JP4475376B2 - Water-cooled steel structure and method for forming protective film on water-cooled steel structure - Google Patents

Water-cooled steel structure and method for forming protective film on water-cooled steel structure Download PDF

Info

Publication number
JP4475376B2
JP4475376B2 JP2002355537A JP2002355537A JP4475376B2 JP 4475376 B2 JP4475376 B2 JP 4475376B2 JP 2002355537 A JP2002355537 A JP 2002355537A JP 2002355537 A JP2002355537 A JP 2002355537A JP 4475376 B2 JP4475376 B2 JP 4475376B2
Authority
JP
Japan
Prior art keywords
self
coating
water
fluxing alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002355537A
Other languages
Japanese (ja)
Other versions
JP2004190046A (en
Inventor
雅嗣 川越
泰三 瀬良
徹 向井
一典 太刀掛
一則 坂田
富夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
FUJIKIKOSAN Corp
Original Assignee
JFE Steel Corp
FUJIKIKOSAN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, FUJIKIKOSAN Corp filed Critical JFE Steel Corp
Priority to JP2002355537A priority Critical patent/JP4475376B2/en
Publication of JP2004190046A publication Critical patent/JP2004190046A/en
Application granted granted Critical
Publication of JP4475376B2 publication Critical patent/JP4475376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高温排ガスやダストによる高温摩耗および高温腐食環境に曝される水冷式鉄鋼製構造物、例えば、製鋼工場における転炉排ガス冷却設備等の長寿命化に寄与するために、当該設備の鉄鋼基材の表面に形成した自溶合金溶射皮膜にクラック進展緩和層を1層以上形成し、これによって、操業過程において前記皮膜の表面部に発生するクラックが前記皮膜中、または、前記鉄鋼基材へ進展し難いようにし、かくして、長寿命化による操業の安定化とコストダウンを図ることができる水冷式鉄鋼製構造物および水冷式鉄鋼製構造物への自溶合金溶射皮膜の形成方法に関するものである。
【0002】
【従来の技術】
例えば、図8に示すように、製鋼工場の転炉1からの高温排ガスは、スカート2、フード3、ボイラー4、ダクト5等からなる排ガス冷却設備を通り、冷却および排熱が回収された後、集塵機6に送られてダストが除去され、そして、次工程に送られる。
【0003】
上記排ガス冷却設備は、使用中に高温のガス(>1273K)、溶鋼および副原料として投入される各種鉱石等から発生する高熱ダスト(濃度:100〜500g/Nm3)により著しいエロージョン摩耗を受ける。また、副原料から発生するS、ClおよびF等による腐食性ガスおよび高温酸化による高温腐食、さらに、間欠式操業の繰り返しによる熱応力疲労を生じる。
【0004】
これらのエロージョン摩耗や高温腐食および熱応力疲労により、上記排ガス冷却設備が摩耗や基材クラックにより損傷して、冷却水が漏れ出すと、高温の溶鋼との反応で水蒸気爆発を起こし、重大災害につながる可能性がある。このため、冷却水の漏洩等が起こらないように、設備を停止して、溶接補修等のメンテナンスを行う必要性があり、このため生産活動が著しく阻害される。
【0005】
これらの問題を解決するために、特許第2565727号公報(特許文献1)には、使用温度において酸化物を形成するCr、Al、Yを必須成分とし、残部を同温度において酸化し難いNi、Co、Feの一種もしくは二種以上とする合金の溶射被覆層を有する高耐用性転炉排ガス冷却器が開示されている。以下、これを従来技術1という。
【0006】
また、特許第3039850号公報(特許文献2)には、パイプ等の基材表面に耐熱金属もしくはその合金あるいは炭化物サーメットの下地溶射皮膜を20〜500μm形成し、さらに必要に応じて多孔状無機質皮膜を介在させてから、その上にクロム酸とリン酸を主成分とするシール剤を塗布し、乾燥後、350〜550℃×0.3hr以上の条件で加熱焼成して、0.5〜20μm、好ましくは2〜5μm厚みの硬質のガラス質酸化クロム皮膜を上層に形成した複合溶射部材が開示されている。以下、これを従来技術2という。
【0007】
しかしながら、従来技術1は、基材と溶射皮膜との密着機構が機械的な投錨効果が主であるので、溶射粒子の結合性や基材との付着に問題があった。また、従来技術2は、施工形状の制約と耐剥離性、耐摩耗性の不足が問題点として指摘される。
【0008】
一般に、耐摩耗性や耐食性に優れる自溶合金溶射は、ローラーやボイラーチューブ等に適用の事例がみられる。当該設備への適用例は、パイプを使用したメンブレン構造であるため、自溶合金溶射後の再溶融加熱による施工部材のひずみの要因で適用事例は少ないが、JISH8303に規定されるニッケル自溶合金4種の適用例がある。
【0009】
ニッケル自溶合金皮膜を適用した場合、無処理の場合に比較して、耐摩耗性、耐食性においては向上した。しかし、ニッケル自溶合金4種皮膜の場合、硬さが高く、伸びが数%しかないため熱疲労性応力腐食割れが皮膜表面から発生し、鉄鋼基材にクラックが進展し、結果的には水漏れにつながる問題を有している。
【0010】
【特許文献1】
特許第2565727号公報
【特許文献2】
特許第3039850号公報
【0011】
【発明が解決しようとする課題】
上記転炉排ガス冷却設備等の水冷式鉄鋼製構造物に形成される保護皮膜に関しては、上述のように、従来技術1および2では、耐剥離性、耐摩耗性が不十分であり、耐剥離性、耐摩耗性、耐食性において、高耐用性を示したニッケル自溶合金4種は、熱疲労性応力腐食割れに問題があった。
【0012】
従って、この発明の目的は、耐剥離性、耐摩耗性、耐食性に優れ、且つ、熱疲労性応力腐食性のクラックの進展緩和性にも優れた多層自溶合金溶射皮膜を被覆することによって、設備の長寿命化が図れ、メンテナンス費用や更新の費用等を含むトータルライフサイクルコストが削減でき、さらに操業が安定化して、設備の稼働率向上を達成することができる水冷式鉄鋼製構造物および水冷式鉄鋼製構造物への自溶合金皮膜の形成方法を提供することにある。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、高温排ガスやダストによる高温摩耗および高温腐食環境に曝される水冷式鉄鋼製構造物を構成する鉄鋼基材の表面に保護皮膜が形成され、前記保護皮膜は、Niを主成分とする自溶合金溶射皮膜と、Cu:80質量%以上、残部:Niおよび不可避的不純物からなり、10〜100μmの膜厚を有する1層以上のクラック進展緩和層とからなり、前記クラック進展緩和層は、前記自溶合金溶射皮膜間、および、前記自溶合金溶射皮膜と前記鉄鋼基材の表面との境界の内の少なくとも一方に形成されていることに特徴を有するものである。
【0014】
請求項2記載の発明は、前記自溶合金溶射皮膜は、Cr、Fe、Cu、Mo、Si、BおよびCを含有し、残部:Niおよび不可避的不純物からなり、シャルピー衝撃値が1.70J/cm2以上、表面硬さがHRCスケールで15以上であることに特徴を有するものである。
【0016】
請求項3記載の発明は、高温排ガスやダストによる高温摩耗および高温腐食環境に曝される水冷式鉄鋼製構造物を構成する鉄鋼基材の表面に、Cr、Fe、Cu、Mo、Si、BおよびC、残部:Niおよび不可避的不純物からなる自溶合金材料を溶射して溶射皮膜を形成し、次いで、前記溶射皮膜および前記鉄鋼基材の表面近傍を1223〜1356Kの温度に1秒以上保持して、シャルピー衝撃値が1.70J/cm2以上、皮膜表面硬さがHRCスケールで15以上の自溶合金溶射皮膜を形成するに当たり、前記自溶合金溶射皮膜間、および前記自溶合金溶射皮膜と前記鉄鋼基材の表面との境界の内の少なくとも一方に、Cuを80%以上含有し、残部がNiおよび不可避的不純物からなり、10〜100μmの膜厚を有するクラック進展緩和層を1層以上設け、かくして、前記鉄鋼基材の表面に前記自溶合金溶射皮膜と前記クラック進展緩和層とからなる保護皮膜を形成することに特徴を有するものである。
【0017】
【発明の実施の形態】
次に、この発明を転炉フードに適用した場合の一実施態様を、図面を参照しながら説明する。なお、以下、保護皮膜の成分割合%は、全て質量%である。
【0018】
図1は、転炉に取り付けられた、この発明の転炉フードを示す概略断面図、図2は、この発明の転炉フードの下部を示す部分断面図、図3は、図2のA−A線断面図、図4は、保護皮膜の拡大断面図、図5は、図3と別の断面形状のチューブによる場合の図2のA−A線断面図である。
【0019】
図1から図4に示すように、この発明の転炉フード3の下部は、チューブ内側にフィン7Aが形成された多数本のU字状円形鉄鋼製チューブ7を、フィン7A同士を互いに溶接して筒状に接合したものによって構成されている。各チューブ7の一端は、給水ヘッダー8に接続され、他端は、排水ヘッダー9に接続されていて、転炉操業中、給水ヘッダー8からチューブ7内に供給される冷却水により、転炉フード3の下部が冷却される。
【0020】
なお、図5に示すように、転炉フード3の下部を、チューブ中央部にフィン7Aが形成された多数本のU字状円形鉄鋼製7を、フィン7A同士を互いに溶接して筒状に接合したものによって構成したものでも良い。
【0021】
上記転炉フード3の下部の入口部分3Aは、特に、前述したように、転炉操業中にエロージョン摩耗や高温腐食および熱応力疲労が生じやすい。従って、この発明は、上述の冷却に加え、入口部分3Aに保護皮膜10を形成して、上記問題に対処している。保護皮膜10は、第1層10A(クラック進展緩和層)、第2層10B(自溶合金溶射皮膜)、第3層10C(クラック進展緩和層)および第4層10D(自溶合金溶射皮膜)から構成される。保護皮膜10の形成方法について、以下に説明する。
【0022】
先ず、入口部分3Aの炉内側にブラスト処理を施して、入口部分3Aの表面のスケール、汚れ等を除去する。この際、その後に行われる処理、すなわち、溶射による皮膜形成後、1223〜1356Kの温度に、1秒以上保持することからなる処理により形成される保護皮膜が剥離しないように、Rmax30μm以上の表面粗さとなるようにブラスト処理する。
【0023】
このようにしてブラスト処理した入口部分3Aに、クラック進展緩和層としての10〜100μmの膜厚を有する第1層10Aを形成する。すなわち、Cuを80%以上含有し、残部がNiおよび不可避的不純物からなる粉末合金を入口部分3Aに溶射して第1層を形成する。この場合の溶射法としては、フレーム式溶射法や高速フレーム溶射法およびプラズマ溶射法が適用できる。また、溶射合金が線状の場合には、フレーム式溶射法およびアーク溶射法が適用できる。なお、溶射法以外に、メッキ法により第1層10Aを形成しても良い。第1層10Aは、後述するように、自溶合金溶射皮膜10Bと10Dとの間にクラック進展緩和層10Cを形成する場合は、省略することもできる。
【0024】
次に、第1層10A上に、自溶合金溶射皮膜としての100〜1000μmの膜厚を有する第2層10Bを形成する。すなわち、Cr、Fe、Cu、Mo、Si、BおよびCを含有し、残部がNiおよび不可避的不純物からなる粉末合金を第1層10A上に溶射して第2層10Bを形成する。この場合の溶射法としては、フレーム式溶射法や高速フレーム溶射法およびプラズマ溶射法が適用できる。
【0025】
次に、第2層10B上に、クラック進展緩和層としての10〜100μmの膜厚を有する第3層10Cを形成する。すなわち、Cuを80質量%以上含有し、残部がNiおよび不可避的不純物からなる粉末合金をする合金を第2層10B上に溶射して第3層10Cを形成する。この場合の溶射法としては、フレーム式溶射法や高速フレーム溶射法およびプラズマ溶射法が適用できる。また、溶射合金が線状の場合には、フレーム式溶射法およびアーク溶射法が適用できる。なお、溶射法以外に、メッキ法で第3層10Cを形成しても良い。第1層10Aを形成する場合は、第3層10Cを省略することもできる。
【0026】
次に、第3層10C上に、自溶合金溶射皮膜としての100〜1000μmの膜厚を有する第4層10Dを形成する。すなわち、Cr、Fe、Cu、Mo、Si、BおよびCを含有し、残部がNiおよび不可避的不純物からなる粉末合金を第3層10C上に溶射して第4層10Dを形成する。この場合の溶射法としては、フレーム式溶射法や高速フレーム溶射法およびプラズマ溶射法が適用できる。また、第3層と第4層とをさらに交互に重ねることもできるが、コスト面や次工程で行われる溶射皮膜の熱処理、すなわち、溶射皮膜と入口部分3Aの表面(鉄鋼基材表面)近傍を1223〜1356Kの温度に、1秒以上保持するまでの残留応力による皮膜剥離の観点から、総膜厚が2000μmを超えないようにする。
【0027】
なお、上記何れの自溶合金溶射皮膜も各成分範囲は、Cr:20%以下、Fe:5%以下、Cu:4%以下、Mo:4%以下、Si:1.5〜5%、B:1〜4.5%、Co:1%以下、C:0.05〜1.1%、残部:Niおよび不可避的不純物である。
【0028】
このようにして、溶射皮膜をフード3の入口部分3Aに形成した後、溶射皮膜および入口部分3Aの表面近傍を1223〜1356Kの温度に1秒以上保持して、溶射皮膜を固液共存状態に維持する。これにより、溶射皮膜形成粒子の融合と基材との拡散層の形成を達成して、溶射皮膜内にCr硼化物やCr炭化物等の硬質成分を析出させる。この結果、保護皮膜(多層自溶合金溶射皮膜)の緻密化が達成され、耐食性が向上し、入口部分3Aの表面と溶射皮膜の界面との合金化により密着力が高まり、耐剥離性が向上する。さらに、溶射皮膜中の硬質成分の析出により耐摩耗性が高くなる。このようにして、入口部分3Aの表面に、自溶合金溶射皮膜とからなる保護皮膜10が形成される。
【0029】
クラック進展緩和層を、Cuを80%以上含有し、残部がNiおよび不可避的不純物からなる合金により構成したのは、Cuは、衝撃値が大きいので、クラック進展緩和作用が大きく、しかも、Niとの親和性が高く、さらに、鉄鋼基材から浸炭が少ないからである。しかし、Cu含有量が80%未満では、上述の効果が得られない。従って、クラック進展緩和層のCu含有量は、80%以上とする。なお、Cu含有量の上限は、100%であっても良い。クラック進展緩和層の膜厚が10μm未満では、十分なクラック進展緩和効果が少なく、一方、100μmを超えると、自溶合金皮膜の膜厚が薄くなり、十分な自溶合金溶射皮膜の効果が得られない。従って、クラック進展緩和層の膜厚は、10〜100μmとする。
【0030】
加熱温度が1223K未満の温度は、当該材料の固相線温度以下であり、上述の反応が固体拡散反応となり、所定の性能を発揮する上で溶射皮膜と入口部分3Aの表面との付着力の信頼性に欠ける。一方、1356Kを超える温度では、当該材料の液相線温度以上となり、流動化して構造物の表面から流れ出し、均一な皮膜形成ができない問題がある。また、1223〜1356Kの温度範囲内での1秒未満の短時間では、所定の皮膜性能を発揮させることができない。従って、溶射皮膜をフード3の入口部分3Aに形成した後、溶射皮膜および入口部分3Aの表面近傍を1223〜1356Kの温度に1秒以上保持する。
【0031】
加熱の方法としては、ガスバーナーによる方法、高周波誘導加熱による方法、雰囲気調整したガス炉または電気炉中で加熱する方法があるが、大きさおよび形状に制約がある場合には、ガストーチ法を用いるのが好ましい。加熱する際に、構造物に発生する変形(ひずみ)を防止または最小にするために、適切な拘束用の治工具を用いることが好ましい。当該成分の内、BおよびSiがこの合金系の融点を下げる作用と溶融時に溶剤(フラックス)の役割を果たして、皮膜中の酸化物の除去効果を発揮する。
【0032】
しかし、B含有量が1%未満およびSi含有量が1.5%未満では、その効果が少なく、一方、B含有量が4.5%超およびSi含有量が5%超の領域では、過剰の硼化物や金属間化合物の生成により皮膜の引張強さの低下を招く。従って、B含有量は、1〜4.5%とし、Si含有量は、1.5〜5%とする。なお、層構成は、実用上2〜3層で十分である。
【0033】
また、Crは、CrB相やCr73相を形成して、硬度を高めて耐摩耗性を向上させるが、20%超では、これらが過剰に形成されて靭性を劣化する。Fe、Cuは、Niに固溶してNiを強化する作用を有するが、Fe:5%超、Cu:4%超では、金属間化合物を形成したり、粒界に析出し、靭性および耐食性等の性能を劣化させる。Moは、NiおよびCrBに固溶して、Niを強化する作用を有するが、4%が固溶限であり、4%超では、金属間化合物を形成したり、粒界に析出し、靭性および耐食性等の性能を劣化させる。Cは、Crと結合して、クロム炭化物を形成して、Niを強化する作用を有するが、1.1%超では、クロム炭化物が増加して、靭性を劣化させる。Coは、Ni製造過程で完全に分離できない不可避的不純物であるが、1.0%以下であれば、性能に悪影響を及ぼさない。
【0034】
優れた耐摩耗性が必要な場合は、層構成の最表層の表面硬さを高くする必要があり、そのためには、材料成分の内、Niおよび不可避的不純物以外で、Crを12〜20%、Cを0.4〜1.1%、Bを2.5〜4.5%およびSiを2〜5%の範囲に制御することによって、1223〜1356Kの温度に1秒以上保持した後の保護皮膜の表面硬さをHRCスケールで50〜65にすることができる。
【0035】
水冷式鉄鋼製構造物は、全体の組み立てが完成する前に、この発明による保護皮膜を形成することが好ましく、一般的には、3〜15本のチューブにより構成されたコンポーネントの状態でこの発明による保護皮膜を形成する。
【0036】
全体組み立て後においても、適切な変形防止用拘束治工具の使用とガスバーナー加熱により、保護皮膜の形成が可能である。
【0037】
次に、この発明を実施例により、さらに説明する。
【0038】
【実施例】
(実施例1)
鉄鋼基材(SS400)にニッケル自溶合金4種を0.6mm形成した後、再溶融処理して比較試験片を調製した。また、本発明試験片を以下のようにして調製した。
【0039】
鉄鋼基材(SS400)に、Cr:9〜11%、Fe:4%以下、B:1.5〜4.5%、Si:2〜5%、C:0.05〜0.5%、残部:Niおよび不可避的不純物からなり、シャルピー衝撃値が1.8J/cm2の第1層(自溶合金溶射皮膜)を0.3mmの厚さに溶射により形成し、次いで、第1層上に、Cu:85%、残部がNiと不可避的不純物からなる第2層(クラック進展緩和層)を0.1mmの厚さに溶射により形成し、次いで、第2層上に、Cr:12〜17%、Fe:5%以下、Cu:4%以下、Mo:4%以下、B:2.5〜4%、Si:3.5〜5%、C:0.4〜0.9%、残部がNiと不可避的不純物からなり、シャルピー衝撃値が1.75J/cm2の第3層(自溶合金溶射皮膜)を0.2mmの厚さに溶射により形成し、そして、このようにして溶射皮膜を形成した鉄鋼基材を、1243〜1353Kに約5秒保持して、表面硬さがHRC50〜55の保護皮膜が形成された本発明試験片を調製した。
【0040】
各々の試験片を873Kの雰囲気温度に30分間保持後、流水に投入し、水冷する熱衝撃試験を10回繰り返し、保護皮膜に発生する欠陥を溶剤除去式染色探傷試験(PT)で確認した。この結果を表1に示す。
【0041】
【表1】

Figure 0004475376
【0042】
また、10回熱衝撃を加えた後のPT指示模様を図6(a)、(b)に示す。さらに、図7(a)、(b)に熱衝撃試験後の断面組織写真を示す。なお、図6(a)および図7(a)は、比較試験片、図6(b)および図7(b)は、本発明試験片である。
【0043】
表1から明らかなように、比較試験片は、1回の熱衝撃により割れが認められたが、本発明試験片は、9回の熱衝撃を加えても割れが認められず、10回の熱衝撃でも割れの発生はわずかであった。この割れの発生状況は、図6(a)、(b)から明らかである。また、図7(a)から明らかなように、比較試験片は、保護皮膜のクラックが鉄鋼基材まで達し、鉄鋼基材表面に酸化層を形成しているのに対して、図7(b)の本発明試験片は、第3層目でクラックの進展が止まっており、クラックの進展を第2層が緩和していることが分かった。
【0044】
(実施例2)
従来、保護皮膜を形成しない下部フードボイラーの水冷式鉄鋼製基材は、約8ヵ月の使用で、最大約2mmの管厚減少が発生していたため、溶接補修等の対策を実施していた。しかし、図2に示す領域に、この発明に従って保護皮膜を形成して、転炉排ガス冷却設備下部フードボイラーを実作業環境で2年間使用したところ、この間、保護皮膜の形成領域において、皮膜の剥離、摩耗による鉄鋼基材の露出、腐食による鉄鋼基材の露出および熱疲労性応力腐食割れに起因する水漏れ等の操業に支障が発生する問題は、皆無であった。
【0045】
【発明の効果】
以上説明したように、この発明によれば、耐剥離性、耐食性、耐摩耗性に優れ且つ耐熱疲労性応力腐食割れ性にも優れた保護皮膜を、例えば、転炉排ガス冷却設備等の水冷式鉄鋼製構造物に形成したことにより、
(1)転炉等の操業に際して発生する地金およびダストに対する高い耐摩耗性を有し、高温腐食に曝される部位での耐食性に優れる。
(2)熱疲労性応力割れが鉄鋼基材へ進展し難く、ヒートクラックの発生防止に効果がある。
(3)保護皮膜は、耐剥離性に優れ、保護効果が長時間に渡って持続・維持できる。
等の効果があり、このことにより、当該設備の長寿命化が達成され、設備を休止しての補修の必要性が従来に比較して少なく、設備の稼働率が向上し、操業の安定化に大きく貢献した。
【図面の簡単な説明】
【図1】転炉に取り付けられた、この発明の転炉フードを示す概略断面図である。
【図2】この発明の転炉フードの下部を示す部分断面図である。
【図3】図2のA−A線断面図である。
【図4】保護皮膜の拡大断面図である。
【図5】図3と別の断面形状のチューブによる場合の図2のA−A線断面図である。
【図6】熱衝撃試験後のPT指示模様を示す写真である。
【図7】熱衝撃試験後の保護皮膜断面組織を示す顕微鏡写真である。
【図8】転炉排ガス冷却設備を示す概略図である。
【符号の説明】
1:転炉
2:スカート
3:フード
3A:入口部分
4:ボイラー
5:ダクト
6:集塵機
7:チューブ
7A:フィン
8:給水ヘッダー
9:排水ヘッダー
10:保護皮膜
10A:第1層
10B:第2層
10C:第3層
10D:第4層[0001]
BACKGROUND OF THE INVENTION
The present invention contributes to extending the life of water-cooled steel structures exposed to high-temperature exhaust gas and dust due to high-temperature wear and high-temperature corrosive environments, such as converter exhaust gas cooling equipment in steelmaking plants. One or more crack growth mitigation layers are formed on the self-fluxing alloy sprayed coating formed on the surface of the steel substrate, whereby cracks generated on the surface of the coating during the operation process are formed in the coating or the steel base. The present invention relates to a water-cooled steel structure capable of stabilizing operation and reducing costs by extending the service life, and a method for forming a self-fluxing alloy spray coating on a water-cooled steel structure. Is.
[0002]
[Prior art]
For example, as shown in FIG. 8, after the high-temperature exhaust gas from the converter 1 of the steelmaking factory passes through the exhaust gas cooling facility including the skirt 2, the hood 3, the boiler 4, the duct 5, and the like, the cooling and exhaust heat are recovered. The dust is removed by being sent to the dust collector 6 and then sent to the next process.
[0003]
The exhaust gas cooling equipment is subjected to significant erosion wear due to high-temperature dust (concentration: 100 to 500 g / Nm 3 ) generated from high-temperature gas (> 1273 K), molten steel, various ores introduced as auxiliary materials, and the like during use. In addition, corrosive gases such as S, Cl and F generated from the auxiliary raw materials, high temperature corrosion due to high temperature oxidation, and thermal stress fatigue due to repeated intermittent operation are generated.
[0004]
Due to these erosion wear, high temperature corrosion and thermal stress fatigue, if the exhaust gas cooling equipment is damaged by wear or cracks in the base material and the cooling water leaks, a steam explosion occurs due to reaction with the hot molten steel, resulting in a serious disaster. There is a possibility of connection. For this reason, it is necessary to stop the equipment and perform maintenance such as welding repair so that leakage of the cooling water does not occur, and thus production activities are significantly hindered.
[0005]
In order to solve these problems, Japanese Patent No. 2565727 (Patent Document 1) describes, as an essential component, Cr, Al, and Y that form oxides at the operating temperature, and Ni that hardly oxidizes at the same temperature. A highly durable converter exhaust gas cooler having a thermal spray coating layer of an alloy of one or more of Co and Fe is disclosed. Hereinafter, this is referred to as Prior Art 1.
[0006]
Japanese Patent No. 3039850 (Patent Document 2) discloses that a base sprayed coating of a refractory metal or its alloy or carbide cermet is formed on the surface of a base material such as a pipe by 20 to 500 μm, and if necessary, a porous inorganic coating. Then, a sealant mainly composed of chromic acid and phosphoric acid is applied thereon, dried, and then heated and fired under conditions of 350 to 550 ° C. × 0.3 hr or more, and 0.5 to 20 μm. Further, a composite sprayed member in which a hard glassy chromium oxide film having a thickness of preferably 2 to 5 μm is formed as an upper layer is disclosed. Hereinafter, this is referred to as Prior Art 2.
[0007]
However, since the adhesion mechanism between the base material and the thermal spray coating is mainly a mechanical anchoring effect, the prior art 1 has a problem in the bonding properties of the thermal spray particles and the adhesion to the base material. Moreover, the prior art 2 is pointed out as a problem that the construction shape is limited and the peeling resistance and the wear resistance are insufficient.
[0008]
In general, there are cases where self-fluxing alloy spraying, which is excellent in wear resistance and corrosion resistance, is applied to rollers, boiler tubes and the like. The example of application to the equipment is a membrane structure using a pipe, so there are few application examples due to the distortion of construction members due to remelting heating after self-fluxing alloy spraying, but the nickel self-fluxing alloy specified in JISH8303 There are four application examples.
[0009]
When the nickel self-fluxing alloy film was applied, the wear resistance and corrosion resistance were improved compared to the case of no treatment. However, in the case of the nickel self-fluxing alloy 4 type coating, since the hardness is high and the elongation is only a few percent, thermal fatigue stress corrosion cracking occurs from the coating surface, and the crack propagates to the steel substrate. Has problems that lead to water leaks.
[0010]
[Patent Document 1]
Japanese Patent No. 2565727 [Patent Document 2]
Japanese Patent No. 3039850 [0011]
[Problems to be solved by the invention]
As described above, with regard to the protective film formed on the water-cooled steel structure such as the converter exhaust gas cooling facility, the conventional techniques 1 and 2 have insufficient peel resistance and wear resistance, and are resistant to peeling. The four types of nickel self-fluxing alloys that showed high durability in terms of heat resistance, wear resistance, and corrosion resistance had a problem with thermal fatigue stress corrosion cracking.
[0012]
Therefore, the object of the present invention is to coat a multilayer self-fluxing alloy sprayed coating that is excellent in peeling resistance, abrasion resistance, corrosion resistance, and also excellent in thermal fatigue stress corrosion cracking crack growth relaxation. A water-cooled steel structure that can extend the life of equipment, reduce total life cycle costs including maintenance and renewal costs, stabilize operations, and improve equipment availability The object is to provide a method for forming a self-fluxing alloy film on a water-cooled steel structure.
[0013]
[Means for Solving the Problems]
According to the first aspect of the present invention, a protective film is formed on the surface of a steel substrate constituting a water-cooled steel structure that is exposed to high temperature wear and high temperature corrosive environment due to high temperature exhaust gas or dust. a self-fluxing alloy sprayed coating mainly composed of, Cu: 80 mass% or more, the balance of Ni and unavoidable impurities, consists of a one or more layers of crack extension relaxation layer having a thickness of 10 to 100 [mu] m, the The crack growth mitigating layer is characterized in that it is formed between the self-fluxing alloy sprayed coating and at least one of the boundaries between the self-fluxing alloy sprayed coating and the surface of the steel substrate. .
[0014]
According to a second aspect of the present invention, the self-fluxing alloy sprayed coating contains Cr, Fe, Cu, Mo, Si, B and C, and the balance is made of Ni and inevitable impurities, and the Charpy impact value is 1.70 J. / Cm 2 or more, and the surface hardness is 15 or more on the H R C scale.
[0016]
According to the third aspect of the present invention, Cr, Fe, Cu, Mo, Si, and B are formed on the surface of a steel substrate constituting a water-cooled steel structure that is exposed to high temperature wear and high temperature corrosive environment due to high temperature exhaust gas or dust. And C, the balance: a self-fluxing alloy material composed of Ni and inevitable impurities is sprayed to form a sprayed coating, and then the vicinity of the surface of the sprayed coating and the steel substrate is maintained at a temperature of 1223 to 1356 K for 1 second or longer. and Charpy impact value 1.70J / cm 2 or more, when the film surface hardness to form a H R C scale 15 or more self-fluxing alloy sprayed coating, between the self-fluxing alloy sprayed coating, and the self A crack containing 80% or more of Cu in the boundary between the sprayed coating of the molten alloy and the surface of the steel substrate, the balance being Ni and inevitable impurities, and having a thickness of 10 to 100 μm One or more progress mitigation layers are provided , and thus a protective film composed of the self-fluxing alloy sprayed coating and the crack progress mitigation layer is formed on the surface of the steel substrate.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment when the present invention is applied to a converter hood will be described with reference to the drawings. In the following description, all component percentages of the protective film are mass%.
[0018]
FIG. 1 is a schematic cross-sectional view showing a converter hood of the present invention attached to a converter, FIG. 2 is a partial cross-sectional view showing a lower part of the converter hood of the present invention, and FIG. 4 is an enlarged cross-sectional view of the protective film, and FIG. 5 is a cross-sectional view taken along the line AA of FIG. 2 when a tube having a cross-sectional shape different from that of FIG. 3 is used.
[0019]
As shown in FIGS. 1 to 4, the lower part of the converter hood 3 of the present invention is formed by welding a large number of U-shaped circular steel tubes 7 having fins 7 </ b> A formed inside the tubes, and the fins 7 </ b> A are welded together. It is comprised by what was joined in the cylinder shape. One end of each tube 7 is connected to the water supply header 8 and the other end is connected to the drainage header 9. During the converter operation, the converter hood is supplied with cooling water supplied from the water supply header 8 into the tube 7. The lower part of 3 is cooled.
[0020]
In addition, as shown in FIG. 5, the lower part of the converter hood 3 is made into a cylindrical shape by welding a large number of U-shaped circular steels 7 having fins 7A formed at the center of the tube, and the fins 7A are welded together. What was comprised by what was joined may be sufficient.
[0021]
As described above, the inlet portion 3A at the lower portion of the converter hood 3 is particularly susceptible to erosion wear, high temperature corrosion, and thermal stress fatigue during the converter operation. Therefore, the present invention addresses the above problem by forming a protective film 10 on the inlet portion 3A in addition to the above-described cooling. The protective coating 10 includes a first layer 10A (crack propagation mitigation layer), a second layer 10B (self-fluxing alloy spray coating), a third layer 10C (crack progression mitigation layer), and a fourth layer 10D (self-fluxing alloy spray coating). Consists of A method for forming the protective film 10 will be described below.
[0022]
First, blasting is performed on the inside of the furnace of the inlet portion 3A to remove scale, dirt, and the like on the surface of the inlet portion 3A. At this time, after the formation of the coating by thermal spraying, that is, after the formation of the coating by thermal spraying, the surface roughness of Rmax of 30 μm or more is prevented so that the protective coating formed by the treatment consisting of holding at a temperature of 1223 to 1356 K for 1 second or more does not peel off. The blast process is performed.
[0023]
A first layer 10A having a film thickness of 10 to 100 μm as a crack propagation mitigating layer is formed on the inlet portion 3A thus blasted. That is, the first layer is formed by spraying a powder alloy containing 80% or more of Cu and the balance of Ni and inevitable impurities on the inlet portion 3A. As a thermal spraying method in this case, a flame type spraying method, a high-speed flame spraying method, and a plasma spraying method can be applied. Further, when the thermal spray alloy is linear, a flame type thermal spraying method and an arc thermal spraying method can be applied. In addition to the thermal spraying method, the first layer 10A may be formed by a plating method. As will be described later, the first layer 10A can be omitted when the crack growth mitigating layer 10C is formed between the self-fluxing alloy sprayed coatings 10B and 10D.
[0024]
Next, a second layer 10B having a film thickness of 100 to 1000 μm as a self-fluxing alloy spray coating is formed on the first layer 10A. That is, the second layer 10B is formed by spraying a powder alloy containing Cr, Fe, Cu, Mo, Si, B, and C, with the balance being Ni and inevitable impurities on the first layer 10A. As a thermal spraying method in this case, a flame type spraying method, a high-speed flame spraying method, and a plasma spraying method can be applied.
[0025]
Next, a third layer 10C having a thickness of 10 to 100 μm is formed on the second layer 10B as a crack propagation alleviating layer. That is, the third layer 10C is formed by spraying an alloy containing a powder alloy containing 80% by mass or more of Cu and the balance of Ni and inevitable impurities on the second layer 10B. As a thermal spraying method in this case, a flame type spraying method, a high-speed flame spraying method, and a plasma spraying method can be applied. Further, when the thermal spray alloy is linear, a flame type thermal spraying method and an arc thermal spraying method can be applied. In addition to the thermal spraying method, the third layer 10C may be formed by a plating method. In the case of forming the first layer 10A, the third layer 10C can be omitted.
[0026]
Next, a fourth layer 10D having a film thickness of 100 to 1000 μm as a self-fluxing alloy spray coating is formed on the third layer 10C. That is, the fourth layer 10D is formed by spraying a powder alloy containing Cr, Fe, Cu, Mo, Si, B, and C, with the balance being Ni and inevitable impurities on the third layer 10C. As a thermal spraying method in this case, a flame type spraying method, a high-speed flame spraying method, and a plasma spraying method can be applied. Further, the third layer and the fourth layer can be further alternately stacked, but the cost and heat treatment of the sprayed coating performed in the next process, that is, the vicinity of the surface of the sprayed coating and the inlet portion 3A (steel substrate surface) From the viewpoint of film peeling due to residual stress until the temperature is kept at a temperature of 1223 to 1356 K for 1 second or longer, the total film thickness should not exceed 2000 μm.
[0027]
In any of the above self-fluxing alloy spray coatings, the component ranges are Cr: 20% or less, Fe: 5% or less, Cu: 4% or less, Mo: 4% or less, Si: 1.5 to 5%, B : 1 to 4.5%, Co: 1% or less, C: 0.05 to 1.1%, balance: Ni and inevitable impurities.
[0028]
After forming the sprayed coating on the inlet portion 3A of the hood 3 in this way, the thermal sprayed coating and the vicinity of the surface of the inlet portion 3A are held at a temperature of 1223 to 1356 K for 1 second or longer to bring the sprayed coating into a solid-liquid coexistence state. maintain. As a result, fusion of the spray coating particles and formation of a diffusion layer with the substrate are achieved, and hard components such as Cr boride and Cr carbide are deposited in the spray coating. As a result, the densification of the protective coating (multilayer self-fluxing alloy spray coating) is achieved, the corrosion resistance is improved, the adhesion between the surface of the inlet portion 3A and the interface of the spray coating is increased, and the peel resistance is improved. To do. Further, the wear resistance is increased by the precipitation of hard components in the sprayed coating. In this way, the protective coating 10 made of the self-fluxing alloy spray coating is formed on the surface of the inlet portion 3A.
[0029]
The crack growth mitigating layer is made of an alloy containing 80% or more of Cu and the balance being made of Ni and inevitable impurities. Cu has a large impact value and therefore has a large effect of mitigating crack growth. This is because there is little carburization from the steel substrate. However, if the Cu content is less than 80%, the above-described effects cannot be obtained. Therefore, the Cu content in the crack growth mitigating layer is 80% or more. Note that the upper limit of the Cu content may be 100%. If the thickness of the crack growth mitigating layer is less than 10 μm, the effect of mitigating sufficient crack progress is small. On the other hand, if it exceeds 100 μm, the film thickness of the self-fluxing alloy film becomes thin and the effect of a sufficient self-fluxing alloy spray coating is obtained. I can't. Therefore, the film thickness of the crack growth mitigating layer is 10 to 100 μm.
[0030]
The temperature at which the heating temperature is less than 1223K is equal to or lower than the solidus temperature of the material, and the above-described reaction becomes a solid diffusion reaction, and the adhesive force between the sprayed coating and the surface of the inlet portion 3A is sufficient to exhibit predetermined performance. Lack of reliability. On the other hand, when the temperature exceeds 1356 K, the temperature becomes equal to or higher than the liquidus temperature of the material, and there is a problem that a uniform film cannot be formed by fluidizing and flowing out from the surface of the structure. Moreover, a predetermined film performance cannot be exhibited in a short time of less than 1 second within the temperature range of 1223 to 1356K. Therefore, after the thermal spray coating is formed on the inlet portion 3A of the hood 3, the thermal spray coating and the vicinity of the surface of the inlet portion 3A are held at a temperature of 1223 to 1356K for 1 second or longer.
[0031]
As a heating method, there are a method using a gas burner, a method using high frequency induction heating, and a method of heating in a gas furnace or electric furnace whose atmosphere is adjusted. If there are restrictions on the size and shape, the gas torch method is used. Is preferred. In order to prevent or minimize deformation (strain) generated in the structure during heating, it is preferable to use an appropriate restraining jig. Among these components, B and Si act to lower the melting point of the alloy system and play a role of a solvent (flux) during melting, thereby exhibiting an effect of removing oxides in the film.
[0032]
However, when the B content is less than 1% and the Si content is less than 1.5%, the effect is small. On the other hand, in the region where the B content exceeds 4.5% and the Si content exceeds 5%, it is excessive. The formation of borides and intermetallic compounds causes a decrease in the tensile strength of the film. Therefore, the B content is 1 to 4.5%, and the Si content is 1.5 to 5%. It should be noted that two to three layers are sufficient for practical use.
[0033]
Cr forms a CrB phase or a Cr 7 C 3 phase to increase hardness and improve wear resistance. However, if it exceeds 20%, these are excessively formed and deteriorate toughness. Fe and Cu have a function of strengthening Ni by solid solution in Ni. However, when Fe is more than 5% and Cu is more than 4%, an intermetallic compound is formed or precipitated at a grain boundary, toughness and corrosion resistance. Degrading the performance. Mo has a function of solid-dissolving in Ni and CrB and strengthening Ni, but 4% is a solid solubility limit, and if it exceeds 4%, an intermetallic compound is formed or precipitated at grain boundaries, and toughness And deteriorate the performance such as corrosion resistance. C combines with Cr to form chromium carbide and strengthen Ni, but if over 1.1%, chromium carbide increases and deteriorates toughness. Co is an unavoidable impurity that cannot be completely separated in the Ni production process, but if it is 1.0% or less, it does not adversely affect the performance.
[0034]
When excellent wear resistance is required, it is necessary to increase the surface hardness of the outermost layer of the layer structure, and for that purpose, Cr is 12 to 20% in addition to Ni and unavoidable impurities among the material components. , By controlling C in the range of 0.4 to 1.1%, B in the range of 2.5 to 4.5%, and Si in the range of 2 to 5%, the surface hardness of the protective film can be 50-65 at H R C scale.
[0035]
The water-cooled steel structure is preferably formed with a protective coating according to the present invention before the entire assembly is completed. Generally, the present invention is in the state of a component constituted by 3 to 15 tubes. A protective film is formed.
[0036]
Even after the entire assembly, a protective coating can be formed by using an appropriate deformation preventing restraint tool and heating a gas burner.
[0037]
Next, the present invention will be further described with reference to examples.
[0038]
【Example】
Example 1
After forming 4 mm of nickel self-fluxing alloy 0.6 mm on a steel substrate (SS400), re-melting treatment was performed to prepare a comparative test piece. Moreover, this invention test piece was prepared as follows.
[0039]
In steel substrate (SS400), Cr: 9-11%, Fe: 4% or less, B: 1.5-4.5%, Si: 2-5%, C: 0.05-0.5%, The remainder: Ni and unavoidable impurities, Charpy impact value of 1.8 J / cm 2 of the first layer (self-fluxing alloy spray coating) is formed by spraying to a thickness of 0.3 mm, then on the first layer In addition, a second layer (crack propagation mitigation layer) consisting of 85% Cu and the balance being Ni and inevitable impurities is formed by thermal spraying to a thickness of 0.1 mm, and then Cr: 12-12 is formed on the second layer. 17%, Fe: 5% or less, Cu: 4% or less, Mo: 4% or less, B: 2.5-4%, Si: 3.5-5%, C: 0.4-0.9%, The remainder consists of Ni and inevitable impurities, and the third layer (self-fluxing alloy sprayed coating) with Charpy impact value of 1.75 J / cm 2 is sprayed to a thickness of 0.2 mm. The steel substrate on which the thermal spray coating was formed in this way was held at 1243 to 1353 K for about 5 seconds, and the present invention test in which a protective coating having a surface hardness of H R C50 to 55 was formed. Pieces were prepared.
[0040]
Each test piece was kept at an ambient temperature of 873 K for 30 minutes, then poured into running water, and a water-cooled thermal shock test was repeated 10 times, and defects generated in the protective film were confirmed by a solvent removal type dye flaw detection test (PT). The results are shown in Table 1.
[0041]
[Table 1]
Figure 0004475376
[0042]
In addition, FIGS. 6A and 6B show the PT instruction pattern after the thermal shock is applied 10 times. Furthermore, the cross-sectional structure | tissue photograph after a thermal shock test is shown to Fig.7 (a), (b). 6 (a) and 7 (a) are comparative test pieces, and FIG. 6 (b) and FIG. 7 (b) are test pieces of the present invention.
[0043]
As is clear from Table 1, the comparative test piece was found to be cracked by one thermal shock, but the test piece of the present invention was not cracked even after nine thermal shocks, and 10 times. Even with thermal shock, cracking was slight. The occurrence of this crack is apparent from FIGS. 6 (a) and 6 (b). Further, as is clear from FIG. 7 (a), in the comparative test piece, the crack of the protective film reaches the steel substrate, and an oxide layer is formed on the surface of the steel substrate, whereas FIG. In the test piece of the present invention of No. 2), it was found that the progress of cracks stopped at the third layer, and the second layer relaxed the progress of cracks.
[0044]
(Example 2)
Conventionally, a water-cooled steel base material of a lower hood boiler that does not form a protective coating has been subjected to measures such as welding repair since a maximum tube thickness reduction of about 2 mm has occurred after about 8 months of use. However, when a protective film was formed in the region shown in FIG. 2 in accordance with the present invention and the converter hood boiler lower hood boiler was used for two years in an actual working environment, the film was peeled off in the protective film formation region during this period. There were no problems that caused troubles in operations such as exposure of the steel base due to wear, exposure of the steel base due to corrosion, and water leakage due to thermal fatigue stress corrosion cracking.
[0045]
【The invention's effect】
As described above, according to the present invention, a protective film excellent in peeling resistance, corrosion resistance, wear resistance and heat fatigue resistance, stress corrosion cracking resistance, for example, a water-cooled type such as converter exhaust gas cooling equipment By forming it in a steel structure,
(1) It has high wear resistance against ingots and dust generated during operation of converters and the like, and is excellent in corrosion resistance at sites exposed to high temperature corrosion.
(2) Thermal fatigue stress cracking does not easily progress to the steel substrate, and is effective in preventing the occurrence of heat cracks.
(3) The protective film has excellent peeling resistance and can maintain and maintain the protective effect for a long time.
As a result, the service life of the equipment can be extended, the need for repairs with the equipment shut down is less than before, the equipment availability is improved, and the operation is stabilized. Contributed greatly.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a converter hood of the present invention attached to a converter.
FIG. 2 is a partial cross-sectional view showing a lower portion of a converter hood according to the present invention.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is an enlarged cross-sectional view of a protective film.
5 is a cross-sectional view taken along the line AA in FIG. 2 when a tube having a cross-sectional shape different from that in FIG. 3 is used.
FIG. 6 is a photograph showing a PT instruction pattern after a thermal shock test.
FIG. 7 is a photomicrograph showing the cross-sectional structure of the protective film after the thermal shock test.
FIG. 8 is a schematic view showing a converter exhaust gas cooling facility.
[Explanation of symbols]
1: Converter 2: Skirt 3: Hood 3A: Entrance part 4: Boiler 5: Duct 6: Dust collector 7: Tube 7A: Fin 8: Water supply header 9: Drainage header 10: Protective coating 10A: First layer 10B: Second Layer 10C: Third layer 10D: Fourth layer

Claims (3)

高温排ガスやダストによる高温摩耗および高温腐食環境に曝される水冷式鉄鋼製構造物を構成する鉄鋼基材の表面に保護皮膜が形成され、前記保護皮膜は、Niを主成分とする自溶合金溶射皮膜と、Cu:80質量%以上、残部:Niおよび不可避的不純物からなり、10〜100μmの膜厚を有する1層以上のクラック進展緩和層とからなり、前記クラック進展緩和層は、前記自溶合金溶射皮膜間、および、前記自溶合金溶射皮膜と前記鉄鋼基材の表面との境界の内の少なくとも一方に形成されていることを特徴とする水冷式鉄鋼製構造物。A protective coating is formed on the surface of a steel substrate that constitutes a water-cooled steel structure exposed to high temperature wear and high temperature corrosive environment due to high temperature exhaust gas or dust, and the protective coating is a self-fluxing alloy mainly composed of Ni and thermal spray coating, Cu: 80 mass% or more, the balance of Ni and unavoidable impurities, consists of a one or more layers of crack extension relaxation layer having a thickness of 10 to 100 [mu] m, the crack extension relaxing layer, the self A water-cooled steel structure characterized by being formed between the molten alloy sprayed coatings and at least one of the boundaries between the self-fluxing alloy sprayed coating and the surface of the steel substrate . 前記自溶合金溶射皮膜は、Cr、Fe、Cu、Mo、Si、BおよびCを含有し、残部:Niおよび不可避的不純物からなり、シャルピー衝撃値が1.70J/cm2以上、表面硬さがHRCスケールで15以上であることを特徴する、請求項1記載の水冷式鉄鋼製構造物。The self-fluxing alloy sprayed coating contains Cr, Fe, Cu, Mo, Si, B and C, the balance: Ni and unavoidable impurities, Charpy impact value of 1.70 J / cm 2 or more, surface hardness The water-cooled steel structure according to claim 1, wherein is a H R C scale of 15 or more. 高温排ガスやダストによる高温摩耗および高温腐食環境に曝される水冷式鉄鋼製構造物を構成する鉄鋼基材の表面に、Cr、Fe、Cu、Mo、Si、BおよびC、残部:Niおよび不可避的不純物からなる自溶合金材料を溶射して溶射皮膜を形成し、次いで、前記溶射皮膜および前記鉄鋼基材の表面近傍を1223〜1356Kの温度に1秒以上保持して、シャルピー衝撃値が1.70J/cm2以上、皮膜表面硬さがHRCスケールで15以上の自溶合金溶射皮膜を形成するに当たり、前記自溶合金溶射皮膜間、および前記自溶合金溶射皮膜と前記鉄鋼基材の表面との境界の内の少なくとも一方に、Cuを80%以上含有し、残部がNiおよび不可避的不純物からなり、10〜100μmの膜厚を有するクラック進展緩和層を1層以上形成し、かくして、前記鉄鋼基材の表面に前記自溶合金溶射皮膜と前記クラック進展緩和層とからなる保護皮膜を形成することを特徴とする、水冷式鉄鋼製構造物への保護皮膜の形成方法。Cr, Fe, Cu, Mo, Si, B and C on the surface of the steel substrate constituting the water-cooled steel structure exposed to high temperature wear and high temperature corrosive environment due to high temperature exhaust gas and dust, balance: Ni and inevitable A thermal spray coating is formed by spraying a self-fluxing alloy material comprising impurities, and then the vicinity of the surface of the thermal spray coating and the steel substrate is held at a temperature of 1223 to 1356 K for 1 second or longer, and the Charpy impact value is 1 .70J / cm 2 or more, when the film surface hardness to form a H R C scale 15 or more self-fluxing alloy sprayed coating, between the self-fluxing alloy sprayed coating, and the said self-fluxing alloy sprayed coating steel group At least one of the boundaries with the surface of the material contains 80% or more of Cu, the balance is made of Ni and inevitable impurities, and one or more crack progress mitigating layers having a thickness of 10 to 100 μm are formed. And thus forming a protective coating on the surface of the steel substrate, the protective coating consisting of the self-fluxing alloy sprayed coating and the crack growth mitigating layer, forming a protective coating on a water-cooled steel structure Method.
JP2002355537A 2002-12-06 2002-12-06 Water-cooled steel structure and method for forming protective film on water-cooled steel structure Expired - Fee Related JP4475376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355537A JP4475376B2 (en) 2002-12-06 2002-12-06 Water-cooled steel structure and method for forming protective film on water-cooled steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355537A JP4475376B2 (en) 2002-12-06 2002-12-06 Water-cooled steel structure and method for forming protective film on water-cooled steel structure

Publications (2)

Publication Number Publication Date
JP2004190046A JP2004190046A (en) 2004-07-08
JP4475376B2 true JP4475376B2 (en) 2010-06-09

Family

ID=32756207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355537A Expired - Fee Related JP4475376B2 (en) 2002-12-06 2002-12-06 Water-cooled steel structure and method for forming protective film on water-cooled steel structure

Country Status (1)

Country Link
JP (1) JP4475376B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492430B2 (en) 2020-10-12 2024-05-29 大同特殊鋼株式会社 Swinging duct and its manufacturing method

Also Published As

Publication number Publication date
JP2004190046A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
KR101632520B1 (en) Seamless austenite heat-resistant alloy tube
CN107042370B (en) A kind of high-Cr Ni-base high-temperature alloy welding wire and preparation process
CN101519704B (en) Method for laser cladding Co-based alloy coating at blast-furnace tuyere
JP4546867B2 (en) Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method
JP2012507624A (en) Welding additives, use of welding additives and components
WO2012176586A1 (en) Carburization-resistant metal material
JP2015083715A (en) Iron-based alloy and alloy deposition method
WO2014069180A1 (en) Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME
JP3343576B2 (en) Overlay welding material and overlay cladding material
JP4475376B2 (en) Water-cooled steel structure and method for forming protective film on water-cooled steel structure
JP3576479B2 (en) Water-cooled steel structure
WO2020080104A1 (en) Ferritic stainless steel
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JP4888888B2 (en) Grate
JP4554762B2 (en) Radiant tube excellent in high-temperature oxidation resistance and manufacturing method
JP2004269986A (en) Stainless steel thin sheet
KR20000041010A (en) Method for producing clad strip
JP2793759B2 (en) Cold water skirt for converter exhaust gas hood
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JP4724453B2 (en) Continuous casting roll with excellent wear resistance
JP7020540B2 (en) Top-blown lance and coating method for top-blown lance
JP2005008921A (en) Protective film of cooler in converter off-gas treatment facility and method of forming the same
KR20230139106A (en) Composition for overlay welding and method of overlay welding using same
JPH08225917A (en) Thermal spraying method onto mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees