JP4477736B2 - Polyester composite fiber for stretch woven and knitted fabric and its production method - Google Patents

Polyester composite fiber for stretch woven and knitted fabric and its production method Download PDF

Info

Publication number
JP4477736B2
JP4477736B2 JP2000042726A JP2000042726A JP4477736B2 JP 4477736 B2 JP4477736 B2 JP 4477736B2 JP 2000042726 A JP2000042726 A JP 2000042726A JP 2000042726 A JP2000042726 A JP 2000042726A JP 4477736 B2 JP4477736 B2 JP 4477736B2
Authority
JP
Japan
Prior art keywords
melt viscosity
containing compound
sulfonate group
polyester
polyesters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000042726A
Other languages
Japanese (ja)
Other versions
JP2001234432A (en
Inventor
和典 橋本
賢司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2000042726A priority Critical patent/JP4477736B2/en
Publication of JP2001234432A publication Critical patent/JP2001234432A/en
Application granted granted Critical
Publication of JP4477736B2 publication Critical patent/JP4477736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、膨らみ感のあるソフトな風合いを有し、発色性の良好なストレッチ性織編物用ポリエステル複合繊維とその製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレートに代表されるポリエステルは、優れた機械的特性と化学的特性を有しており、広範な分野において使用されている。この用途の一つとして、ストレッチ機能を有した織編物を得るために、熱収縮特性の異なる2種類のポリエステルをサイドバイサイド型に接合し、製編織後の加工時に受ける熱により捲縮性能を発現する潜在捲縮性の複合繊維を使用することがよく知られている。
【0003】
また、このような潜在捲縮性を有する複合繊維の捲縮性能や染色性を改善するため、一方の成分に、熱収縮性や染着性を向上する有機化合物を共重合したポリエステルを使用する方法が種々検討されている(特公昭63−53291号公報等)。ポリエステル繊維の染色性を改良する手法としては、カチオン性の染料と反応する反応基を有する物質をポリエステルに共重合する方法が一般的によく知られているが、このような共重合成分を含むポリエステルは、通常のポリエステルに比較して結晶構造が乱れ、受熱時の収縮率が高くなるのが一般的であるため、このような共重合ポリエステルをサイドバイサイド型の複合繊維の一方の成分とした場合、通常のポリエステルである他方の成分との熱収縮率の差が大きいため、捲縮性能がより向上することとなり、染色性能と捲縮性能の両者を同時に改良する手法として有効である。
【0004】
しかし、このような、一方の成分が共重合ポリエステルよりなるサイドバイサイド型ポリエステル複合繊維は、他方の成分との染着性の差が大きく、濃色に染色する場合、両成分の濃度差のために発色性、品位が単一成分の共重合ポリエステル繊維と比較して見劣りするという問題があった。また、これらの問題を解決するために両成分とも同組成の共重合ポリエステルを用いれば、両成分の熱収縮特性の差が小さくなるため、十分な捲縮性能が発現せず、ストレッチ性織編物用としては不十分なものしか得られなかった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題を解消し、発色性が良好であると同時に、膨らみ感のあるソフトな風合いを有するストレッチ性織編物用ポリエステル複合繊維とその製造方法を提供することを技術的な課題とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するものであり、その要旨は、次のとおりである。
(1)リエチレンテレフタレートを主体とし、スルホン酸塩基含有化合物を共重合体成分として含有する、溶融粘度の異なる2種のポリエステルが互いにサイドバイサイド型に複合された繊維であり、スルホン酸塩基含有化合物の含有量が繊維全体の全酸成分に対して1.0モル%以上であり、かつ、高溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量が低溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量より多く、さらに、前記2種のポリエステルの複屈折率とスルホン酸塩基含有化合物の割合が、下記式(1)、(2)を満足することを特徴とするストレッチ性織編物用ポリエステル複合繊維。
0.02≦△nH−△nL≦0.08・・・(1)
0.2≦SIPL≦1.2・・・(2)
ただし、
△nH:高溶融粘度ポリエステルの複屈折率
△nL:低溶融粘度ポリエステルの複屈折率
SIPL:低溶融粘度ポリエステルの全酸成分に対するスルホン酸塩基含有化合物の割合(モル%)
(2)ポリエチレンテレフタレートを主体とし、スルホン酸塩基含有化合物を共重合体成分として含有する、溶融粘度の異なる2種のポリエステルが互いにサイドバイサイド型に複合された繊維を製造するに際し、高溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量が低溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量より多く、かつ2種のポリエステルの溶融粘度と、スルホン酸塩基含有化合物の割合が、下記式(3)、(4)を満足するようにすることを特徴とするストレッチ性織編物用ポリエステル複合繊維の製造方法。
30≦△MV≦180・・・(3)
0.5−1.2×10−3×△MV≦△SIP≦1.5−1.2×10−3×△MV・・・(4)
ただし、
△MV:2種のポリエステルの温度280℃、せん断速度1000/sにおける溶融粘度差(Pa・s)
△SIP:高溶融粘度ポリエステルと低溶融粘度ポリエステル中のスルホン酸塩基含有化合物のそれぞれの全酸成分に対する割合の差(モル%)
【0007】
【発明の実施と形態】
