アクチェータ25の操作装置として押圧ユニット65が加圧ジャッキ機構と一体のまま変速機本体10に着脱可能に組付けると共に、組付けと同時にアクチェータ25の加圧連結体としての送りナット28と一体の操作シフタ即ち第1連動連結体66が、弾性手段30に施した第2連動連結体55のD型カット面55aに連結する構造である。可逆電動機62およびギヤヘッド63の動力はギヤ群68を介してカム・リード70と台形ネジ、即ちジャッキのネジ軸26とに付与され、カム・リード70はポテンショメータ69にて変速比をシフタ66の位置信号で検出し、サーボ回路71に供与される。一方、ネジ軸26はシフタ66を上下動し、加圧連結体55を介して弾性手段30を加圧制御する。このアクチェータ25は、更に変速比に対する状態量を検出しサーボ制御する制御装置と、この制御指令に応答して上記弾性手段へ押圧動力を付与するために可逆電動機62及びギャヘッド63をもつ操作装置とを有する例である。センサ54で状態量の変化を検出し、フィードバックしたシフタ位置信号との偏差を増巾判別回路71おとびスイッチ付勢回路72を経てなる制御装置の操作出力で可逆電動機62を外部制御する構造のものである。
【0043】
なお、伝達体4の交換時は、逆押圧アクチェータ25を本体10から取外すと、それまで加圧状態にある弾性体30が飛散する危険がある。そこで、予め蓋77を開け破線で示すネジ76をもつ補助具75によって連結体55を押圧養生してから、アクチェータ25の着脱作業を行う。また台形ネジおよび送りナットはボールスクリューでも良く、更に可逆電動機62およびギヤヘッド63を油圧など圧力流体モータにしても良い。
【0044】
〔他の実施例〕
以上の実施例は主にフライス盤、ボール盤などの工作機械用の例で開示したため変速機は空気雰囲気内で使用する乾式で示したが、車両等の重機械では油室内で伝達する湿式の型式にすることも容易である。またアクチェータ6、25の加圧ジャッキ機構として、手動および自動式の各種形式を示したが、その他にもカム加圧機構等が考えられる。更には弾性手段30を図5のように缶詰化できることは、弾性手段30自体を形状記憶合金材にし、ヒータ等のアクチェータで温度制御する機構も可能であり、変速比に伴って正特性の加圧特性が得られれば良い。また図4のハンドル12の代わりに電気式可逆モータまたは圧力流体モータ及び変速比手段等の周知の変速動力の供給源9を設置して、完全な自動制御化することは、当然に当業者が容易に実施可能な範囲である。
【0045】
図12は本発明の思想を各種態様に使用する場合の組合形態を示す説明図である。本発明の思想は、本体10を基準位置として逆押圧アクチェータ(ACT)25および弾性手段(ELS)30を経て軸芯方向に摺動する第一円板車1aへの軸芯方向の加圧力を付勢の変速比に応じて制御したものである。ここで、本体とは、回転力の有無に拘わらず、ハウジング10との相対的な距離が軸芯方向に変化のないものをいう。従って回転方向の力の有無は、本発明思想と無関係であるが、実際には基準となる本体10が固定している場合が多いのに対し第一円板車1aは常に回転している。このため回転力の分離が必要となり、軸受5(BRG)との関係を考慮した場合の実施形態を示している。
【0046】
図12の(A)および(E)は伝達車1の回転軸20が片持支持構造の例であり、(D)および(H)は伝達車1の両端軸受の支持構造の例である。いずれも伝達車1と共にアクチェータ25の加圧部分と弾性手段30が回転し、また本体10も回転するが軸芯方向には固定していること示す。図8の実施例は同図(D)の例を示す。また(B)、(C)、(F)および(G)は軸受5を介在させてアクチェータ25または弾性手段30を、回転しない本体10に固定した例を示す。図4の実施例は同図(F)の例を示し、図8、図10および図11の実施例はいずれも同図(C)の例を示す。
【0047】
図12(I)は、形状記憶合金をヒータ制御によって押圧力を制御する例であり、また更に同図(J)は、アクチェータ25を二つに分離した例である。これは、例えば、図4の実施例では、ネジ軸26aおよび送りナット27は弾性手段30に働く第二アクチェータ(ACT−1)25aを形成し、またネジ軸26bおよび送りナット28は第一円板車を変速摺動させる第一アクチェータ(ACT−2)25bを形成し、互に共通のネジ軸26およびジャッキ本体24を適用した例であるが、これ等全く分離し別々のアクチェータで付勢しても良いことを示している。この様に本発明の思想は、軸芯方向の加圧力、押圧力が直列に重畳して円板車1aに印加されていれば、軸受(BRG)の有無と無関係に本願発明の思想に包含される。
【0048】
【発明の効果】
この発明の伝達車によれば順方向の圧縮に対し正特性の性質を持つ通常の弾性手段を用いながら、弾性手段を増減圧縮して発生した該加圧力を伝達車に印加し、伝達車と伝達体間の接触摩擦圧を制御する事で結果的に外部の指令に応じて伝達車回転軸トルクを任意かつ連続的に可変制御して該伝達車に付与する事が可能にできる利点がある。このことは伝達トルクという状態量についてもこの可変制御を必要とする産業機械を自動制御化するための道が開かれたことを意味している。本実施例ではこれを実装上は伝達車の回転数と加圧力の関係が負特性の加圧特性として作動させるアクチェータに採用し、伝達車に伝達トルクを任意に外部から制御できるので結果的に変速域の全領域で所定容量の動力伝達を達成する定馬力型可変伝動機が実現できる利点がある。特にこのことはこの種伝達車を用いた変速機の適用可能な産業機械の分野を特殊な分野から広範な分野に拡大できることを示す。同時に従来不可能と考えられていた数百馬力〔HP〕以上の大容量変速機の実現が可能になり、大多数の産業機械類の省力化、省エネルギー化に貢献する。
【0049】
また本発明によれば、同径の可変径伝達車であっても、弾性手段およびアクチェータの加圧量、押圧量を変更するだけで、任意の伝達トルクが単独に確保できるので各種の許容可能な伝達容量の変速機を微調整して任意に選定操作できるため、機種に応じた生産性が著しく向上する。同時に伝達車自体の伝達効率も変速比に対する加圧特性を任意に制御し設計できるので、伝達機としての高効率かつ高負荷伝達が達成できる。
【0050】
従来型の変速機では低速域で円板車への加圧量が減るため、伝達体が起動時の衝撃で乱れ易すく、変速機の発停回数に起因して伝達体の寿命を損やすい。しかし本発明では伝達体が低速域で大きな荷重で挾持されているので発停に伴う損傷も皆無となるだけでなく、弾性手段を経由して加圧しているので、伝達体の伸び、摩耗等の劣化に基づく誤差要因に対してもまた突発的な負荷変動、原動機側変動などの外乱に対しても変速域の全範囲でこれ等を瞬時に吸収し元の状態に復帰させる自動調芯機能を果すので安定した動力伝機と早い可変応答性をもつ可変制御機構が保証される。
【図面の簡単な説明】
【図1】 従来の伝達車を用いた変速機断面図である。
【図2】 従来の伝達車の動作説明図である。
【図3】 従来の伝達車の円板車に加わる弾性手段の回転数に対する加圧特性図である。
【図4】 本発明の第1実施例伝達車を用いた変速機断面図である。
【図5】 同第1実施例に示す弾性手段の拡大図である。
【図6】 同第1実施例伝達車に用いられるウォーム伝達機の概略構成図である。
【図7】 同第1実施例伝達車の円板車に加わる回転数に対する加圧特性図である。
【図8】 本発明の第2実施例伝達車の断面図である。
【図9】 本発明の第3実施例伝達車の断面図である。
【図10】 本発明の第4実施例伝達車の断面図である。
【図11】 本発明の第5実施例伝達車の断面図である。
【図12】 本発明の他の実施例として各種組合態様を示す概念説明図であり、(A)から(J)までは、いずれも組合態様を示す。
【符号の説明】
1 伝達車または従動車
1a 第一円板車
1b 第二円板車
2 伝達車または駆動車
3,30 弾性手段
4 伝達体
5 軸受
9 変速動力供給源
15 ネジ軸
15a 加圧連結体、連結体または送りナット
10 本体
24 ジャッキまたはジャッキ本体
24a ウォーム伝達機
24b,24c 加圧機構または加圧ジャッキ機構
25 アクチェータ
25a 第アクチェータ
25b 第アクチェータ
26a、26b ネジ溝又は変速比手段
27,28加圧連結体、連結体または送りナット
46,61加圧連結体、連結体またはプランジャ
54 変速手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a continuously variable transmission provided in industrial machines such as machine tools, vehicles, motors, etc.etcIt relates to a variable diameter transmission vehicle used in
[0002]
[Prior art]
  FIG. 1 is a conceptual cross-sectional view of a continuously variable transmission that can change a transmission gear ratio (that is, a ratio N1 / N0 of an input rotation speed N1 and an output rotation speed N0) steplessly. The technology of this type of continuously variable transmission is described in, for example, Japanese Patent No. 2,562,081, and is well known.
