JP4221099B2 - Shift control device - Google Patents

Shift control device Download PDF

Info

Publication number
JP4221099B2
JP4221099B2 JP37567998A JP37567998A JP4221099B2 JP 4221099 B2 JP4221099 B2 JP 4221099B2 JP 37567998 A JP37567998 A JP 37567998A JP 37567998 A JP37567998 A JP 37567998A JP 4221099 B2 JP4221099 B2 JP 4221099B2
Authority
JP
Japan
Prior art keywords
transmission
pressure
elastic
sliding
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37567998A
Other languages
Japanese (ja)
Other versions
JP2000161484A5 (en
JP2000161484A (en
Inventor
謙吉 小野木
Original Assignee
東京自動機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京自動機工株式会社 filed Critical 東京自動機工株式会社
Priority to JP37567998A priority Critical patent/JP4221099B2/en
Publication of JP2000161484A publication Critical patent/JP2000161484A/en
Publication of JP2000161484A5 publication Critical patent/JP2000161484A5/ja
Application granted granted Critical
Publication of JP4221099B2 publication Critical patent/JP4221099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)
  • Gear-Shifting Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械などの産業機械、車両、モータ等に用いる定馬力伝動型の無段変速機に適用するため二つの伝達車を個別する各操作器加圧装置で高速度応答制御性と高効率安定伝動を達成して高品質、高品位の無段変速機を実現するための変速制御装置に関する。
【0002】
【従来技術】
伝達車加圧装置として日本特許出願:特開平9−217819号(ファンドールネズ社)が公知である。二つの円板のうちの摺動円板自体が加圧装置として油圧駆動のピストンシリンダの一部を構成した油圧シリンダを利用し、これで同円板を直接加圧摺動して、伝達車と伝達体の半径を変化させ変速する加圧装置である。油圧による直接加圧装置は、二つの利点として、(1)狭い空間で大から小までの任意の加圧力が得られること、(2)消耗品としての軸受が不要であることが挙げられる。然し油圧制御は変速機にとって致命的、決定的な欠点が二つ存在する。その欠点は、(1)油圧に弾性が無いため伝達車を直接加圧すると衝撃、誤差等に対し弾性吸収および自動調芯作用を確保できないこと(2)油圧媒体が動作遅れ、油漏れ、遠心力等の影響を直接受け最も基本的な伝動動作がいつも不安定要因になることである。
【0003】
通常伝達車1が負荷機器に伝動する馬力Pは、回転数NとトルクTの関係として次式示される。即ち
P〔W〕=1,027×N〔rpm〕×T〔kgm〕
従って所定馬力P0を伝動するには、回転数指令Nが増大したとき伝達体のトルク指令Tを減少させ、逆に回転数指令Nが減少するとトルク指令Tを増大させる必要がある。ところが上述の従来技術は、バネ等の弾性手段を従動伝達車の円板に並設しているが、弾性手段が摺動円板に供給する弾性加圧力は、高速回転状態になるに従って増圧し、逆に低速回転状態になるに従って減圧する方向である。この事は、本来定馬力伝達型の変速機では、低速回転に到るほど印加加圧力を増大させることを要するにも拘わらず、弾性手段の弾性加圧力の方向が全く逆である。従ってこの種の弾性手段の加圧装置では原理的に定馬力伝達は実現不能である。
【0004】
【発明が解決しようとする課題】
本発明は、第一伝達車の加圧制御の際、油圧による直接加圧方式に依存せず弾性体を選択的に用いた間接加圧方式に依存するもので、両伝達車の一方には加圧力のみで非弾性加圧力のままで、また他方には加圧力と弾性力の双方を直列接合して生じた弾性加圧力を供給し伝達車及び加圧装置ごとに速比とトルクの制御機能の役割の個別分担を果し変速機に定馬力伝動を保証する変速制御装置に関し、出力伝達車側の回転数対シーブ加圧力の関係が反比例する方向に可変加圧制御により定馬力伝動を実現するものである。本発明の共通課題は、達車もつ可変制御機能の役割分担と該弾性及び非弾性加圧力の加圧制御との両思想により確立した定馬力伝動型変速機に更に進めて高速度の変速応答性と高効率安定伝動を寄与して高信頼性、高耐久性に導く変速制御装置を提供することである。
【0005】
第一の解決課題は、変速機に安定伝動と高速度応答性と高効率伝動との各機能を保証するための前提条件となる第一および第二操作器が夫々対応の変速指令に対して高精度の再現性を所持する変速制御装置を実現することである。特に変速制御の再現性とは両伝達車への加圧力付与のベルト位置決め精度および弾性力付与のベルト狭持圧精度の加圧摺動の再現性であり同時に加圧力による変速比およびトルクの値自体の安定供給を基礎的条件とする加圧装置を改良することであり、繰返し行われる変速動作に対応する定馬力伝動機能に高度の安定伝動を確保することである。
【0006】
第二の解決課題は、第一および第二操作器が対応の伝達車に対し所定の高精度かつ安定性ある加圧能力を所持していたとしても、単一変速機として適正運転を行うには両操作器の加圧動作に高度の同期性の長期間の維持する事が不可欠である。然し定馬力伝達型変速機では各操作器に印加する加圧力の値が極度に大きくなる事しかも両操作器の一方に大きくまた他方に小さく印加する様な不平衡な加圧する事のため、第一操作器と、第二操作器と、駆動源との三者で加圧力の相互干渉を生じたり或いは誤差信号が相互に伝播することを阻止して高信頼性、高耐久性で高度の同期性を維持することである。
【0007】
第三の解決課題は、変速制御装置が高精度の加圧動作と同期性とが維持できても変速動作又は伝動動作の双方で消耗、摩粍等による部品類の劣化或いは発熱を抑制する必要がある。即ち変速動作をインチング的な使用或いは変速指令として増速・減速または増圧・減圧の各指令を交互に高頻度で繰り返す使用等の各種の運転条件に対しても充分な耐摩粍性を与えるための第一および第二操作器による安定加圧を前提として更に高効率化に制御することが出来る変速制御装置を提供することである。
【0008】
第四の解決課題は、変速制御装置自体がより高品質、高品位の無段変速機を実現するもので、第一操作器によるトルク制御と第二操作器による速比制御との可変制御機能の役割の分化を利用し変速機の伝動効率の向上と安全率の調整するため、変速機に加わる実負荷容量に応じたトルク付与を可変加圧制御したものである。特に出力負荷機器側に要する実負荷容量に対し無段変速機側の出力容量を可能な限り接近させて伝動効率を向上させ更にまた弾性装置の加圧特性と実負荷に要する加圧特性との間にある偏差分を所持させて変速機のもつ安全率、サービスファクタを伝動容量に応じて設定ないし変更できるように弾性装置による加圧特性を必要に応じて変化させる事で変速伝動装置に高伝動効率または安全率の動力伝動を提供することである。
【0009】
【課題を解決するための手段】
本発明の共通解決課題は、二つの伝達車の一方に非弾性加圧力状態で速比制御をまた他方には弾性加圧力状態でトルク制御を果させ積極的に双方の制御機能の役割を個別分担による区分けするが加圧力を可変付与する点は共通する。この際に双方の加圧力自体が僅か弾性或いは圧力状態不安定な要素で乱れる事がある。例えばリリーフ弁のように油圧による加圧制御では、変速指令を供給する瞬間にリリーフ弁の動作開始に伴い双方の加圧力自体が不安定化する場合がある。この時伝達体での加圧力の平衡条件が崩れ伝動が乱れる。そこで本発明は、安定伝動と高速度変速応答性の確保と更に高伝動効率運転の維持を達成するもので、この伝動の乱れが極度に拡大するのを抑制する為または両操作器に供給する両加圧力の値自体を高度に安定付与する為、夫々の圧縮装置にネジ体を中心とした摺動機構で構成した変速制御装置を提供することである。
【0010】
第一課題の解決手段では、変速制御装置が常時安定な加圧力を供給し高度の再現性の維持のため、圧縮装置は二つの摺動具からなる摺動装置と、この摺動装置を付勢する付勢装置とで成り、第一操作器および第二操作器は、第一伝達車並びに第二伝達車および弾性装置の三者を変速指令に応じた安定押圧制御に因り第二伝達車側の伝達体接触半径の位置決め制御による速比又は出力回転数および第一伝達車側弾性加圧力で伝達体狭持圧加圧制御によるトルクに高精度の再現性を保証したことである。
【0011】
第二課題への解決手段は、変速制御装置として、圧縮装置が二つの摺動具からなる摺動装置と、この摺動装置を付勢する付勢装置とで構成すると共に、各付勢装置はウォーム伝達機で構成して各伝達車の加圧力の逆転伝達阻止のセルフロック機能をまた駆動源はブレーキ装置又はクラッチ装置を有して可逆制御駆動源のオーバラン伝達阻止機能を設置することにより、第一伝達車と第二伝達車と駆動源との三者間の変速指令に誤差伝達を阻止したものである。
【0012】
第三課題への解決手段は、変速制御装置としての可変制御機構自体の高効率安定加圧を目的としており、縮装置はいずれも二つの摺動具の相対位置を変位する摺動装置とこの摺動装置を回動付勢する付勢装置とからなり、圧縮装置の摺動装置および付勢装置は、回転軸芯の方向でかつ同軸位置に円筒状の操作器貫通孔を施して互に同軸連結され、或いは第一または第二伝達車の同軸位置に回転軸貫通孔を施し、いずれかの貫通孔を経て該回転軸の外側または内側から変速指令で加圧制御したものである。
【0013】
第四課題への解決手段は、変速制御装置が変速伝動装置の二つの伝達車を持つ伝動機構に夫々個別の制御機能の役割を分化したのに伴い駆動源も共通駆動源又は個別駆動源に区分けして設置しかつ第一及び第二操作器に施す第一及び第二変速指令を夫々トルク及び速比指令として供給し共通駆動源で操作時には変速動力を機械的に分岐供給され又は個別駆動源で操作時には該個別駆動源を経て供給され第一及び第二変速指令を夫々トルク及び速比指令として個別付与され且つ該個別駆動源で操作時に上記変速伝動装置の伝動効率又は安全率を選択するために軸トルク値を増減可能に選定付与したものである。
【0014】
【発明の実施の形態】
本発明は定馬力伝達型の無段変速伝動系統を基本原理から再検討したので乾式変速機に限らず湿式変速機にも適用でき、また利用分野も工作機類のような小馬力用から、車両類の大馬力用に至まで適用できる。特に第一(従動)伝達車への可変加圧制御は弾性加圧力による軸トルク付与を行うので、その際に本発明は、油圧による直接加圧方式に依存せず、弾性体による間接加圧方式に依存することによって、最終的に伝達体に対して非弾性加圧力の可変付与だけでなく、常時弾性加圧力をも可変付与をも実現していれば良い。圧縮装置を巻上摺動機構による場合はの加圧力は弾性装置からの反力に過ぎず弾性装置自体が良好な可変加圧機構となる。更に摺動装置を使う限りこれを電気駆動機構にするか油圧駆動機構にかは駆動源の側の問題であり、本発明はいずれでも良い。前者の駆動方式がより優れており、その理由は変速指令の増速減速又は増圧減圧の交互の頻繁な可逆切替操作を高速度に追従できるからである。
【0015】
弾性体はコイルバネに限らず、板バネ、渦巻バネなど他の形態でも良い。単一のバネでも良いが、大きな加圧力を得るにはバネ定数を大きくする必要があり、バネのヘタリ収縮が生じやすくかつ寸法形状も大幅に拡大するので、これを複数の弾性体に分割しても良い。複数の板バネを直並列に組み合わせても良い。各弾性体の配置方向も、同心円状に限る必要もなく、小型で大きな加圧力が確保できるならば、複数バネを並設しこれ等を同時駆動させて連続リニヤ特性を得る場合に限らず、加圧装置の変速指令に応じて変速域の一部分で伝動効率の向上または案全率を増大させるため階段的駆動させて非連続階段特性にしても更に連続曲線特性でも良い。
【0016】
また加圧装置の圧縮加圧力は、伝達車と本体の間で付与すれば良いので、両者間で弾性装置と圧縮装置の互の配置順序、場所は設計に応じて任意に変更でき、操作上これ等を非回転状態にする場合は、伝達車と、圧縮装置と、弾性装置と、本体とのいずれかの間に回転分離用軸受を配すれば良い。弾性装置、圧縮装置の取付場所も伝達車回転軸と常に同軸位置に配する必要もなく、非同軸位置である本体上の任意の位置に設置し圧力伝達装置で伝達車と相互に連結すれば良い。従ってここで本体或いは本体基準面とは、回転の有無とは無関係に、伝達車に対する軸芯方向の相対的な基準位置が変化しない場所のことである。なお弾性体の加圧方向と伝達車への加圧方向とが互いに逆になる時は圧力伝達装置にシーソウの如き挺子機能で加圧方向を反転させても良い。
【0017】
更に弾性装置と圧縮装置には夫々同様の部材として応動体、応動具、被動体、被動具、更に圧力伝達装置などが組込まれるが、これ等の部材はいずれも他部材に圧力を伝達する摺動部材、摺動体又は摺動具と称しても良く、設計に応じて互に単一部材で共用したり兼用したり、又は細分化したり更に伝達車の円板、本体などの部材で逆用又は代用する等の各種選定が行われるが、これ等は単なる部材の選択設計の範囲に留まり、任意の変更を行っても本発明の範囲に含まれる。
【0018】
圧縮装置として巻上摺動装置による場合は、該摺動機構とはネジが最も一般的だが、図7Bの摺動カムだけでなく水平の円周面にカムを施した回転カムでも傾斜面を使用するので同等の機能を達する。また摺動機構には変速指令と1対1で対応させる必要上、摺動機構内に周知のセルフロック機能即ち逆転防止用ブレーキ機能および可逆制御駆動源のモータに生ずるオーバラン阻止機能が駆動源の側に必要である。従って台形ネジとウォーム伝達機の組合せ、或いは普通ネジ又はボールネジとブレーキ付モータの組合せ又は変速指令伝達系にクラッチ装置の設置更には逆転阻止ステップモータの使用等、各種の周知技術の組合せが配慮されるべきである。また圧縮装置の押圧移動量は、第一伝達車の変速移動分L01と弾性装置の押圧移動分L02の和L0(=L01+L02)が必要となる。従って移動分L01と移動分L02を別々の摺動機構で構成しても良い。この際に第一伝達車側の移動分L0は必然的に第二伝達車側の移動分L1とは同期駆動を要し作動方向および作動量が異なるため、摺動機構のネジのピッチ、回転方向、回転数或はネジ溝の加工方向(右ネジ、左ネジ)、伝達機の速比等の周知の要素を設計に応じて選択すれば良い。
【0019】
【実施例】
(第1実施例)
図1乃至図4は、本発明の第1実施例変速制御装置第一(従および第二(主伝達車に伝達体を巻掛けして構成した変速伝動装置IIに適用した車両用無段変速機の各部の構造および加圧装置の特性を示す。変速機10は基本構成として第二(主動)伝達車又は主動車2と、第一(従動)伝達車又は従動車1と、この両伝達車間に巻掛けされる伝達体11とで形成される変速伝動装置IIと、第一(従動)伝達車1側に第一(従動)操作器6と、第二(主動)伝達車2側に第二(主動操作器8と、さらに両操作6,8を同期駆動する駆動源9とで形成される変速制御装置とで構成される。更に第二(主動操作器8は、駆動源9から付勢装置12摺動装置15で成る第二圧縮装置14を付勢した第二加圧装置を有し、第一(従動操作器6は弾性装置3とこれを圧縮する第一圧縮装置4とで構成した第一加圧装置5を駆動源9で付勢される。第一圧縮装置4は摺動装置25と、伝達車1および弾性装置3を駆動する付勢装置29とで形成される。本発明の変速制御装置Iは、第一(従動伝達車1、第二(主動伝達車2を可変加圧制御する第一および第二加圧装置5,をもつ第一(従動および第二(主動操作器と駆動源9とに関し以下に詳述する。
【0020】
伝達車1,2は、いずれも摺動円板1a,2aと、固定円板1b,2bを相対向して、キーを介して前者が後者に対して各回転軸20、50の軸芯方向に摺動可能に構成され、伝達車1と2では夫々入力軸20と出力軸50に互に逆向に配置される。両伝達車1,2に対応する各操作器6,8からの加圧力の平衡を制御することによって両伝達車1,2での伝達体11との接触半径rを連続的に変化させ、全変速領域で所定馬力の動力伝達を果している。伝達体11は、図1では最大速比の位置を、図2では動作説明の都合上右半分を最大径に、左半分を半径r0の回転数60%の位置を夫々描いた。また変速機10は本体10aと蓋体10bとで密閉の油槽室を形成し、湿式変速機を構成すると共に、車両などの内燃機関、伝達装置等と連結される。一方、変速制御装置の全ては本体10の一部である蓋体10bの側に集中配備される。
【0021】
主動操作器8の第二加圧装置は、第二圧縮装置14として摺動装置15と主動伝達機でなる付勢装置12と構成される。前者はボールネジの押圧装置15を施された二つの第一及び第二摺動具即ち応動具16と被動具17からなり、後者はウォーム18とホイール19からなり反転阻止のセルフロック機能をもつウォーム伝達機12である。加圧装置は、伝達体の位置決め制御である可変径制御の際の基準位置を正確に再現して速比制御を果すため、弾性力等の不安定な位置決め要因を除く為に剛体製部材でなる摺動装置15で示される。図1の通り摺動装置15は、ホイール19これと同一部材で一体形成された筒状部を形成しそこに押圧装置15cを構成され、加圧装置7の中心に貫通孔16a,19aが施され、主動伝達車2の摺動軸部が貫通配置され、第一(従動)操作器第一加圧装置5とレベル同等の位置に並設させるように、集約配置される。
【0022】
主動軸20は軸受21,22で両軸支持される一方、第二加圧装置は本体基準面10cと伝達2の間の軸受13および23を介して加圧される。応動具16がホイール19で回動されると、被動具17は、回転せず案内棒24aで軸芯方向にのみ加圧摺動する。縮装置14のネジは右ネジに加工される。24は応動装置であり、この例ではスラスト受具として示す。図1の加圧装置には弾性体が介在しないので本体10cから摺動円板2aに弾性力の介在なしに直接加圧力のみで伝達体11の接触径r1を変位制御する。
【0023】
従動操作器6の第一加圧装置5は、摺動円板1aを加圧摺動させているにも拘らず、その周囲に設置されずに第二(主動操作器8と同一平面上の蓋体10bに非回転状態に設置され弾性装置3と共に軸トルク制御を果す。図1,2中、加圧装置5は、ネジ体26の左右に連結レバー28a,28bを経て伝達車回転軸と非同軸位置に配した二本の伝達手段41a,41b、リニアボール軸受42,43とシフタレバー44とを有しかつ伝達車1に配したジンバル47、スラスト受具46、軸受45を経て加圧力を伝える圧力伝達装置40と連結している。加圧装置5の内部構成は、弾性装置3と、第二圧縮装置14と同機能の第一圧縮装置4とからなり、両者は軸受31を接合点として両者の弾性力と加圧力が互に直列に接合する弾性加圧力の例で示す。弾性装置3の加圧力は本体基準面10cとしての底蓋36を基準に、軸受31から圧縮装置4、圧力伝達装置40を経て伝達車1に弾性加圧力として印加する。加圧装置5は、図2の III−III 線で単一構造物5として蓋体10bに伝車1と同軸上で着脱自在に構成される。
【0024】
弾性装置3は、図1,2から当業者に自明なとおり複数の環状弾性体33を伝達車1の回転軸芯と同軸上でかつ同心状にしかも該軸芯方向に押圧可能に配され筺体35に予め所定の加圧状態に収納し単独で着脱可能な単一構造物30を形成した例である。本来単一弾性体だけでは形成できない大きな押圧力を狭空間内で確保するため、特殊構造が採用される。四つの弾性体33aないし33dは一端を本体10に他端には隣の応動体と係合するための夫々連結部39aないし39dを施される環状応動体37aないし37dが個別に付されている。なお各弾性体を有効に作動させるため弾性の振動伝達を一端で不能に他端で可能に支持する事は当業者にとり技術的な常識である。筺体35の内壁には弾性体33の係止装置32として三つの段差当接部38bないし38dと底蓋36とが施される。なお本例では初段弾性体37aに対応する当接部38aが無いが、これは初期加圧状態では始めから最小加圧力Pminを選定するため圧縮装置4と連結するためである。点線38aで示す様に予め施しても良い。各段差当接部38の最内径は対応する各応動体37の最内径よりも大きい径なので隣接する前段の段差当接部38から突出している。従って圧縮装置4の応動に伴って応動具26は、応動体37a乃至37dの順に各応動体に案内されて順次弾性体33a,33b,33cおよび33dを押圧し、加圧力を階段状に並設加算する構造である。
【0025】
圧縮装置4は、ボールネジの押圧装置25を施された二つの第一及び第二摺動具即ち応動具26および被動具27からなる摺動装置25と、反転阻止のセルフロック機構としてのウォーム48およびホイール49からなる変速動力用のウォーム伝達機でなる付勢装置29とを有し、両者の間に弾性装置3を配置される。応動具26はネジ体部26aと、連結部26bと、摺動部26cと、更に押圧部26dとで形成される。摺動部26cがスプライン軸を形成しホイール49との間で、回動力だけを受けてネジ体部26aに伝え軸芯方向に摺動可能に係合される。この構成で、圧縮装置4の摺動装置25の部分が、本体10に固定された弾性装置3と一体組付されながら、弾性装置3に対して弾性振動を伝達可能な浮遊ない浮動状態(フローティング)に支持される。なお、本例では主動操作器8の摺動装置15の応動具16に施したボールネジが右ネジ加工であったのに対し従動操作器の応動具26のボールネジが左ネジ加圧を施される。ネジ溝の方向は必要に応じ変更しても良い。図2のように被動具27は二つのレバー28a,28bをもつ連結レバー28を施され、伝達手段41に連結する。巻上装置25の応動具26は応動体37aの先端部31′と、伝達車1と連結する伝達手段41との2つの中間位置で浮動状態に支持され弾性振動を伝達するので、摺動部26cは所定の長さをもつ。
【0026】
動源9は、図3A,3Bに示すブレーキ付の可逆制御モータ53として直流サーボモータが使用され、二つの伝達機55,6が施され、主動および従動操作器8,の夫々の駆動軸18a,48aを同時に同期駆動している。変速指令としての変速動力は歯車56,57を経て軸54から軸58に達しここで第一および第二変速指令に分岐される。更に操作器8には歯車59,64にて軸58から軸18aに第二変速指令として、また操作器6にはアイドラ車61を含め歯車59,62を経て軸58から軸48aに第一変速指令として分岐し夫々伝わる。歯車64と、歯車63,62の相互の歯数の相異は、主動車2の摺動装置15の移動変位量L1に対し、従動車1の加圧装置5の移動変位量L0(=L01+L02)の方が大きく、摺動円板1aと弾性体33の双方を同時に移動押圧する必要の為である。両伝達車1,2への加圧力は一方が大のとき他方が小となり可逆制御駆動源のモータは小容量で良い。
【0027】
次にこの変速機10の動作を図4と共に加圧装置5,を中心に述べる。図1の通り、変速機10で伝達体11が最大速比の位置の状態で入出力軸20,50が伝動し一定速比の定速回動しているものとする。可逆制御モータ53が回転数又は速比指令として変速比を減る方向の変速指令、即ち増速指令を受け回転駆動始めるものとする。図3Aの矢印のように変速動力は軸18aと軸48aに伝えられ互に逆向きに回動する。本例では各押圧装置としてのネジ体15とネジ体25とでは互に逆ネジ加工されているので、摺動装置15が円板2aを加圧すると伝達体11の半径はr10からr11に増大し出力回転数は増し速比は減り始めるので第二変速指令は速比指令又は回転数指令として働く。同時に最大加圧力Pmaxで押圧していた加圧装置5は、圧縮装置4の摺動装置25の加圧力を減少する方向に作動する。従って弾性装置3への全圧加圧力の各応動体37も点線に示す位置に上昇し、同時に摺動装置25の26は上昇し逆に被動具27は巻上を解かれた分量だけ逆に降下する。この降下量は図2の連結レバー28および圧力伝達装置40を経て伝達車1への加圧力を減圧するので軸トルクは減り第二変速指令はトルク指令として働く。それと同時に主動車2側の加圧装置で引張られる結果、図1の伝達車1での伝達体11の半径はr01からr02に減少する。
【0028】
この事は、図4の特性図上で最大速比εmaxの出力回転数n1からn2への移行に伴い、特性(A)の階段線(IV)上を特性点a1からa2に移行する事を示す。これと同時に、増速指令の供給に従い伝達車1へ加圧力P1もP2に減圧され軸トルクも減少する事を意味する。そこで伝達車1での加圧力と回転数との間が互に反比例の関係にある事を示す。同様に可逆制御モータ53から更に増速指令が与えられると同様の動作を繰返えす。仮に出力回転数が略半分のn60の点では、図2の左半分に描いた様に弾性体33cと33dは夫々段差当接部38cと38dに当接して伝達車1への加圧には寄与しないで、階段特性(II)の特性点a60の位置にあり、弾性体33aと33bのみが作用していることを示す。以下同様に摺動装置25の応動具26の回動に伴い加圧特性は回転数の増大に伴って階段的に減少し、最高速回転時に最小加圧力Pminに至り伝達車1への軸トルクも最小になる。逆に再び減速状態に戻すには、可逆制御モータ5減速指令で転することによって,上述の逆の動作に従い元の位置に戻る。
【0029】
従来技術の弾性体では従動車1の回転数Nの増大に伴い図4の特性線(D)の如く加圧力も増す。これに対し本発明では、圧縮量を増すと圧縮加圧力も増す様な従来と同質の弾性体を用いながら、弾性装置3を圧縮装置4と共働させる事により、該加圧力と出力回転数間の特性を互いに反比例ないし逆比例の関係になり負の傾斜特性を確保した事に又該加圧力と速比間では正傾斜特性にした事に最大の特徴がある。略水平な特性線(C0〜C2)では変速域の全域で単位面積当りの加圧力がほぼ同一であるが、従動車1のベルト・プーリ間の接触面積が最低速時には最高速時に比して数倍に達する。従ってこの特性でも伝達体11が受ける軸トルクTは回転数Nが減少しても逆に増大できる。図4の特性線(C2)は僅かな正傾斜でも、接触面積の増大分によって実質的に定馬力の伝達ができる。反比例とは、僅かな正傾斜特性(C2)を含む概念で、更に階段状乃至非直線な曲線特性も含むことを示す。
【0030】
次に本発明の変速機の自動調芯機能を述べる。変速機の動力伝達には内部にもつ誤差要因及び外部から侵入する変動要因があり、いずれも正規の伝動の障害になる。代表例として前者には伝達体11の長手方向の伸び、幅方向の摩耗があり、後者には変速指令の供給、入出力側機器からの衝撃荷重の侵入等が存在する。本発明は、いずれの場合も弾性装置3が悪影響要因を運転中に自動的に補償しかつ再び自動的に正規の伝動動作に復帰させる機能をもつ。弾性装置3は変速過程で生じる伝達体張力の変則的な乱れを吸収する張力調整機能をもち内外の変則要因にも自ら半径と加圧力との安定伝動状態を保証する自動調芯機能を持つ。
【0031】
今最高速比ε1 の運転中に伝達体11の周長の伸びが徐々に進んだとする。このとき主動・従動の各操作器8,は付勢されないので、主動車2での接触半径は元のままである。しかし従動車1では伸び分に応じて半径が拡大し狭持位置を変位する。出力回転数はその分だけ減速し円板1aも弾性装置3も僅かに移動するが、プーリ挾持圧Pには僅かな変化しか無く、伝達体11への挾持圧はほぼ最高荷重の状態を維持し続ける。この事は回転数が僅かに変化しても伝達馬力の安定伝動機能自体は全く障害を受けず自動調芯して正規の伝動を保持し続ける事を示す。次に伝達体11に幅方向の摩耗による厚味が縮小した場合を考える。このときも操作器,8の停止中だが、従動車1での弾性装置3の押圧により自動的に主動車2での接触半径は縮少すると同時に従動車1では同様にその分半径を拡大するので出力回転数は僅かに減少するが、正規の伝動馬力を適正に維持しながら自動調芯する。
【0032】
更に入出力軸20,50に突発的な衝撃振動の侵入を考える。この場合にも自動調芯機能は同様に働く。従動伝達車1の側では伝達体11の半径r0を拡大または縮小の乱れ振動が一瞬間だけ発生するが、この弾性振動は逆に圧力伝達装置40から圧縮装置4に伝達される。この時圧縮装置4は、被動具27から応動具26に圧力達されるが、応動具26の先端のスプライン摺動軸26cも軸芯方向に摺動可能に付勢装置29のホイール49と係合状態にしているため、圧縮装置4は弾性装置3の応動体37の連結具32と係合する以外は全体が浮動状態に配置されている。従って侵入した乱れ弾性振動を直接弾性装置3のみが弾性吸収することになる。短時間内に乱れを終息し、加圧装置5は再び元の安定伝達状態に自動復帰する。
【0033】
次に従動車1の加圧装置5が該伝達車に間接加圧として可変加圧力と弾性体との双方を直列加圧して生じた弾性加圧力を供給するのに対し、主動車2の加圧装置が該伝達車に直接加圧として可変加圧力のみを供給する理由を述べる。この理由は、従動車1と主動車2とでは無段変速機としての各伝達車1,2のもつ機能役割を個別に区分するためである。即ち従動車1は常時供給する弾性加圧力で狭持圧を変化させることで連結する負荷装置に対して所定馬力の伝動用に可変の軸トルク制御機能を確保することと内外の乱調に対し自ら安定状態に復帰する弾性体の自動調芯機能をもつことである。これに対し、主動車2では、この従動車1の各役割をバックアップするため常時安定な円板2aが伝達体11の位置決め制御による可変の速比又は回転数制御機能を与える為である。この事は主動車2が変速伝動の速比又は回転数制御の為の基準車として作動し、従動車1がこの基準車の回転数を基準としてこれに応答して作動するトルク制御の為の追従車の機能を果させる為である。
【0034】
従動伝達車1の加圧装置5は、圧縮装置4の付勢装置29と摺動装置25の間で弾性装置3を団塊状に一体組付し、全体として単一構造物を構成し本体10の一部である蓋体10aの外側に、伝達車1の軸50と同軸にしかも外側のIII−III線から着脱自在に配置される。一方主動伝達車2の加圧装置は、摺動装置15と付勢装置12とからなる摺動装置15を蓋体10bの内側でしかも蓋体10bと共に一体組付される。従って図3Aに示す本体10aから蓋体10bを多数のボルト10eを解放することによって、変速制御装置を構成する全加圧装置およびは、IV−IV線を境として従動および主動伝達車1,2を共って軸受21, 45および軸受け52から本体10としての蓋体10bに一体の変速機として着脱可能である。なお、ネジ軸26の先端は、軸50との連結は無く、当接防止用に開孔50aを借りて収め、ここ分離して着脱可能に構成される。
【0035】
(第2実施例)
図5は、フライス盤、ボール盤等の工作機械用無段変速機に用いた本発明の第2実施例装置の断面構成を示す。本発明の変速制御装置は左および右従動および主動伝達車1、2に適用されている。本実施例以後全ての実施の形態は、基本的な動作および機能が略同等なので、上述した第1実施例と同一部品符号を付して、主要な相違点のみを説明する。相違点の第一は、圧縮装置4の付勢装置29のネジ軸の第一摺動具6が伝達車1の回転軸50に施した同軸貫通孔65を経由して摺動円板1aに対して圧力伝達装置40の機能を果していることである。第二は、摺動装置25が、伝達車1を変速摺動分L01を駆動する第摺動装置25と、弾性装置3の圧縮移動分L02を駆動する第摺動装置25bとに二分割され、両者がネジ軸の第一摺動具6と付勢装置29とを共用しながら伝達車1の表側と裏側とに配されたことである。しかもネジ軸の第一摺動具6には二種のネジ体の押圧装置26a,26bのネジ溝が互に逆ネジ加圧を施され夫々に二つのナットの第二摺動7a,27が螺合し互に逆向きに作動している。従って同図の左右に個別に描いて示す通り,弾性装置3を加圧すると同時に伝達車1の円板1aも押圧されるため、伝達車1への加圧特性も図4の特性線(A)と同じになる。なお回転軸50が軸受による片持構造であるが、本例の思想は第1実施例のような両軸受支持構造の場合にも適用できる。第三に、弾性装置3の応動体37が摺動装置25bの摺動27によって付勢されている事である。第四に、ホイールとネジ軸間が摺動可能なのは第1実施例を同じだがウォーム伝達機からなる付勢装置29が単独構成されていることなどである。
【0036】
(第3実施例)
図6Aの第3実施例では、更に図5の第2実施例に示した弾性装置3および圧縮装置4を全て伝達車1の摺動円板1aの側の本体10の一部である蓋体10bに配置した例である。この場合も伝達車加圧装置5の動作機能も第2実施例と略同様である。上述以外の主な相違点は、第一に弾性体が単一であること、第二が圧縮装置4の応動具26が第2実施例の圧力伝達装置40を縮小していること、第三に蓋体10bを本体10から取外すと軸受45と応動装置28との間を分離でき、弾性装置3および圧縮装置4との加圧装置5が一体構造物として本体10から着脱でき、べルト交換保守に供したこと等がある。
【0037】
(第4実施例)
図6Bの実施例は、図5の第2実施例での弾性装置3のみを伝達車1に直接設置した例である。この場合に上述以外の図1および図5の各実施例との相違点は、第一に筺体35が伝達車1に直接取付けられ円板1a自体が筺体35の一部を形成していることである。複数バネの順次駆動よりもむしろ単一バネ乃至複数バネの同時駆動にしてもよく、板バネの場合は動バランスが確保しやすい。第二に弾性装置3の応動体が、複数の応動体を互に連動させた五つの応動体37に分かれ、しかも圧縮装置4の側の応動手段28が巻上装置25の被動具27と兼用され、応動具27と応動37間に軸受を配したことである。なお軸受45は円板1aと弾性体33との間に施しても良い。加圧装置5の動作については図1の実施例と同様だが、弾性装置3が伝達車1の直接設置するので圧縮装置4の付勢装置29はネジ軸26に固定される他は図5,図6Aの各例と同じ周知の市販ウォーム伝達機なので図示を省く。
【0038】
(第5実施例)
図7Aの実施例は、図1の実施例と同様伝達車1を両軸受支持した伝達車加圧装置5の例である。他の実施例との主要な相異点は、第一に同心状に並列配置された複数の弾性体33が、圧縮装置4によって常に同時に圧縮されることである。図1,図5,図6Bの各実施例の場合と異なり、加圧特性が階段状にならず図4の特性線(A′)に示すようにリニヤ特性が得られることである。弾性体33a,33bと弾性体33cとは右巻バネと左巻バネで作られ、軸受45への圧縮歪を相殺させている。第二に筺体35が入力側応動体37と出力側応動36とにより兼用係止装置32が施され全体が浮動状態に構成したこと。第三に付勢装置29がウォーム伝達機でなくベベル伝達機で構成したことである。
【0039】
(第6実施例)
図7Bの実施例は、図6Aの実施例と同様の弾性体33で直接加圧した例である。他の実施例の相違点は、圧縮装置4の摺動装置25で水平カムの被動具27が水平方向に本体10a上を移動し垂直カムの摺動具28が垂直方向に押圧する。この場合、押圧装置25cは、動具26,動具27を互に直角方向に摺動可能にカム傾斜接合面26c,27cあり、両カムの水平・垂直変換摺動により弾性装置3を圧縮加圧した点が相違し、更に本例では付勢装置29がネジ体48,49からなる巻上ネジ伝達機で構成した点等がある。
【0040】
(その他の実施例)
本発明では、第一(従動)伝達車の加圧制御の際に、油圧の直接加圧方式でなく、弾性体の介在による間接加圧方式に依存しているが、ここで「直接」とは加圧力の供給のみを意味し、「間接」とは加圧力と弾性力の双方で生じる弾性加圧力の供給を意味する。従って本明細書では変速制御部の駆動源は可逆制御駆動源として電気的な可逆制御モータで記述したがこれに制約されず、油圧ポンプなど流体モータなど各種のモータで駆動し操作器毎に個別に該駆動源を配してもまた共用単一化しても良く、その場合にも第一および第二圧縮装置の各摺動装置および加圧装置にボールネジ、台形ネジなどのネジ体による巻上摺動装置以外に油圧シリンダを利用すれば、大容量伝動を高速度で変速制御することも実現できる。また主動操作器8を主動車2から圧力伝達装置40を経て離隔位置に設置しても良く、更に主動と従動の両操作器の一方または双方に操作器貫通孔を施して回転軸を貫通配置しても良い。
【0041】
更に変速制御装置が変速伝動装置の主動車と従動車の制御機能の役割を区分けするのに伴い駆動源も各操作器に応じて個別駆動源に区分けできるので、一方の第一操作器だけ第二操作器から分離しトルク調整のみ施し軸トルクの値を任意に設定可能である特に出力負荷機器側に要する実負荷容量に対し無段変速機側の出力容量を接近ないし離隔させて伝動効率を向上させ又実負荷容量に対する安全率を制御できる。即ち弾性装置の弾性加圧力の加圧特性Aと実負荷に要する加圧特性Bとの間にある所定の偏差分を持たせる事で変速機のもつ安全率、サービスファクタを伝動容量に応じて設定ないし変更できるように弾性装置による加圧特性Aを必要に応じて変化させる事で変速伝動装置に高伝動効率または安全率の動力伝動を提供できる。一部の変速比域で安全率を増すため従動車回転数に対し負傾斜の非直線の加圧装置を施しても良い。又変速機の伝動効率も伝達体と伝達車間の狭持圧による発熱を抑制して最適な軸トルクを選定すれば良い。従って、本発明は「特許請求の範囲」から当業者が容易に創作しうる範囲内に於いて、設計仕様に応じた各種の変更乃至変形しても権利範囲に包含される。
【004
【発明の効果】
本発明では、二つの伝達車の一方には非弾性加圧力状態で又他方には弾性加圧力状態を伴い夫々制御機能の役割を個別分担し区分して両車に加圧力を付与する事と、その他方には加圧力・回転数間に反比例特性の加圧力を印加する事との双方に更に改良を施して、高品位の無段変速機として安定伝動の確立と、高速度応答性の確保と、高効率運転とを果す定馬力型無段変速機の変速制御装置を実現した。即ち主動および従動操作器の両加圧装置に巻又は油圧摺動装置を採用する事により両伝達車へのベルト位置決め操作による速比制御およびベルト狭持圧操作による軸トルク制御に高精度の再現性を付与できるようにした事である。特に従来油圧制御で行われていた様に、油圧の欠点である作動油の動作遅れ、油温の変化、油流出、遠心力、更に弁制御による応答不良等の要因毎に個別に検出と電子回路補償をいたずらに繰返す必要は全く無くなる効果がある。
【004
本発明では、摺動装置による各伝達車のベルトの位置決め制御およびトルク制御の再現性を基本的な構成要件にすると共に更に次の各構成要件を追加して、高速度応答性と高効率安定伝動を実現した。即ち、(1)主動操作器、従動操作器さらに駆動源との三者の間での変速指令の高度の同期性を追加する事によって変速制御の高速度の応答性を確保し、(2)続いて両操作器の圧縮装置を個別駆動源で操作する例を採用する事によって変速制御装置の側でトルクだけを個別操作できる高効率運転と安全率調整を可能にし、更に(3)弾性装置による圧縮加圧特性Aを実負荷容量に最適な実負荷加圧特性Bに可能な限り最適状態に適合するように直線ないし非直線加圧特性を構成し伝動効率または安全率を必要に応じて選定追加する事によって変速伝動装置の側の高効率または安全率運転を実現している。特に一部の変速域で伝動効率または安全率を増すため第一伝達車の回転数または変速比に対し負傾斜の加圧特性を選定追加しても良い。
【004
従って上述(1)の思想によれば、最高変速比εmaxから最低変速比εminまでを極めて短時間内に変速制御の応答が可能となり車両の如き急発進、急停止を繰返す機械には機械的に充分な追従能力をもち最適である。しかも駆動源を電気的サーボモータ等による場合は、変速動作時のみに作動し油圧ポンプのように常時作動状態を維持する必要もないが、常時作動状態を維持しないならば各加圧装置は油圧シリンダでも良い。更に二つの操作器が同時に大きな加圧力を付与する必要がなく、一方が大きいとき他方が小さくなるため駆動源を小型の単一共用モータで充分に対応できる点等は当業者にも自明である。
【004
更に上述(2)および(3)の思想によれば、無段変速機を構成する変速制御装置および変速伝動装置の双方で部材類の摩粍発熱による劣化、消耗を軽減できるだけでなく、節電ないし燃費の大幅な軽減も達成でき、両車等に適用したときは環境保全に有効である事は、これまた当業者にも自明である。
【図面の簡単な説明】
【図1】 本発明の第1実施例変速制御装置を用いた車両用無段変速機の横断面図で、
【図2】 図1に示す同無段変速機のII−II線での縦断面図で、
【図3】 図1,2に示す同無段変速機の操作器の一部の同期駆動源を示し、図3Aは第二伝達機の構成を、また図3Bは第一伝達機の構成を示す部分断面図で、さらに
【図4】 同第1実施例装置の第一伝動車弾性加圧力・回転数の関係を示す特性図である。
【図5】 本発明の第2実施例装置を適用した工作機械用無段変速機の断面図である。
【図6】 図6は、片軸受支持の第一伝動車にした加圧装置で、図6Aは本発明の第3実施例装置の断面図を、また図6Bは本発明の第4実施例装置の断面図を夫々示す。
【図7】 図7は、両軸受支持の第一伝達車に適用した加圧装置で、図7Aは本発明の第5実施例装置の断面図、また図7Bは本発明の第6実施例装置の断面図を夫々示す。
【符号の説明】
I 変速制御装置
II変速伝動装置
1 従動車、従動伝達車または第一伝達車
2 主動車、主動伝達車または第二伝達車
3 弾性装置
4 圧縮装置または第一圧縮装置
5 加圧装置または第一加圧装置
6 従動操作器または第一操作器
7 加圧装置または第二加圧装置
8 主動操作器または第二操作器
9 駆動源
10 変速機
10a 本体または本体基準面
10b 蓋体
11 伝達体
12,29 付勢装置、ウォーム伝達機または変速動力伝達機
14 圧縮装置または第二圧縮装置
15 摺動装置または第二摺動装置
15,25 押圧装置
16,26 応動具、ネジ体、カム体または第一摺動具
17,27 被動具、ネジ体、カム体または第二摺動具
25a,25b 被動具、ネジ体、カム体または第二摺動具
25 摺動装置または第一摺動装置
25a 第1摺動装置
25b 第2摺動装置
32 係止装置
33 弾性体
35 筺体
36 被動体または摺動体
37 応動体または摺動体
40 圧力伝達装置
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a constant horsepower transmission type continuously variable transmission used for industrial machines such as machine tools, vehicles, motors, etc.To apply toTwo transmission vehiclesIndividuallyAdditionPressureEach toControllerHigh speed response controllability and high efficiency with pressurizerStable transmissionThe present invention relates to a speed change control device for realizing a high quality, high quality continuously variable transmission.
[0002]
[Prior art]
  Japanese Patent Application No. 9-217819 (Van Doll Nezu) is well known as a transmission wheel pressurizing device. Of the two disks, the sliding disk itself forms part of a hydraulically driven piston cylinder as a pressure device.Using a hydraulic cylinderThis is a pressurizing device that changes the radius of the transmission wheel and the transmission body by directly pressurizing and sliding the same disk to change the speed. The direct pressurizing apparatus using hydraulic pressure has two advantages: (1) an arbitrary pressurizing force from large to small can be obtained in a narrow space, and (2) a bearing as a consumable is unnecessary. However, hydraulic control has two fatal and decisive drawbacks for the transmission. Disadvantages are: (1) When the transmission wheel is directly pressurized because the hydraulic pressure is inelastic, it is impossible to secure elastic absorption and self-alignment action against impacts, errors, etc. (2) Hydraulic medium is delayed in operation, oil leakage, centrifugal The most basic transmission operation that is directly influenced by force is always an unstable factor.
[0003]
  The horsepower P that the normal transmission wheel 1 transmits to the load device is expressed by the following equation as the relationship between the rotational speed N and the torque T. That is
          P [W] = 1,027 x N [rpm] x T [kgm]
Therefore, to transmit the predetermined horsepower P0,CommandTransmitter torque when N increasesCommandDecrease T and reverse rotation speedCommandTorque as N decreasesCommandT needs to be increased. However, in the above-described prior art, elastic means such as a spring is arranged in parallel with the disk of the driven transmission wheel, but the elastic means supplies the sliding disk.ElasticityThe applied pressure is a direction in which the pressure is increased as the high-speed rotation state is reached, and the pressure is reduced as the low-speed rotation state is reversed. This is because, in the transmission of the constant horsepower transmission type, it is necessary to increase the applied pressure as the low speed rotation is reached.ElasticityThe direction of the applied pressure is completely opposite. Therefore, in principle, constant horsepower transmission cannot be realized with this type of elastic pressure device.
[0004]
[Problems to be solved by the invention]
  The present inventionfirstWhen controlling transmission wheel pressurization, it does not depend on the direct pressurization method using hydraulic pressure.InIt depends on the indirect pressurization method that uses an elastic body selectively. One of the two transmission wheels remains inelastic with only the applied pressure, and the other has both the applied pressure and elastic force in series. JoinedProducedSupplying elastic pressure force and transmission wheelAnd pressurizing deviceEverySpeed ratio and torque control functionroleIndividualThis invention relates to a transmission control device that guarantees constant horsepower transmission to a transmission and realizes constant horsepower transmission by variable pressurization control in a direction in which the relationship between the rotational speed on the output transmission vehicle side and the sheave pressure is in inverse proportion. . The common problem of the present invention is thateachBiographyCarofVariable control functionDivision of roles andThe elastic and inelastic pressureHigh-speed shift response and high efficiency by further progressing to a constant horsepower transmission type transmission established by both ideas of pressurization controlStableIt is an object of the present invention to provide a speed change control device that contributes to transmission and leads to high reliability and high durability.
[0005]
  The first solution is the transmissionStable transmission andIt is a precondition to guarantee each function of high speed response and high efficiency transmissionfirstandsecondEach controller isCorrespondingIt is to realize a shift control device having a highly accurate reproducibility with respect to a shift command. In particular, the reproducibility of shift control is the application of pressure to both transmission wheels.beltPositioning accuracyPressure sliding with belt holding pressure accuracy and elasticityReproducibility and at the same timeeachStabilization of gear ratio and torque value by pressureSupplyIs the basic conditioneachIt is an improvement of the pressurization device, and it is highly stable in the constant horsepower transmission function corresponding to repeated shifting operations.TransmissionIs to secure.
[0006]
  The second solution isfirstandsecondEven if the actuator has the specified high-precision and stable pressurization capability for the corresponding transmission vehicle, it is highly synchronized with the pressurization operation of both actuators in order to operate properly as a single transmission. It is essential to maintain sex for a long time. However, in a constant horsepower transmission type transmission, an unbalanced pressurization in which the pressure applied to each actuator is extremely large and applied to one of the two actuators and small to the other.PowerTheEssentialEssentialWhenTo dofirstA controller,secondPrevent the mutual interference of the applied pressure between the actuator and the drive source or prevent the error signal from propagating to each other.High reliability and durabilityTo maintain a high degree of synchrony.
[0007]
  The third problem is that the shift control device is highly accurate.Pressurization operationEven if the synchronism can be maintained, it is necessary to suppress deterioration of parts or heat generation due to wear, abrasion or the like in both the speed change operation or the transmission operation. That is, the speed change operation is used as an inching or a speed change command to increase / decrease speedOr pressure increase / decreaseIn order to give sufficient abrasion resistance to various operating conditions such as use where each command of the above is repeated alternately and frequently.firstandsecondIt is an object of the present invention to provide a shift control device that can be controlled with higher efficiency on the premise of stable pressurization by an operating device.
[0008]
  The fourth problem to be solved is that the shift control device itself isA higher quality, high quality continuously variable transmission is realized by utilizing the role of variable control function between torque control by the first actuator and speed ratio control by the second actuator.In order to improve the transmission efficiency of the transmission and to adjust the safety factor, torque application according to the actual load capacity applied to the transmission is subjected to variable pressurization control. In particular, the output capacity on the continuously variable transmission side should be as close as possible to the actual load capacity required on the output load equipment side.Improve transmission efficiency,FurthermoreThe pressure characteristics of the elastic device and the pressure characteristics required for actual loadbetweenDeviationTo haveBy changing the pressurization characteristics of the elastic device as necessary so that the safety factor and service factor of the transmission can be set or changed according to the transmission capacity, the transmission transmission device can be improved.TransmissionefficiencyOr safety factorIs to provide power transmission.
[0009]
[Means for Solving the Problems]
  The common problem of the present invention is that one of the two transmission wheels is in an inelastic pressure state.Speed ratio controlThe other is in the state of elastic pressureTo achieve torque controlActivelyThe roles of both control functions are shared individuallyAlthough it is dividedeachPressurevariableThe points to be given are common. At this time, both pressures themselves are slightlyInElasticityPowerOrAdditionPressure stateButMay be disturbed by unstable elements. For example, in pressurization control by hydraulic pressure such as a relief valve, there is a case where both pressures themselves become unstable with the start of the operation of the relief valve at the moment when a shift command is supplied. At this time, the balance condition of the applied pressure in the transmission body collapses and the transmission is disturbed. Therefore, the present inventionIt ensures stable transmission and high-speed shift response, and also maintains high transmission efficiency operation.In order to prevent this transmission disturbance from being excessively expanded or to provide a highly stable value for both applied pressures supplied to both actuators, respectively.PressureCentering on the screw bodySlidingIt is to provide a speed change control device constituted by a mechanism.
[0010]
  In the solution of the first problem, the compression control device is provided with a sliding device composed of two sliding tools and the sliding device so as to constantly supply a stable pressure and maintain high reproducibility. With a biasing device,firstActuator andsecondThe operating device has a transmission body contact radius on the second transmission wheel side by means of a stable pressure control according to a shift command for the first transmission wheel, the second transmission wheel and the elastic device.Positioning controlSpeed ratio byOrOutput rotation speed and first transmission wheel sideWhatofElasticityWith pressureTransmitter holding pressure controlThis guarantees high-precision reproducibility of torque due to
[0011]
  The solution to the second problem is that the transmission control deviceDisguiseThe device is composed of a sliding device composed of two sliding tools and an urging device for urging the sliding device, and each urging device is composed of a worm transmission device to each transmission vehicle.WhatSelf-locking function for preventing reverse rotation transmission of the pressurizing force and the driving source has a brake device or a clutch devicereversiblecontrolDriving sourceBy installing the overrun transmission blocking function, error transmission is blocked in the shift command between the first transmission vehicle, the second transmission vehicle and the drive source.
[0012]
  The solution to the third problem is as a shift control device.variableHigh efficiency of the control mechanism itselfStable pressurizationFor the purpose ofeachPressureDisguiseThe device consists of a sliding device that displaces the relative position of the two sliding tools and a biasing device that biases the sliding device.eachThe sliding device and biasing device of the compression device are cylindrical in the direction of the axis of rotation and coaxially.ControllerCoaxially connected to each other with through holes, or at the coaxial position of the first or second transmission wheelAxis of rotationA through-hole is provided, and pressure control is performed by a speed change command from the outside or the inside of the rotating shaft through any of the through-holes.
[0013]
  The solution to the fourth problem is that the shift control device is a shift transmission device.With two transmission wheelsAs the roles of individual control functions are differentiated in the transmission mechanismThe drive source is also divided into a common drive source or an individual drive source, and the first and second shift commands applied to the first and second actuators are supplied as torque and speed ratio commands, respectively.,When operating with the common drive source, the shift power is mechanically branched or supplied via the individual drive source when operating with the individual drive source, and the first and second shift commands are individually applied as torque and speed ratio commands, respectively, and Selectable to increase or decrease the shaft torque value to select the transmission efficiency or safety factor of the above-mentioned speed change transmission device when operating with an individual drive sourceIt is a thing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
  Since the present invention reviewed the constant horsepower transmission type continuously variable transmission system from the basic principle, it can be applied not only to the dry transmission but also to the wet transmission, and the field of use is for small horsepower such as machine tools. It can be applied to large horsepower for vehicles. Especially variable pressure control to the first (driven) transmission wheelAxial torque applied by elastic forceI doSo thatIn this case, the present invention does not depend on the direct pressurization method by hydraulic pressure, but by relying on the indirect pressurization method by an elastic body.InelasticPressurevariableNot only grant, but always elasticPressurizationPower toovariableWhat is necessary is just to realize grant. Winding compression deviceSlidingIf the mechanismSoThe pressure force is merely a reaction force from the elastic device, and the elastic device itself is a good variable pressure mechanism. MoreSlidingAs long as the device is usedthisElectric driveMechanismOr hydraulic driveMechanismYouRuThis is a problem on the drive source side, and the present invention may be any. The former drive method is better because the speed change command speed increase / decreaseOr pressure increase / decreaseAlternating frequentReversibleswitchingoperationIt is because it can follow high speed.
[0015]
  The elastic body is not limited to a coil spring, but may be another form such as a leaf spring or a spiral spring. A single spring may be used, but in order to obtain a large pressure, it is necessary to increase the spring constant, the spring tends to shrink, and the size and shape is greatly expanded. May be. A plurality of leaf springs may be combined in series and parallel. The arrangement direction of each elastic body is not limited to a concentric circle, and if it is small and a large pressure can be secured, it is not limited to the case where a plurality of springs are arranged in parallel and these are simultaneously driven to obtain a continuous linear characteristic, Depending on the gear shift command of the pressurizing device,Improving transmission efficiency orIn order to increase the draft rate, a stepwise drive may be used to make a non-continuous step characteristic or a continuous curve characteristic.
[0016]
  In addition, since the compression force of the pressurizing device may be applied between the transmission wheel and the main body, the arrangement order and location of the elastic device and the compression device between them can be arbitrarily changed according to the design. When these are set in a non-rotating state, a rotation separation bearing may be disposed between any of the transmission wheel, the compression device, the elastic device, and the main body. It is not necessary to place the elastic device and the compression device at the same coaxial position as the transmission wheel rotation shaft.apparatusIt only has to be connected to the transmission vehicle. Therefore, here, the main body or the main body reference plane is a relative reference in the axial direction relative to the transmission wheel regardless of the presence or absence of rotation.LevelIt is a place where the position does not change. When the pressure direction of the elastic body and the pressure direction of the transmission wheel are opposite to each other, pressure transmissionapparatusAlternatively, the pressurizing direction may be reversed by a lever function such as seesaw.
[0017]
  Furthermore, the elastic device and the compression device have the same members as the responder, the responder, the driven object, the driven tool, and the pressure transmission.apparatusThese members may be referred to as sliding members, sliding bodies, or sliding tools that transmit pressure to other members, and may be shared with each other as a single member depending on the design. Various selections such as reverse or substitute with a member such as a disk or main body of a transmission wheel are performed, but these are only within the scope of the selection design of the member, and any changes can be made Even if it goes, it is included in the scope of the present invention.
[0018]
  When using a hoisting and sliding device as a compression device,SlidingMechanism is screwbodyIs the most common,7B as well as the sliding camEven a rotating cam with a cam on the circumferential surfaceBecause it uses an inclined surfaceReach equivalent function. AlsoSlidingThe mechanism needs to correspond one-to-one with the shift command,SlidingWell-known self-locking function in the mechanism, that is, a brake function for preventing reverse rotation andReversible control drive sourceThe overrun prevention function that occurs in the motorOn the drive source sideis necessary. Therefore, a combination of various well-known technologies such as a combination of a trapezoidal screw and a worm transmission machine, a combination of a normal screw or ball screw and a motor with a brake, a clutch device installed in a transmission command transmission system, and a reverse rotation prevention step motor is considered. Should be. Further, the amount of pressing movement of the compression device needs to be the sum L0 (= L01 + L02) of the shifting movement L01 of the first transmission wheel and the pressing movement L02 of the elastic device. Therefore, the movement amount L01 and the movement amount L02 are set separately.SlidingYou may comprise by a mechanism. On this occasionFirst transmissionThe amount of movement L0 on the car side is inevitablySecond transmissionWhat is L1 on the car side?Requires synchronous driveBecause the operating direction and operating amount are different,SlidingMechanism screwbodyWell-known factors such as the pitch, rotation direction, rotation speed, thread groove processing direction (right screw, left screw), speed ratio of the transmitter, etc. may be selected according to the design.
[0019]
【Example】
(First embodiment)
  1 to 4 show a first embodiment of a speed change control device of the present invention.ITheFirst (subordinateMovement)andSecond (mainMovement)Variable speed transmission device constructed by winding a transmission body around a transmission wheelIIThe structure of each part of the continuously variable transmission for vehicles applied to and the characteristics of the pressure device are shown. The transmission 10 is basically composed of a second (primary) transmission vehicle or main vehicle 2, a first (driven) transmission vehicle or driven vehicle 1, and a transmission body 11 wound between the two transmission vehicles. Variable speed transmissionIIWhen,first(Follow) TransmissionA first (driven) actuator 6 on the vehicle 1 side;second(Main movement) TransmissionOn the car 2 sidesecond(Main movement)Operation device 8 and both operationsvesselDrives 6 and 8 synchronouslyRudeShift control device formed with the power source 9IIt consists of. Moresecond(Main movement)The operating device 8 is supplied from the driving source 9 to the urging device 12.WhenSliding device 15WhenConsist ofSecond pressureSecond pressurizing device energizing the compression device 147Havefirst(Follow)The operating device 6 compresses the elastic device 3 and the elastic device 3.firstA first pressurizing device 5 constituted by the compression device 4 is energized by a drive source 9.firstThe compression device 4 is formed by a sliding device 25 and an urging device 29 that drives the transmission wheel 1 and the elastic device 3. The speed change control device I of the present invention includes:first(Follow)Transmission wheel 1,second(Main movement)Variable pressure control of transmission wheel 2firstandsecondPressure device 5,7Havefirst(Follow)andsecond(Main movement)The operation device and the drive source 9 will be described in detail below.
[0020]
  In the transmission wheels 1 and 2, the sliding disks 1a and 2a and the fixed disks 1b and 2b are opposed to each other, and the former is opposed to the latter through a key.Of each rotary shaft 20, 50It is configured to be slidable in the axial direction.On the input shaft 20 and the output shaft 50 respectively.They are arranged opposite to each other. By controlling the balance of the applied pressure from the operating devices 6 and 8 corresponding to both transmission wheels 1 and 2, the contact radius r with the transmission body 11 in both transmission wheels 1 and 2 is continuously changed. Power transmission of a predetermined horsepower is achieved in the speed change region. 1, the position of the maximum speed ratio is drawn in FIG. 1, and the right half is drawn at the maximum diameter and the left half is drawn at the position of the rotation speed 60% with the radius r0 in FIG. In addition, the transmission 10 forms a sealed oil tank chamber with the main body 10a and the lid body 10b, constitutes a wet transmission, and is connected to an internal combustion engine such as a vehicle, a transmission device, and the like. Meanwhile, the shift control deviceIAre centrally arranged on the side of the lid 10b which is a part of the main body 10.
[0021]
  Of the main actuator 8secondPressurizing device7IsSecond pressureA sliding device 15 as a contracting device 14 and an urging device 12 comprising a main transmission;soComposed. The former is a ball screw pressing device 15.cTwo decoratedFirst and secondIt consists of a sliding tool or responder 16 and a driven tool 17, the latter consisting of a worm 18 and a wheel 19.Self-locking function that prevents reverse rotationThis is a worm transmission machine 12. Pressurizing device7IsPositioning control of the transmission bodyAccurate reproduction of reference position for variable diameter controlSpeed ratio controlTherefore, in order to remove unstable positioning factors such as elastic force, the sliding device 15 made of a rigid member is shown. As shown in FIG., HoEel 19InMade of the same material as thisCircleTubularForming a part therePress device 15cConfigured and pressurizing device7 centerAre provided with through holes 16a and 19a, and the sliding shaft portion of the main transmission wheel 2 is arranged to pass through.first(Follow) Actuator6offirstIt is arranged in a concentrated manner so as to be juxtaposed at a position equivalent to the level of the pressure device 5.
[0022]
  While the main drive shaft 20 is supported on both shafts by bearings 21 and 22,secondPressurizing device7Is communicated with the main body reference surface 10ccarThe pressure is applied through bearings 13 and 23 between the two. When the response tool 16 is rotated by the wheel 19, the driven tool 17 does not rotate and slides in the axial direction only by the guide rod 24a.PressureThe screw of the contracting device 14 is processed into a right-hand screw. 24 is a response device, in this exampleHaShown as last receiving tool. Pressurizing device of FIG.7Therefore, the displacement of the contact diameter r1 of the transmission body 11 is controlled by direct pressure only from the main body 10c to the sliding disk 2a without any elastic force.
[0023]
  Of the driven actuator 6firstThe pressurizing device 5 is not installed in the periphery of the sliding disc 1a even though the sliding disc 1a is slid and pressed.second(Main movement)It is installed in a non-rotating state on the lid 10b on the same plane as the operating device 8.Axis torque control is performed together with the elastic device 3. 1 and 2, the pressurizing device 5 is provided on the left and right sides of the screw body 26.Arranged at a non-coaxial position with the transmission wheel rotation shaft via the connecting levers 28a and 28b.Two transmissionsmeans41a, 41b, linear ball bearings 42, 43 and shifterlever44, and a pressure transmission that transmits the applied pressure via a gimbal 47, a thrust receiver 46, and a bearing 45 disposed in the transmission wheel 1.apparatus40. The internal structure of the pressurizing device 5 includes an elastic device 3 andSecond pressureThe same function as the compression device 14firstThe compression device 4, both of which use the bearing 31 as a joining pointElastic force andAn example of elastic pressing force in which the pressing force is joined in series with each other is shown. The pressing force of the elastic device 3 is based on the bottom cover 36 as the main body reference surface 10c, from the bearing 31 to the compression device 4,pressureTransmissionapparatusAfter 40, to transmission wheel 1ElasticityApply as pressure. The pressurizing device 5 is transmitted to the lid 10b as a single structure 5 along the line III-III in FIG.ReachIt is configured to be detachable on the same axis as the car 1.
[0024]
  As is obvious to those skilled in the art from FIGS. 1 and 2, the elastic device 3 is provided with a plurality of annular elastic bodies 33 coaxially and concentrically with the rotational axis of the transmission wheel 1 and pressable in the axial direction. This is an example in which a single structure 30 that is stored in advance in a predetermined pressure state in 35 and can be detached independently is formed. A special structure is adopted in order to secure a large pressing force in a narrow space that cannot be formed by a single elastic body. The four elastic bodies 33a to 33d are individually attached to the main body 10 at one end and annular responders 37a to 37d respectively provided with connecting portions 39a to 39d for engaging the other responders at the other end. . In order to effectively operate each elastic body, it is common technical knowledge for those skilled in the art to support elastic vibration transmission at one end but not at the other. Three step contact portions 38b to 38d and a bottom lid 36 are applied to the inner wall of the casing 35 as a locking device 32 for the elastic body 33. In this example, there is no abutting portion 38a corresponding to the first-stage elastic body 37a, but this is to connect with the compression device 4 in order to select the minimum pressure Pmin from the beginning in the initial pressurization state. You may give beforehand, as shown by the dotted line 38a. Since the innermost diameter of each step contact portion 38 is larger than the innermost diameter of each corresponding responding body 37, it protrudes from the adjacent step contact portion 38 in the preceding stage. Accordingly, as the compression device 4 responds, the responding tool 26 is guided by the responding bodies in the order of the responding bodies 37a to 37d and sequentially presses the elastic bodies 33a, 33b, 33c and 33d, and the applied pressures are arranged in a stepwise manner. It is a structure to add.
[0025]
  The compression device 4 includes a ball screw pressing device 25.cGivenTwo first and second sliders, i.e.A sliding device 25 composed of a response tool 26 and a driven tool 27; and a biasing device 29 composed of a worm transmission 48 for shifting power composed of a worm 48 and a wheel 49 as a self-locking mechanism for preventing reversal. The elastic device 3 is arranged between them. The response tool 26 is formed of a screw body portion 26a, a connecting portion 26b, a sliding portion 26c, and a pressing portion 26d. The sliding portion 26c forms a spline shaft and receives only turning force from the wheel 49 and is transmitted to the screw body portion 26a so as to be slidable in the axial direction. With this configuration, the compression device 4Part of the sliding device 25While being integrally assembled with the elastic device 3 fixed to the main body 10,Can transmit elastic vibrationNot floatingShiSupported in a floating state (floating). In this example, the ball screw applied to the responding tool 16 of the sliding device 15 of the main operating device 8 is right-hand thread processing, whereas the driven operation device6The ball screw of the actuating tool 26 is subjected to left screw pressure. The direction of the thread groove may be changed as necessary. As shown in FIG. 2, the driven tool 27 is provided with a connecting lever 28 having two levers 28 a and 28 b and is connected to the transmission means 41. The response tool 26 of the hoisting device 25 is supported in a floating state at two intermediate positions between the distal end portion 31 ′ of the response body 37 a and the transmission means 41 connected to the transmission wheel 1.Transmits elastic vibrationTherefore, the sliding part 26c has a predetermined length.
[0026]
  DrivingThe power source 9 is a reversible with a brake shown in FIGS. 3A and 3B.controlA DC servo motor is used as the motor 53, and the two transmitters 55, 6 are used.6Is applied to the main and driven actuators 8,6These drive shafts 18a and 48a are simultaneously driven synchronously. Shift power as a shift command is transferred from the shaft 54 to the shaft 58 via gears 56 and 57.At this point, the first and second shift commands are branched.Further, the operating device 8 is moved from the shaft 58 to the shaft 18a by gears 59 and 64.Second gear changeAs a command, the operating device 6 includes the idler wheel 61 and the gears 59 and 62 to move from the shaft 58 to the shaft 48a.First gear changeIt branches as a command and is transmitted to each. The difference in the number of teeth between the gear 64 and the gears 63 and 62 is that the movement displacement amount L0 (= L01 + L02) of the pressurization device 5 of the driven vehicle 1 with respect to the movement displacement amount L1 of the sliding device 15 of the main vehicle 2. This is because it is necessary to move and press both the sliding disk 1a and the elastic body 33 simultaneously. The pressure applied to both transmission wheels 1 and 2 is small when one is large and the other is small.Reversible control drive sourceThe motor may have a small capacity.
[0027]
  Next, the operation of the transmission 10 will be described with reference to FIG.BothPressure device 5,7I will focus on. As shown in FIG. 1, it is assumed that the input / output shafts 20 and 50 are transmitted at a constant speed ratio at a constant speed ratio while the transmission body 11 is in the maximum speed ratio position in the transmission 10. reversiblecontrolMotor 53As rotation speed or speed ratio commandDirection to reduce gear ratioGear shift commandIn other words, receiving a speed increase commandPositiveStart rotatingthingAnd As indicated by the arrows in FIG. 3A, the speed change power is transmitted to the shaft 18a and the shaft 48a and rotates in opposite directions. In this example, the screw body 15 as each pressing device.cAnd screw body 25cSince the reverse screw processing is performed on each other, the radius of the transmission body 11 increases from r10 to r11 when the sliding device 15 pressurizes the disk 2a.Output speed increases and speed ratio decreasesstartBecause,Second gear shift command works as speed ratio command or rotation speed command. At the same time, the pressurizing device 5 that has been pressed with the maximum applied pressure Pmax operates in a direction to reduce the applied pressure of the sliding device 25 of the compression device 4. Therefore, each responder 37 of the total pressure applied to the elastic device 3 also rises to the position shown by the dotted line, and at the same timeSlidingOf the device 25MeetMovementIngredients26 rises and conversely the driven tool 27 descends by the amount of unwinding. This drop isLinkingLever 28 and pressure transmissionapparatusThe pressure applied to the transmission wheel 1 is reduced through 40.Therefore, the shaft torque is reduced, and the second shift command works as a torque command. ThatAt the same time, the pressure device on the main vehicle 2 side7As a result, the radius of the transmission body 11 in the transmission wheel 1 of FIG. 1 decreases from r01 to r02.
[0028]
  This means that the characteristic point (A) on the step line (IV) shifts from the characteristic point a1 to a2 along with the shift from the output speed n1 to n2 of the maximum speed ratio εmax on the characteristic diagram of FIG. Show. At the same time, the pressure P1 is also reduced to P2 to the transmission wheel 1 according to the supply of the speed increase command.Shaft torque also decreasesMeans that. Therefore, it is shown that the pressurizing force and the rotation speed in the transmission wheel 1 are in an inversely proportional relationship. Similarly reversiblecontrolWhen a speed increasing command is further given from the motor 53, the same operation is repeated. Assuming that the output rotational speed is n60, which is substantially half, as shown in the left half of FIG. 2, the elastic bodies 33c and 33d abut against the step contact portions 38c and 38d, respectively, to pressurize the transmission wheel 1. It indicates that only the elastic bodies 33a and 33b are acting at the characteristic point a60 of the staircase characteristic (II) without contributing. Similarly, the pressurizing characteristic decreases stepwise as the rotational speed increases with the rotation of the responding tool 26 of the sliding device 25, and reaches the minimum pressure Pmin at the highest speed.The shaft torque to the transmission wheel 1 is also minimized.. Conversely, to return to the deceleration state again, reversiblecontrolMotor 53TheWith deceleration commandReverseTimesBy rolling, it returns to the original position according to the reverse operation described above.
[0029]
  In the elastic body according to the prior art, as the rotational speed N of the driven vehicle 1 increases, the applied pressure increases as shown by the characteristic line (D) in FIG. On the other hand, in the present invention, the elastic device 3 is made to cooperate with the compression device 4 while using an elastic body of the same quality as that of the prior art in which the compression pressure increases as the compression amount increases.outputThe characteristics between rotational speeds are inversely proportional or inversely proportional to each other.BecomeTo ensure negative slope characteristicsAlso, between the applied pressure and the speed ratio, a positive slope characteristic is used.There is the biggest feature. In the substantially horizontal characteristic line (C0 to C2), the applied pressure per unit area is almost the same in the entire speed range, but the contact area between the belt and the pulley of the driven vehicle 1 is lower than that at the highest speed at the lowest speed. Reach several times. Therefore, even in this characteristic, the shaft torque T received by the transmission body 11 can be increased conversely even if the rotational speed N decreases. Even if the characteristic line (C2) in FIG. 4 has a slight positive inclination, the constant horsepower can be transmitted substantially by the increase in the contact area.. AntiProportional is a concept including a slight positive slope characteristic (C2), and further includes a stepped or non-linear curve characteristic.
[0030]
  Next, the automatic alignment function of the transmission of the present invention will be described. Transmission power transmission has an internal error factor and a variation factor entering from the outside, both of which are obstacles to regular transmission. As a typical example, the former includes elongation in the longitudinal direction of the transmission body 11 and wear in the width direction, and the latter includes supply of a shift command, intrusion of an impact load from an input / output side device, and the like. In any case, the present invention has a function in which the elastic device 3 automatically compensates for adverse effects during operation and automatically returns to the normal transmission operation again. The elastic device 3 has a tension adjusting function that absorbs irregular disturbances in the transmission body tension that occurs in the speed change process, and has an automatic alignment function that guarantees a stable transmission state between the radius and the applied pressure for internal and external irregular factors.
[0031]
  Assume that the circumference of the transmission body 11 gradually increases during operation at the maximum speed ratio ε1. At this time, each actuator 8 of the main drive and the follower,6Is not biased, the contact radius on the main vehicle 2 remains unchanged. However, the radius of the driven vehicle 1 increases according to the extension.Displace the pinching positionTo do. The output speed is decelerated by that amount, and both the disk 1a and the elastic device 3 move slightly. However, the pulley holding pressure P has only a slight change, and the holding pressure on the transmission body 11 is maintained at almost the maximum load. Keep doing. This means that even if the rotation speed changes slightly,StableThe transmission function itself does not receive any obstacles, and indicates that it continues to maintain normal transmission by automatic alignment. Next, consider a case where the thickness of the transmission body 11 due to wear in the width direction is reduced. Also at this time6, 8 is stopped, but the contact radius on the main vehicle 2 is automatically reduced by the pressing of the elastic device 3 on the driven vehicle 1, and at the same time, the radius of the driven vehicle 1 is increased accordingly. Although it decreases slightly, automatic alignment is performed while properly maintaining the normal transmission horsepower.
[0032]
  Further, let us consider the sudden intrusion of shock vibration into the input / output shafts 20 and 50. In this case, the automatic alignment function works in the same manner. On the driven transmission wheel 1 side, a turbulent vibration that expands or contracts the radius r0 of the transmission body 11 occurs only for a moment.ElasticityVibration is reverse pressure transmissionapparatus40 to the compression device 4. At this time, the compression device 4 moves from the driven tool 27 to the response tool 26.pressureBiographyReachHowever, the spline slide shaft 26c at the tip of the response tool 26 is also engaged with the wheel 49 of the biasing device 29 so as to be slidable in the axial direction.StateTherefore, the whole of the compression device 4 is arranged in a floating state except that the compression device 4 is engaged with the connector 32 of the responding body 37 of the elastic device 3. So intruding turbulenceElasticityOnly the elastic device 3 directly absorbs the vibration. The disturbance ends within a short time, and the pressure device 5 automatically returns to the original stable transmission state again.
[0033]
  Next, the pressurizing device 5 of the driven vehicle 1 applies both variable pressure and elastic body as indirect pressurization to the transmission wheel.Elastic pressure generated by series pressurizationWhile supplying, the pressurizing device of the main vehicle 27The reason why only the variable pressurizing force is supplied to the transmission wheel as direct pressurization will be described. This is because the driven vehicle 1 and the main vehicle 2 have the function roles of the transmission vehicles 1 and 2 as continuously variable transmissions.IndividuallyIt is for classification. That is, the follower 1 isBy changing the holding pressure with the constantly applied elastic pressureFor transmission of specified horsepower to the connected load deviceVariable toShaft torqueControl functionAnd self-aligning function of elastic body that returns itself to stable state against internal and external turbulenceIt is. thisOn the other hand, in the main vehicle 2, in order to back up each role of the driven vehicle 1, the always stable disk 2a.Is the transmitter 11PositioningcontrolbyVariable speed ratio orThis is to provide a rotation speed control function. This is because the main car 2Speed ratio orThis is because the vehicle 1 operates as a reference vehicle for rotational speed control, and the driven vehicle 1 performs the function of a follower vehicle for torque control that operates in response to the rotational speed of the reference vehicle.
[0034]
  The pressurizing device 5 of the driven transmission wheel 1 is configured by integrally assembling the elastic device 3 between the urging device 29 of the compression device 4 and the sliding device 25 in the form of a lump, constituting a single structure as a whole, and the main body 10. It is arranged outside the lid body 10a, which is a part of the transmission wheel 1, coaxially with the shaft 50 of the transmission wheel 1 and detachable from the outer III-III line. On the other hand, the pressurizing device for the main transmission wheel 27The sliding device 15 composed of the sliding device 15 and the biasing device 12 is integrally assembled inside the lid body 10b and together with the lid body 10b. Therefore, by releasing the large number of bolts 10e from the main body 10a shown in FIG.IAll pressurizing equipment5and7Is detachable as a transmission integrated with the lid body 10b as the main body 10 from the bearings 21 and 45 and the bearing 52 together with the driven and main transmission wheels 1, 2 along the IV-IV line. It should be noted that the tip of the screw shaft 26 is not connected to the shaft 50 and is accommodated by borrowing an opening 50a for preventing contact.soSeparated and detachable.
[0035]
(Second embodiment)
  FIG. 5 shows a cross-sectional structure of the second embodiment of the present invention used in a continuously variable transmission for a machine tool such as a milling machine or a drilling machine. Of the present inventionShift controlapparatusIIs leftAnd right~ sideInFollowAnd main driveTransmission wheel 12Has been applied. Since all the embodiments after the present embodiment have substantially the same basic operations and functions, the same reference numerals as those in the first embodiment described above are used, and only the main differences will be described. The first difference is the screw shaft of the urging device 29 of the compression device 4.The first sliding tool26 isPressure transmission to the sliding disk 1a via a coaxial through hole 65 provided on the rotating shaft 50 of the transmission wheel 1apparatusIt has 40 functions. Second, the sliding device 25 drives the transmission wheel 1 for the variable speed sliding portion L01.1Sliding device 25aAnd the first driving device for the compression movement L02 of the elastic device 3.2The sliding device 25b is divided into two parts, both of which are screw shaftsThe first sliding tool26 andThat is, the urging device 29 is shared and arranged on the front side and the back side of the transmission wheel 1. And screw shaftThe first sliding tool26Is two types of screw bodyPressing deviceThe screw grooves 26a and 26b are mutually subjected to reverse screw pressurization.Second of two nutsSlidingIngredients27a, 27bScrewed togetherOperate in opposite directionsing. Accordingly, as shown separately on the left and right of the drawing, the disk 1a of the transmission wheel 1 is also pressed at the same time as the elastic device 3 is pressurized. ). Although the rotary shaft 50 has a cantilever structure with a bearing, the idea of this example can also be applied to a double-bearing support structure as in the first embodiment. Third, the responding body 37 of the elastic device 3 slides on the sliding device 25b.IngredientsIt is energized by 27. Fourth,The first embodiment is the same as that between the wheel and screw shaft.For example, the urging device 29 composed of a worm transmission device is configured independently.
[0036]
(Third embodiment)
  In the third embodiment shown in FIG. 6A, the elastic device 3 and the compression device 4 shown in the second embodiment shown in FIG. 5 are all part of the main body 10 on the sliding disk 1a side of the transmission wheel 1. 10b is an example of arrangement. Also in this case, the operation function of the transmission wheel pressurizing device 5 is substantially the same as that of the second embodiment. The main differences other than those described above are that the elastic body is single in the first place, and the response tool 26 of the compression device 4 is the pressure transmission of the second embodiment.apparatus40ShrinkThird, when the lid 10b is removed from the main body 10, the bearing 45, the responding device 28,BetweenThe pressure device 5 with the elastic device 3 and the compression device 4 can be detached from the main body 10 as an integral structure, and has been subjected to belt replacement maintenance.
[0037]
(Fourth embodiment)
  The embodiment of FIG. 6B is an example in which only the elastic device 3 in the second embodiment of FIG. In this case, the difference from the embodiments of FIGS. 1 and 5 other than those described above is that the housing 35 is directly attached to the transmission wheel 1 and the disk 1a itself forms a part of the housing 35. It is. Rather than sequential driving of a plurality of springs, a single spring or a plurality of springs may be driven simultaneously. In the case of a leaf spring, it is easy to ensure a dynamic balance. Secondly, the responding body of the elastic device 3 is divided into five responding bodies 37 in which a plurality of responding bodies are interlocked with each other, and the responding means 28 on the compression device 4 side is also used as the driven member 27 of the hoisting device 25. And responder 27 and responderbodyThis is that a bearing is arranged between 37. The bearing 45 may be provided between the disc 1a and the elastic body 33. The operation of the pressurizing device 5 is the same as in the embodiment of FIG.Since the elastic device 3 is installed directly on the transmission wheel 1Biasing device 29 of the compression device 4Is fixed to the screw shaft 26Others are the same as the examples of FIGS. 5 and 6A.soWell-known commercial warMudenSince it is a master machine, illustration is omitted.
[0038]
(5th Example)
  The embodiment of FIG. 7A is an example of a transmission wheel pressurizing device 5 in which the transmission wheel 1 is supported by both bearings as in the embodiment of FIG. The main difference from the other embodiments is that a plurality of elastic bodies 33 arranged in parallel concentrically are always compressed simultaneously by the compression device 4. Unlike the cases of the embodiments of FIGS. 1, 5, and 6B, the pressurization characteristics are not stepped, but linear characteristics can be obtained as shown by the characteristic line (A ′) in FIG. The elastic bodies 33a and 33b and the elastic body 33c are made of a right-handed spring and a left-handed spring, and cancel the compressive strain to the bearing 45. Secondly, the housing 35 has an input side response body 37 and an output side response body.body36 and the combined locking device 32 is applied, and the whole is in a floating state. Third, the urging device 29 is not a worm transmitter but a bevel transmitter.
[0039]
(Sixth embodiment)
  The embodiment of FIG. 7B is an example in which pressure is directly applied by the elastic body 33 similar to the embodiment of FIG. 6A. Other examplesWhenIs different from the sliding device 25 of the compression device 4 in thatWith horizontal camThe movable tool 27 moves horizontally on the main body 10a.Vertical cam slideThe moving tool 28 presses in the vertical direction. In this case, the pressing device 25c isSlidingMotion tool 26,SlidingCam inclined joint surfaces 26c and 27c are slidable in the direction perpendicular to each other.soThere is a difference in that the elastic device 3 is compressed and pressed by horizontal / vertical conversion sliding of both cams. Further, in this example, the urging device 29 is a hoisting composed of screw bodies 48 and 49.Screw transmission machineThere are points made up of
[0040]
(Other examples)
  In the present invention,During pressurization control of the first (driven) transmission wheel, Elastic body, not hydraulic direct pressurization methodInterventionDepends on the indirect pressurization method, but “direct” means only the supply of applied pressure, and “indirect” means both applied pressure and elastic force.Elastic pressure generated byMeans supply. Therefore, in this specification, the drive source of the shift control unit isAs a reversible control drive sourceElectrical reversiblecontrolAlthough described with a motor, it is not limited to this.pumpSuchTheVarious motors such as fluid motorsDriven byIndividually for each actuatorThe drive sourceEven if you arrangeAlsoIt may be shared, and in that casefirstandsecondEach sliding device of the compression device andeachHoisting with a screw body such as a ball screw or trapezoidal screw on the pressure deviceSlidingapparatusBesides hydraulic cylinderCan be used to change the transmission of a large capacity transmission at a high speed. In addition, the main actuator 8 transmits pressure from the main vehicle 2.apparatusIt may be installed at a remote position via 40, and further on one or both of the main and driven actuators.ControllerYou may give a through-hole and arrange | position a rotating shaft through.
[0041]
  Furthermore, as the speed change control device divides the roles of the control function of the drive gear and the driven vehicle of the speed change transmission device, the drive source can be divided into individual drive sources according to each operation device. Separately from the two actuators, only torque adjustment can be performed, and the value of the shaft torque can be set arbitrarily.In particular, it is possible to improve the transmission efficiency by controlling the output capacity on the continuously variable transmission side closer to or away from the actual load capacity required on the output load device side, and to control the safety factor with respect to the actual load capacity. That is, by providing a predetermined deviation between the pressure characteristic A of the elastic pressure force of the elastic device and the pressure characteristic B required for the actual load, the transmission has a safety factor and a service factor corresponding to the transmission capacity. By changing the pressurization characteristic A by the elastic device as necessary so that it can be set or changed, it is possible to provide the transmission device with high transmission efficiency or safety factor. In order to increase the safety factor in a part of the gear ratio range, a non-linear pressurizing device having a negative inclination with respect to the rotational speed of the driven vehicle may be provided. Also, the transmission efficiency of the transmission may be selected by optimizing the shaft torque while suppressing heat generation due to the holding pressure between the transmission body and the transmission wheel.Therefore, the present invention is included in the scope of the right even if various modifications or changes are made in accordance with the design specifications within the scope that can be easily created by those skilled in the art from the “claims”.
0042]
【The invention's effect】
  In the present invention, one of the two transmission wheels is accompanied by an inelastic pressure state, and the other is accompanied by an elastic pressure state.Control functionRoleIndividual shareSeparated into both carsTheA further improvement in both applying pressure and applying an inversely proportional force between the applied pressure and the rotational speed to the other side, resulting in a high-quality continuously variable transmission.Establishment of stable transmissionIn addition, the shift control device for a constant horsepower continuously variable transmission that achieves high speed response and high efficiency operation has been realized. That is, both pressurization devices for main and driven actuatorsWindingUpOr hydraulic slidingBelt positioning on both transmission wheels by adopting the deviceSpeed ratio by operationControl andBy belt clamping pressure operationThis means that high-precision reproducibility can be given to shaft torque control. In particular, as is conventionally done with hydraulic control, detection and electronic detection are individually performed for each factor such as hydraulic oil operation delay, oil temperature change, oil spill, centrifugal force, and poor response due to valve control. There is an effect that it is not necessary to repeatedly perform circuit compensation.
0043]
  In the present invention,SlidingReproducibility of belt positioning control and torque control of each transmission wheel by the device is a basic component requirementAs well asIn addition, the following components are added for high speed response and high efficiency.Stable transmissionRealized. That is,(1)The high speed response of the shift control is secured by adding the high degree of synchronism of the shift command between the main actuator, the driven controller and the drive source.(2)Next, both controllersExample of operating the compressor with an individual drive sourceBy adopting the shift control device sideOnly torque can be operated individuallyofsoWith high efficiency operationSafety factor adjustmentEnable further(3)The linear or non-linear pressurization characteristics are configured so that the compression and pressurization characteristics A by the elastic device match the optimum conditions as much as possible to the actual load pressurization characteristics B that are optimal for the actual load capacity, and transmission efficiency or safety factor is required. By selecting and adding accordingly, high efficiency or safety factor operation on the side of the transmission is realized. In particular, in order to increase the transmission efficiency or the safety factor in a part of the shift range, a pressure characteristic having a negative slope with respect to the rotation speed or the gear ratio of the first transmission wheel may be selected and added.
0044]
  Therefore, according to the idea of (1) above, it is possible to respond to the speed change control within a very short time from the maximum speed ratio εmax to the minimum speed ratio εmin, and for a machine that repeats sudden start and stop like a vehicle.MechanicallyIt is optimal with sufficient follow-up ability. Moreover, when the drive source is an electric servo motor or the like, it operates only at the time of shifting operation, and it is not necessary to maintain a constantly operating state like a hydraulic pump.However, each pressurizing device may be a hydraulic cylinder if it does not always maintain the operating state.. Furthermore, it is obvious to those skilled in the art that the two operating devices do not need to apply a large pressing force at the same time, and when one is large, the other becomes small, so that the drive source can be sufficiently handled by a small single shared motor. .
0045]
  Further, according to the above-mentioned ideas (2) and (3), not only can the deterioration and wear due to frictional heat generation of the members be reduced in both the speed change control device and the speed change transmission device constituting the continuously variable transmission, It is also obvious to those skilled in the art that a significant reduction in fuel consumption can be achieved and that it is effective for environmental conservation when applied to both vehicles.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a continuously variable transmission for a vehicle using a speed change control device according to a first embodiment of the present invention;
FIG. 2 is a longitudinal sectional view taken along line II-II of the continuously variable transmission shown in FIG.
3 shows a part of the synchronous drive source of the controller of the continuously variable transmission shown in FIGS. 1 and 2, FIG. 3A shows the configuration of the second transmission device, and FIG. 3B shows the configuration of the first transmission device. In the partial cross-sectional view shown,
FIG. 4 shows the apparatus of the first embodiment.First biographyCarWhatofElasticityIt is a characteristic view which shows the relationship between applied pressure and rotation speed.
FIG. 5 is a sectional view of a continuously variable transmission for a machine tool to which a second embodiment of the present invention is applied.
[Fig. 6] Fig. 6 shows a single bearing support.First biographyTo the carSuitablefordidFIG. 6A is a cross-sectional view of the third embodiment of the present invention, and FIG. 6B is a cross-sectional view of the fourth embodiment of the present invention.
[Fig. 7] Fig. 7 shows the support of both bearings.firstFIG. 7A is a sectional view of a fifth embodiment of the present invention, and FIG. 7B is a sectional view of a sixth embodiment of the present invention.
[Explanation of symbols]
    I Shift control device
    II transmission
    1 Driven vehicle, driven transmission vehicle or first transmission vehicle
    2 Main vehicle, main transmission vehicle or second transmission vehicle
    3 Elastic device
    4 Compression deviceOr first compressor
    5 Pressurizer or first pressurizer
    6 Followed actuatorOr the first actuator
    7 Pressurizer or second pressurizer
    8 Main actuatorOr second actuator
    9 Drive source
  10 Transmission
  10a Body or body reference plane
  10b Lid
  11 Transmitter
  12, 29 Energizing device, Worm transmission machineOr variable speed power transmission
  14 Compression deviceOr second compression device
  15 Sliding deviceOr second sliding device
  15c, 25c  Press device
  16, 26 Response tool, screw body, Cam bodyOrfirstSlider
  17, 27 Driven tool, screw body, Cam bodyOrsecondSlider
  25a, 25b Driven tool, screw body, Cam bodyOrsecondSlider
  25 Sliding device or first sliding device
  25a First sliding device
  25b Second sliding device
  32 Locking device
  33 Elastic body
  35 body
  36 Driven body or sliding body
  37 Responsive body or sliding body
  40 Pressure transmissionapparatus

Claims (12)

第一及び第二伝達車間に各摺動円板で狭持位置を変位される伝達体を巻掛し該両摺動円板を加圧制御する変速機の変速制御装置において、
第一加圧装置の第一圧縮装置が弾性装置を直列加圧して得た弾性加圧力を上記第一伝達車に可変に施す第一操作器と、第二加圧装置の第二圧縮装置が非弾性加圧力を上記第二伝達車に可変に施す第二操作器と、更に上記第一及び第二加圧装置に夫々第一及び第二変速指令を同期供給する駆動源とを有し、上記第一及び第二操作器は、上記圧縮装置を二摺動具間の相対位置を変位させる摺動装置と対応の変速指令を入力され上記摺動装置を付勢する付勢装置とでると共に、上記第二圧縮装置が該非弾性加圧力で上記伝達体接触半径を位置決め制御して上記第二伝達車に出力回転数又は速比の可変制御機能をかつ上記第一圧縮装置が該弾性加圧力で上記伝達体狭持圧を可変加圧制御して上記第一伝達車に出力軸トルクの可変制御機能を施し上記各加圧装置を個別に操作する事で定馬力動力を伝動制御してなる変速制御装置。
In a transmission control device for a transmission that wraps a transmission body that is displaced in the holding position by each sliding disk between the first and second transmission wheels and pressurizes and controls both the sliding disks ,
A first operation device that variably applies an elastic pressure obtained by the first compression device of the first pressure device to the elastic device in series , and a second compression device of the second pressure device . A second operating device that variably applies inelastic pressure to the second transmission wheel, and a drive source that synchronously supplies first and second shift commands to the first and second pressurizing devices, respectively. The first and second actuators include a sliding device that displaces the relative position of each compression device between the two sliding tools and an urging device that inputs the corresponding shift command and urges the sliding device. configuration to Rutotomoni, the second compression device and a variable control function of the transmission member contacting a radial positioning control to the number of output rotation to the second transmission wheel or speed ratio at the non-elastic pressure force the first the transmission body holding pressure compressor is in elastic pressure to control a variable pressurization facilities variable control function of the output shaft torque to the first transmission wheel , Formed by the transmission control Teibariki power by being operated individually each pressure device shift control device.
第一及び第二伝達車間に各摺動円板で狭持位置を変位される伝達体を巻掛し該両摺動円板を加圧制御する変速機の変速制御装置において、
第一加圧装置の第一圧縮装置が弾性装置を直列加圧して得た弾性加圧力を上記第一伝達車に施す事で可変軸トルクを施す第一操作器と、第二加圧装置の第二圧縮装置が非弾性加圧力を上記第二伝達車に施す事で可変速比を施す第二操作器と、更に上記第一及び第二加圧装置に夫々第一及び第二変速指令を同期供給するため夫々個別に又は共用単一に設けた駆動源とを有し、上記第一及び第二操作器は、上記圧縮装置を二摺動具間の相対位置を変位させる摺動装置と対応の変速指令を入力され上記摺動装置を付勢する付勢装置とでると共に、上記各付勢装置ウォーム伝達機で構成して与えた該各加圧力逆転伝達を阻止するセルフロック機能をかつ上記駆動源にブレーキ装置又はクラッチ装置を設置して可逆制御駆動源のオーバラン伝達阻止機能を施す事で、上記第一及び第二加圧装置間又は上記各加圧装置及び上記駆動源間で第一及び第二変速指令に誤信号の相互伝搬を阻止して定馬力動力を伝動制御してなる変速制御装置。
In a transmission control device for a transmission that wraps a transmission body that is displaced in the holding position by each sliding disk between the first and second transmission wheels and pressurizes and controls both the sliding disks ,
A first manipulator which first compression device of the first pressurizing apparatus applying a variable shaft torque By applying an elastic pressurizing force obtained by applying series pressure to the elastic device to the first transmission wheel, the second pressing device A second compressor applies a non-elastic pressure to the second transmission wheel to apply a variable speed ratio , and further sends first and second shift commands to the first and second pressurizing devices, respectively. Each of the first and second actuators is configured to displace the relative position between the two sliding tools. and the corresponding shift command is input the configuration to Rutotomoni by a biasing device for biasing said sliding device, the reverse transfer of the said respective pressure gave constituted by warm transfer machine in the biasing device the self-locking function of preventing and installed the brake device or the clutch device to the drive source overrun reversible control drive source By performing reaches blocking function, Teibariki power by preventing mutual propagation of said first and second pressure device or between the respective pressure device and the false signal to the first and second shift command between the drive source A transmission control device that controls transmission.
請求項2において、上記第一又は第二操作器は上記ウォーム伝達機のウォーム歯車に対応の変速指令を入力されホイール歯車に対応の伝達車回転軸を貫通配置するため該軸芯方向の円筒状貫通孔をもち該ホイール歯車と同一部材で一体形成した円筒状部を配し該円筒状部に上記二摺動具の一方の押圧装置を配してなる変速制御装置。 The first or second operating device according to claim 2, wherein a shift command corresponding to a worm gear of the worm transmission device is input, and a transmission wheel rotation shaft corresponding to the wheel gear is disposed so as to penetrate therethrough. A speed change control device comprising a cylindrical portion integrally formed of the same member as the wheel gear and having a cylindrical through hole, and one pressing device of the two sliding tools arranged on the cylindrical portion . 第一及び第二伝達車間に各摺動円板で狭持位置を変位される伝達体を巻掛し該両摺動円板を加圧制御する変速機の変速制御装置において、
第一加圧装置の第一圧縮装置が弾性装置を直列加圧して得た弾性加圧力を上記第一伝達車に施す事で可変軸トルクを施す第一操作器と、第二加圧装置の第二圧縮装置が非弾性加圧力を上記第二伝達車に施す事で可変速比を施す第二操作器と、更に上記第一及び第二加圧装置に夫々第一及び第二変速指令を同期供給するため夫々個別に又は共用単一に設けた駆動源とを有し、上記第一及び第二操作器は、上記圧縮装置を二摺動具間の相対位置を変位させる摺動装置と対応の変速指令を入力され上記摺動装置を付勢する付勢装置とでると共に、上記第一及び第二圧縮装置の一方を中心に施す操作器貫通孔に対応伝達車回転軸を貫通配置し他方を対応伝達車回転軸に同軸芯方向に施す回転軸貫通孔内の同軸位置又は該回転軸芯と非同軸位置に配した圧力伝達装置に連結配置し或いは上記両圧縮装置は夫々操作器貫通孔を施し各対応伝達車回転軸を貫通配置し、該各回転軸の外側又は内側から軸トルク制御する第一変速指令と速比制御する第二変速指令とを個別付与する事で定馬力動力を伝動制御してなる変速制御装置。
In a transmission control device for a transmission that wraps a transmission body that is displaced in the holding position by each sliding disk between the first and second transmission wheels and pressurizes and controls both the sliding disks ,
A first manipulator which first compression device of the first pressurizing apparatus applying a variable shaft torque By applying an elastic pressurizing force obtained by applying series pressure to the elastic device to the first transmission wheel, the second pressing device A second compressor applies a non-elastic pressure to the second transmission wheel to apply a variable speed ratio , and further sends first and second shift commands to the first and second pressurizing devices, respectively. Each of the first and second actuators is configured to displace the relative position between the two sliding tools. configuration to Rutotomoni, the corresponding transmission wheel to the first and manipulator holes applied to the center one of the second compression device rotates at and entered a shift command corresponding biasing device for biasing said sliding device coaxial position or the rotational axis and non-coaxial position of the rotating shaft through hole for performing other through arranged axis coaxially direction corresponding transmission wheel axle The first shift command that is disposed linked disposed pressure transmitting device or the both compression device each corresponding transmission wheel rotating shaft subjected to a respective operating device through hole penetrating arranged, axially torque control from outside or inside the respective rotation axis And a second gear shift command for speed ratio control are separately provided to control transmission of constant horsepower power.
請求項4において、上記第一操作器は、上記第一伝達車に施す軸芯方向の回転軸貫通孔の内側又は該回転軸の外側を経て該軸芯と同軸上又は非同軸上で離隔位置に圧力又は動力を伝達する伝達手段と、この伝達手段の該軸芯方向の摺動動作を支持案内する軸受とで構成された上記圧力伝達装置を有してなる変速制御装置。5. The first operating device according to claim 4, wherein the first operating device is separated from the inner axis of the rotating shaft through hole in the axial direction applied to the first transmission wheel or the outer side of the rotating shaft, coaxially or non-coaxially. A speed change control device comprising the pressure transmission device comprising a transmission means for transmitting pressure or power to the bearing and a bearing for supporting and guiding the sliding movement of the transmission means in the axial direction. 請求項4又は5において、上記第一操作器で、上記第一加圧装置の圧縮装置は、上記弾性装置を本体側に配置する時に上記第一伝達車と上記弾性装置間で弾性振動を伝達可能に浮動状態に、又上記弾性装置を上記第一伝達車側に配置する時に本体と上記弾性装置間で弾性振動を伝達不能に固定状態に支持されてなる変速制御装置。6. The compression device of the first pressurizing device according to claim 4 or 5, wherein the compression device of the first pressure device transmits elastic vibration between the first transmission wheel and the elastic device when the elastic device is disposed on the main body side. A shift control device that is supported in a fixed state so that elastic vibration can not be transmitted between the main body and the elastic device when the elastic device is arranged on the first transmission wheel side in a floating state. 第一及び第二伝達車間に各摺動円板で狭持位置を変位される伝達体を巻掛した変速伝動装置を加圧制御する変速機の変速制御装置において、
第一加圧装置の第一圧縮装置が弾性装置を直列加圧して得た弾性加圧力を上記第一伝達車に施す事で可変軸トルクを施す第一操作器と、第二加圧装置の第二圧縮装置が非弾性加圧力を上記第二伝達車に施す事で可変速比を施す第二操作器と、更に上記第一及び第二加圧装置に夫々第一及び第二変速指令を同期供給するため夫々個別に又は共用単一に設けた駆動源とを有し、上記第一及び第二操作器は、上記圧縮装置は二摺動具間の相対位置を変位させる摺動装置と対応の変速指令を入力され上記摺動装置を付勢する付勢装置とでると共に、共通駆動源で操作時には変速動力を機械的に分岐供給され又は個別駆動源で操作時には該個別駆動源を経て供給された第一及び第二変速指令を夫々トルク及び速比指令として個別付与され且つ該個別駆動源で操作時に上記変速伝動装置の伝動効率又は安全率を選択するために軸トルクの値のみを増減可能に選定付与して定馬力動力を伝動制御してなる変速制御装置。
In a shift control device for a transmission that pressurizes a shift transmission device that is wound around a transmission body that is displaced in the holding position by each sliding disk between the first and second transmission wheels,
A first manipulator which first compression device of the first pressurizing apparatus applying a variable shaft torque By applying an elastic pressurizing force obtained by applying series pressure to the elastic device to the first transmission wheel, the second pressing device A second compressor applies a non-elastic pressure to the second transmission wheel to apply a variable speed ratio , and further sends first and second shift commands to the first and second pressurizing devices, respectively. Each of the first and second actuators is a sliding device for displacing the relative position between the two sliding tools. and the corresponding shift command is input the configuration to Rutotomoni by a biasing device for biasing said sliding device, said at the time of operating the transmit power at the time of operation by a common drive source mechanically branched supply or separate drive source The first and second speed change commands supplied via the individual drive sources are individually given as torque and speed ratio commands, respectively, and Another drive sources comprising a Teibariki power changeable so chosen granted to only the value of the shaft torque in order to select the power transmission efficiency or the safety factor of the speed change transmission apparatus transmission control and when operating the shift control device.
請求項1、2、4又は7において、上記第一操作器は、上記第一伝達車への弾性加圧力が回転数指令による出力回転数の減速指令に伴い増圧する為にトルク指令を増大しまた増速指令に伴い減圧する為にトルク指令を減少するように上記第一伝達車及び上記弾性装置を制御してなる変速制御装置。According to claim 1, 2, 4 or 7, the first operating unit may increase a torque command to the elastic pressure applied to said first transmission wheel to pressure increase with the deceleration command output rotational speed by the rotational speed command said first transmission wheel to reduce the torque command for depressurizing with the Shimada acceleration command and formed by controlling the elastic device shift control device. 請求項1、2、4又は7において、上記駆動源は、電気制御モータ又は流体駆動モータで成る可逆制御駆動源を有し常時作動状態を維持せず変速動作時のみ対応変速指令に応じて正逆切替作動する上記可逆制御駆動源で構成してなる変速制御装置。8. The drive source according to claim 1, wherein the drive source has a reversible control drive source composed of an electric control motor or a fluid drive motor, and does not always maintain an operating state and is corrected according to a corresponding shift command only during a shift operation. A shift control device comprising the reversible control drive source that performs reverse switching operation . 請求項10において、上記第一及び第二操作器は、上記第一及び第二圧縮装置の上記各摺動装置の上記二摺動具を雄ネジと雌ネジのネジ体、水平カムと垂直カムのカム体、又はピストンとシリンダの油圧シリンダで構成してなる変速制御装置。11. The first and second operating devices according to claim 10, wherein the first and second compressors are formed by using the two sliding tools of the sliding devices of the first and second compression devices as screw bodies of male and female screws, horizontal cams and vertical cams. A shift control device comprising a cam body or a hydraulic cylinder of a piston and a cylinder . 請求項7において、上記第一操作器は、上記弾性装置の該弾性加圧力が出力回転数に反比例する該加圧特性Aを施され、該弾性加圧力に該加圧特性Aを実負荷加圧特性Bに接近離隔する所定偏差分を付与する事で該伝動効率又は安全率を調整してなる変速制御装置。 8. The first operating device according to claim 7, wherein the pressurizing characteristic A in which the elastic pressing force of the elastic device is inversely proportional to the output rotational speed is applied, and the pressurizing characteristic A is applied to the elastic pressing force at an actual load. A transmission control device that adjusts the transmission efficiency or the safety factor by giving a predetermined deviation amount close to and away from the pressure characteristic B. 請求項1、2、4又は7において、上記変速機は内燃機関又はモータの動力を変速伝動するために車両用又は工作機械用の変速機に適用されてなる変速制御装置。8. The shift control device according to claim 1, wherein the transmission is applied to a transmission for a vehicle or a machine tool in order to shift the power of an internal combustion engine or a motor .
JP37567998A 1998-11-30 1998-11-30 Shift control device Expired - Fee Related JP4221099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37567998A JP4221099B2 (en) 1998-11-30 1998-11-30 Shift control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37567998A JP4221099B2 (en) 1998-11-30 1998-11-30 Shift control device

Publications (3)

Publication Number Publication Date
JP2000161484A JP2000161484A (en) 2000-06-16
JP2000161484A5 JP2000161484A5 (en) 2005-11-24
JP4221099B2 true JP4221099B2 (en) 2009-02-12

Family

ID=18505886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37567998A Expired - Fee Related JP4221099B2 (en) 1998-11-30 1998-11-30 Shift control device

Country Status (1)

Country Link
JP (1) JP4221099B2 (en)

Also Published As

Publication number Publication date
JP2000161484A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
US6764421B2 (en) Pulley pressure control system for transmission
JP4478225B2 (en) Transmission vehicle
US6398680B1 (en) Continuously variable transmission
JP4450441B2 (en) Transmission wheel pressurizing device
JP4410865B2 (en) Compressor for transmission wheel pressurizing device
US6120400A (en) Transmission wheel pressurizing apparatus for transmitting constant power in a variable speed transmission
JP2001032898A (en) Transmission body pressurization control device by elastic device
JPH0478366A (en) Speed change control device for friction gear type continuously variable transmission
JP4221099B2 (en) Shift control device
JP4529442B2 (en) Toroidal continuously variable transmission
JP4417457B2 (en) Continuously variable transmission and shift control device for the same
JP5252756B2 (en) Variable transmission
JP5155956B2 (en) Transmission wheel pressurizing device
JP5252755B2 (en) Variable transmission
EP2034222B1 (en) Continuously variable transmission
KR101373453B1 (en) Stepless transmission
JPH0743013B2 (en) V-belt type continuously variable transmission
JP5312414B2 (en) Variable transmission
JP2725488B2 (en) Friction wheel type continuously variable transmission
JP2000145907A5 (en)
JP2000161484A5 (en)
JP2010281454A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees