JP4475968B2 - Vacuum evaporation machine - Google Patents

Vacuum evaporation machine Download PDF

Info

Publication number
JP4475968B2
JP4475968B2 JP2004020950A JP2004020950A JP4475968B2 JP 4475968 B2 JP4475968 B2 JP 4475968B2 JP 2004020950 A JP2004020950 A JP 2004020950A JP 2004020950 A JP2004020950 A JP 2004020950A JP 4475968 B2 JP4475968 B2 JP 4475968B2
Authority
JP
Japan
Prior art keywords
vapor deposition
vapor
hole
vacuum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004020950A
Other languages
Japanese (ja)
Other versions
JP2005213570A (en
Inventor
進 神川
裕彦 森崎
宏三 和田
悦郎 平井
敏郎 小林
光雄 加藤
竜也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004020950A priority Critical patent/JP4475968B2/en
Priority to KR1020050007845A priority patent/KR100669062B1/en
Priority to CNB2005100063995A priority patent/CN100510163C/en
Priority to TW094102723A priority patent/TWI266808B/en
Publication of JP2005213570A publication Critical patent/JP2005213570A/en
Application granted granted Critical
Publication of JP4475968B2 publication Critical patent/JP4475968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、基板等の被蒸着体に蒸着材料を蒸着させて、薄膜を形成する真空蒸着機に関する。   The present invention relates to a vacuum deposition machine for forming a thin film by depositing a deposition material on a deposition target such as a substrate.

真空蒸着機は、真空容器内に蒸着材料と被蒸着体を配置し、真空容器内を減圧した状態で、蒸着材料を加熱、溶融して蒸発又は昇華により気化させ、気化された蒸着材料を被蒸着体の表面に堆積させて薄膜を形成するものである。上記真空蒸着機では、蒸着材料の加熱方法としては、蒸着材料を入れたるつぼを外部ヒータにより加熱する外熱るつぼ法等が用いられている。近年では、真空蒸着機を用いることで、金属の蒸着による金属薄膜の形成に限らず、有機物の蒸着による有機薄膜や複数の有機物を用いた共蒸着による高分子薄膜の形成が行われており、例えば、フラットパネルディスプレイ(以下、FPDと略す。)の有機エレクトロルミネセンス素子(以下、有機EL素子と略す。)の形成等に用いられている。   A vacuum deposition machine arranges a deposition material and an object to be deposited in a vacuum vessel, heats and melts the deposition material in a state where the inside of the vacuum vessel is decompressed, and vaporizes it by evaporation or sublimation. The thin film is formed by depositing on the surface of the vapor deposition body. In the vacuum vapor deposition machine, as an evaporation material heating method, an externally heated crucible method in which a crucible containing the evaporation material is heated by an external heater is used. In recent years, by using a vacuum deposition machine, not only the formation of a metal thin film by vapor deposition of a metal, but also the formation of an organic thin film by vapor deposition of an organic substance or a polymer thin film by co-evaporation using a plurality of organic substances, For example, it is used for forming an organic electroluminescence element (hereinafter abbreviated as an organic EL element) of a flat panel display (hereinafter abbreviated as FPD).

特開平10−152777号公報JP-A-10-152777

近年、FPDの普及に伴い、FPD基板の大型化が進んでいる。FPD基板が大型になるにしたがい、気化された蒸着材料の均一な濃度分布、流れを形成することが難しくなり、FPD基板上での均一な蒸着が難しく、むらが出やすいという問題が起こっている。例えば、有機系の蒸着材料に対しては、制御の容易さから、上記外熱るつぼ法を用いるものが多く、蒸着材料の温度制御や蒸着材料と基板との間に設けたシャッタの開閉量の制御等により、蒸着材料からの蒸気量を制御している。しかしながら、上記方法では、全体の蒸気量は制御することはできても、大型のFPD基板の幅方向に対する蒸気量は制御することは難しく、蒸着による均一な薄膜を得ることが難しくなってきている。   In recent years, with the widespread use of FPDs, the size of FPD substrates has been increasing. As the FPD substrate becomes larger, it becomes difficult to form a uniform concentration distribution and flow of the vaporized vapor deposition material, and it is difficult to perform uniform vapor deposition on the FPD substrate and unevenness is likely to occur. . For example, for organic vapor deposition materials, the above-mentioned externally heated crucible method is often used for ease of control, and the temperature control of the vapor deposition material and the opening / closing amount of the shutter provided between the vapor deposition material and the substrate are limited. The amount of vapor from the vapor deposition material is controlled by control or the like. However, in the above method, although the total amount of vapor can be controlled, it is difficult to control the amount of vapor in the width direction of a large FPD substrate, and it has become difficult to obtain a uniform thin film by vapor deposition. .

本発明は上記課題に鑑みなされたもので、大型基板においても、蒸着材料の蒸気分布を制御すると共に、均一な流れを形成して、蒸着による均一な薄膜を得ることができる真空蒸着機を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a vacuum vapor deposition machine capable of controlling the vapor distribution of vapor deposition material and forming a uniform flow to obtain a uniform thin film by vapor deposition even on a large substrate. The purpose is to do.

上記課題を解決する本発明に係る真空蒸着機は、
真空容器内に設けられ、基板を搬送する搬送手段と、
前記基板の下面側に設けられ、少なくとも、前記基板の搬送方向に垂直な方向である板幅方向の被蒸着領域の長さを有する蒸着室と、
前記真空容器の下方側に設けられ、複数の蒸着材料を気化又は昇華させて、前記複数の蒸着材料の蒸気を発生させる複数の蒸発室と、
少なくとも、前記基板の前記板幅方向の被蒸着領域の長さを有すると共に、前記基板の前記板幅方向における前記蒸発室からの前記蒸着材料の蒸気量を制御する複数の蒸気量制御手段と、
前記複数の蒸気量制御手段が面し、前記蒸着材料の蒸気が混合される混合室と、
少なくとも、前記基板の前記板幅方向の被蒸着領域の長さを有すると共に、前記蒸気量制御手段の上方側である前記基板の下面側に、前記基板の被蒸着面に平行に配置され、前記蒸着室における前記蒸着材料の蒸気の分布及び流れを整える蒸気整流手段と、
前記蒸発室から前記蒸着室までの真空容器の壁面を加熱する加熱手段とを有し、
前記蒸気量制御手段は、
前記基板の前記板幅方向に、複数の入口孔及びそれに対応する複数の出口孔を備えたブロックと、
前記ブロック内に各々回転可能に嵌合され、前記基板の前記板幅方向に複数に分割されて配設された円柱形状のシャッタシャフトと、
各々の前記シャッタシャフトに設けられ、前記1つの入口孔とそれに対応する前記1つの出口孔とを連通する連通孔とを有し、
前記シャッタシャフト各々を独立して回転させることにより、前記板幅方向の蒸気量を各々制御するものであり、
前記蒸気整流手段は、
複数の第1の貫通孔を備えた固定板と、
前記複数の第1の貫通孔の開口面積を制御する複数の第2の貫通孔を備え、前記固定板の平面上を前記基板の前記板幅方向に各々可動に、複数に分割されて配置され可動板とを有し、
前記可動板各々を独立して移動させることにより、前記板幅方向の蒸気量を各々制御するものであることを特徴とする。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
A conveying means provided in the vacuum container for conveying the substrate;
A deposition chamber provided on the lower surface side of the substrate, and having at least the length of the deposition region in the plate width direction which is a direction perpendicular to the transport direction of the substrate;
A plurality of evaporation chambers provided on the lower side of the vacuum vessel, and vaporizing or sublimating a plurality of vapor deposition materials to generate vapors of the plurality of vapor deposition materials;
A plurality of vapor amount control means for controlling the vapor amount of the vapor deposition material from the evaporation chamber in the plate width direction of the substrate, and at least the length of the deposition region in the plate width direction of the substrate;
A mixing chamber facing the plurality of vapor amount control means and in which the vapor of the vapor deposition material is mixed;
At least the length of the vapor deposition region in the plate width direction of the substrate, and disposed on the lower surface side of the substrate on the upper side of the vapor amount control means, parallel to the vapor deposition surface of the substrate, Vapor rectifying means for adjusting the distribution and flow of vapor of the vapor deposition material in the vapor deposition chamber;
Heating means for heating the wall surface of the vacuum vessel from the evaporation chamber to the vapor deposition chamber,
The steam amount control means includes
A block having a plurality of inlet holes and a plurality of outlet holes corresponding thereto in the plate width direction of the substrate;
And wherein each is rotatably fitted in the block, the shutter shafts cylindrical arranged is divided into a plurality of the plate width direction of the substrate,
Provided in each of the shutter shafts, and having a communication hole communicating the one inlet hole and the corresponding one outlet hole,
Each of the shutter shafts is independently rotated to control the amount of steam in the plate width direction.
The steam rectifying means is
A fixing plate having a plurality of first through holes;
Comprising a plurality of second through holes for controlling the opening area of the plurality of first through holes, each movable on a plane of the fixing plate to the plate width direction before Symbol substrate, arranged is divided into a plurality It has been to have the movable plate,
By independently moving the movable plate, respectively, characterized in der Rukoto which each control the steam amount of the plate width direction.

上記課題を解決する本発明に係る真空蒸着機は、
上記真空蒸着機において、
前記蒸気量制御手段は、
前記シャッタシャフトの内部又は外部に、前記シャッタシャフトを回転させる回転手段を有することを特徴とする。
回転手段としては、例えば、シャッタシャフトの内部や外部に、歯車やノブ等の突設部分を設け、この突設部を回転軸等の回転運動により回転させることで、シャッタシャフト自体を回転させる。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
In the above vacuum evaporator,
The steam amount control means includes
Rotating means for rotating the shutter shaft is provided inside or outside the shutter shaft.
As the rotating means, for example, a protruding portion such as a gear or a knob is provided inside or outside the shutter shaft, and the shutter shaft itself is rotated by rotating the protruding portion by a rotating motion such as a rotating shaft.