[0003]
  A characteristic of this transmission is that a spring 3 is used for the driven transmission wheel 1. The principle of operation of this transmission is that a transmission body 4 is wound around a driven (output) side transmission wheel 1 and a driving (input) side transmission wheel 2 to rotate. Therefore, the first (movable) disc wheel 2a of the drive-side transmission wheel 2 is moved toward the second (fixed) disc wheel 2b so that the relative distance between the two disc wheels can be contracted or extended during rotation. In this structure, a pressing force larger than that of the means 3 is applied via a screw shaft 6 from a variable speed power supply source such as an external handle 12 via a bearing 5.
[0004]
  At this time, the transmission body 4 increases in speed if the contact radius at the transmission wheels 1 and 2 changes according to the pressing force and increases the pressing force, but conversely if the pressing force of the device 6 is decreased, the pressing force of the elastic means 3 is increased. Starts to decelerate, and the position of the transmission body 4 is automatically and stably transmitted at the position where the centering is automatically performed by the action of the elastic means 3.
[0005]
  However, in an industrial machine to which this type of transmission is applied, in general, it is often required to transmit a predetermined transmission horsepower Q0 in both the low speed range and the high speed range. Thus, it is impossible to stably transmit the predetermined horsepower Q0 over the entire speed change region.
[0006]
  The reason will be described with reference to FIGS. FIG. 2 is a diagram for explaining the operation of the transmission, and FIG. 3 is a pressure characteristic diagram of the elastic means 3. In FIG. FIG. 2 shows the contact radius r of the transmission body 4 in the driven-side transmission wheel 1 by the minimum speed radius rL and the maximum speed radius rH by a solid line and a broken line, respectively. FIG. 3 also shows that the elastic means 3 has a positive pressure inclination characteristic (abbreviated as a positive characteristic in the present specification) by increasing the pressure with the forward compression by the first disc wheel 1a. Show.
[0007]
  Usually, the predetermined horsepower Q transmitted by the transmission wheel 1 is the relationship between the rotational speed N and the torque T.
        Q [W] = 1.027 x N [rpm] x T [kgm]
Indicated by Therefore, in the elastic means 3 having the positive characteristics, the rotational speed N and the applied pressure increase as the speed increases, but the contact area with the transmission body decreases, so that the maximum transmission horsepower Qmax is transmitted at the maximum speed, but in the low speed area. As the power reaches, the transmission capacity of the power Q decreases at the same time as the rotational speed N and the applied pressure, but the contact area increases.as a resultLittle change in torque TAlmost constantBut the transmission ability isAs output speed N decreasesDescent rapidly.
[0008]
  That is, this means that if the transmission horsepower is forcibly increased in the low speed range, the tension T of the transmission body 4 increases more than necessary, increasing the burden. Further, although the contact surface SL of the transmission wheel 1 is remarkably increased as compared with the area SH at the maximum speed as shown in FIG. 2, when the rotational speed N is low, the elastic means 3 is added as shown in FIG. The pressure is quite fragile. Therefore, slip occurs on the friction surface, and the transmission body 4 is burned and cut in a short time by heat generated by the contact friction pressure.
[0009]
  Therefore, in this type of transmission, the transmission power Q is reduced to the cube of the rotational speed N (NThree ) There is a defect that it can be applied only to industrial machines having so-called special properties, such as those that obey the laws, or those that do not require transmission horsepower in the low speed range. Inevitably, even during transmission of low horsepower, it was extremely uneconomical to increase the frame number and select a large transmission.
[0010]
  However, the biggest problem isThe transmission torque cannot be secured.This type of transmission cannot exhibit the capability of transmitting a predetermined power in a low speed range, and therefore cannot exhibit the capability of a general industrial machine itself that requires it. The current situation is that there is no way to reach the transmitter.
[0011]
[Problems to be solved by the invention]
  In the present invention, while using elastic means having positive characteristics, the elastic pressure applied to the at least one disc wheel of the transmission wheel via the elastic means increases, for example, in the low speed region during mounting operation. However, the contact between the disc wheel and the transmission body is improved by improving the pressurizing mechanism of the actuator to apply the pressing force to the elastic means according to the command from the outside so that it decreases as it goes to the high speed rangefrictionAs a result, change the pressure to the transmission caranyIt is an object to provide a transmission wheel having a variable diameter capable of continuously varying the transmission torque.
[0012]
[Means for Solving the Problems]
  According to the present invention, the elastic means for increasing the elastic pressure against the compression, the pressing force from the pressure mechanism and the pressure of the elastic means are superimposed on each other in series, and the pressure is applied to the one disc wheel. When the pressure and pressure are applied in the direction of the axis of rotation of the transmission wheel, the elastic means is coaxial with the transmission wheel and the pressurizing mechanism is coaxially or parallel to the transmission wheel to prevent reverse rotation of the command. The actuator with the mechanism compresses the elastic means according to the external commandContact friction pressure due to elastic pressure atThe transmission vehicle is characterized in that the transmission torque is variably applied to the transmission vehicle by increasing or decreasing the control.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
  As a result, the actuator reverses a pressing force that is approximately equal to or at least equal to the maximum load at the maximum speed, with respect to the elastic means that originally has a pressurizing characteristic that increases the pressing force against forward compression. Direction, ieFor exampleDecreasing as the speed reaches the high speed range and increasing as the speed reaches the low speed range As a direction to increase the pressure gradient in the negative direction with respect to the rotational speed (positive characteristic for the speed ratio)Contact friction pressureCan be pressurized by a proportional operation, so that a larger transmission torque TL [kgm] can be secured even for the rotational speed NL [rpm] in the low speed range. Therefore, the power transmission capability in the low speed range does not decrease, but rather the predetermined transmission horsepower can be maintained by increasing the pressing force of the actuator.
[0014]
  In particular, the elastic means automatically aligns with large pressure at low speed and small pressure at high speed against the error factors unique to this type of transmission, such as wear on the transmission body or wear on the frictional contact surface of the transmission wheel. Therefore, the power transmission function can be smoothly performed against these error factors. This function also smoothly absorbs impact vibration from the rotating load side or prime mover side.
[0015]
【Example】
[First embodiment]
  FIG. 4 is a sectional view of a continuously variable transmission to which the transmission wheel of the first embodiment of the present invention is applied. In FIG. 4, 1 and 2 are transmission wheels, bothPressurization is performed by the pressurization mechanisms 14b, 24b, and 24c.A sliding disc wheel, i.e., the first disc wheels 1a, 2a, and a fixed disc wheel, i.e., the second disc wheels 1b, 2b, are arranged opposite to each other. The winding point is the same as in FIG. In FIG. 4, for convenience of understanding the operation description, the contact radius r between the transmission wheels 1 and 2 and the transmission body 4 with the center line as a boundary is conveniently depicted as a maximum diameter on the right side and a minimum diameter on the left side, The depiction of the connection of the endless transmission body 4 in the middle of the drawing is omitted. In addition, details such as the key structure and the lubricating structure are omitted from the drawing.
[0016]
  The drive-side transmission wheel 2 is equipped with a shaft end of an induction motor as an input shaft 7 as a prime mover 11 attached to a fixed disk 10. As in FIG. 1, a manual handle 12 as a shift command supply source 9 is a shift press actuator connected by a connecting rod 13 and a joint 8.6 pressure mechanism 14bIs connected to the first disc wheel 2 a via a bearing 5. Here, the shift press actuator 6 is a screw jack having a trapezoidal screw shaft having the characteristic of preventing reverse rotation.Pressure jack mechanismWorms and worm wheels that are well-known as having a reversal prevention propertyWorm transmission machine 14a consisting ofIs fixed to the transmission main body 10, and the pressure coupling body 15 a and the screw shaft 15 move up and down according to the handle 12.
[0017]
  On the other hand, the technical concept of the transmission wheel of the present invention is applied to the driven transmission wheel 1. A rotary shaft equipped with the transmission wheel 1, that is, the output shaft 20 of the transmission 10, is provided with a through hole 21 coaxially with the shaft core and is cantilevered by bearings 22 and 23, and is entirely supported by a shaft frame 29. It is supported by the main body 10.
[0018]
  The shift reverse press actuator 25 is slightly different from the screw jack of the shift press actuator 6 working in the reverse direction in this example.Has a pressure jack mechanisming. Worm and worm wheel worm transmission with reverse-rotation characteristics24aAre composed of a jack body 24 having a built-in structure, a trapezoidal screw shaft 26, and, in this example, two pressure coupling bodies 27 and 28 shown by two feed nuts. Non-rotating levers 27a and 28a for securing the reference position are provided. The screw shaft 26 isOf output shaft 20Threaded grooves 26 a and 26 b that are threaded through the through-hole 21 and projecting from the hole 21 are formed in a reverse screw relationship with each other, and the feed nuts 27 and 28 are reversed to each other by the rotation of the screw shaft 26. Arranged to go in the direction. Warm of this jack body 24TransmitterOne end of 24a is provided with a hinge 16b, and the worm of another jack body 14 is provided.Transmitter14a is connected to the hinge 16a by a connecting means 19 having a connecting rod 17 and an expansion / contraction part 18, and both the shift power and the speed ratio signal are synchronized between the actuators 6 and 24 as a shift command. Link transmission.
[0019]
  The shift reverse press actuator 25 is different from the shift press actuator 6 in two points in addition to the above.PressurizationThe mechanism works differently. The first difference is the warm of the actuator 25TransmitterWith the rotation of 24a, the screw shaft of the actuator 25 only rotates in principle. The second difference is that the end of the screw shaft 26 and the worm wheel 43 are engaged by a spline shaft, as shown in FIG. Thereby, not only the transmission of the rotational power of the worm wheel 43 but also the purpose of the fine adjustment action as will be described later,Accompanying the elastic vibration of the elastic means 30The structure allows a slight amount of vertical movement.
[0020]
  The shift reverse pressing actuator 25 of the present embodiment is a second formed by a thread groove 26a for pressing the pressing movement of the elastic means 30, that is, the second displacement L2, and a feed nut 27 of the pressure coupling body.PressurizationA first actuator 25a as a jack mechanism, and a disc wheel 1a of the transmission wheel 1 are simply formed by a thread groove 26b and a pressure coupling body 28 for displacing the shift movement, that is, the first displacement L1.PressurizationThe pressure mechanism of the example which the 1st actuator 25b as a jack mechanism shared as a biasing power source with the common single screw shaft 26 and the jack 24 was shown. However, as long as the gear ratio signal can be obtained in conjunction with the shift command supply source 9 or the like, the two energizing power sources may be separated completely.
[0021]
  FIG. 5 is an enlarged cross-sectional view of the elastic means 30 of the present embodiment. The elastic means 30 accommodates four coil springs 33a, 33b, 33c, 33d having diameters that increase sequentially in a pre-pressurized state concentrically and coaxially with the rotary shaft 20 of the transmission wheel 1, and a bottom cover 36 and a case 35. Thus, the elastic means is a single structure. The spring may have any other shape. As shown in FIG. 10 described later, the annular leaf springs may be connected in a single shape. In this embodiment, however, the feed amount of the feed nut 27 is adjusted in order to obtain a step characteristic approximating a proportional operation as shown in FIG. Accordingly, the interlocking rings 37a, 37b, 37c, and 37d applied to the springs are sequentially connected to form a cascade structure in which the applied pressure is added stepwise.
[0022]
  In this embodiment, the elastic means 30 adopts a special structure in order to secure a pressing force that cannot be formed by a single coil spring in a small space. That is, the inside of the case 35 is provided with stepped contact portions 38a, 38b, 38c, and 38d. Since the innermost diameter of each contact portion 38 is larger than the innermost diameter of each interlocking ring 37, each interlocking ring protrudes. . This projecting portion is structured to engage with the adjacent interlocking ring 37 in accordance with the displacement of the feed nut 27 and sequentially increase the pressing force. With the above configuration, the rotational power of the transmission 10 is output from the sheave 41 formed integrally with the transmission wheel 1 via the other transmission body 40 and is connected to a main shaft such as a milling machine or a drilling machine (not shown).
[0023]
  Next, the operation of the first embodiment transmission wheel will be described with reference to FIGS. In FIG. 4, when the initial state of the transmission 10 is assumed to be the highest speed state, the first disc wheels 1a and 2a of the transmission wheels 1 and 2 on the driven side and the driving side are at the HIGH position in the drawing. State.
[0024]
  Assuming that the handle 12 is operated from this state and rotated in the decelerating direction, the shift press actuator 6Pressurization mechanismAs a result, the screw shaft 15 descends downward and starts releasing the pressure on the disc wheel 2a. At this time, the first disc wheel 1 a of the transmission wheel 1 is constantly pressurized by the bearing 5, the feed nut 28, the lead screw 26 and the feed nut 27. In addition, only the first spring 33a in the spring 33 of the elastic means 30 is always pressurized independently. This initial pressure P11 (= Pmin minimum pressure) is a pressure that is adjusted in advance by the positioning operation of the feed nut 27.
[0025]
  A cross-sectional view of the left half of the driven transmission wheel 1 shown in FIG. 4 shows an initial state at the maximum speed before the deceleration operation. Accordingly, when the pressure on the actuator 6 for positioning the transmission wheel 2 by decelerating starts to be released, the pressing force of the driven disk wheel 1a becomes larger than the pressing force of the driving transmission wheel 2, so that the transmission body 4 The contact radius rH increases on the driven vehicle 1 side to become rH ′, and on the drive vehicle 2 side.The contact radius ofSince it acts in a decreasing direction, the rotational speed of the transmission wheel 1 is decelerated.
[0026]
  At this time, the turning force of the handle 12 is also applied to each pressurizing mechanism of the shift reverse pressing actuator 25 from the worm shaft of the driving side pressing actuator 6 through the connecting means 19. Therefore, the feed nut 27 of the second driven actuator 25a starts to rise, increasing the pressing force to the first spring 33a. At the same time, the feed nut 28 of the first driven actuator 25b has the thread grooves 26a and 26b opposite to each other, so that the first disc wheel 1a is lowered and the pressing force increased by the second actuator 25a is superimposed in series. However, it is applied downward with a stronger pressing force. Therefore, the relative distance from the second disc wheel 1b is contracted, and at the same timeElasticityPressure increases in the opposite direction to transmission wheel 2Increased contact friction pressureAs a result, the torque of the transmission wheel 1 increases.
[0027]
  As a result, the transmission ratio as the transmission 10 begins to increase, and the pressure applied to the first disc wheel 1a of the transmission wheel 1 increases conversely even though the transmission speed is decelerated from the highest speed state. Yes. This is because, as shown in FIG. 7, the pressurizing characteristic of the elastic means 3 to the transmission wheel 1 is a positive characteristic having a positive slope with respect to the gear ratio, whereas the elastic means to the transmission wheel 1 of the present invention. As shown by the characteristic line I of the first spring 33a in FIG. 7, the pressure force characteristic indicated by 30 is a negative characteristic having a negative slope with respect to the rotational speed of the transmission wheel 1. Show. Therefore, the shift reverse pressing actuator 25 originally means that the positive elastic means 30 is acting as a negative pressurizing characteristic.
[0028]
  Subsequently, when the handle 12 is further decelerated, the pressing force applied to the nut 2 7 increases, and when it reaches P10 of the characteristic line I, the interlocking ring 38a that is welded and fixed to the first spring 33a of the elastic means 30 in advance is provided. After contacting the second spring 33b, the two springs 33a and 33b start to cooperate at the same time. As shown in the characteristic diagram of FIG. 7, the applied pressure applied to the first disc wheel 1a via the screw shaft 26 suddenly increases stepwise and reaches P21, and shifts from the characteristic line I to the characteristic line II. It will be. Subsequently, when the speed is further reduced, the applied pressure increases along the negative slope along the characteristic line II of the sum of the first and second springs along the characteristic line II.
[0029]
  Thereafter, when the handle 12 is similarly decelerated to the minimum speed state, the same operation as described above is sequentially repeated. In FIG. 4, when the first disc wheels 1a, 2a of the transmission wheels 1, 2 on the driven side and the driving side reach the LOW position in FIG. 4, at this time, all the springs 33a of the elastic means 30 are obtained. , 33b, 33c, and 33d reach the fully pressed state as shown in the right half of FIG. 5, and the applied pressure P40 as the sum of all the spring loads in the lowest speed state becomes the maximum applied pressure Pmax. The characteristic diagram is a negative slope characteristic as shown in FIG.The maximum torque TBecome.
[0030]
  Next, the case where the handle 12 is operated to increase the speed will be described. In this case, the operation at the time of the deceleration operation is completely opposite. When the speed is increased from the minimum speed state, the maximum pressure Pmax is applied to the driven vehicle 1, but the speed ratio is the maximum speed reduction ratio εmax. If the pressing force reduced by the ratio of the reduction ratio εmax is secured from the shift pressing actuator 6, the speed increasing operation can be performed. Accordingly, the pressure applied to the first disc wheel 1a of the transmission wheel 1 by the operation of increasing the speed of the handle 12 starts to drop along the step-like characteristic line in FIG. 7, and decreases as the speed increases sequentially.
[0031]
  As described above, in this embodiment, both the normal elastic means in which the pressing force increases with forward compression and the actuator 25 that supplies the pressing force superimposed in series on the pressing force correspond to the gear ratio. The applied pressure is applied, and the total applied pressure is applied between the first disc wheel 1a and the fixed main body 10, thereby applying a negative force to the first disc wheel 1a with respect to the rotational speed. The shaft torque of the driven vehicle 1 is arbitrarily selected. This means that the pressing force of the shift reverse pressing actuator increases as the relative distance Dm between the first and second disc wheels 1a, 1b in the transmission wheel 1 contracts, slides and decelerates, and conversely the relative distance Dm. It shows that it is acting so as to decrease as it elongates and slides and speeds up. Therefore, it is clearly different from the characteristic line of FIG. 3 as a conventional example, and this actuator 25 shows that the pressure applied by the elastic means 30 gives a negative characteristic to the rotational speed of the driven vehicle 1.
[0032]
  When applying the pressure characteristic line A to the transmission wheel 1, the tension of the transmission body 4 during mounting operation is used below the characteristic line A as shown by the characteristic line B in FIG. However, if the pressure difference between the two increases, heat generation during transmission increases and transmission efficiency also deteriorates. Therefore, ideally, the variation characteristic of the mounting characteristic line B for continuously proportionally controlling the torque is assumed rather than the stepped characteristic A, and the linear pressure characteristic close to this is assumed to be the mounting characteristic line B as described later. Desirable to be applied as a larger characteristic line A 'So there is an advantage that can be used for fine adjustment of various allowable transmission capacity.
[0033]
  As shown in FIG. 2, this type of transmission means that the contact area SL or the contact friction pressure at the lowest speed has already automatically secured several times the SH at the highest speed. As a result, the rotation shaft torque, that is, the transmission torque T received by the transmission wheel rotation shaft from the transmission body 4 can be increased conversely as the rotational speed N decreases. And it shows that it was controlled variably.
[0034]
  This indicates that the transmission horsepower Q can be kept constant if the rotational speed N or the speed ratio and the transmission torque T are applied to each transmission vehicle in synchronization with each other according to the relational expression described above. Incidentally, the pressurization characteristic line D in FIG. 7 shows the positive pressurization characteristic when only the single spring 33a is used and the variable speed reverse press actuator 25 is not used, just like the conventional example in FIG. .
[0035]
  Next, an automatic alignment function such as an error factor of the speed change mechanism and a load side impact factor will be described with reference to FIGS. Here, there are various error factors to the transmission output. Typical examples are (1) elongation of the transmission body 4, (2) deterioration wear of the contact surface of the transmission body 4, (3) There are dimensional wear on the contact surfaces of the disc wheels 1a and 1b, and (4) wear on the jack wheel. In either case, as a result, a constant pressure is constantly applied to the transmission body 4, so that the driven transmission wheel 1 is automatically pressed and aligned during rotation.
[0036]
  6 is an internal structural view of the worm body 24 of FIG. For example, when the transmission wheel 1 in FIG. 4 is in a HIGH (shown in the left half) state at the time of external command at the maximum speed, it is assumed that the transmission body 4a extends to the broken line 4a ′. At this time, the corresponding first pressure spring 33a feeds the screw shaft 26a and the nut 27 presses downward. Therefore, the worm wheel 43 in the jack body 24 is rotatably connected to a spline shaft portion 26c provided on the lower end portion of the screw shaft 26.
[0037]
Therefore, the entire screw shaft 26 moves downward through the wheel 43 by a minute amount M of the extension of the transmission body 4a ', and automatically aligns while rotating. In addition, similar automatic alignment functions with a large applied pressure in the low speed range and with a small applied pressure in the high speed range. This means that the amount of pressurization varies according to the gear ratio in the gear range, so that the contact pressure does not become unstable in any gear region, and all the disturbances in slip and belt transmission can be absorbed. is doing.
[0038]
  In particular, this automatic alignment function absorbs errors with weak pressing force at high speed and strong pressing force at low speed, so the advantage of stable alignment without disturbing the transmission operation during rotation is due to long-term use As an effect of absorbing all the error factors, the transmission vehicle is given practical value. Further, this function is also immediately absorbed by the elastic means 30 and the screw shaft 26 when a vibration shock, which is a sudden load fluctuation on the load side, is applied or when it occurs on the prime mover 11 side. It also fulfills the function of automatically returning.
[0039]
[Second Embodiment]
  FIG. 8 is a sectional view of the transmission wheel 1 according to the second embodiment of the present invention. Differences from the embodiment of FIG. 4 are as follows. (1) One end of the elastic means 30 is directly attached to the first disc wheel instead of the fixed main body 10 and presses the disc wheel directly. (2) The screw shaft 26 of the actuator 25 is provided with a long screw groove 26d at one location, and (3) the stroke of the feed nut 28 as the pressure coupling body is an elastic means as the second actuator. Since the movement of the pressing movement L2 of 30 and the shifting movement L1 of the disc wheel 1a as the first actuator are shared and moved on the single lead portion 26b, the resultant stroke is the sum of both movements. L0 (= L1 + L2) is necessary and greatly increased. For this reason, the thread groove is longer than the drive actuatorConsists of a pressure jack mechanism(4) Since the elastic means 30 directly presses the disc wheel 1a, the spline coupling is unnecessary and fixed so as not to be finely movable between the screw groove 26 and the worm wheel 43 as shown in FIG. (5) There are five springs of the elastic means 30 and the like. Although the operation of this embodiment is controlled by an externally controlled power source, it is almost the same as that of the embodiment of FIG.
[0040]
[Third embodiment]
  FIG. 9 is a sectional view of the transmission wheel 1 according to the third embodiment of the present invention. In the figure, three springs 30a, 30b, 30c are directly mounted on the first disc wheel 1 and pressurized simultaneously to increase the pressure. In the present application, since the plurality of springs all operate in the same manner, they are collectively defined as a single spring 30. Reverse pressing actuator 25Pressure jack mechanismThe hydraulic pressure is adjusted by the pressure fluid from the transmission ratio means which is constituted by a pressure fluid jack having a cylinder, a plunger and a transmission ratio means and supplies a transmission ratio signal by a known transmission means 54 and a fluid positioner 53. It is an example shown by an actuator. The feature of this embodiment is that the characteristic line (A) shown in the stepped shape of FIG. 7 is not a stepped shape but a proportional operation of an accurate linear linear characteristic (A ′). The amount of inclination of the negative characteristic with respect to the rotational speed is changed from the transmission means 54 having a pump or the like to process the supply of hydraulic pressure, etc., from the speed ratio means of the positioner 53 which is a control device for detecting and servo-controlling the supply pressure state quantity, The pressure is determined by the pressure and area of the plunger 46 and the pressure chamber 45 as a pressure coupling body via 48 and the spring pressure of the elastic means 30. In addition, this pressurization mechanism can increase the pressurization speed from low speed to high speed, so that there is an advantage that the responsiveness is high and a large pressurizing force can be obtained. Further, when the internal combustion engine is rotationally input, it is also required to change the pressing force to the elastic means 30 by a control element other than the gear ratio signal in accordance with the fluctuation of the input rotational speed. A pressure detector 53a may be introduced to add cascade control along with the gear ratio.
[0041]
[Fourth embodiment]
  FIG. 10 shows a sectional view of the transmission wheel 1 of the fourth embodiment of the present invention. As in the case of FIG. 9, it is an example of the transmission wheel 1 having a pressure jack mechanism with a linear characteristic by a pressure fluid pump such as hydraulic pressure or pneumatic pressure and a gear ratio means. However, also in this case, if pressure fluid is supplied stepwise as in FIG. 4, stepwise pressurization characteristics are possible. Differences from the example of FIG. 9 are as follows. That is, (1) The member of the elastic means 30 is not a linear positive characteristic, but is a combination of a plurality of composites of conical annular leaf springs 59a and 59b. And (2) a pressure reverse jack actuator 25 fixed to the fixed body 10mechanismThe unit 60 is composed of a plunger 61 as a pressure connection body, a first interlocking connection body 56, and a second interlocking connection body 55. (3) A radial rotational force is separated by the bearing 5 between the elastic means 30 and the actuator 25. That is, the pressure fluid jack 60 is not rotated. The pressure fluid jack 60 with pump, cylinder and plunger is well known and will not be described in detail.
[0042]
[Fifth embodiment]
  FIG. 11 shows a sectional view of a transmission wheel 1 according to a fifth embodiment of the present invention. In this example, the shift actuator 25 is electricallyPressurizationA pressing unit 65 is used as an operating device for the servo-type reverse pressing actuator 25 to be controlled.With pressure jack mechanismAn integral operation shifter, that is, a first interlocking coupling body 66 that is integrated with a feed nut 28 as a pressure coupling body of the actuator 25 is applied to the elastic means 30 while being detachably assembled to the transmission main body 10 while being integrated. The second interlocking connecting body 55 is connected to the D-shaped cut surface 55a. The power of the reversible electric motor 62 and the gear head 63 is applied to the cam lead 70 and the trapezoidal screw, that is, the screw shaft 26 of the jack through the gear group 68, and the cam lead 70 changes the gear ratio by the position of the shifter 66. The signal is detected by a signal and supplied to the servo circuit 71. On the other hand, the screw shaft 26 moves up and down the shifter 66 and pressurizes and controls the elastic means 30 via the pressure coupling body 55. The actuator 25 further includes a control device that detects and servo-controls a state quantity with respect to the gear ratio, and an operating device that has a reversible electric motor 62 and a gearhead 63 to apply pressing force to the elastic means in response to the control command. It is an example which has. The sensor 54 detects a change in the state quantity, and externally controls the reversible electric motor 62 with the operation output of the control device through the amplitude discriminating circuit 71 and the switch energizing circuit 72 for the deviation from the fed back shifter position signal. Is.
[0043]
  In addition, when the transmission body 4 is replaced, if the reverse pressing actuator 25 is removed from the main body 10, there is a risk that the elastic body 30 that has been in a pressurized state until then is scattered. Therefore, the lid 77 is opened in advance and the connecting body 55 is pressed and cured by the auxiliary tool 75 having the screw 76 indicated by the broken line, and then the actuator 25 is attached and detached. The trapezoidal screw and the feed nut may be ball screws, and the reversible electric motor 62 and the gear head 63 may be pressure fluid motors such as hydraulic pressure.
[0044]
[Other Examples]
  Since the above embodiment is disclosed mainly for machine tools such as a milling machine and a drilling machine, the transmission is shown as a dry type used in an air atmosphere. However, in heavy machinery such as a vehicle, a wet type that transmits in an oil chamber is used. It is also easy to do. Actuators 6, 25Pressure jack mechanismAs shown, various types of manual and automatic types are also availablePressurizationA mechanism is conceivable. Furthermore, the elastic means 30 can be made into a can as shown in FIG. 5 because the elastic means 30 itself is made of a shape memory alloy material, and a mechanism for controlling the temperature with an actuator such as a heater is also possible. It is only necessary to obtain pressure characteristics. It is obvious that a person skilled in the art naturally installs a known shift power source 9 such as an electric reversible motor or pressure fluid motor and a gear ratio means in place of the handle 12 of FIG. This is an easily feasible range.
[0045]
  FIG. 12 is an explanatory view showing a combination form when the idea of the present invention is used in various aspects. The idea of the present invention is that the axial force applied to the first disc wheel 1a sliding in the axial direction through the reverse pressing actuator (ACT) 25 and the elastic means (ELS) 30 with the main body 10 as a reference position. It is controlled according to the gear ratio of the urging. Here, the main body refers to a body whose relative distance from the housing 10 does not change in the axial direction regardless of the presence or absence of rotational force. Accordingly, the presence or absence of a force in the rotational direction is irrelevant to the idea of the present invention, but in reality, the first disc wheel 1a is always rotating while the main body 10 serving as a reference is often fixed. For this reason, separation of rotational force is required, and the embodiment in the case of considering the relationship with the bearing 5 (BRG) is shown.
[0046]
  12A and 12E are examples of the cantilever support structure of the rotating shaft 20 of the transmission wheel 1, and FIGS. 12D and 12H are examples of the support structure of the both end bearings of the transmission wheel 1. FIG. In either case, the pressure wheel of the actuator 25 and the elastic means 30 are rotated together with the transmission wheel 1, and the main body 10 is also rotated but is fixed in the axial direction. The embodiment of FIG. 8 shows an example of FIG. (B), (C), (F) and (G) show examples in which the actuator 25 or the elastic means 30 is fixed to the non-rotating main body 10 with the bearing 5 interposed. The embodiment of FIG. 4 shows an example of FIG. 4F, and the embodiments of FIGS. 8, 10 and 11 all show the example of FIG.
[0047]
  FIG. 12 (I) is an example in which the pressing force of the shape memory alloy is controlled by heater control, and FIG. 12 (J) is an example in which the actuator 25 is separated into two. For example, in the embodiment of FIG. 4, the screw shaft 26a and the feed nut 27 form a second actuator (ACT-1) 25a that acts on the elastic means 30, and the screw shaft 26b and the feed nut 28 are first circles. In this example, the first actuator (ACT-2) 25b for shifting and sliding the plate wheel is formed, and the common screw shaft 26 and the jack body 24 are applied to each other. It shows that you can do it. As described above, the idea of the present invention is included in the idea of the present invention regardless of the presence or absence of the bearing (BRG) as long as the pressurizing force and the pressing force in the axial direction are superimposed in series and applied to the disc wheel 1a. Is done.
[0048]
【The invention's effect】
  According to the transmission wheel of the present invention, while using normal elastic means having a property of positive characteristics with respect to forward compression, the applied force generated by increasing / decreasing the elastic means is applied to the transmission wheel. By controlling the contact friction pressure between the transmission bodies, there is an advantage that the transmission wheel rotation shaft torque can be variably controlled continuously and applied to the transmission wheel according to an external command. . This means that a way has been opened for automatic control of industrial machines that require this variable control for the state quantity of transmission torque. In the present embodiment, this is adopted in an actuator that operates as a pressurizing characteristic in which the relationship between the rotation speed of the transmission wheel and the applied pressure is a negative pressure characteristic, and the transmission torque can be arbitrarily controlled from the outside as a result. Achieves a predetermined capacity of power transmission in the entire speed rangeRealized constant horsepower variable transmissionThere are advantages you can do. In particular, this indicates that the field of industrial machines to which transmissions using this type of transmission vehicle can be applied can be expanded from a special field to a wide field. At the same time, it becomes possible to realize a large-capacity transmission of several hundred horsepower [HP] or more, which has been considered impossible in the past, and contributes to labor saving and energy saving of the majority of industrial machinery.
[0049]
  Further, according to the present invention, even with a variable-diameter transmission wheel having the same diameter, any transmission torque can be secured independently by changing the pressurizing amount and pressing amount of the elastic means and the actuator. A transmission with a large transmission capacityTweakSelect arbitrarilyoperationTherefore, productivity according to the model is remarkably improved. At the same time, since the transmission efficiency of the transmission vehicle itself can be designed by arbitrarily controlling the pressure characteristics with respect to the gear ratio, high efficiency and high load transmission as a transmission can be achieved.
[0050]
  In conventional transmissions, the amount of pressure applied to the disc wheel is reduced at low speeds, so the transmission body is likely to be disturbed by the impact at the time of start-up, and the life of the transmission body is likely to be lost due to the number of times the transmission starts and stops. . However, in the present invention, since the transmission body is held by a large load in the low speed region, not only is there no damage due to starting and stopping, but also pressure is applied via elastic means, so the transmission body is stretched, worn, etc. Even in the case of error factors based on deterioration of the engine and disturbances such as sudden load fluctuations and fluctuations on the prime mover side, these are instantly absorbed in the entire range of the shift range and returned to the original state.MakeAutomatic alignmentPerform functionSo stable power transmissionMovementQuick with the machinevariableResponsivevariableControl mechanism is guaranteed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a transmission using a conventional transmission wheel.
FIG. 2 is an operation explanatory diagram of a conventional transmission wheel.
FIG. 3 is a pressure characteristic diagram with respect to the number of rotations of elastic means applied to a disc wheel of a conventional transmission wheel.
FIG. 4 is a cross-sectional view of a transmission using a transmission wheel according to a first embodiment of the present invention.
FIG. 5 is an enlarged view of the elastic means shown in the first embodiment.
FIG. 6 is used in the transmission vehicle of the first embodiment.Worm transmission machineFIG.
FIG. 7 is a pressure characteristic diagram with respect to the number of rotations applied to the disc wheel of the transmission wheel of the first embodiment.
FIG. 8 is a sectional view of a transmission wheel according to a second embodiment of the present invention.
FIG. 9 is a sectional view of a transmission wheel according to a third embodiment of the present invention.
FIG. 10 is a sectional view of a transmission wheel according to a fourth embodiment of the present invention.
FIG. 11 is a sectional view of a transmission wheel according to a fifth embodiment of the present invention.
FIG. 12 is a conceptual explanatory diagram showing various combination modes as another embodiment of the present invention, and (A) to (J) all indicate combination modes.
[Explanation of symbols]
  1 Transmission vehicle or driven vehicle
  1a First disc car
  1b Second disc wheel
  2 Transmission vehicle or driving vehicle
  3,30 Elastic means
  4 Transmitter
  5 Bearing
  9 Shifting power supply source
  15 Screw shaft
  15a Pressure connector, connector or feed nut
10 Body
24 Jack or jack body
24a Worm transmission machine
24b, 24c Pressure mechanism or pressure jack mechanism
25 Actuator
25a firsttwoActuator
25b No.oneActuator
26a, 26b Thread groove or gear ratio means
27, 28 Pressure coupling body, coupling body or feed nut
46,61 Pressurized coupling body, coupling body or plunger
54 Transmission means

Claims (12)

本体に軸支持された回転軸の軸芯と同軸に第一および第二円板車を相対向して配し、上記第一円板車は上記第二円板車に向って該回転軸芯と同軸に配した弾性手段を経て常時該軸芯方向の弾性加圧力を付与されると共に上記第二円板車との相対距離を収縮または伸長するため該軸芯方向に摺動可能に構成された伝達車において、
圧縮に対して該加圧力が増す正特性の上記弾性手段と、さらにこの弾性手段から連結体を介して上記第一円板車に加える該加圧力を該回転軸芯と同軸または平行方向摺動変位する加圧機構が生む押圧力で上記弾性手段を外部指令に従い増減操作して付与させるアクチェータとを有すると共に、上記弾性手段は上記本体を基準として少なくとも上記第一円板車への該加圧力と与えた該外部指令の逆転阻止機能を持つ上記アクチェータからの押圧力とを該軸芯方向に直列に重畳して上記第一円板車を加圧制御したことで上記伝達車と伝達体との間の接触摩擦圧を可変に加圧制御して上記伝達車に伝達トルクを任意に選定付与することを特徴とする伝達車。
First and second disc wheels are arranged opposite to each other coaxially with an axis of a rotation shaft supported by a main body, and the first disc wheel faces the second disc wheel. It is configured to be slidable in the axial direction in order to contract or extend the relative distance from the second disc wheel while being always given elastic pressure in the axial direction through elastic means arranged coaxially with In a transmission vehicle
And the elastic means of the positive characteristics increasing the pressurized pressure against compression, further sliding the the pressurized pressure applied via the connecting member from the elastic means to the first disc wheel above the rotational axis coaxial or parallel And an actuator for applying the elastic means by increasing / decreasing the elastic means in accordance with an external command with a pressing force generated by a dynamic displacement mechanism, and the elastic means is applied to at least the first disc wheel with respect to the main body. transmitted with the pressing force and to the mandrel direction superimposed in series above the transmission wheel by the pressurization control the first disc wheel above from the actuator with a reverse rotation prevention function of the external instruction given pressure A transmission wheel characterized in that contact friction pressure between the body and the body is variably increased and transmission torque is arbitrarily selected and imparted to the transmission wheel.
本体に軸支持された回転軸の軸芯と同軸に第一および第二円板車を相対向して配し、上記第一円板車は上記第二円板車に向って該回転軸芯と同軸に配した弾性手段を経て常時該軸芯方向の弾性加圧力を付与されると共に上記第二円板車との相対距離を収縮または伸長するため該軸芯方向に摺動可能に構成された伝達車において、
順方向の圧縮に対して該加圧力が増す上記弾性手段と、この弾性手段に連結体を介して上記第一円板車に付与する該加圧力を任意に制御ししかも該加圧力と直列に該軸芯方向の押圧力を変速比または回転数に応じて上記弾性手段に供給するため該回転軸芯と同軸または平行に配した加圧機構をもつアクチェータと、さらに与えた外部指令の逆転阻止機能を持ち上記アクチェータへの付勢動力として該外部指令を付与する操作装置とを有すると共に、上記アクチェータの押圧力は、少なくとも上記第一円板車が上記第二円板車との相対距離または回転数に対して負特性或いは変速比に対して正特性となるように、該軸芯方向に沿って上記弾性手段の該加圧力を付与することで外部から上記伝達車に任意の伝達トルクを連続的に付与のため上記第一円板車を可変に加圧制御したことを特徴とする伝達車。
First and second disc wheels are arranged opposite to each other coaxially with an axis of a rotation shaft supported by a main body, and the first disc wheel faces the second disc wheel. It is configured to be slidable in the axial direction in order to contract or extend the relative distance from the second disc wheel while being always given elastic pressure in the axial direction through elastic means arranged coaxially with In a transmission vehicle
The elastic means for increasing the pressure against forward compression, and the pressure applied to the first disc wheel via the connecting body to the elastic means is arbitrarily controlled and in series with the pressure. An actuator having a pressurizing mechanism arranged coaxially or in parallel with the rotating shaft for supplying the pressing force in the axial direction to the elastic means in accordance with the gear ratio or the number of rotations, and further preventing reverse rotation of the given external command And an operating device that gives the external command as urging power to the actuator, and the pressing force of the actuator is at least a relative distance between the first disc wheel and the second disc wheel, or Arbitrary transmission torque can be applied to the transmission wheel from the outside by applying the pressing force of the elastic means along the axial direction so as to be negative with respect to the rotational speed or positive with respect to the gear ratio. For the continuous grant Transmission wheel characterized in that the disc wheel variably and pressurization control.
請求項1または2において、上記アクチェータは、変速比または回転数に応じて上記第一円板車の第一変位量L1を摺動変位させる第一アクチェータと変速比または回転数に応じて上記弾性手段に第二変位量L2を押圧付与する第二アクチェータとを、ジャッキを用いて互に別体の上記加圧機構で構成しかつ別体または共通の変速動力供給源で付勢したことを特徴とする伝達車。3. The actuator according to claim 1, wherein the actuator includes a first actuator that slides and displaces a first displacement amount L1 of the first disc wheel according to a transmission gear ratio or a rotational speed, and the first actuator according to a transmission gear ratio or a rotational speed. The second actuator that presses and imparts the second displacement amount L2 to the elastic means is constituted by the above-described pressurizing mechanisms that are separate from each other using a jack and is energized by a separate or common transmission power supply source. Characteristic transmission vehicle. 請求項1または2において、上記アクチェータは、変速比または回転数に応じて上記第一円板車を摺動変位させる第一変位量L1変速比または回転数に応じて上記弾性手段を押圧付与する第二変位量L2とを、ジャッキを用いて互に単一共用の上記加圧機構で付与しかつ共通の変速動力供給源で付勢したことを特徴とする伝達車。According to claim 1 or 2, the actuator includes a first displacement amount L1 sliding displacement of the first disc wheel above in accordance with the gear ratio or rotational speed, the elastic hand stages according to the gear ratio or rotational speed and a second displacement amount L2 for pressing granted transmission wheel, characterized in that the energized by each other the pressure-common grant vital in pressure mechanism transmit power source of a single common with the jack. 請求項3または4において、上記アクチェータは、変速比または回転数に対応する状態量を検出し該外部指令で操作装置をサーボ制御する電気的制御装置と、この制御装置に応答して上記伝達車および上記弾性手段へ押圧動力を付与する可逆電動機または圧力流体動力源の外部制御動力源でなる上記変速動力供給源の上記操作装置とで制御されることを特徴とする伝達車。  5. The actuator according to claim 3, wherein the actuator detects an amount of state corresponding to a gear ratio or a rotational speed and servo-controls the operating device with the external command, and the transmission vehicle in response to the control device. And a transmission vehicle controlled by the operating device of the variable speed power supply source, which is a reversible electric motor that applies pressing power to the elastic means or an externally controlled power source of a pressure fluid power source. 本体に軸支持された回転軸の軸芯と同軸に第一および第二円板車を相対向して配し、上記第一円板車は上記第二円板車に向って該回転軸芯と同軸に配した弾性手段を経て常時該軸芯方向の弾性加圧力を付与されると共に上記第二円板車との相対距離を収縮または伸長するため該軸芯方向に摺動可能に構成された伝達車において、
順方向の圧縮に対して該加圧力が増す上記弾性手段と、この弾性手段に連結体を介して変速比または回転数に応じた押圧力を付与するジャッキでなる加圧機構を有し上記加圧機構の押圧力を上記弾性手段の該加圧力に直列に重畳させて該軸芯方向に上記第一円板車に印加するため上記加圧機構を該回転軸芯と同軸または平行に配したアクチェータと、与えた外部指令の逆転阻止機能を持ち上記アクチェータへの付勢動力として変速動力供給源を付与する操作装置と、さらに上記操作装置を制御するための該外部指令を付与する制御装置とを有すると共に、上記弾性手段は、上記本体を基準として上記第一円板車に該相対距離または回転数に対して負特性或いは変速比に対して正特性に該加圧力を印加することで上記伝達車の伝達トルクを連続的に可変付与するため上記制御装置から外部制御して上記第一円板車を加圧したことを特徴とする伝達車。
First and second disc wheels are arranged opposite to each other coaxially with an axis of a rotation shaft supported by a main body, and the first disc wheel faces the second disc wheel. It is configured to be slidable in the axial direction in order to contract or extend the relative distance from the second disc wheel while being always given elastic pressure in the axial direction through elastic means arranged coaxially with In a transmission vehicle
The elastic means for increasing the pressure against forward compression, and a pressurizing mechanism comprising a jack for applying a pressing force according to the gear ratio or the rotational speed to the elastic means via a connecting body. The pressurizing mechanism is arranged coaxially or in parallel with the rotating shaft so that the pressing force of the pressing mechanism is applied in series to the pressing force of the elastic means and applied to the first disc wheel in the axial direction. An actuator, an operating device having a function of preventing reverse rotation of the given external command, and providing a variable speed power supply source as urging power to the actuator; and a control device for giving the external command for controlling the operating device; And the elastic means applies the pressurizing force to the first disc wheel on the basis of the main body with a negative characteristic with respect to the relative distance or the rotational speed or a positive characteristic with respect to the transmission ratio. Continuous transmission torque of transmission vehicle For variably imparting controlled externally from the control device transmission wheel, characterized in that pressurized first disc wheel above.
請求項において、上記アクチェータで、上記ジャッキは変速比または回転数に応じて上記第一円板車を摺動変位させる第一アクチェータと、変速比または回転数に応じて上記弾性手段を押圧変位させる第二アクチェータとの夫々の押圧力を直列複合する共通のネジ軸を回動させる上記ウォーム伝達機としてウォームおよびウォームホイールを有することを特徴とする伝達車。7. The actuator according to claim 6, wherein the jack presses and displaces the first actuator for slidingly displacing the first disc wheel according to a gear ratio or a rotational speed, and the elastic means according to the gear ratio or the rotational speed. transmission wheel characterized by having a worm and a worm wheel as the worm transfer machine for rotating the common screw shaft pressing force of each of the second actuator series composite to. 請求項において、上記アクチェータで、上記ネジ軸は上記第一アクチェータ用の第一ネジ溝と、上記第二アクチェータ用の第二ネジ溝とは互に逆ネジとなるように形成し、上記第一および第二ネジ溝に夫々第一および第二連結体を送りナットで施すと共に、上記弾性手段は上記本体と上記アクチェータとの間に配されたことを特徴とする伝達車。8. The actuator according to claim 7, wherein the screw shaft is formed such that the first screw groove for the first actuator and the second screw groove for the second actuator are opposite to each other. A transmission wheel characterized in that a first and a second connecting body are applied to the first and second thread grooves by a feed nut, and the elastic means is disposed between the main body and the actuator. 請求項において、上記アクチェータで、上記ネジ軸は上記第一円板車の摺動変位用の第一ネジ溝と、上記弾性手段の押圧変位用の第二ネジ溝とは互に単一の同方向ネジ溝に形成し、単一共通の上記連結体を送りナットで施すと共に、上記弾性手段は上記連結体と上記第一円板車との間に配されたことを特徴とする伝達車。8. The actuator according to claim 7, wherein the screw shaft includes a first screw groove for sliding displacement of the first disc wheel and a second screw groove for pressing displacement of the elastic means . A transmission wheel formed in a screw groove in the same direction and applied with a single common connecting body by a feed nut, and the elastic means is disposed between the connecting body and the first disc wheel. . 請求項またはにおいて、上記アクチェータは、上記連結体を送りナットで形成され該ナットおよびネジ軸を台形ネジまたはボールスクリュで構成し、上記アクチェータが上記弾性手段と上記第一円板車との間に配し上記ネジ軸と上記ホイールとの間を軸芯方向に微動可能に配置したことを特徴とする伝達車。The actuator according to claim 8 or 9, wherein the actuator includes the connecting body formed of a feed nut, the nut and the screw shaft are formed of a trapezoidal screw or a ball screw, and the actuator includes the elastic means and the first disc wheel. A transmission wheel arranged between the screw shaft and the wheel so as to be finely movable in the axial direction. 請求項またはにおいて、上記アクチェータは、上記連結体を送りナットで形成され該ナットおよびネジ軸を台形ネジまたはボールスクリュで構成し、上記アクチェータが上記弾性手段と上記本体との間に配し上記ネジ軸と上記ホイールとの間を軸芯方向に微動不可能に配置したことを特徴とする伝達車。The actuator according to claim 8 or 9, wherein the connecting body is formed of a feed nut, the nut and a screw shaft are formed of a trapezoidal screw or a ball screw, and the actuator is disposed between the elastic means and the main body. A transmission wheel characterized in that it is disposed between the screw shaft and the wheel so as not to be finely movable in the axial direction. 請求項10または11において、上記伝達車は、変速逆押圧アクチェータとして働く従動側伝達車の上記アクチェータおよび駆動側伝達車の変速押圧アクチェータと、上記変速動力供給源とを連結手段で結合し上記連結手段を経由して外部指令を上記変速逆押圧及び変速押圧アクチェータに伝達した無段変速の動力伝達機の上記従動側伝達車に適用したことを特徴とする伝達車。According to claim 5, 7, 10 or 11, the transmission wheel includes a transmission pressing actuator of the driven transmission wheel of the actuator and the drive-side transmission wheel which acts as a transmission opposite the pressing actuator, with coupling means and the shifting power supply A transmission vehicle characterized in that it is applied to the driven transmission vehicle of a continuously variable power transmission that is coupled and transmits an external command to the shift reverse press and shift press actuator via the connecting means.
JP04847998A 1998-01-26 1998-01-26 Transmission vehicle Expired - Lifetime JP4478225B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04847998A JP4478225B2 (en) 1998-01-26 1998-01-26 Transmission vehicle
US09/231,840 US6120400A (en) 1998-01-26 1999-01-15 Transmission wheel pressurizing apparatus for transmitting constant power in a variable speed transmission
EP99100769A EP0931960B1 (en) 1998-01-26 1999-01-16 Continuously variable transmission pulley pressurizing apparatus
DE69910851T DE69910851T2 (en) 1998-01-26 1999-01-16 Pressure device for pulley of a continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04847998A JP4478225B2 (en) 1998-01-26 1998-01-26 Transmission vehicle

Publications (2)

Publication Number Publication Date
JPH11210850A JPH11210850A (en) 1999-08-03
JP4478225B2 true JP4478225B2 (en) 2010-06-09

Family

ID=12804533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04847998A Expired - Lifetime JP4478225B2 (en) 1998-01-26 1998-01-26 Transmission vehicle

Country Status (1)

Country Link
JP (1) JP4478225B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729833B2 (en) * 2001-05-10 2011-07-20 東京自動機工株式会社 Transmission pulley pressure control device
US7011600B2 (en) 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
PL1954959T3 (en) 2005-11-22 2013-10-31 Fallbrook Ip Co Llc Continuously variable transmission
KR101317329B1 (en) 2005-12-09 2013-10-15 폴브룩 테크놀로지즈 인크 Continuously variable transmission
EP1811202A1 (en) 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
EP2125469A2 (en) 2007-02-01 2009-12-02 Fallbrook Technologies Inc. System and methods for control of transmission and/or prime mover
CN101657653B (en) 2007-02-12 2014-07-16 福博科知识产权有限责任公司 Continuously variable transmissions and methods therefor
TWI461615B (en) 2007-02-16 2014-11-21 Fallbrook Ip Co Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2573425A3 (en) 2007-04-24 2017-07-26 Fallbrook Intellectual Property Company LLC Electric traction drives
CN103939602B (en) 2007-11-16 2016-12-07 福博科知识产权有限责任公司 Controller for variable speed drive
CA2708634C (en) 2007-12-21 2017-08-01 Fallbrook Technologies Inc. Automatic transmissions and methods therefor
WO2009148461A1 (en) 2008-06-06 2009-12-10 Fallbrook Technologies Inc. Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
CN107246463A (en) 2008-06-23 2017-10-13 福博科知识产权有限责任公司 Buncher
US8469856B2 (en) 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
PL2419658T3 (en) 2009-04-16 2014-02-28 Fallbrook Ip Co Llc Stator assembly and shifting mechanism for a continuously variable transmission
US8512195B2 (en) 2010-03-03 2013-08-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP5779073B2 (en) * 2011-10-31 2015-09-16 ジヤトコ株式会社 Continuously variable transmission
WO2013112408A1 (en) 2012-01-23 2013-08-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions methods, assemblies, subassemblies, and components therefor
JP5779129B2 (en) * 2012-03-22 2015-09-16 ジヤトコ株式会社 Continuously variable transmission
JP6660876B2 (en) * 2013-04-19 2020-03-11 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Continuously variable transmission
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
JP7137475B2 (en) 2016-03-18 2022-09-14 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Continuously variable transmission, system and method
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JPH11210850A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP4478225B2 (en) Transmission vehicle
JP5630676B2 (en) Variable transmission
JP4785159B2 (en) Variable transmission
JP2001141000A (en) Transmission wheel pressurizing control device by elastic body
JP4450441B2 (en) Transmission wheel pressurizing device
US8668607B2 (en) Driving pulley of a continuously variable transmission
JP4410865B2 (en) Compressor for transmission wheel pressurizing device
EP0931960A2 (en) Continuously variable transmission pulley pressurizing apparatus
JP4412683B2 (en) transmission
JP5252756B2 (en) Variable transmission
JP4412684B2 (en) Transmission operating device
JP4417457B2 (en) Continuously variable transmission and shift control device for the same
JP5155956B2 (en) Transmission wheel pressurizing device
JP5252755B2 (en) Variable transmission
JP4221099B2 (en) Shift control device
JP6065337B2 (en) Belt variable transmission
JP5903725B2 (en) Variable transmission
EP2034222B1 (en) Continuously variable transmission
JP5764857B2 (en) Variable transmission
JP2000145907A5 (en)
JP5312414B2 (en) Variable transmission
JP5095787B2 (en) Variable transmission
JP5810363B2 (en) Variable transmission
JP5271374B2 (en) Variable transmission
JP2010281454A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term