以下、本発明について詳細に説明する。
本発明の複合繊維は、エチレンテレフタレートの繰り返し単位が80%以上の実質的にポリエチレンテレフタレートを主体とする2種のポリエステルがサイドバイサイド型に複合されており、前記2種のポリエステルは、スルホン酸塩基含有化合物をそれぞれ含有し、溶融粘度と分子配向度が異なっている。
【0008】
そして、本発明の複合繊維において、スルホン酸塩基含有化合物の含有量は、繊維中の全酸成分に対する割合が 1.0モル%以上であることが必要である。スルホン酸塩基含有化合物の含有量が 1.0モル%以上であることにより、捲縮性能を損なうことなく優れた染色性を発現することができる。スルホン酸塩基含有化合物が 1.0モル%より少ないと、十分な染色性を発現せず、発色性の劣った織編物しか得られない。また、スルホン酸塩基含有化合物が多すぎると、繊維の強度が低下し、製糸時の操業性が悪くなるため、 1.0〜 2.5モル%の範囲が好ましい。
【0009】
また、低溶融粘度ポリエステル中に含有するスルホン酸塩基含有化合物は前記式▲2▼のように 0.2〜 1.2モル%の範囲にあることが必要である。
従来、共重合系ポリエステルを使用した織編物用の潜在捲縮性複合繊維は、二層の熱収縮特性の差を大きくするために片側層のみに共重合成分を含有させて高収縮成分としていたが、本発明では染色後の発色性を重視するため、低収縮成分となる低溶融粘度ポリエステル中にもスルホン酸塩基含有化合物を含有させ、発色性を改良するものである。その際、スルホン酸塩基含有化合物の含有量が前記範囲にあることにより、捲縮性能を損なわずに発色性を改良することが可能となる。低粘度側のスルホン酸塩基含有化合物が 0.2モル%より少ないと、発色性を改良する効果が乏しく、 1.2モル%より多いと、低粘度側の熱収縮性が高くなりすぎ、十分な捲縮性能が発現されない。
【0010】
また、本発明の複合繊維は、前記▲1▼式で示したように高溶融粘度ポリエステルと低溶融粘度ポリエステルとの複屈折率の差が0.02〜0.08の範囲にあることが必要である。従来、2層構造の複合繊維は、両層に多量の共重合成分を含む場合、両層の熱収縮特性を制御し難く、実用的な捲縮性繊維を得ることが困難であったが、本発明では、複屈折率により両層の分子配向差を適正に制御することにより、両層の熱収縮特性に適当な差を与え、十分な捲縮性能を有する複合繊維を安定して採取することが可能となったのである。複屈折率の差が0.02より小さいと捲縮性能が乏しく、0.08より大きいと繊維の強度が著しく低くなる。
【0011】
本発明の複合繊維を構成する2種のポリエステルは、前記の複屈折率差を発現させるために、紡糸時の溶融粘度に差がある必要があり、各々のポリエステルの溶融粘度が、温度 280℃、せん断速度1000/sの条件で測定したときの両者の差△MVが、前記式▲3▼のように30〜 180Pa・s の範囲にあるものを用いることが必要である。△MVがこの範囲内にあることにより、紡糸の操業性に影響することなく、両ポリエステル成分に大きさの異なる紡糸応力を与え、糸条に適度な潜在捲縮性を発現するに適当な両ポリエステル成分の分子配向差を紡糸時に付与することができる。
【0012】
△MVが30Pa・s より小さいと、両成分の分子配向差が小さいため、十分な捲縮性を発現させることができない。また、△MVが 180Pa・s より大きいと、紡糸口金パック内で両成分に加わる圧力差が大きすぎるため、紡出直後に糸曲がりが頻発して糸切れを誘発し、また、低粘度成分の配向が低くなりすぎて繊維の強度が低くなり、実用に耐えないものしか得られない。
【0013】
また、これらのポリエステルの重合度は、通常の溶融紡糸に用いられる範囲から選定できるが、極限粘度が 0.4〜 0.8の範囲となるものが好ましい。
【0014】
本発明の複合繊維の特徴は、染色性向上に寄与するスルホン酸塩基含有化合物を二層のポリエステルの両側に含有しながら、十分な捲縮性能を発現し、良好なストレッチ性と染色性を兼ね備えた織編物を得ることを可能とするものであり、そのために、本発明者らは、両ポリエステル成分の溶融粘度と含有するスルホン酸塩基含有化合物の割合が、捲縮性能と紡糸操業性に与える影響を詳細に検討した結果、両ポリエステル成分の溶融粘度の差に応じて各々のスルホン酸塩基含有化合物の含有量の差を調整することにより、前記の複屈折率差を満し、優れた捲縮性能を有する繊維を工業的に安定な操業状態で製糸することを可能とする成分比を見出し、本発明に至ったものである。
【0015】
すなわち、高溶融粘度ポリエステルと低溶融粘度ポリエステルに含有するスルホン酸塩基含有化合物の割合の差△SIPと溶融粘度との関係が前記式▲4▼の範囲にあることが必要である。十分な捲縮性能を発現するためには、各々の層の熱収縮特性に影響する溶融粘度と共重合量を制御する必要があるため、本発明では、これらの値と捲縮性能及び紡糸時の操業性との関係を検討した結果、△SIPが式▲4▼の範囲にあることにより、良好な捲縮性能を有する繊維を操業上問題なく得ることができるものである。△SIPがこの範囲より小さいと、両層の熱収縮特性が近似するため捲縮性能が不十分となる。また、△SIPがこの範囲より大きいと、捲縮性能は有するものの強度が著しく低下するため実用上好ましくなく、極端な場合は、紡糸時の張力に耐えられず糸切れが頻発し、操業的にも好ましくない。
【0016】
両ポリエステル成分の配合比は、良好な捲縮性能を得るためには、重量比で40/60〜60/40の範囲が好ましく、この範囲を外れると、十分な捲縮性能を発現させることができ難くなる。
両ポリエステル成分には、本質的な特性を損なわない限り、艶消し剤、酸化防止剤、紫外線吸収剤、顔料、難燃剤、抗菌剤、導電性付与剤等、他の成分を少量含有していてもよい。
【0017】
本発明の複合繊維は、通常の複合紡糸型溶融紡糸機により製造することができる。まず、紡糸口金の背面で両ポリエステル成分をサイドバイサイド型になるように合流させ、同一紡糸孔から吐出し紡糸する。その際、紡糸温度は両ポリエステル成分の溶融粘度によって適宜選定されるが、通常 280〜 310℃の範囲が好ましい。紡出糸条を冷却固化した後、紡糸油剤を付与して1000〜4000m/分の速度で引取り、一旦捲き取り、延伸機により熱延伸を施すか、あるいは引取った糸条を紡糸に連続して熱延伸することにより、本発明の複合繊維を得ることができる。
【0018】
上記工程での延伸倍率は、引取った時点での繊維の残留伸度によって適宜選定され、延伸後の残留伸度が15〜40%の範囲になるように選定するのが好ましい。残留伸度がこの範囲より高いと十分な捲縮性能が発現されず、また、残留伸度がこの範囲より低いと延伸時に単糸の切断が発生する等、操業的に問題があり、好ましくない。
【0019】
本発明の複合繊維の繊度や単糸数は特に限定されるものではないが、単糸繊度が1〜10デシテックス、単糸数が5〜 100本の範囲で用途に応じて選定するのが好ましい。
【0020】
【実施例】
次に、本発明を実施例によって具体的に説明する。
なお、実施例における物性の測定方法は、次のとおりである。
(a) 複屈折率
POE偏光顕微鏡を用い、ベレックコンペンセーター法により測定する際、繊維表面上の両成分の境界線を結ぶ直線が光方向と平行になるように繊維を置き、表面から境界線までの中点で各々レターデーションを測定し、各成分の複屈折率を算出した。
(b) 溶融粘度
島津製作所製フローテスターCFT500を用いて、温度 280℃、せん断速度1000/sの条件で測定した。
(c) 捲縮回復応力
繊維を外周 1.125mの検尺機で5回かせ取りして2重にし、1/6000g/dtexの荷重をかけて30分間放置した後、30分間沸水処理し、乾燥した後、オリエンテック社製万能引張試験機テンシロンRTC1210 の引張速度を100mm/分とし、(繊度×2)gの応力まで試料を伸長させ、同じ速度で回復させ、このときの最大応力点から垂線を降ろし、応力0gの線との交点から45度の角度で応力曲線側に引いた線と応力回復曲線との交点での応力測定値を読みとった。この値が0.013cN/dtex以上のものを合格とした。
(d) 染色性
経糸に56dtex/24f のポリエチレンテレフタレート延伸糸を用い、緯糸に評価糸を用いて、平織組織に製織し、精錬後、染料として Astrazon Blue FRR 0.5%owf 、均染剤として酢酸 0.2ml/l、酢酸ナトリウム0.2g/lを使用し、温度 100℃で30分間の条件で染色を行い、参考例1の試料を5級とし、各々の試料の染色濃度を10段階で比較評価し、5級以上を合格とした。
(e) ストレッチ性とソフト感の評価
染色性評価に使用した試料について、10人のパネラーによる官能評価を行った。参考例2の試料を5点とし、各々の試料の点数を10段階で比較評価し、10人の平均値を評価値とし、5点以上を合格とした。
【0021】
実施例1〜5、比較例1〜5
ポリエチレンテレフタレートに表1に示す割合で5-ナトリウムスルホイソフタル酸(以下SIP)を共重合させ、溶融粘度が表1に示す値となったA、B両成分を複合紡糸型溶融押出機に等重量供給し、紡糸温度 295℃で溶融し、紡出孔を24個有する紡糸口金の背面で両成分を合流させ、サイドバイサイド型に接合して紡出し、冷却固化した後、紡糸油剤を付与しながら糸条を集束し、表面速度が3400m/分の引取ローラを介して、捲取機で捲き取った。
次いで、得られた繊維を延伸機に供給し、表面温度80℃のローラと 150℃のホットプレートを介して1.45倍に延伸し、 110dtex/24f の複合繊維を得た。
【0022】
参考例1
ポリエチレンテレフタレートにSIP を 1.0モル%共重合させ、溶融粘度が 210Pa・s となったポリエステル成分を通常の溶融押出機に供給し、紡糸温度 295℃で溶融し、紡出孔を24個有する紡糸口金より紡出し、実施例1〜5と同様の方法で、 110dtex/24f の繊維を得た。
【0023】
参考例2
ともに共重合成分を含まないポリエチレンテレフタレートで溶融粘度が200Pa ・s のA成分と溶融粘度が50Pa・s のB成分を用い、実施例1〜5と同様に 110dtex/24f の複合繊維を得た。
実施例1〜5、比較例1〜5の評価結果を併せて表1に示す。
【0024】
【表1】

Figure 0004477736
【0025】
表1から明らかなように、実施例1〜5では、いずれも、良好なストレッチ性とソフト感を有し、染色性も良好な繊維が得られた。
【0026】
一方、比較例1は、両成分の溶融粘度差が小さいため、複屈折率の差が小さく、比較例2は、両成分のSIP量の差が小さいため、ともに、捲縮性能が低く、布帛のストレッチ性に欠けていた。比較例3は両成分の溶融粘度差が大きすぎ、比較例4は両成分のSIP量の差が大きすぎるため、紡糸時に糸切れが発生する等、紡糸調子が不安定であり、糸の強度も不十分であった。比較例5は低粘度成分のSIP量が少なすぎ、繊維全体のSIP量も少ないため、染色性が不十分であった。
【0027】
【発明の効果】
本発明によれば、製編織後、染色加工を施すことにより、発色性が良好であると同時に、膨らみ感のあるソフトな風合いを有するストレッチ性織編物となるポリエステル複合繊維とその製造方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester composite fiber for stretchable knitted and knitted fabric having a soft texture with a feeling of swelling and good color development, and a method for producing the same.
[0002]
[Prior art]
Polyesters represented by polyethylene terephthalate have excellent mechanical and chemical properties and are used in a wide range of fields. As one of the applications, in order to obtain a woven or knitted fabric having a stretch function, two kinds of polyesters having different heat shrinkage characteristics are joined to a side-by-side type, and crimping performance is expressed by heat received during processing after knitting and weaving. It is well known to use latently crimpable composite fibers.
[0003]
In addition, in order to improve the crimping performance and dyeability of the composite fiber having such latent crimpability, a polyester obtained by copolymerizing an organic compound that improves heat shrinkability and dyeing property is used as one component. Various methods have been studied (Japanese Patent Publication No. 63-53291). As a method for improving the dyeability of polyester fiber, a method of copolymerizing a substance having a reactive group that reacts with a cationic dye into polyester is generally well known, and includes such a copolymer component. When polyester is used as a component of side-by-side type composite fibers, it is common for the crystal structure to be disordered compared to normal polyester, and the shrinkage rate during heat reception is generally high. Since the difference in thermal shrinkage with the other component, which is a normal polyester, is large, the crimping performance is further improved, and it is effective as a technique for simultaneously improving both the dyeing performance and the crimping performance.
[0004]
However, such a side-by-side polyester composite fiber, in which one component is made of a copolyester, has a large difference in dyeing property with the other component. There was a problem that the color developability and quality were inferior to those of a single-component copolymer polyester fiber. In addition, if a copolyester having the same composition is used for both components in order to solve these problems, the difference in heat shrinkage properties between the two components will be small, so that sufficient crimping performance will not be exhibited, and a stretch woven or knitted fabric Only insufficient for use was obtained.
[0005]
[Problems to be solved by the invention]
The present invention is to provide a polyester composite fiber for stretchable woven and knitted fabric having a soft texture with a feeling of swelling while solving the above-mentioned problems and providing a method for producing the same. It is what.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1) as a main component Po triethylene terephthalate, containing sulfonate group-containing compound as a copolymer component, two polyesters having different melting viscosity of fibers complexed in a side-by-side type one another, the sulfonate group-containing compound The content of the sulfonate group-containing compound in the low melt viscosity polyester, the content of which is 1.0 mol% or more with respect to the total acid components of the entire fiber, and the content of the sulfonate group-containing compound in the high melt viscosity polyester More and more, the ratio of the birefringence of the two types of polyester and the sulfonate group-containing compound satisfies the following formulas (1) and (2):
0.02 ≦ ΔnH−ΔnL ≦ 0.08 (1)
0.2 ≦ SIPL ≦ 1.2 (2)
However,
ΔnH: birefringence of high melt viscosity polyester ΔnL: birefringence of low melt viscosity polyester SIPL: ratio of sulfonate group-containing compound to all acid components of low melt viscosity polyester (mol%)
(2) Upon mainly of polyethylene terephthalate, containing sulfonate group-containing compound as a copolymer component, two polyesters having different melt viscosities to produce fibers that are combined in a side-by-side type one another, in the high melt viscosity polyester The content of the sulfonate group-containing compound is larger than the content of the sulfonate group-containing compound in the low melt viscosity polyester, and the melt viscosity of the two polyesters and the ratio of the sulfonate group-containing compound are represented by the following formula (3): A method for producing a polyester composite fiber for stretch woven or knitted fabric, characterized by satisfying (4).
30 ≦ ΔMV ≦ 180 (3)
0.5-1.2 × 10 −3 × ΔMV ≦ ΔSIP ≦ 1.5-1.2 × 10 −3 × ΔMV (4)
However,
ΔMV: Melt viscosity difference (Pa · s) of two polyesters at a temperature of 280 ° C. and a shear rate of 1000 / s
ΔSIP: Difference in the ratio of the sulfonate group-containing compound in the high melt viscosity polyester and the low melt viscosity polyester to the total acid components (mol%)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the composite fiber of the present invention, two types of polyesters mainly composed of polyethylene terephthalate having a repeating unit of ethylene terephthalate of 80% or more are combined in a side-by-side type, and the two types of polyesters contain a sulfonate group. Each compound is contained, and melt viscosity and molecular orientation are different.
[0008]
In the composite fiber of the present invention, the content of the sulfonate group-containing compound needs to be 1.0 mol% or more with respect to the total acid component in the fiber. When the content of the sulfonate group-containing compound is 1.0 mol% or more, excellent dyeability can be exhibited without impairing the crimping performance. When the amount of the sulfonate group-containing compound is less than 1.0 mol%, sufficient dyeability is not exhibited, and only a woven or knitted fabric with poor color developability can be obtained. Moreover, since the intensity | strength of a fiber will fall and the operativity at the time of a spinning will worsen when there are too many sulfonate group containing compounds, the range of 1.0-2.5 mol% is preferable.
[0009]
Further, the sulfonate group-containing compound contained in the low melt viscosity polyester needs to be in the range of 0.2 to 1.2 mol% as shown in the formula (2).
Conventionally, latent crimpable conjugate fibers for woven and knitted fabrics using copolymerized polyester have been made into a highly shrinkable component by containing a copolymerized component only in one side layer in order to increase the difference in heat shrinkage characteristics of the two layers. However, in the present invention, since the color developability after dyeing is emphasized, a sulfonate group-containing compound is also contained in the low melt viscosity polyester as a low shrinkage component to improve the color developability. In that case, when the content of the sulfonate group-containing compound is in the above range, the color developability can be improved without impairing the crimping performance. If the amount of the sulfonate group-containing compound on the low viscosity side is less than 0.2 mol%, the effect of improving the color developability is poor, and if it is more than 1.2 mol%, the heat shrinkability on the low viscosity side becomes too high and sufficient crimping performance is achieved. Is not expressed.
[0010]
In addition, the composite fiber of the present invention needs to have a difference in birefringence between the high melt viscosity polyester and the low melt viscosity polyester in the range of 0.02 to 0.08 as shown by the formula (1). Conventionally, in the case of a bilayer composite fiber, when both layers contain a large amount of copolymer component, it has been difficult to control the heat shrink characteristics of both layers, and it has been difficult to obtain a practical crimpable fiber. In the present invention, by appropriately controlling the molecular orientation difference between the two layers by the birefringence, an appropriate difference is given to the heat shrinkage characteristics of the two layers, and a composite fiber having sufficient crimping performance is stably collected. It became possible. If the difference in birefringence is smaller than 0.02, the crimping performance is poor, and if it is larger than 0.08, the strength of the fiber is remarkably lowered.
[0011]
The two polyesters constituting the composite fiber of the present invention must have a difference in melt viscosity at the time of spinning in order to develop the above-described difference in birefringence, and the melt viscosity of each polyester is 280 ° C. It is necessary to use a material having a difference ΔMV between 30 and 180 Pa · s as measured by the shear rate of 1000 / s as shown in the formula (3). When △ MV is within this range, both polyester components are subjected to different spinning stresses without affecting the operability of spinning, and both suitable for expressing appropriate latent crimping properties on the yarn. A difference in molecular orientation of the polyester component can be imparted during spinning.
[0012]
If ΔMV is less than 30 Pa · s, the difference in molecular orientation between the two components is small, so that sufficient crimpability cannot be expressed. On the other hand, if ΔMV is greater than 180 Pa · s, the pressure difference applied to both components in the spinneret pack is too large, and yarn bending frequently occurs immediately after spinning, leading to yarn breakage. Since the orientation becomes too low and the strength of the fiber becomes low, only those that cannot withstand practical use can be obtained.
[0013]
The degree of polymerization of these polyesters can be selected from the range used for ordinary melt spinning, but those having an intrinsic viscosity in the range of 0.4 to 0.8 are preferred.
[0014]
The composite fiber of the present invention is characterized by sufficient crisp performance and good stretchability and dyeability while containing a sulfonate group-containing compound that contributes to improving dyeability on both sides of the two-layer polyester. Therefore, the inventors of the present invention provide the melt viscosity of both polyester components and the ratio of the sulfonate group-containing compound contained in the crimping performance and spinning operability. As a result of examining the effect in detail, by adjusting the difference in the content of each sulfonate group-containing compound according to the difference in the melt viscosity of both polyester components, the above birefringence difference was satisfied, The present inventors have found a component ratio that makes it possible to produce a fiber having shrinkage performance in an industrially stable operation state, and have achieved the present invention.
[0015]
That is, the relationship between the difference ΔSIP of the sulfonate group-containing compound contained in the high melt viscosity polyester and the low melt viscosity polyester and the melt viscosity must be in the range of the above formula (4). In order to develop sufficient crimping performance, it is necessary to control the melt viscosity and the copolymerization amount that affect the heat shrinkage characteristics of each layer. In the present invention, these values, crimping performance, and spinning time are required. As a result of investigating the relationship with the operability, a fiber having a good crimping performance can be obtained without any operational problems when ΔSIP is in the range of the formula (4). When ΔSIP is smaller than this range, the heat shrinkage characteristics of both layers are approximated, and the crimping performance is insufficient. On the other hand, if ΔSIP is larger than this range, the crimping performance is reduced, but the strength is remarkably lowered, which is not preferable for practical use. In extreme cases, the yarn cannot withstand the tension during spinning, and yarn breakage frequently occurs. Is also not preferred.
[0016]
The blending ratio of both polyester components is preferably in the range of 40/60 to 60/40 in weight ratio in order to obtain good crimping performance, and if it is outside this range, sufficient crimping performance can be expressed. It becomes difficult to do.
Both polyester components contain a small amount of other components such as matting agents, antioxidants, UV absorbers, pigments, flame retardants, antibacterial agents, and conductivity-imparting agents, as long as the essential properties are not impaired. Also good.
[0017]
The conjugate fiber of the present invention can be produced by a usual conjugate spinning type melt spinning machine. First, both polyester components are merged on the back side of the spinneret so as to be a side-by-side type, and discharged from the same spinning hole for spinning. In this case, the spinning temperature is appropriately selected depending on the melt viscosity of both polyester components, but is usually preferably in the range of 280 to 310 ° C. After cooling and solidifying the spun yarn, a spinning oil agent is applied and taken up at a speed of 1000 to 4000 m / min, wound up once, and then heat drawn by a drawing machine, or the drawn yarn is continuously spun into the spinning. Then, the composite fiber of the present invention can be obtained by hot drawing.
[0018]
The draw ratio in the above step is appropriately selected according to the residual elongation of the fiber at the time of drawing, and is preferably selected so that the residual elongation after drawing is in the range of 15 to 40%. If the residual elongation is higher than this range, sufficient crimping performance is not exhibited, and if the residual elongation is lower than this range, there is an operational problem such as cutting of a single yarn during drawing, which is not preferable. .
[0019]
The fineness and the number of single yarns of the composite fiber of the present invention are not particularly limited, but are preferably selected according to the application within the range of single yarn fineness of 1 to 10 dtex and the number of single yarns of 5 to 100.
[0020]
【Example】
Next, the present invention will be specifically described with reference to examples.
In addition, the measuring method of the physical property in an Example is as follows.
(a) When measuring by birefringence POE polarizing microscope using the Belek Compensator method, place the fiber so that the straight line connecting the boundary lines of both components on the fiber surface is parallel to the light direction, and the boundary from the surface Retardation was measured at each midpoint to the line, and the birefringence of each component was calculated.
(b) Melt viscosity Measured using a flow tester CFT500 manufactured by Shimadzu Corporation under conditions of a temperature of 280 ° C. and a shear rate of 1000 / s.
(c) Crimp recovery stress fiber was squeezed 5 times with a measuring machine with a circumference of 1.125m, doubled, left to stand for 30 minutes under a load of 1 / 6000g / dtex, then treated with boiling water for 30 minutes and dried After that, the tensile speed of the universal tensile tester Tensilon RTC1210 manufactured by Orientec Co., Ltd. was increased to 100 mm / min, the sample was stretched to a stress of (fineness x 2) g, and recovered at the same speed. The stress measurement value at the intersection of the stress recovery curve and the line drawn on the stress curve side at an angle of 45 degrees from the intersection with the 0 g stress line was read. A sample having this value of 0.013 cN / dtex or more was accepted.
(d) A 56dtex / 24f polyethylene terephthalate drawn yarn is used for the dyeable warp yarn, the evaluation yarn is used for the weft yarn, and the fabric is woven into a plain weave structure. Dyeing is performed using ml / l and sodium acetate 0.2 g / l at a temperature of 100 ° C. for 30 minutes. The sample of Reference Example 1 is graded 5, and the staining density of each sample is compared and evaluated in 10 stages. Grade 5 or higher was accepted.
(e) Evaluation of stretchability and soft feeling The samples used for dyeability evaluation were subjected to sensory evaluation by 10 panelists. The sample of the reference example 2 was made into 5 points, the score of each sample was compared and evaluated in 10 steps, the average value of 10 people was set as the evaluation value, and 5 points or more were passed.
[0021]
Examples 1-5, Comparative Examples 1-5
Polyethylene terephthalate was copolymerized with 5-sodium sulfoisophthalic acid (hereinafter SIP) in the proportions shown in Table 1, and both components A and B having the melt viscosity values shown in Table 1 were equally weighted into the compound spinning melt extruder. Supply and melt at a spinning temperature of 295 ° C, join the two components together on the back of the spinneret with 24 spinning holes, spun it into a side-by-side mold, spin and cool and solidify, then give the yarn while applying spinning oil The strips were focused and scraped off by a scraper through a take-up roller with a surface speed of 3400 m / min.
Next, the obtained fiber was supplied to a drawing machine and drawn 1.45 times through a roller having a surface temperature of 80 ° C. and a hot plate having a temperature of 150 ° C. to obtain a composite fiber of 110 dtex / 24f.
[0022]
Reference example 1
Polyester component with 1.0 mol% of SIP copolymerized with polyethylene terephthalate and having a melt viscosity of 210 Pa · s is fed to an ordinary melt extruder, melted at a spinning temperature of 295 ° C, and a spinneret having 24 spinning holes. Spinning was performed to obtain 110 dtex / 24f fiber in the same manner as in Examples 1 to 5.
[0023]
Reference example 2
A composite fiber of 110 dtex / 24f was obtained in the same manner as in Examples 1 to 5, using polyethylene terephthalate containing no copolymerization component and an A component having a melt viscosity of 200 Pa · s and a B component having a melt viscosity of 50 Pa · s.
The evaluation results of Examples 1 to 5 and Comparative Examples 1 to 5 are shown together in Table 1.
[0024]
[Table 1]
Figure 0004477736
[0025]
As can be seen from Table 1, in Examples 1 to 5, fibers having good stretchability and soft feeling and good dyeability were obtained.
[0026]
On the other hand, Comparative Example 1 has a small difference in birefringence because the difference in melt viscosity between the two components is small, and Comparative Example 2 has a low crimp performance because both have a small difference in SIP amount. Lacked stretchability. In Comparative Example 3, the difference in melt viscosity between the two components is too large, and in Comparative Example 4, the difference in SIP amount between the two components is too large, resulting in unstable spinning condition such as yarn breakage during spinning. Was insufficient. In Comparative Example 5, the amount of SIP of the low-viscosity component was too small, and the amount of SIP of the entire fiber was also small, so the dyeability was insufficient.
[0027]
【The invention's effect】
According to the present invention, there is provided a polyester composite fiber that is a stretchable woven or knitted fabric having a soft texture with good color development as well as good color developability by dyeing after knitting and weaving, and a method for producing the same. Is done.

Claims (2)

リエチレンテレフタレートを主体とし、スルホン酸塩基含有化合物を共重合体成分として含有する、溶融粘度の異なる2種のポリエステルが互いにサイドバイサイド型に複合された繊維であり、スルホン酸塩基含有化合物の含有量が繊維全体の全酸成分に対して1.0モル%以上であり、かつ、高溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量が低溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量より多く、さらに、前記2種のポリエステルの複屈折率とスルホン酸塩基含有化合物の割合が、下記式(1)、(2)を満足することを特徴とするストレッチ性織編物用ポリエステル複合繊維。
0.02≦△nH−△nL≦0.08・・・(1)
0.2≦SIPL≦1.2・・・(2)
ただし、
△nH:高溶融粘度ポリエステルの複屈折率
△nL:低溶融粘度ポリエステルの複屈折率
SIPL:低溶融粘度ポリエステルの全酸成分に対するスルホン酸塩基含有化合物の割合(モル%)
Mainly the port triethylene terephthalate, containing sulfonate group-containing compound as a copolymer component, two polyesters having different melting viscosity of fibers complexed in a side-by-side type one another, the content of the sulfonate group-containing compound 1.0 mol% or more based on the total acid component of the entire fiber, and the content of the sulfonate group-containing compound in the high melt viscosity polyester is greater than the content of the sulfonate group-containing compound in the low melt viscosity polyester, Furthermore, the polyester composite fiber for stretchable woven and knitted fabrics characterized in that the birefringence of the two kinds of polyesters and the ratio of the sulfonate group-containing compound satisfy the following formulas (1) and (2).
0.02 ≦ ΔnH−ΔnL ≦ 0.08 (1)
0.2 ≦ SIPL ≦ 1.2 (2)
However,
ΔnH: birefringence of high melt viscosity polyester ΔnL: birefringence of low melt viscosity polyester SIPL: ratio of sulfonate group-containing compound to all acid components of low melt viscosity polyester (mol%)
ポリエチレンテレフタレートを主体とし、スルホン酸塩基含有化合物を共重合体成分として含有する、溶融粘度の異なる2種のポリエステルが互いにサイドバイサイド型に複合された繊維を製造するに際し、高溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量が低溶融粘度ポリエステルにおけるスルホン酸塩基含有化合物の含有量より多く、かつ2種のポリエステルの溶融粘度と、スルホン酸塩基含有化合物の割合が、下記式(3)、(4)を満足するようにすることを特徴とするストレッチ性織編物用ポリエステル複合繊維の製造方法。
30≦△MV≦180・・・(3)
0.5−1.2×10−3×△MV≦△SIP≦1.5−1.2×10−3×△MV・・・(4)
ただし、
△MV:2種のポリエステルの温度280℃、せん断速度1000/sにおける溶融粘度差(Pa・s)
△SIP:高溶融粘度ポリエステルと低溶融粘度ポリエステル中のスルホン酸塩基含有化合物のそれぞれの全酸成分に対する割合の差(モル%)
When manufacturing a fiber composed mainly of polyethylene terephthalate and containing a sulfonate group-containing compound as a copolymer component in which two types of polyesters having different melt viscosities are combined in a side-by-side manner, the sulfonate group in the high melt viscosity polyester The content of the containing compound is larger than the content of the sulfonate group-containing compound in the low melt viscosity polyester, and the melt viscosity of the two polyesters and the ratio of the sulfonate group-containing compound are the following formulas (3) and (4): A method for producing a polyester composite fiber for stretch woven or knitted fabric characterized by satisfying the above.
30 ≦ ΔMV ≦ 180 (3)
0.5-1.2 × 10 −3 × ΔMV ≦ ΔSIP ≦ 1.5-1.2 × 10 −3 × ΔMV (4)
However,
ΔMV: Melt viscosity difference (Pa · s) of two polyesters at a temperature of 280 ° C. and a shear rate of 1000 / s
ΔSIP: Difference in the ratio of the sulfonate group-containing compound in the high melt viscosity polyester and the low melt viscosity polyester to the total acid components (mol%)
JP2000042726A 2000-02-21 2000-02-21 Polyester composite fiber for stretch woven and knitted fabric and its production method Expired - Lifetime JP4477736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042726A JP4477736B2 (en) 2000-02-21 2000-02-21 Polyester composite fiber for stretch woven and knitted fabric and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042726A JP4477736B2 (en) 2000-02-21 2000-02-21 Polyester composite fiber for stretch woven and knitted fabric and its production method

Publications (2)

Publication Number Publication Date
JP2001234432A JP2001234432A (en) 2001-08-31
JP4477736B2 true JP4477736B2 (en) 2010-06-09

Family

ID=18565760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042726A Expired - Lifetime JP4477736B2 (en) 2000-02-21 2000-02-21 Polyester composite fiber for stretch woven and knitted fabric and its production method

Country Status (1)

Country Link
JP (1) JP4477736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562907B2 (en) * 2000-11-06 2010-10-13 日本エステル株式会社 Polyester composite fiber for stretch woven and knitted fabric and method for producing the same

Also Published As

Publication number Publication date
JP2001234432A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4870795B2 (en) Manufacturing method of composite fiber
JP3473890B2 (en) Polyester composite fiber
KR20080096810A (en) Conjugated fiber containing yarn
JP2001288621A (en) Polyester-based conjugate fiber
JP4477736B2 (en) Polyester composite fiber for stretch woven and knitted fabric and its production method
JP3736298B2 (en) Blended yarn
JP4602856B2 (en) Latent crimped polyester composite fiber
KR101866688B1 (en) Rayon-like polyester composite yarn having excellent melange effect, drapability and high elasticity and manufacturing method thereof
JP4923173B2 (en) Polyester knitted fabric
JP4226144B2 (en) Polyester composite fiber for stretch woven and knitted fabric
JP4562907B2 (en) Polyester composite fiber for stretch woven and knitted fabric and method for producing the same
JP4123646B2 (en) Polyester fiber yarn and fabric
JP2002061029A (en) Polyester conjugate fiber and method for producing the same
JP2006348426A (en) Polyester conjugate fiber
JP4699072B2 (en) Stretch polyester composite fiber
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
KR101850628B1 (en) Rayon-like polyester composite yarn having excellent drapability and high elasticity and manufacturing method thereof
JP2001064827A (en) Polyester conjugate fiber for stretchable woven or knitted fabric
JP2007046212A (en) Conjugate yarn and fabric product containing the same
JP4733879B2 (en) Polyester composite patchy yarn with latent crimp performance
JP2002302836A (en) Spun yarn including latently crimpable fiber
JP2004003052A (en) Polyester conjugate fiber for stretchable woven or knitted fabric
JP2004003053A (en) Polyester conjugate fiber for stretchable woven or knitted fabric
JPH07150429A (en) Spun yarn and woven fabric having stretchability
JP4866110B2 (en) Blended yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Ref document number: 4477736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term