上記課題を解決する本発明に係る真空蒸着機は、
上記真空蒸着機において、
前記蒸気整流手段は
前記第1の貫通孔及び前記第2の貫通孔を所定間隔で配置すると共に、前記第1の貫通孔及び前記第2の貫通孔の開口幅が、前記可動板の移動方向に垂直な方向において同一であることを特徴とする。
上記貫通孔の開口幅が、可動板の移動方向に垂直な方向において同一なものとしては、矩形状の貫通孔が該当する。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
In the above vacuum evaporator,
It said vapor rectifier means,
The first through hole and the second through hole are arranged at a predetermined interval, and an opening width of the first through hole and the second through hole is perpendicular to a moving direction of the movable plate. It is characterized by being identical.
A rectangular through hole corresponds to the same opening width of the through hole in the direction perpendicular to the moving direction of the movable plate.

上記課題を解決する本発明に係る真空蒸着機は、
前記蒸気整流手段は
前記第1の貫通孔及び前記第2の貫通孔を所定間隔で配置すると共に、前記第1の貫通孔及び前記第2の貫通孔の開口幅が、前記可動板の移動方向に垂直な方向において異なることを特徴とする。
上記貫通孔の開口幅が、可動板の移動方向に垂直な方向において異なるものとしては、円形、楕円形等の貫通孔が該当する。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
It said vapor rectifier means,
The first through hole and the second through hole are arranged at a predetermined interval, and an opening width of the first through hole and the second through hole is perpendicular to a moving direction of the movable plate. It is characterized by being different.
A circular or elliptical through-hole corresponds to a case where the opening width of the through-hole differs in a direction perpendicular to the moving direction of the movable plate.

上記課題を解決する本発明に係る真空蒸着機は、
上記真空蒸着機において、
前記蒸気整流手段は、
前記第2の貫通孔を、所定間隔で配置した複数のスリットとしたことを特徴とする。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
In the above vacuum evaporator,
The steam rectifying means is
Said second through-hole, you characterized in that a plurality of slits arranged at predetermined intervals.

上記課題を解決する本発明に係る真空蒸着機は、
上記真空蒸着機において、
前記蒸気整流手段は、
前記所定間隔を、前記蒸着室内における前記蒸着材料の蒸気の分布が均一になるような間隔としたことを特徴とする。
例えば、蒸気整流手段の下方側(蒸発室側)での蒸着材料の蒸気の分布が、基板の板幅方向において均一であれば、均等な間隔で貫通孔を配置すればよいし、分布に偏りがある場合には、その偏り具合により、貫通孔を配置する間隔を変更すればよい。
The vacuum vapor deposition machine according to the present invention that solves the above problems is as follows.
In the above vacuum evaporator,
The steam rectifying means is
The predetermined interval is characterized in that the vapor distribution of the vapor deposition material in the vapor deposition chamber is uniform.
For example, if the vapor distribution of the vapor deposition material on the lower side (evaporation chamber side) of the vapor rectifying means is uniform in the plate width direction of the substrate, the through holes may be arranged at equal intervals, and the distribution is biased. If there is, the interval at which the through holes are arranged may be changed depending on the degree of deviation.

本発明によれば、ガラス基板の板幅方向に、蒸着材料の蒸気量を制御したり、その流れを整流したりする手段を有するので、板幅方向の蒸着分布の制御が可能となり、蒸着の均一化を行うことができる。   According to the present invention, since it has means for controlling the vapor amount of the vapor deposition material and rectifying the flow in the plate width direction of the glass substrate, it becomes possible to control the vapor deposition distribution in the plate width direction. Uniformity can be achieved.

又、本発明によれば、複数の蒸着材料の蒸気量を各々独立して制御するので、共蒸着において所望の混合比率を得ることができると共に、ガラス基板の板幅方向における混合比率も均一なものとすることができ、蒸着面全面に均一な所望の組成比率の蒸着薄膜を得ることができる。   In addition, according to the present invention, since the vapor amounts of the plurality of vapor deposition materials are controlled independently, a desired mixing ratio can be obtained in the co-deposition, and the mixing ratio in the plate width direction of the glass substrate is also uniform. It is possible to obtain a vapor deposition thin film having a uniform desired composition ratio on the entire vapor deposition surface.

本発明は、真空蒸着機に、蒸発室側から基板側へ流入する蒸着材料の蒸気量を、基板の板幅方向において均一に制御する蒸気量制御手段(スプールシャッタ)と、基板の下面側に、基板の被蒸着面に平行に配置され、蒸着室内の蒸着材料の蒸気の面内分布及び流れを整える蒸気整流手段(多孔板シャッタ)とを設けることで、基板の板幅方向の蒸着材料の蒸気の分布、流れを制御して、蒸着の均一化を図るものである。   The present invention provides a vapor deposition control means (spool shutter) for uniformly controlling the vapor amount of the vapor deposition material flowing from the evaporation chamber side to the substrate side in the plate width direction of the substrate, and the lower surface side of the substrate. And a vapor rectifying means (perforated plate shutter) arranged in parallel to the deposition surface of the substrate and regulating the in-plane distribution and flow of the vapor of the vapor deposition material in the vapor deposition chamber. The vapor distribution and flow are controlled to achieve uniform deposition.

図1は、本発明に係る真空蒸着機を複数用いたインライン成膜装置の概略の平面図である。
以下、実施形態の一例として、FPDにおける有機EL素子の形成を例にとって説明を行うが、本発明に係る真空蒸着機は、これに限定されるものでなく、他の基板における他の薄膜の形成も行うことができるものである。又、本発明は、大型の基板に好適なものである。
FIG. 1 is a schematic plan view of an in-line film forming apparatus using a plurality of vacuum deposition apparatuses according to the present invention.
Hereinafter, as an example of the embodiment, description will be given by taking the formation of an organic EL element in an FPD as an example. However, the vacuum deposition apparatus according to the present invention is not limited to this, and formation of another thin film on another substrate. Can also be done. The present invention is suitable for a large substrate.

図1に示すインライン成膜装置は、FPDにおける有機EL素子の形成をインラインで行うために構成されたものであり、処理室毎にゲートドア1を設けて、各々の処理室において異なる真空条件下で、各々目的にあったプロセスを実行できるように構成されている。   The in-line film forming apparatus shown in FIG. 1 is configured to perform in-line formation of organic EL elements in an FPD. A gate door 1 is provided for each processing chamber, and each processing chamber is operated under different vacuum conditions. , Each process is configured to be executed.

具体的には、FPDとなるガラス基板が、図1中の左側から、図示しない搬送ローラにより搬送され、ゲートドア1を通って、マスク装着室2へ搬送される。マスク装着室2では、有機EL素子のパターンを形成するために用いるマスクが、マスクストッカ2aから搬送されて、ガラス基板に装着されると共に、図示しない真空ポンプを用いて、大気から真空への減圧が行われる。   Specifically, a glass substrate that becomes an FPD is transported from the left side in FIG. 1 by a transport roller (not shown), and transported to the mask mounting chamber 2 through the gate door 1. In the mask mounting chamber 2, the mask used for forming the pattern of the organic EL element is transferred from the mask stocker 2a and mounted on the glass substrate, and the pressure is reduced from the atmosphere to the vacuum using a vacuum pump (not shown). Is done.

所定の真空度へ達した後、マスクが装着されたガラス基板は、順次、成膜室3a、3b、3cへ搬送される。これらの成膜室3a、3b、3cにおいて、後述する本発明に係る真空蒸着機が用いられており、図1のインライン成膜装置では、有機EL素子の発光層を形成するために、3つの成膜室3a、3b、3cを直列に接続した構成である。なお、成膜室の数、構成は、形成する薄膜の積層数やその目的に応じて、その順序や数、成膜される薄膜自体を適切に組み合わせて構成する。   After reaching a predetermined degree of vacuum, the glass substrate on which the mask is mounted is sequentially transferred to the film forming chambers 3a, 3b, and 3c. In these film forming chambers 3a, 3b and 3c, a vacuum vapor deposition apparatus according to the present invention which will be described later is used. In the in-line film forming apparatus of FIG. 1, three light emitting layers for organic EL elements are formed. The film forming chambers 3a, 3b, 3c are connected in series. Note that the number and structure of the film forming chambers are configured by appropriately combining the order and number of the thin films themselves to be formed in accordance with the number of thin films to be formed and the purpose thereof.

成膜室3a、3b、3cにおいて成膜を行った後、ガラス基板はマスク脱着室4へ搬送される。マスク脱着室4では、成膜室3a、3b、3cにて用いたマスクを脱離すると共に、次の処理室(Alスパッタ室6)で用いる新たなマスクを、マスクストッカ4aから搬送して装着する。なお、マスク脱着室4で脱離されたマスクは、マスククリーニング室5において、O2プラズマ等を用いてクリーニングされ、その後、マスクストッカ5aに搬送される。 After the film formation is performed in the film formation chambers 3a, 3b, and 3c, the glass substrate is transferred to the mask desorption chamber 4. In the mask desorption chamber 4, the mask used in the film formation chambers 3a, 3b, and 3c is detached, and a new mask used in the next processing chamber (Al sputtering chamber 6) is transported from the mask stocker 4a and mounted. To do. The mask detached in the mask desorption chamber 4 is cleaned in the mask cleaning chamber 5 using O 2 plasma or the like, and then transferred to the mask stocker 5a.

新たなマスクが装着されたガラス基板はAlスパッタ室6へ搬送され、Alスパッタ室6において、有機EL素子の発光層への配線となる金属薄膜が形成される。その後、マスク除去室7へ搬送され、ここで、マスクが脱離され、脱離されたマスクはマスクストッカ7aへ、ガラス基板は封止室8へ搬送される。封止室8では、封止材供給室8aから供給された封止材を用いて、成膜により形成された有機EL素子の封止を行う。封止を行った後、ガラス基板は封止室8から搬送される。   The glass substrate on which the new mask is mounted is transferred to the Al sputtering chamber 6, and a metal thin film serving as a wiring to the light emitting layer of the organic EL element is formed in the Al sputtering chamber 6. Thereafter, the mask is transferred to the mask removal chamber 7, where the mask is detached, the removed mask is transferred to the mask stocker 7 a, and the glass substrate is transferred to the sealing chamber 8. In the sealing chamber 8, the organic EL element formed by film formation is sealed using the sealing material supplied from the sealing material supply chamber 8a. After sealing, the glass substrate is transferred from the sealing chamber 8.

図2は、図1における成膜室3a、3b、3cの構成の一実施例を示す概略図であり、各々の成膜室3a、3b、3cが、本発明に係る真空蒸着機により構成されたものである。なお、成膜室3a、3cは、各々1つの蒸着材料を用いた真空蒸着機であり、成膜室3bは、2つの蒸着材料を用いた共蒸着のための真空蒸着機である。又、図3に、成膜室3bの内部構成を図示した。   FIG. 2 is a schematic view showing an example of the configuration of the film forming chambers 3a, 3b, and 3c in FIG. 1, and each of the film forming chambers 3a, 3b, and 3c is configured by the vacuum vapor deposition apparatus according to the present invention. It is a thing. The film formation chambers 3a and 3c are each a vacuum vapor deposition machine using one vapor deposition material, and the film formation chamber 3b is a vacuum vapor deposition machine for co-vapor deposition using two vapor deposition materials. FIG. 3 shows the internal configuration of the film forming chamber 3b.

図2に示すように、搬送機11(搬送手段)は、ガラス基板12が搬送される方向に、駆動ローラ11aとフリーローラ11bを、複数組み合わせて構成したものであり、図示しない上部チャンバ(真空容器)内に設けられたものである。成膜室3a、3b、3cにて成膜処理を行う際には、成膜される薄膜の膜厚が、ガラス基板12の搬送方向に沿って均一になるように、搬送機11が一定の所定速度でガラス基板12を移動させている。なお、駆動ローラ11a、フリーローラ11bは、ガラス基板12の成膜部分に接触しないように、ガラス基板12の両端の位置に配置されて、ガラス基板12を支持している。   As shown in FIG. 2, the transport machine 11 (transport means) is configured by combining a plurality of drive rollers 11 a and free rollers 11 b in the direction in which the glass substrate 12 is transported. Container). When the film forming process is performed in the film forming chambers 3a, 3b, and 3c, the transfer device 11 is fixed so that the film thickness of the thin film to be formed becomes uniform along the transfer direction of the glass substrate 12. The glass substrate 12 is moved at a predetermined speed. The driving roller 11a and the free roller 11b support the glass substrate 12 by being arranged at both ends of the glass substrate 12 so as not to contact the film forming portion of the glass substrate 12.

ガラス基板12の薄膜の搬送方向の膜厚の厚さ及び均一性は、搬送機11による移動速度を調整することで、所望の条件に調整することが可能であるが、ガラス基板12が大型になるにしたがい、ガラス基板12の搬送方向に垂直な方向(以降、板幅方向Lと呼ぶ。板幅方向Lについては、図3を参照。)の膜厚、つまり、板幅方向Lのガラス基板12の蒸着薄膜の均一性が、従来の真空蒸着機では問題となっていた。本発明は、板幅方向Lの蒸着薄膜の均一性を改善するため、後述する図4乃至図8の蒸気量制御手段や蒸気整流手段等を用いて、図2、図3の構成とすることで、本発明に係る真空蒸着機を構成している。   The thickness and uniformity of the thickness of the thin film of the glass substrate 12 in the transport direction can be adjusted to desired conditions by adjusting the moving speed by the transport machine 11, but the glass substrate 12 becomes large. Accordingly, the film thickness in the direction perpendicular to the conveying direction of the glass substrate 12 (hereinafter referred to as the plate width direction L. Refer to FIG. 3 for the plate width direction L), that is, the glass substrate in the plate width direction L. The uniformity of the 12 deposited thin films has been a problem with conventional vacuum deposition machines. In order to improve the uniformity of the deposited thin film in the plate width direction L, the present invention is configured as shown in FIGS. 2 and 3 using the steam amount control means and the steam rectifying means shown in FIGS. Thus, the vacuum vapor deposition apparatus according to the present invention is configured.

成膜室3aは、図2に示すように、蒸発室18から蒸着室25aまでの壁面が複数のヒータ13(加熱手段)により加熱されたチャンバ14a(真空容器)を有している。チャンバ14aは、所謂、ホットウォールチャンバと呼ばれるものであり、気化された蒸着材料15がガラス基板12に到達する途中の過程で、壁面等に蒸着しないような構成になっており、図示しない複数の温度センサを用いて、蒸着材料15が蒸着しない温度に制御されている。このようなホットウォールチャンバを用いた場合、蒸着材料の蒸気の利用効率が向上すると共に、成膜速度も向上する。ガラス基板12の下面側に設けられたチャンバ14aの蒸着室25aは、ガラス基板12の板幅方向Lの方向に長いものであり、少なくとも、ガラス基板12の板幅方向Lの被蒸着領域の長さを有する。   As shown in FIG. 2, the film forming chamber 3a includes a chamber 14a (vacuum container) in which the wall surface from the evaporation chamber 18 to the vapor deposition chamber 25a is heated by a plurality of heaters 13 (heating means). The chamber 14a is a so-called hot wall chamber, and is configured such that the vaporized deposition material 15 is not deposited on the wall surface or the like in the course of reaching the glass substrate 12, and a plurality of unillustrated pluralities are shown. The temperature sensor is used to control the temperature at which the vapor deposition material 15 is not vapor deposited. When such a hot wall chamber is used, the use efficiency of the vapor of the vapor deposition material is improved and the film formation rate is also improved. The vapor deposition chamber 25a of the chamber 14a provided on the lower surface side of the glass substrate 12 is long in the direction of the plate width direction L of the glass substrate 12, and at least the length of the deposition region of the glass substrate 12 in the plate width direction L. Have

又、図2に示すように、チャンバ14aの下方側から、蒸着材料15を有し、蒸着材料15を気化又は昇華させて、蒸着材料15の蒸気を発生させる蒸発室18(所謂、るつぼの部分)と、蒸発室18からガラス基板12側への蒸着材料15の蒸気量を、ガラス基板12の板幅方向Lにおいて、均一な分布に制御するスプールシャッタ21(蒸気量制御手段)と、複数の貫通孔を有する固定板及び可動板から構成され、蒸着室25a内での蒸着材料15の蒸気の面内分布及び流れを整えて、均一に調整する多孔板シャッタ23(蒸気整流手段)と、上記貫通孔より小さい貫通孔を複数有し、蒸着材料15の蒸気の面内分布及び流れを更に整える多孔整流板24とが、ガラス基板12側へ向かって順に配置されている。   Further, as shown in FIG. 2, an evaporation chamber 18 (so-called crucible portion) that has a vapor deposition material 15 from the lower side of the chamber 14 a and vaporizes or sublimates the vapor deposition material 15 to generate vapor of the vapor deposition material 15. ), A spool shutter 21 (vapor amount control means) that controls the vapor amount of the vapor deposition material 15 from the evaporation chamber 18 to the glass substrate 12 side in the plate width direction L of the glass substrate 12, and a plurality of A perforated plate shutter 23 (steam rectifying means), which is composed of a fixed plate and a movable plate having a through hole, adjusts the in-plane distribution and flow of the vapor of the vapor deposition material 15 in the vapor deposition chamber 25a, and adjusts uniformly. A plurality of through-holes smaller than the through-holes and a porous rectifying plate 24 that further regulates the in-plane distribution and flow of the vapor of the vapor deposition material 15 are arranged in order toward the glass substrate 12 side.

蒸着材料15の蒸気は、スプールシャッタ21、多孔板シャッタ23、そして、多孔整流板24を経て、均一な分布とされた後、蒸着室25aにおいてガラス基板12への蒸着が行われる。これらの構成部材も、蒸着室25aと同様に、ガラス基板12の板幅方向Lに、少なくともガラス基板12の被蒸着領域の板幅方向の長さと同等の長さを有する。但し、本発明の場合、後述のスプールシャッタ21、多孔板シャッタ23が板幅方向Lの蒸着の均一性を制御する機能を有するので、蒸着室18の板幅方向Lの長さは、必ずしも同等の長さでなくてもよい。   The vapor of the vapor deposition material 15 is uniformly distributed through the spool shutter 21, the perforated plate shutter 23, and the perforated flow straightening plate 24, and then vapor deposited on the glass substrate 12 in the vapor deposition chamber 25a. Similar to the vapor deposition chamber 25a, these constituent members also have a length in the plate width direction L of the glass substrate 12 that is at least equal to the length of the vapor deposition region of the glass substrate 12 in the plate width direction. However, in the case of the present invention, since the spool shutter 21 and the perforated plate shutter 23 described later have a function of controlling the uniformity of vapor deposition in the plate width direction L, the length of the vapor deposition chamber 18 in the plate width direction L is not necessarily equal. It does not have to be the length.

本実施例において、チャンバ14aとチャンバ14cは同じ構成であり、成膜する薄膜によってチャンバ14cでの蒸着材料17を、チャンバ14aでの蒸着材料15と異なるものを用いる。これらのチャンバ14a、14b、14cは、各々独立して、図示しない真空ポンプにより、真空度が適切に制御されており、例えば、クライオポンプ等を用いて高真空度を達成している。   In this embodiment, the chamber 14a and the chamber 14c have the same configuration, and the vapor deposition material 17 in the chamber 14c is different from the vapor deposition material 15 in the chamber 14a depending on the thin film to be formed. These chambers 14a, 14b, and 14c are each independently controlled to have a high degree of vacuum by a vacuum pump (not shown). For example, a high degree of vacuum is achieved using a cryopump or the like.

成膜室3bは、図2、図3に示すように、蒸発室19a、19bから蒸着室25bまでの壁面が複数のヒータ13(加熱手段)により加熱されたチャンバ14bを有し、チャンバ14bの内部に、共蒸着を行うための蒸発室19a、19bを2つ有するものである。具体的には、チャンバ14bの内部には、蒸着材料16aを有する蒸発室19aと、蒸着材料16bを有する蒸発室19bと、蒸発室19a、19bから混合室22側への蒸着材料16a、16bの蒸気量を、ガラス基板12の板幅方向Lにおいて、均一な分布に制御する2つのスプールシャッタ21と、2つのスプールシャッタ21が面し、蒸着材料16a、16bの蒸気が混合される混合室22と、複数の貫通孔を有する固定板及び可動板から構成され、蒸着室25b内での蒸着材料16a、16bの混合気の面内分布及び流れを整えて、均一に調整する多孔板シャッタ23と、上記貫通孔より小さい貫通孔を複数有し、蒸着材料16a、16bの混合気の面内分布及び流れを更に整える多孔整流板24とが、チャンバ14bの下方側からガラス基板12側へ順に配置されている。   As shown in FIGS. 2 and 3, the film forming chamber 3b includes a chamber 14b in which the wall surfaces from the evaporation chambers 19a and 19b to the vapor deposition chamber 25b are heated by a plurality of heaters 13 (heating means). Two evaporation chambers 19a and 19b for co-evaporation are provided inside. Specifically, in the chamber 14b, there are an evaporation chamber 19a having an evaporation material 16a, an evaporation chamber 19b having an evaporation material 16b, and evaporation materials 16a and 16b from the evaporation chambers 19a and 19b to the mixing chamber 22 side. Two spool shutters 21 that control the vapor amount to have a uniform distribution in the plate width direction L of the glass substrate 12, and the mixing chamber 22 in which the two spool shutters 21 face and the vapors of the vapor deposition materials 16 a and 16 b are mixed. A perforated plate shutter 23 comprising a fixed plate and a movable plate having a plurality of through-holes, and adjusting the in-plane distribution and flow of the air-fuel mixture of the vapor deposition materials 16a and 16b in the vapor deposition chamber 25b to uniformly adjust them. A porous rectifying plate 24 having a plurality of through holes smaller than the above through holes and further adjusting the in-plane distribution and flow of the mixture of the vapor deposition materials 16a and 16b is located below the chamber 14b. They are arranged in this order to the glass substrate 12 side.

蒸発室19a、19bからの蒸着材料16a、16bの蒸気は、2つのスプールシャッタ21を経て、混合室22で適切な混合比率の混合気とされ、多孔板シャッタ23、そして、多孔整流板24を経て、均一な分布とされた後、蒸着室25bにおいてガラス基板12への蒸着が行われる。この成膜室3bでは、異なる蒸着材料16a、16bを用いて、所望する組成比率を有する薄膜の成膜を行っている。   The vapors of the vapor deposition materials 16a and 16b from the evaporation chambers 19a and 19b pass through the two spool shutters 21 to become an air-fuel mixture having an appropriate mixing ratio in the mixing chamber 22, and the perforated plate shutter 23 and the perforated rectifying plate 24 are passed through. After the uniform distribution, vapor deposition on the glass substrate 12 is performed in the vapor deposition chamber 25b. In the film forming chamber 3b, a thin film having a desired composition ratio is formed using different vapor deposition materials 16a and 16b.

有機EL素子の発光層の成膜を行う場合、一方の蒸着材料にホスト材を用い、他方の蒸着材料にドープ材を用い、ホスト材に混合されるドープ材の比率を、スプールシャッタ21にて適切に制御することによって、所望の性質を有する発光層を形成することが可能となる。例えば、蒸発室19a、19bを各々独立して温度制御できるように構成した場合、蒸気温度が異なる蒸着材料16a、16bを用いて、各々異なる温度に蒸発室19a、19bを制御して、蒸着材料16a、16bの蒸気を発生させ、これらを混合室22において、所望の混合比率にて混合するようにする。このとき、混合比率が大きく異なる場合には、各々のスプールシャッタ21による蒸気量の制御範囲を最初から異なるように構成することにより、理想的な組成比率を有する薄膜を容易に形成することが可能になる。なお、本実施例では、蒸着材料を2つ用いる場合の成膜室の構成を示したが、蒸着材料を更に増やしたい場合は、蒸発室、スプールシャッタを更に増やせばよい。この場合でも、混合室への蒸気量の制御を行うスプールシャッタ21を用いることで、板幅方向Lの流入量のむらもなく、所望の混合比率で、ドープ材をホスト材に混合することができる。   When forming a light emitting layer of an organic EL element, a host material is used for one vapor deposition material, a dope material is used for the other vapor deposition material, and the ratio of the dope material mixed with the host material is determined by the spool shutter 21. By appropriately controlling, a light emitting layer having desired properties can be formed. For example, in a case where the evaporation chambers 19a and 19b can be independently controlled in temperature, the evaporation chambers 19a and 19b are controlled to different temperatures by using the evaporation materials 16a and 16b having different vapor temperatures, respectively. Steams 16a and 16b are generated and mixed in the mixing chamber 22 at a desired mixing ratio. At this time, when the mixing ratio is greatly different, it is possible to easily form a thin film having an ideal composition ratio by configuring the control range of the vapor amount by each spool shutter 21 to be different from the beginning. become. In this embodiment, the configuration of the film formation chamber in the case where two vapor deposition materials are used is shown. However, in order to increase the vapor deposition material further, the evaporation chamber and the spool shutter may be further increased. Even in this case, by using the spool shutter 21 that controls the amount of steam to the mixing chamber, the dope material can be mixed with the host material at a desired mixing ratio without unevenness of the inflow amount in the plate width direction L. .

スプールシャッタ21は、ガラス基板12の板幅方向Lにおける均一な蒸気量(濃度分布)の供給を行うものであり、同等の機能を得られれば、蒸気が通過する流路の配置、方向は特に限定しない。例えば、図3においては、スプールシャッタ21の流路の構成が、図2のものと異なるものを図示しており、この場合、スプールシャッタ21内部で流路の向きを変更して、蒸気が混合室22側へ流入する構成である。スプールシャッタ21は、蒸着材料の蒸気量を、ガラス基板の板幅方向Lにおいて均一に供給するため、板幅方向Lの方向に複数の流路を設け、これらの流路を通過する蒸気量を、各々独立して制御可能な構成とした。このような構成のスプールシャッタ21の構造及び動作を、図4を用いて詳細に説明する。又、図5は、スプールシャッタ21の他の実施例を示すものである。   The spool shutter 21 supplies a uniform amount of vapor (concentration distribution) in the plate width direction L of the glass substrate 12. If an equivalent function is obtained, the arrangement and direction of the flow path through which the vapor passes is particularly Not limited. For example, FIG. 3 shows a configuration in which the flow path of the spool shutter 21 is different from that in FIG. 2. In this case, the direction of the flow path is changed inside the spool shutter 21 to mix the steam. It is the structure which flows into the chamber 22 side. The spool shutter 21 is provided with a plurality of flow paths in the plate width direction L in order to uniformly supply the vapor amount of the vapor deposition material in the plate width direction L of the glass substrate. Each of them can be controlled independently. The structure and operation of the spool shutter 21 having such a configuration will be described in detail with reference to FIG. FIG. 5 shows another embodiment of the spool shutter 21.

図4(a)は、本発明に係る真空蒸着機を構成するスプールシャッタの斜視図であり、図4(b)、(c)は、図4(a)のA−A線矢視断面図であり、スプールシャッタの動作状況を示すものである。   4 (a) is a perspective view of a spool shutter constituting the vacuum vapor deposition apparatus according to the present invention, and FIGS. 4 (b) and 4 (c) are cross-sectional views taken along line AA in FIG. 4 (a). It shows the operating status of the spool shutter.

図4に示すように、スプールシャッタ21Aは、少なくとも、ガラス基板12の板幅方向Lの被蒸着領域の長さを有する直方体のシャッタブロック31と、シャッタブロック31の内部の長手方向に設けられた円柱状の空間部分と、この円柱状の空間部分に回転可能に嵌合された円柱状の複数のシャッタシャフト32とを有する。つまり、換言すれば、分割された複数の円柱(シャッタシャフト32)を、ブロック31の内部の円筒状の空間部分に板幅方向Lの方向に縦列に組み合せたものである。シャッタブロック31には、対向する位置に入口孔33と出口孔34が形成されており、これらの複数の入口孔33、出口孔34は、板幅方向Lの方向に形成されている。又、シャッタシャフト32内部には、対応する位置の入口孔33、出口孔34と連通するように、連通孔35が形成されており、所定の位置に配置された場合、図4(b)に示すように、対応する位置の入口孔33、出口孔34と連通孔35とが連通して、最大の蒸気量を流すことが可能となる。   As shown in FIG. 4, the spool shutter 21 </ b> A is provided at least in a rectangular parallelepiped shutter block 31 having the length of the deposition area in the plate width direction L of the glass substrate 12 and in the longitudinal direction inside the shutter block 31. A cylindrical space portion and a plurality of cylindrical shutter shafts 32 rotatably fitted in the cylindrical space portion are provided. That is, in other words, a plurality of divided columns (shutter shafts 32) are combined in a column in the plate width direction L in the cylindrical space portion inside the block 31. In the shutter block 31, an inlet hole 33 and an outlet hole 34 are formed at opposing positions, and the plurality of inlet holes 33 and outlet holes 34 are formed in the plate width direction L. In addition, a communication hole 35 is formed in the shutter shaft 32 so as to communicate with the inlet hole 33 and the outlet hole 34 at the corresponding positions, and when arranged at a predetermined position, as shown in FIG. As shown, the inlet hole 33, the outlet hole 34 and the communication hole 35 at the corresponding positions communicate with each other so that the maximum amount of steam can flow.

蒸気量を調整したい場合には、図4(c)に示すように、シャッタシャフト32自体を回転させることで、入口孔33、出口孔34に対する連通孔35の相対位置を調整して、連通孔35の開口面積を減少させて、蒸気量を調整する。このとき、シャッタシャフト32の回転は、シャッタシャフト32の内部に形成した空間部36の突設部37に、駆動軸38に貫通された円盤状のキー39の切欠部40を嵌合して行う(回転手段)。これを用いることで、空間部36でのキー39の挿入深さの位置により、回転位置を変更したいシャッタシャフト32を、各々独立して調整することができ、適切な回転位置に各々のシャッタシャフトを調整することで、板幅方向Lに対して均一な蒸気量の供給が可能となる。なお、シャッタシャフト32の連通孔35は、シャッタシャフト32の内部に円柱状の空間部36を有するため、この空間部36を迂回するように、流路が形成されている。又、シャッタシャフト32の調整は、上記キー39を用いて手動で行ってもよいし、モータ等の駆動手段により駆動軸38の回転制御及び挿入位置制御を行って、自動制御で行ってもよい。   When adjusting the amount of steam, as shown in FIG. 4C, the relative position of the communication hole 35 with respect to the inlet hole 33 and the outlet hole 34 is adjusted by rotating the shutter shaft 32 itself. The opening area of 35 is reduced and the amount of steam is adjusted. At this time, the rotation of the shutter shaft 32 is performed by fitting the notch portion 40 of the disk-like key 39 penetrating the drive shaft 38 into the protruding portion 37 of the space portion 36 formed inside the shutter shaft 32. (Rotating means). By using this, the shutter shaft 32 whose rotation position is desired to be changed can be independently adjusted according to the position of the insertion depth of the key 39 in the space 36, and each shutter shaft can be adjusted to an appropriate rotation position. By adjusting this, it becomes possible to supply a uniform amount of steam in the plate width direction L. Since the communication hole 35 of the shutter shaft 32 has a cylindrical space portion 36 inside the shutter shaft 32, a flow path is formed so as to bypass the space portion 36. The adjustment of the shutter shaft 32 may be performed manually using the key 39, or may be performed automatically by performing rotation control and insertion position control of the drive shaft 38 by driving means such as a motor. .

なお、スプールシャッタ21Aによる蒸気量の制御は、主に、連通孔35の開口面積を変化させることで行っているが、実際にスプールシャッタ21Aを通過する蒸気量は、他の物理要素、例えば、蒸発室16a、16bの圧力と混合室22の圧力との差圧にも影響される。しかしながら、本発明に係る真空蒸着機には、図示していない真空計が各室(蒸発室、混合室、蒸着室等)に設けられており、蒸発室16a、16bと混合室22との差圧が考慮されて、連通孔35の開口面積が決定される。これは後述するスプールシャッタ21Bでも同様である。更に、後述の多孔板シャッタ23の場合にも、混合室22と蒸着室25bとの差圧が考慮されて、貫通孔の開口面積が決定される。   Note that the control of the amount of steam by the spool shutter 21A is mainly performed by changing the opening area of the communication hole 35. However, the amount of steam that actually passes through the spool shutter 21A depends on other physical elements, for example, It is also influenced by the differential pressure between the pressure in the evaporation chambers 16a and 16b and the pressure in the mixing chamber 22. However, the vacuum vapor deposition apparatus according to the present invention is provided with a vacuum gauge (not shown) in each chamber (evaporation chamber, mixing chamber, vapor deposition chamber, etc.), and the difference between the evaporation chambers 16a and 16b and the mixing chamber 22 is provided. The opening area of the communication hole 35 is determined in consideration of the pressure. The same applies to a spool shutter 21B described later. Further, in the case of a perforated plate shutter 23 described later, the opening area of the through hole is determined in consideration of the differential pressure between the mixing chamber 22 and the vapor deposition chamber 25b.

図5(a)は、本発明に係る真空蒸着機を構成するスプールシャッタの他の実施例の斜視図であり、図5(b)、(c)は、図5(a)のB−B線矢視断面図であり、スプールシャッタの動作状況を示すものである。   FIG. 5A is a perspective view of another embodiment of the spool shutter constituting the vacuum vapor deposition apparatus according to the present invention, and FIGS. 5B and 5C are BB in FIG. 5A. FIG. 4 is a cross-sectional view taken along the line arrow, and shows the operating state of the spool shutter.

図5に示すように、スプールシャッタ21Bは、少なくとも、ガラス基板12の板幅方向Lの被蒸着領域の長さを有する直方体のシャッタブロック41と、シャッタブロック41の内部の長手方向に設けられた円柱状の空間部分と、この円柱状の空間部分に嵌合された円柱状の複数のシャッタシャフト42とを有する。シャッタブロック41には、対向する位置に入口孔43と出口孔44が形成されており、シャッタシャフトに形成された連通孔45が、所定の位置に配置された場合、図5(b)に示すように、入口孔43、連通孔45、出口孔44が完全に連通して、最大の蒸気量を流すことが可能となる。蒸気量を調整したい場合には、図5(c)に示すように、シャッタシャフト42を回転させることで、入口孔43、出口孔44に対する連通孔45の相対位置を調整して、連通孔45の開口面積を減少させて、蒸気量を調整する。   As shown in FIG. 5, the spool shutter 21 </ b> B is provided at least in a rectangular parallelepiped shutter block 41 having the length of the deposition area in the plate width direction L of the glass substrate 12 and in the longitudinal direction inside the shutter block 41. It has a cylindrical space portion and a plurality of cylindrical shutter shafts 42 fitted in the cylindrical space portion. In the shutter block 41, an inlet hole 43 and an outlet hole 44 are formed at opposing positions, and the communication hole 45 formed in the shutter shaft is shown in FIG. As described above, the inlet hole 43, the communication hole 45, and the outlet hole 44 are completely communicated with each other so that the maximum amount of steam can flow. When adjusting the amount of steam, the relative position of the communication hole 45 with respect to the inlet hole 43 and the outlet hole 44 is adjusted by rotating the shutter shaft 42 as shown in FIG. The amount of steam is adjusted by reducing the opening area.

シャッタシャフト42の回転は、シャッタシャフト32の円柱外面に設けたノブ47を用いて行い、このノブ47は、シャッタブロック41に形成した孔46により、外部からの調整ができるように構成されている(回転手段)。他のシャッタシャフト42の回転位置の調整を行う場合には、他のシャッタシャフト42のノブ47により行い、各々のシャッタシャフト42の回転位置を、独立して調整することが可能となる。本実施例に場合、ノブ47を用いて、回転位置の調整を行うので、シャッタシャフト42の連通孔45は、直線の流路でよく、実施例2のシャッタシャフト32の連通孔35と比較して、容易に作製することができる。   The rotation of the shutter shaft 42 is performed using a knob 47 provided on the outer surface of the cylinder of the shutter shaft 32, and the knob 47 is configured to be adjustable from the outside through a hole 46 formed in the shutter block 41. (Rotating means). When adjusting the rotation position of the other shutter shafts 42, the rotation position of each shutter shaft 42 can be adjusted independently by using the knob 47 of the other shutter shaft 42. In the present embodiment, since the rotation position is adjusted using the knob 47, the communication hole 45 of the shutter shaft 42 may be a straight flow path, and compared with the communication hole 35 of the shutter shaft 32 of the second embodiment. And can be easily manufactured.

多孔板シャッタ23は、更に小さな貫通孔を多数有する多孔整流板24と共に、ガラス基板12の下面側に、ガラス基板12の被蒸着面に対して平行に配置されており、多孔整流板24と共に、蒸着室内、更に言及すれば、蒸着室内に露出されたガラス基板12の被蒸着領域の全面において、蒸着材料の蒸気量の面内分布及び面内の流れを均一に整えて、ガラス基板12上に均一な蒸着薄膜を形成するものである。上記多孔板シャッタ23の構造及び動作を、図6、図7を用いて説明する。又、図8は、多孔板シャッタ23の他の実施例を示すものである。   The perforated plate shutter 23 is disposed on the lower surface side of the glass substrate 12 in parallel with the deposition surface of the glass substrate 12 together with the perforated current plate 24 having a number of smaller through holes. On the glass substrate 12, the in-plane distribution of the vapor amount and the in-plane flow of the vapor deposition material are uniformly arranged on the entire surface of the deposition chamber of the glass substrate 12 exposed in the deposition chamber. A uniform deposited thin film is formed. The structure and operation of the perforated plate shutter 23 will be described with reference to FIGS. FIG. 8 shows another embodiment of the perforated plate shutter 23.

図6(a)、(b)に示すように、本発明に係る多孔板シャッタ23は、少なくとも、ガラス基板12の板幅方向Lの被蒸着領域の長さを有する固定多孔板61と、柄部62a、62b、62cを用いることで、固定多孔板61の平面上を水平移動可能な可動多孔板63a、63b、63c(開口面積制御手段)を複数有する(図6中では3つ)。換言すれば、可動多孔板63a、63b、63cは、固定多孔板61上の同一平面を、互いに異なる領域において、板幅方向Lの方向に水平移動可能なように配置されている。   As shown in FIGS. 6A and 6B, the perforated plate shutter 23 according to the present invention includes at least a fixed perforated plate 61 having a length of a deposition area in the plate width direction L of the glass substrate 12, and a handle. By using the parts 62a, 62b, 62c, a plurality of movable porous plates 63a, 63b, 63c (opening area control means) that can move horizontally on the plane of the fixed porous plate 61 are provided (three in FIG. 6). In other words, the movable porous plates 63a, 63b, and 63c are arranged so as to be horizontally movable in the plate width direction L in different regions from each other on the same plane on the fixed porous plate 61.

固定多孔板61には、円形状又は楕円形状の複数の貫通孔64(第1の貫通孔)が設けられており、これらの貫通孔64に対応する位置に、同じく円形状又は楕円形状の貫通孔65a、65b、65c(第2の貫通孔)が、可動多孔板63a、63b、63cに設けられている。例えば、貫通孔64と貫通孔65a、65b、65cを同一形状、同一サイズ、同一間隔とした場合には、所定の位置においては、貫通孔65a、65b、65cが貫通孔64を塞ぐことなく、蒸気が通過する最大の開口面積を得ることができ、その所定の位置から移動させることで、貫通孔65a、65b、65cが貫通孔64の一部を塞いで、開口面積を調整した状態とすることができる(図6(c)参照)。   The fixed perforated plate 61 is provided with a plurality of circular or elliptical through holes 64 (first through holes), and the circular or elliptical through holes are provided at positions corresponding to the through holes 64. Holes 65a, 65b, and 65c (second through holes) are provided in the movable porous plates 63a, 63b, and 63c. For example, when the through hole 64 and the through holes 65a, 65b, and 65c have the same shape, the same size, and the same interval, the through holes 65a, 65b, and 65c do not block the through hole 64 at a predetermined position. The maximum opening area through which steam passes can be obtained, and by moving from the predetermined position, the through holes 65a, 65b, 65c block a part of the through hole 64, and the opening area is adjusted. (See FIG. 6 (c)).

又、上記多孔板シャッタ23では、固定多孔板61の平面上に、複数の可動多孔板63a、63b、63cを配置したので、各々の可動多孔板63a、63b、63cを独立して移動させることで、可動多孔板63a、63b、63cの貫通孔65a、65b、65cを通過する蒸気量を、各々の可動多孔板63a、63b、63cで独立して制御することができる。図6に示した多孔板シャッタ23では、ガラス基板12の板幅方向Lに対して、中央部の位置に該当する可動多孔板63bと、周辺部の位置に該当する可動多孔板63a、63cを有するので、特に薄膜の膜厚差が大きくなり易いガラス基板12の中央部と周辺部における蒸気量を均等になるように整流することで、板幅方向Lにおける薄膜の膜厚が均一になるようにしている。なお、可動多孔板63a、63b、63cの支持のし易さを考慮すると、固定多孔板61上に可動多孔板63a、63b、63cを配置したほうがよいが、必ずしもこの配置に限定しなくてもよい。又、貫通孔64、65a、65b、65cの数、大きさ、配置位置は、必要とする蒸気量により決定する。   In the perforated plate shutter 23, since a plurality of movable perforated plates 63a, 63b, 63c are arranged on the plane of the fixed perforated plate 61, each movable perforated plate 63a, 63b, 63c can be moved independently. Thus, the amount of vapor passing through the through holes 65a, 65b, 65c of the movable porous plates 63a, 63b, 63c can be controlled independently by each of the movable porous plates 63a, 63b, 63c. In the perforated plate shutter 23 shown in FIG. 6, with respect to the plate width direction L of the glass substrate 12, the movable perforated plate 63b corresponding to the position of the central portion and the movable perforated plates 63a and 63c corresponding to the positions of the peripheral portion are provided. Therefore, the thickness of the thin film in the plate width direction L is made uniform by rectifying the vapor amounts in the central portion and the peripheral portion of the glass substrate 12 where the difference in the thickness of the thin film tends to be large. I have to. In consideration of the ease of supporting the movable porous plates 63a, 63b, and 63c, it is better to dispose the movable porous plates 63a, 63b, and 63c on the fixed porous plate 61, but the arrangement is not necessarily limited to this. Good. Further, the number, size, and arrangement position of the through holes 64, 65a, 65b, 65c are determined by the required amount of steam.

図7(a)、(b)は、可動多孔板63a、63b、63cの貫通孔65a、65b、65cが等間隔で配置された場合において、各々の可動多孔板63a、63b、63cの貫通孔65a、65b、65cの位置関係を示す図である。   7A and 7B show the through holes of the movable porous plates 63a, 63b, and 63c when the through holes 65a, 65b, and 65c of the movable porous plates 63a, 63b, and 63c are arranged at equal intervals. It is a figure which shows the positional relationship of 65a, 65b, 65c.

図7(a)に示すように、貫通孔65a、65b、65cが同じ間隔W1で配置された場合、可動多孔板63a、63b、63cを所定の位置に配置したときは、可動多孔板63a、63b、63cの隣り合う貫通孔65a、65b、65c同士の間隔も、同じ間隔W1となる。そして、図7(b)に示すように、可動多孔板63a、63b、63cを移動した場合には、可動多孔板63a、63b、63cの隣り合う貫通孔65a、65b、65c同士の間隔のみが、間隔W2、W3と変化する。このとき、可動多孔板63a、63b、63cの位置に応じて、図示しない固定多孔板の貫通孔64が塞がれて、開口面積が変化し、通過する蒸気量も変化することとなる。 As shown in FIG. 7 (a), when the through holes 65a, 65b, 65c are arranged at the same intervals W 1, when placed movable perforated plate 63a, 63 b, the 63c in position, the movable perforated plate 63a , 63b, adjacent the through-hole 65a of 63c, 65b, the interval of 65c each other the same distance W 1. As shown in FIG. 7B, when the movable porous plates 63a, 63b, 63c are moved, only the interval between the adjacent through holes 65a, 65b, 65c of the movable porous plates 63a, 63b, 63c is obtained. , The intervals W 2 and W 3 change. At this time, according to the positions of the movable porous plates 63a, 63b, 63c, the through holes 64 of the fixed porous plate (not shown) are closed, the opening area changes, and the amount of vapor passing therethrough also changes.

図7(c)、(d)は、可動多孔板66a、66b、66cの貫通孔67a、67b、67cが不等間隔で配置された場合において、各々の可動多孔板66a、66b、66cの貫通孔67a、67b、67cの位置関係を示す図である。   7 (c) and 7 (d) show that the movable perforated plates 66a, 66b and 66c are penetrated when the through holes 67a, 67b and 67c of the movable perforated plates 66a, 66b and 66c are arranged at unequal intervals. It is a figure which shows the positional relationship of hole 67a, 67b, 67c.

図7(c)に示すように、貫通孔67a同士が同じ間隔W4で、貫通孔67b同士が同じ間隔W6で、貫通孔67c同士が同じ間隔W8で配置された場合、可動多孔板66a、66b、66cを所定の位置に配置したとき、可動多孔板66a、66b、66cの隣り合う貫通孔67a、67b、67c同士の間隔、具体的には、貫通孔67aと貫通孔67bの間隔は間隔W5であり、貫通孔67bと貫通孔67cの間隔は間隔W7である。そして、図7(b)に示すように、可動多孔板66a、66b、66cを移動した場合には、可動多孔板66a、66b、66cの隣り合う貫通孔67a、67b、67c同士の間隔のみが、間隔W9、W10と変化する。このとき、可動多孔板66a、66b、66cの位置に応じて、図示しない固定多孔板の貫通孔64が塞がれて、開口面積が変化し、通過する蒸気量も変化することとなる。蒸気量が供給過剰になり易い部分、逆に、蒸気量が供給不足になり易い部分がある場合、図7(c)、(d)に示したように、貫通孔の密度を粗又は密にする、つまり、貫通孔の間隔を大きく又は小さくすることで、蒸気量の分布を制御するようにしてもよい。 As shown in FIG. 7 (c), pierced with holes 67a to each other the same distance W 4, a through hole 67b with each other the same distance W 6, when the through hole 67c to each other are arranged at the same intervals W 8, the movable perforated plate When 66a, 66b, 66c are arranged at predetermined positions, the distance between the adjacent through holes 67a, 67b, 67c of the movable porous plates 66a, 66b, 66c, specifically, the distance between the through hole 67a and the through hole 67b. Is the interval W 5 , and the interval between the through hole 67 b and the through hole 67 c is the interval W 7 . As shown in FIG. 7B, when the movable porous plates 66a, 66b, 66c are moved, only the distance between the adjacent through holes 67a, 67b, 67c of the movable porous plates 66a, 66b, 66c is obtained. The intervals W 9 and W 10 change. At this time, according to the position of the movable perforated plates 66a, 66b, 66c, the through hole 64 of the fixed perforated plate (not shown) is closed, the opening area is changed, and the amount of vapor passing therethrough is also changed. When there is a part where the amount of steam tends to be excessively supplied, and conversely, when there is a part where the amount of steam tends to be insufficiently supplied, as shown in FIGS. In other words, the distribution of the vapor amount may be controlled by increasing or decreasing the interval between the through holes.

図6、図7に示した多孔板シャッタ23では、貫通孔の形状として円形状又は楕円形状ものを用いたが、様々な貫通孔の形状、更には、様々な貫通孔の組み合わせを用いて、多孔板シャッタ23を構成してもよく、本発明の趣旨を逸脱しない限り、どのような組み合わせでもよい。図8に、そのいくつかを例示して説明を行う。   In the perforated plate shutter 23 shown in FIG. 6 and FIG. 7, a circular or elliptical shape is used as the shape of the through-hole, but various shapes of through-holes and further combinations of various through-holes are used. The perforated plate shutter 23 may be configured, and any combination is possible without departing from the gist of the present invention. FIG. 8 illustrates some examples.

図8(a)は、多孔板シャッタの他の一例を示すものである。固定多孔板61は前述のものと同等のものであり、円形状の貫通孔64を複数有する。固定多孔板61上に移動可能に配置される可動多孔板71a(開口面積制御手段)は櫛型形状であり、所定間隔で配置されたU字型のスリット72aを複数有し、可動多孔板71aを移動させることで、貫通孔64の開口面積を変化させて、通過する蒸気量を調整する。   FIG. 8A shows another example of the perforated plate shutter. The fixed perforated plate 61 is the same as that described above, and has a plurality of circular through holes 64. The movable perforated plate 71a (opening area control means) movably disposed on the fixed perforated plate 61 has a comb shape and has a plurality of U-shaped slits 72a disposed at predetermined intervals, and the movable perforated plate 71a. Is moved to change the opening area of the through-hole 64 and adjust the amount of vapor passing therethrough.

又、図8(b)も、多孔板シャッタの他の一例を示すものであり、固定多孔板73及び固定多孔板73上に移動可能に配置される可動多孔板75a(開口面積制御手段)は、共に同一のサイズ、同一の矩形形状の貫通孔74、76aを複数有する構成である。可動多孔板75aを移動させることで、貫通孔74の開口面積を変化させて、通過する蒸気量を調整する。本実施例の多孔板シャッタの場合、固定多孔板73、可動多孔板75aは、共に同一のサイズ、同一の矩形状の貫通孔74、76aを有し、貫通孔の開口幅が可動多孔板の移動方向に垂直な方向において同一であるので、可動多孔板75aを移動した場合には、その移動量に線形に比例して開口面積を変化させることになり、その変化に応じて通過する蒸気量も線形に変化する。逆に、図6、図7に示したて円形状又は楕円形状の貫通孔を用いた多孔板シャッタ23の場合には、貫通孔の開口幅が可動多孔板の移動方向に垂直な方向において異なるので、可動多孔板63a等の移動にともない、その移動量に非線形に開口面積を変化させることになり、その変化に応じて通過する蒸気量も非線形に変化する。   FIG. 8B also shows another example of the perforated plate shutter. A fixed perforated plate 73 and a movable perforated plate 75a (opening area control means) that is movably disposed on the fixed perforated plate 73 are shown in FIG. , Both have a plurality of through holes 74 and 76a having the same size and the same rectangular shape. By moving the movable perforated plate 75a, the opening area of the through hole 74 is changed to adjust the amount of vapor passing therethrough. In the case of the perforated plate shutter of this embodiment, the fixed perforated plate 73 and the movable perforated plate 75a both have the same size and the same rectangular through holes 74 and 76a, and the opening width of the through holes is that of the movable perforated plate. Since it is the same in the direction perpendicular to the moving direction, when the movable perforated plate 75a is moved, the opening area is changed linearly in proportion to the moving amount, and the amount of vapor passing in accordance with the change. Also changes linearly. Conversely, in the case of the perforated plate shutter 23 using the circular or elliptical through hole shown in FIGS. 6 and 7, the opening width of the through hole differs in the direction perpendicular to the moving direction of the movable perforated plate. Therefore, as the movable perforated plate 63a and the like move, the opening area is changed nonlinearly according to the amount of movement, and the amount of vapor passing therethrough also changes nonlinearly according to the change.

又、図8(c)も、多孔板シャッタの他の一例を示すものである。本実施例の固定多孔板73は、実施例8と同じく矩形形状の貫通孔74を複数有する構成であるが、固定多孔板73上に移動可能に配置される可動多孔板79a(開口面積制御手段)では、特殊な形状の貫通孔80aを複数有する構成である。この貫通孔80aは、大きさの異なる2つの矩形形状の貫通孔を台形形状の貫通孔で一体としたものであり、例えれば、羽子板形状とでも呼べる形状である。本実施例の多孔板シャッタの場合、固定多孔板73が矩形状の貫通孔74を、可動多孔板75aが羽子板形状の貫通孔80aを有するので、可動多孔板79aを移動した場合、移動方向に対して垂直方向の貫通孔80aの幅が大きい場所では、可動多孔板79aの移動に伴い線形に大きく、その開口面積を変化させることができ、移動方向に対して垂直方向の貫通孔80aの幅が小さい場所では、可動多孔板79aの移動に伴い線形に小さく、その開口面積を変化させることができる。つまり、移動量に対して、変化量を大きくしたい部分は貫通孔の幅を大きくし、変化量を小さくしたい部分は貫通孔の幅を小さくすることで、所望の開口面積の変化特性を有するものにでき、その開口面積の変化に伴って、通過する蒸気量も変化することとなる。   FIG. 8C also shows another example of the perforated plate shutter. The fixed perforated plate 73 of the present embodiment is configured to have a plurality of rectangular through-holes 74 as in the eighth embodiment. However, the movable perforated plate 79a (opening area control means) is movably disposed on the fixed perforated plate 73. ) Has a plurality of specially shaped through holes 80a. The through-hole 80a is formed by integrating two rectangular through-holes having different sizes with a trapezoidal through-hole. For example, the through-hole 80a can be called a battledore shape. In the case of the perforated plate shutter of this embodiment, the fixed perforated plate 73 has a rectangular through-hole 74 and the movable perforated plate 75a has a feather plate-like through-hole 80a. Therefore, when the movable perforated plate 79a is moved, On the other hand, in a place where the width of the through hole 80a in the vertical direction is large, the opening area can be changed linearly with the movement of the movable porous plate 79a, and the width of the through hole 80a in the direction perpendicular to the movement direction can be changed. In a small area, the opening area can be changed linearly with the movement of the movable porous plate 79a. In other words, the part that wants to increase the amount of change with respect to the amount of movement has the characteristic of changing the desired opening area by increasing the width of the through hole and the part that wants to reduce the amount of change by reducing the width of the through hole As the opening area changes, the amount of vapor passing therethrough also changes.

このように、貫通孔の形状、貫通孔の組み合わせ等により、所望の変化特性、所望の制御範囲の蒸気量を制御することが可能となる。   Thus, it is possible to control the desired change characteristic and the amount of steam in the desired control range by the shape of the through hole, the combination of the through holes, and the like.

本発明に係る真空蒸着機を用いたインライン成膜装置の概略の平面図である。It is a schematic plan view of the in-line film-forming apparatus using the vacuum evaporation machine concerning this invention. 本発明に係る真空蒸着機を複数配置した構成の一例を示す概略図である。It is the schematic which shows an example of the structure which has arrange | positioned two or more vacuum evaporation machines concerning this invention. 本発明に係る真空蒸着機の内部構成の一例を示す概略図である。It is the schematic which shows an example of the internal structure of the vacuum evaporation machine which concerns on this invention. 本発明に係る真空蒸着機を構成するスプールシャッタの一例を示す図である。It is a figure which shows an example of the spool shutter which comprises the vacuum evaporation system which concerns on this invention. 本発明に係る真空蒸着機を構成するスプールシャッタの他の一例を示す図である。It is a figure which shows another example of the spool shutter which comprises the vacuum evaporation system which concerns on this invention. 本発明に係る真空蒸着機を構成する多孔板シャッタの一例を示す図である。It is a figure which shows an example of the perforated plate shutter which comprises the vacuum evaporation machine concerning this invention. 本発明に係る真空蒸着機を構成する多孔板シャッタの調整方法を説明する図である。It is a figure explaining the adjustment method of the perforated plate shutter which comprises the vacuum evaporation system which concerns on this invention. 本発明に係る真空蒸着機を構成する多孔板シャッタの他の構成例を示す図である。It is a figure which shows the other structural example of the perforated plate shutter which comprises the vacuum evaporation system which concerns on this invention.

符号の説明Explanation of symbols

3a、3b、3c 真空蒸着機
11 搬送機
12 ガラス基板
13 ヒータ
14a、14b、14c チャンバ
15、16a、16b、17 蒸着材料
18、19a、19b、20 蒸発室
21、21A、21B スプールシャッタ
22 混合室
23 多孔板シャッタ
24 多孔整流板
25a、25b、25c 蒸着室
31、41 シャッタブロック
32、42 シャッタシャフト
33、43 入口孔
34、44 出口孔
35、45 連通孔
61、73 固定多孔板
63a、63b、63c、71a、75a、79a 可動多孔板
64、74 貫通孔
65a、65b、65c、76a、80a 貫通孔
72a スリット
3a, 3b, 3c Vacuum evaporation machine 11 Transporter 12 Glass substrate 13 Heater 14a, 14b, 14c Chamber 15, 16a, 16b, 17 Evaporation material 18, 19a, 19b, 20 Evaporation chamber 21, 21A, 21B Spool shutter 22 Mixing chamber 23 Perforated plate shutter 24 Perforated current plate 25a, 25b, 25c Deposition chamber 31, 41 Shutter block 32, 42 Shutter shaft 33, 43 Inlet hole 34, 44 Outlet hole 35, 45 Communication hole 61, 73 Fixed perforated plate 63a, 63b, 63c, 71a, 75a, 79a Movable porous plate 64, 74 Through hole 65a, 65b, 65c, 76a, 80a Through hole 72a Slit

Claims (6)

真空容器内に設けられ、基板を搬送する搬送手段と、
前記基板の下面側に設けられ、少なくとも、前記基板の搬送方向に垂直な方向である板幅方向の被蒸着領域の長さを有する蒸着室と、
前記真空容器の下方側に設けられ、複数の蒸着材料を気化又は昇華させて、前記複数の蒸着材料の蒸気を発生させる複数の蒸発室と、
少なくとも、前記基板の前記板幅方向の被蒸着領域の長さを有すると共に、前記基板の前記板幅方向における前記蒸発室からの前記蒸着材料の蒸気量を制御する複数の蒸気量制御手段と、
前記複数の蒸気量制御手段が面し、前記蒸着材料の蒸気が混合される混合室と、
少なくとも、前記基板の前記板幅方向の被蒸着領域の長さを有すると共に、前記蒸気量制御手段の上方側である前記基板の下面側に、前記基板の被蒸着面に平行に配置され、前記蒸着室における前記蒸着材料の蒸気の分布及び流れを整える蒸気整流手段と、
前記蒸発室から前記蒸着室までの真空容器の壁面を加熱する加熱手段とを有し、
前記蒸気量制御手段は、
前記基板の前記板幅方向に、複数の入口孔及びそれに対応する複数の出口孔を備えたブロックと、
前記ブロック内に各々回転可能に嵌合され、前記基板の前記板幅方向に複数に分割されて配設された円柱形状のシャッタシャフトと、
各々の前記シャッタシャフトに設けられ、前記1つの入口孔とそれに対応する前記1つの出口孔とを連通する連通孔とを有し、
前記シャッタシャフト各々を独立して回転させることにより、前記板幅方向の蒸気量を各々制御するものであり、
前記蒸気整流手段は、
複数の第1の貫通孔を備えた固定板と、
前記複数の第1の貫通孔の開口面積を制御する複数の第2の貫通孔を備え、前記固定板の平面上を前記基板の前記板幅方向に各々可動に、複数に分割されて配置された可動板とを有し、
前記可動板各々を独立して移動させることにより、前記板幅方向の蒸気量を各々制御するものであることを特徴とする真空蒸着機。
A conveying means provided in the vacuum container for conveying the substrate;
A deposition chamber provided on the lower surface side of the substrate, and having at least the length of the deposition region in the plate width direction which is a direction perpendicular to the transport direction of the substrate;
A plurality of evaporation chambers provided on the lower side of the vacuum vessel, and vaporizing or sublimating a plurality of vapor deposition materials to generate vapors of the plurality of vapor deposition materials;
A plurality of vapor amount control means for controlling the vapor amount of the vapor deposition material from the evaporation chamber in the plate width direction of the substrate, and at least the length of the deposition region in the plate width direction of the substrate;
A mixing chamber facing the plurality of vapor amount control means and in which the vapor of the vapor deposition material is mixed;
At least the length of the vapor deposition region in the plate width direction of the substrate, and disposed on the lower surface side of the substrate on the upper side of the vapor amount control means, parallel to the vapor deposition surface of the substrate, Vapor rectifying means for adjusting the distribution and flow of vapor of the vapor deposition material in the vapor deposition chamber;
Heating means for heating the wall surface of the vacuum vessel from the evaporation chamber to the vapor deposition chamber,
The steam amount control means includes
A block having a plurality of inlet holes and a plurality of outlet holes corresponding thereto in the plate width direction of the substrate;
A cylindrical shutter shaft that is rotatably fitted in the block and is divided into a plurality of parts in the plate width direction of the substrate;
Provided in each of the shutter shafts, and having a communication hole communicating the one inlet hole and the corresponding one outlet hole,
Each of the shutter shafts is independently rotated to control the amount of steam in the plate width direction.
The steam rectifying means is
A fixing plate having a plurality of first through holes;
A plurality of second through-holes for controlling the opening areas of the plurality of first through-holes are provided, and each of the plurality of first through-holes is arranged on the plane of the fixed plate so as to be movable in the plate width direction of the substrate. A movable plate
A vacuum vapor deposition machine characterized in that each of the movable plates is independently moved to control the amount of vapor in the plate width direction.
請求項1記載の真空蒸着機において、
前記蒸気量制御手段は、
前記シャッタシャフトの内部又は外部に、前記シャッタシャフトを回転させる回転手段を有することを特徴とする真空蒸着機。
In a vacuum deposition apparatus according to claim 1,
The steam amount control means includes
A vacuum evaporation machine comprising a rotating means for rotating the shutter shaft inside or outside the shutter shaft.
請求項又は請求項記載の真空蒸着機において、
前記蒸気整流手段は、
前記第1の貫通孔及び前記第2の貫通孔を所定間隔で配置すると共に、前記第1の貫通孔及び前記第2の貫通孔の開口幅が、前記可動板の移動方向に垂直な方向において同一であることを特徴とする真空蒸着機。
In the vacuum evaporation machine according to claim 1 or claim 2 ,
The steam rectifying means is
The first through hole and the second through hole are arranged at a predetermined interval, and an opening width of the first through hole and the second through hole is perpendicular to a moving direction of the movable plate. Vacuum deposition machine characterized by being identical.
請求項又は請求項記載の真空蒸着機において、
前記蒸気整流手段は、
前記第1の貫通孔及び前記第2の貫通孔を所定間隔で配置すると共に、前記第1の貫通孔及び前記第2の貫通孔の開口幅が、前記可動板の移動方向に垂直な方向において異なることを特徴とする真空蒸着機。
In the vacuum evaporation machine according to claim 1 or claim 2 ,
The steam rectifying means is
The first through hole and the second through hole are arranged at a predetermined interval, and an opening width of the first through hole and the second through hole is perpendicular to a moving direction of the movable plate. Vacuum deposition machine characterized by being different.
請求項又は請求項記載の真空蒸着機において、
前記蒸気整流手段は、
前記第2の貫通孔を、所定間隔で配置した複数のスリットとしたことを特徴とする真空蒸着機。
In the vacuum evaporation machine according to claim 1 or claim 2 ,
The steam rectifying means is
The vacuum vapor deposition machine, wherein the second through holes are a plurality of slits arranged at predetermined intervals.
請求項乃至請求項のいずれかに記載の真空蒸着機において、
前記蒸気整流手段は、
前記所定間隔を、前記蒸着室内における前記蒸着材料の蒸気の分布が均一になるような間隔としたことを特徴とする真空蒸着機。
In the vacuum evaporation machine in any one of Claim 3 thru | or 5 ,
The steam rectifying means is
The vacuum deposition apparatus characterized in that the predetermined interval is an interval that makes the vapor distribution of the vapor deposition material uniform in the vapor deposition chamber.
JP2004020950A 2004-01-29 2004-01-29 Vacuum evaporation machine Expired - Fee Related JP4475968B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004020950A JP4475968B2 (en) 2004-01-29 2004-01-29 Vacuum evaporation machine
KR1020050007845A KR100669062B1 (en) 2004-01-29 2005-01-28 Vacuum evaporator
CNB2005100063995A CN100510163C (en) 2004-01-29 2005-01-28 Vacuum evaporation plating machine
TW094102723A TWI266808B (en) 2004-01-29 2005-01-28 Vacuum evaporation plating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020950A JP4475968B2 (en) 2004-01-29 2004-01-29 Vacuum evaporation machine

Publications (2)

Publication Number Publication Date
JP2005213570A JP2005213570A (en) 2005-08-11
JP4475968B2 true JP4475968B2 (en) 2010-06-09

Family

ID=34879076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020950A Expired - Fee Related JP4475968B2 (en) 2004-01-29 2004-01-29 Vacuum evaporation machine

Country Status (4)

Country Link
JP (1) JP4475968B2 (en)
KR (1) KR100669062B1 (en)
CN (1) CN100510163C (en)
TW (1) TWI266808B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576326B2 (en) * 2005-01-21 2010-11-04 三菱重工業株式会社 Vacuum deposition equipment
US7918940B2 (en) 2005-02-07 2011-04-05 Semes Co., Ltd. Apparatus for processing substrate
JP4535908B2 (en) * 2005-03-14 2010-09-01 日立造船株式会社 Vapor deposition equipment
US20070231490A1 (en) * 2006-03-29 2007-10-04 Eastman Kodak Company Uniformly vaporizing metals and organic materials
EP1947210A1 (en) * 2007-01-16 2008-07-23 ARCELOR France Method of coating a substrate, installation for implementing the method and device for supplying metal to such an installation
JP5411481B2 (en) * 2008-10-22 2014-02-12 国立大学法人東北大学 Magnetron sputtering equipment
DE102009029236B4 (en) * 2009-09-07 2023-02-16 Robert Bosch Gmbh Evaporators, arrangement of evaporators and coating system
KR101620639B1 (en) 2009-09-29 2016-05-13 주식회사 포스코 Alloy Deposition Apparatus
JP5578345B2 (en) * 2009-11-02 2014-08-27 キヤノントッキ株式会社 Evaporation source and vapor deposition apparatus in vapor deposition apparatus
KR20120081932A (en) * 2011-01-12 2012-07-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Film formation apparatus and manufacturing apparatus
JP2012186158A (en) 2011-02-14 2012-09-27 Semiconductor Energy Lab Co Ltd Method for manufacturing lighting system and light emitting device, and device for manufacturing the same
WO2013005448A1 (en) * 2011-07-07 2013-01-10 パナソニック株式会社 Vacuum deposition device
JP2013159841A (en) * 2012-02-08 2013-08-19 Tokyo Electron Ltd Film forming device
KR102084707B1 (en) * 2012-12-03 2020-04-16 삼성디스플레이 주식회사 Deposition source, deposition apparatus and deposition method using the same
CN103305798B (en) * 2013-05-21 2015-08-26 上海和辉光电有限公司 Evaporation coating device and the evaporation process utilizing this evaporation coating device to carry out
TWI582251B (en) 2014-10-31 2017-05-11 財團法人工業技術研究院 Evaporation system and evaporation method
US9953829B2 (en) * 2015-08-27 2018-04-24 Toshiba Memory Corporation Image processing apparatus with improved slide printout based on layout data
WO2020251696A1 (en) 2019-06-10 2020-12-17 Applied Materials, Inc. Processing system for forming layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901773B2 (en) * 1996-11-26 2007-04-04 三菱重工業株式会社 Vacuum deposition equipment

Also Published As

Publication number Publication date
KR100669062B1 (en) 2007-01-15
CN1648279A (en) 2005-08-03
TW200532036A (en) 2005-10-01
JP2005213570A (en) 2005-08-11
CN100510163C (en) 2009-07-08
TWI266808B (en) 2006-11-21
KR20060042875A (en) 2006-05-15

Similar Documents

Publication Publication Date Title
JP4475967B2 (en) Vacuum evaporation machine
KR100669062B1 (en) Vacuum evaporator
KR100532657B1 (en) Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition
JP4767000B2 (en) Vacuum deposition equipment
TWI324185B (en) Vacuum vapor deposition apparatus
JP5506147B2 (en) Film forming apparatus and film forming method
EP2187708B1 (en) Film deposition apparatus with organic-material vapor generator
JP4074574B2 (en) Organic vapor deposition equipment
US8420169B2 (en) Method of manufacturing organic thin film
KR101760316B1 (en) Substrate Processing Apparatus
TW200925303A (en) Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
JP4576326B2 (en) Vacuum deposition equipment
JP2006225758A (en) Vacuum deposition apparatus
EP2204467B1 (en) Method and apparatus for depositing mixed layers
JP5460773B2 (en) Film forming apparatus and film forming method
KR102567009B1 (en) Apparatus Restraining from Thermal Interference for Multi Source Co-Deposition
JP7304435B2 (en) Method and system for forming films on substrates
KR102629005B1 (en) Multi Source Mixture Ratio Supporting Apparatus for Multi Source Co-Deposition
CN116180018A (en) Co-steaming method and co-steaming equipment
JP2005019265A (en) Thin film forming device and display device
KR20170111775A (en) Apparatus for Multi Source Co-Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R151 Written notification of patent or utility model registration

Ref document number: 4475968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees