JP2005008921A - Protective film of cooler in converter off-gas treatment facility and method of forming the same - Google Patents

Protective film of cooler in converter off-gas treatment facility and method of forming the same Download PDF

Info

Publication number
JP2005008921A
JP2005008921A JP2003172532A JP2003172532A JP2005008921A JP 2005008921 A JP2005008921 A JP 2005008921A JP 2003172532 A JP2003172532 A JP 2003172532A JP 2003172532 A JP2003172532 A JP 2003172532A JP 2005008921 A JP2005008921 A JP 2005008921A
Authority
JP
Japan
Prior art keywords
cooler
coating
exhaust gas
converter
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003172532A
Other languages
Japanese (ja)
Inventor
Tsutomu Kanbayashi
勤 神林
Hirobumi Sakura
寛文 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOSHIN SURFACING KK
Kawasaki Heavy Industries Ltd
Original Assignee
KYOSHIN SURFACING KK
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOSHIN SURFACING KK, Kawasaki Heavy Industries Ltd filed Critical KYOSHIN SURFACING KK
Priority to JP2003172532A priority Critical patent/JP2005008921A/en
Publication of JP2005008921A publication Critical patent/JP2005008921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film-forming method whereby a protective film having no pore is formed on a cooler wall near an off-gas passage, wherein a cooler composes the off-gas passage of a converter off-gas treatment facility, so that chlorine ions or corrosive gas such as hydrogen sulfide contained in the off-gas cannot enter the protective film. <P>SOLUTION: When forming the protective film on the cooler wall near the off-gas passage, wherein the cooler composes the off-gas passage which cools and safely leads the converter off-gas to a dust collector, rust on the cooler wall is removed and the wall is subjected to blast treatment. Then, self-fluxing alloy powder of Ni, Co, etc. is sprayed onto the cooler wall with a high-pressure/ultra-high-speed spraying gun at a spray rate of 780-1,200 m/s to form a film with a thickness of 0.1-1 mm. Then, the film is melted at about 1,040°C and welded onto the cooler wall. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、製鋼工場の転炉から発生する高温排ガスを冷却して安全に集塵器に導く排ガス通路を構成する冷却器において、当該冷却器を排ガスに含まれる多量のダストや塩素イオン、硫化水素などの腐食性ガスから保護するための耐摩耗性および耐腐食性に優れた被膜を、冷却器に形成するに関するものであり、その耐久性を著しく向上させることができるものである。
【0002】
【従来の技術】
転炉の排ガス処理設備における排ガス通路は、転炉から排出される温度が約1,450℃〜1,800℃で、しかも、ダスト(鉄粉)や塩素イオン(Cl)、硫化水素(HSO)など腐食性ガスを多量に含む排ガスを冷却して安全に集塵器に導く冷却器の機能を持つものである。
この排ガスに含まれるダストや塩素イオン、硫化水素などの腐食性ガスは、上記冷却器を構成する鉄製の水管を摩耗、腐食させるなどして、水管の肉厚を減肉させるもので、この減肉が損傷の原因になっている。
そこで、上記水管を減肉から守るために、排ガス通路側の水管表面に耐摩耗性、耐腐食性の被膜を形成する必要がある。
従来は、この被膜を水管表面に形成するのに、特公平4−80089号公報に記載されているように、上記水管表面に、C=0.03〜0.3%、Si=0.2〜1.2%、Mn=0.3〜2.6%、Ni=0.1〜6.0%、Cr=8.0〜15.0%、Mo=0.05〜4.0%、V=0.1〜3.0%、残部Feの成分からなる金属粉末をプラズマジェット溶射法等で溶射して、その水管表面に厚み0.5〜1.5mmの保護被膜を形成している。
しかし、上記従来技術は、水管表面の被膜で排ガス中のダストによる摩耗を防止できるが、その被膜は、水管表面に200m/s〜480m/s程度の噴射速度で金属粉末を順次溶射しながら積層して形成されたものであるから、溶射被膜密度は88〜92%程度と比較的高いが、溶射される粒子が水管表面上に溶射されている粒子に衝突する際、溶射する粒子の押圧力が弱いために、既に溶射されている粒子間にできている気泡を潰すまでに至らず、それが気孔として残り、その結果、その気孔率が8〜12%と非常に高いものである。そのために、この気孔から排ガスに含まれている塩素イオン、硫化水素などの腐食性ガスが侵入して水管表面に達し、そこから水管の腐食が進行してしまうという問題がある。
また、上記従来技術は、金属粉末を溶射するだけのものであるので、被膜と水管との結合部分が冶金的に結合されておらず、そのために被膜が水管表面から剥離し易いと言う問題もある。
【0003】
また、上記従来技術を改良したものが、特開2002ー146508号公報に記載されている。このものは、転炉排ガス処理設備の排ガス通路を構成する冷却器の水管表面に、Cr=15%以下、Fe=8%以下、Cu=4%以下、B=1〜3%、Si=1.5〜6%、W=2%以下、C=1%以下、残部がNi材料の金属粉末を、超音速フレーム溶射などの粉末式溶射法で溶射することにより、0.1mm〜2mm程度の厚さで保護被膜を形成するものである。
そして、水管表面に溶射された被膜は、850℃〜1,080℃の温度で1秒以上保持して固液共存状態にして、被膜内にCr硼化物やCr炭化物などの硬質成分を析出させ、被膜内を緻密化させて耐腐食性の向上を図るものであり、加熱させることで水管と被膜との界面を合金化して密着力が高められ、これによって耐剥離性が向上したものである。
しかし、この従来技術は、溶射速度が630m/s〜780m/sであるので、溶射された粒子が水管表面に溶射されている粒子に衝突した際、その衝突による押圧力が粒子間の気泡を充分に潰すほどのもではなく、依然として溶射による粒子間の気泡が被膜内に気孔として残り(図4の被膜の一部顕微鏡写真参照)、この気孔から腐食性ガスが浸入して水管を腐食させてしまうという問題が残されており、その結果、保護被膜の耐剥離性も必ずしも十分ではない。
以上のように、従来技術では、保護被膜内にできる気孔から腐食性ガスが浸入し、冷却器を腐食させてしまうなど保護被膜の剥離原因が依然として残っているので、冷却器を構成する水管の減肉防止のための防護機能を長期間に亘って維持することは出来ない。
【0004】
【特許文献】特開平4−80089号公報
【特許文献】特開2002−146508号公報
【0005】
【解決しようとする課題】
この発明は、転炉排ガス処理設備における排ガス通路を構成する冷却器の排ガス通路側の壁面に保護被膜を形成するについて、殊に排ガスに含まれている塩素イオンや硫化水素などの腐食性ガスが保護被膜内に侵入しないように、気孔のない保護被膜を冷却器壁面に形成させる被膜形成方法を工夫することをその課題とするものである。
【0006】
【課題解決のために講じた手段】
【解決手段1】
この発明の上記課題を解決するための手段は、転炉排ガスを冷却して安全に集塵器に導く排ガス通路を構成する冷却器の排ガス通路側の壁面に保護被膜を形成するについて、次の(イ)〜(ハ)によるものである。
(イ)上記冷却器壁面の錆を除去し、壁面を粗くする下地処理を施すこと、
(ロ)当該冷却器壁面に、Ni基、Co基などの自溶合金粉末を高圧・超高速溶射ガンにより780m/s〜1200m/sの溶射速度で溶射して、0.03mm〜1mmの被膜を形成すること、
(ハ)上記被膜を約1,040℃の温度で溶融させて冷却器壁面に溶着させることである。
【0007】
【作用】
転炉排ガスを冷却して安全に集塵器に導く排ガス通路を構成する冷却器の壁面に、JIS規格の、Ni基あるいはCo基の自溶合金粉末を780m/s〜1200m/sの超高速の溶射速度で噴射して0.03mm〜1mm程度の被膜を作り、この被膜を約1,040℃の温度で加熱して再溶融させて被膜を作るものであるから、壁面に溶射される自溶合金粉末の粒子が予め壁面に溶射されている粒子に強い押圧力で衝突し、粒子間にできている気泡が全て潰されて気孔のない被膜になる。さらに、被膜の硬度が非常に高くなって被膜の摩耗速度も遅いものとなる。
また、保護被膜の加熱処理により当該被膜と冷却器を構成する鉄製の水管表面との界面が冶金的結合を起し、それによって密着結合力が強くなって剥離性が向上する。
なお、溶射速度が780m/s未満では壁面の溶射被膜硬度が低く、緻密度も低いので、780m/s以上である必要がある。他方、溶射速度の上限は、溶射可能で、0.03mm〜1mmの厚さの被膜を形成し得る速度であり、技術的には1200m/sまでは可能である。
また、被膜の厚さが0.03mm未満では、溶射被膜が形成されず、1mmを大きく越えると、溶射被膜に割れが入り易くなる。
さらに、加熱して再溶融させるための加熱温度「上記約1,040℃」は、940℃〜1,220℃が最適であり、940℃未満では、溶射被膜が未溶融となり、1,220℃を越えると、溶融被膜の結合が乏しくなる。
【0008】
【実施の形態】
次に、この発明の実施の形態を図1〜図3を参照して説明する。
図1は、製鋼工場に設置されている転炉排ガス処理設備を概念的に示す側面図である。
この転炉排ガス処理設備は、転炉1の吹錬時に発生する1,450℃〜1,800℃程度の高温排ガスを処理するものである。
この排ガスには、30μm程度の小粒径のダストや100μm以上の大きな粒径のダストが混在しており、さらに、排ガスには、塩素イオンや硫化水素などの腐食性ガスが含まれている。このために、上記排ガス処理設備の排ガス通路として設けられる冷却器の水管10がダストによって摩耗したり、腐食性ガスによって腐食するなど、その取り扱いが非常に厄介なものとなっている。
この排ガス処理設備の冷却器9は、転炉1の炉口2の上方部に冷却器機能を持たせたスカート3、下部フード4、上部フード5、輻射部6で構成されており、これらは、鉄製の水管で構成されている。そして、この排ガス通路である冷却器9には、輻射部6の後方に一次集塵器7、二次集塵器8が設けられており、この集塵器7,8により冷却された排ガスに含まれるダストを捕集するようにしている。
ところで、上記排ガス処理設備には、転炉1から排ガスと一緒に溶鋼やのろなどが一緒に吹き上げられてくるので、これらが付着しにくいように、特にスカート3及びフード4,5はメンブレン構造にしてある。ダストに含まれている100μm以上の大きな粒径のものが、上部フード5辺りで排ガスの流れから分離して、上記メンブレン構造のフード部4,5の壁面を転炉に向かって滑り落ちてくる。そのために、フード4,5などの摩耗は激しい。
また、鉄製の水管表面は、排ガスに含まれるダストで摩耗してしまうこと、塩素イオンや硫化水素で腐食してしまうことから、その摩耗や腐食から保護するための被膜を鉄製の水管表面に形成して寿命を延長させることによって、新品との交換や補修作業が大幅に削減される。
【0009】
次に、この発明の上記冷却器の壁面に被膜を形成する被膜形成作業手順を図5を参照しながら説明する。
この保護被膜は、冷却器9の排ガス通路側の壁面に高圧・超高速溶射ガンを用いて自溶合金の溶射粉末を溶射して所定厚さの被膜を形成し、この被膜を加熱溶融させて冶金的に結合させたものである。
上記溶射粉末は、JIS規格のNi基合金やCo基合金の自溶合金からなるもので、その成分は、Ni基合金は、Cr=0〜20%、B=1〜4.5%、Si=1.5〜5%、C=0〜1.1%、Co=1%以下、Mo=4%以下、Cu=4%以下、Fe=5%以下、残部がNiであり、Co基合金は、Ni=0〜30%、Cr=16〜24%、B=1.5〜3%、Si=1.5〜4.5%、C=1.5%以下、Mo=7%以下、W=0〜15%、Fe=5%以下、残部がCoである。
そして、上記自溶合金の溶射粉末を冷却器9の壁面、即ち、冷却器9を構成する鉄製の水管10、フィン11の表面に溶射するに当たり、まず、転炉排ガス通路側の水管10、フィン11の表面をブラスト処理してその錆を除去し、壁面を粗くし、表面積を大きくする下地処理を行う。
次いで、素地処理した水管10、フィン11の表面に、高圧・超高速溶射ガンにより半溶融状になった溶射粉末を780m/s以上の噴射速度で厚さが0.03mm〜1mmの範囲での所定の目標値になるまで連続的に溶射して被膜12を形成する。この場合、上記噴射速度は個々の実施条件、実施状況に応じて異なるが、コストと効率の関係等からして780m/s〜900m/sが実際的である。しかし、技術的には1200m/sまでは可能である。
また、被膜12の厚さは、個々の場合の具体的な目的に適う値に適宜選択すればよい。
さらに、この被膜12を約1,040℃の温度にバーナーによって加熱してこれを加熱溶融させ、水管10、フィン11に冶金的結合させる。この場合の被膜温度については、被膜の溶融状況を目視で確認しながら適宜加減する。
この被膜形成方法によることで、保護被膜は被膜緻密度が98%以上の高硬度のものになる。
さらに、溶射される粒子が予め水管10およびフィン11の表面に溶射されている溶射粉末に衝突したときの押圧力が強いので、粒子間にできた気泡の殆どが潰され、気孔は殆ど残らない(図3参照)。
また、被膜12と水管10、フィン11とは、約1,040℃の温度で再加熱して溶融されるために、被膜に存在する粒子間の結合と、水管10、フィン11の表面と被膜12とが冶金的に結合され、被膜12が緻密化されて硬度が高まり、また、被膜12と水管10、フィン11の表面との界面の合金化により密着結合力が非常に高まって、耐剥離性が著しく向上される。
そして、その耐久性は、上記従来技術による保護被膜よりも耐摩耗性及び耐食性が優れた被膜が得られる。
【0010】
【効果】
この発明は、転炉排ガス処理設備の排ガス通路を構成する冷却器について、この冷却器の排ガス通路側の壁面の錆やスケールを取り除き、壁面を粗くする下地処理をした後、その冷却器壁面にNi基あるいはCo基などの自溶合金粉末材料を超高速度で溶射して被膜を作り、この被膜を冷却器と共に約1,040℃の温度で再加熱し、被膜を溶融させて保護被膜を形成するものであるので、この冷却器壁面は、緻密で硬度が高くなって、ダストなどによる摩耗がなくなり、且つ気孔のない保護被膜を形成することができ、塩素イオンや硫化水素の腐食性ガスが被膜内に侵入することがなく、その結果、冷却器の腐食が著しく低減される。また、冷却器壁面に対して被膜は相互拡散して完全な冶金的結合されるので、水管から剥離することはない。したがって、水管表面が排ガス通路側に露出することはないので耐摩耗性、耐食性が極めて高い。
【図面の簡単な説明】
【図1】は、転炉排ガス処理設備の概念的な側面図である。
【図2】は、図1のA−A拡大断面図である。
【図3】(a)はこの発明の冷却器壁面に形成した被膜の一部平面の顕微鏡写真であり、(b)はその断面の顕微鏡写真である。
【図4】(a)は従来の粉末溶射法によって冷却器壁面に形成した被膜の一部平面の顕微鏡写真であり、(b)はその断面の顕微鏡写真である。
【図5】は、被膜形成作業手順のフロー図である。
【符号の説明】
1:転炉
2:炉口
3:スカート
4:下部フード
5:上部フード
6:輻射部
7:一次集塵器
8:二次集塵器
9:冷却器
10:水管
11:フィン
12:被膜
[0001]
[Industrial application fields]
The present invention relates to a cooler that constitutes an exhaust gas passage that cools high-temperature exhaust gas generated from a converter in a steelmaking factory and leads it safely to a dust collector, and the cooler includes a large amount of dust, chlorine ions, and sulfide contained in the exhaust gas. The present invention relates to the formation of a coating film excellent in wear resistance and corrosion resistance for protecting from a corrosive gas such as hydrogen on a cooler, and the durability can be remarkably improved.
[0002]
[Prior art]
The exhaust gas passage in the exhaust gas treatment facility of the converter has a temperature discharged from the converter of about 1,450 ° C. to 1,800 ° C., and dust (iron powder), chlorine ions (Cl ), hydrogen sulfide (H 2 SO 4 ) has a function of a cooler that cools exhaust gas containing a large amount of corrosive gas and safely guides it to a dust collector.
Corrosive gases such as dust, chlorine ions, and hydrogen sulfide contained in this exhaust gas reduce the thickness of the water pipe by reducing the thickness of the water pipe by, for example, wearing and corroding the iron water pipe that constitutes the cooler. Meat is the cause of damage.
Therefore, in order to protect the water pipe from thinning, it is necessary to form a wear-resistant and corrosion-resistant coating on the surface of the water pipe on the exhaust gas passage side.
Conventionally, to form this coating on the surface of the water tube, as described in Japanese Patent Publication No. 4-80089, C = 0.03 to 0.3%, Si = 0.2% on the surface of the water tube. -1.2%, Mn = 0.3-2.6%, Ni = 0.1-6.0%, Cr = 8.0-15.0%, Mo = 0.05-4.0%, A metal powder composed of V = 0.1 to 3.0% and the remainder of Fe is sprayed by plasma jet spraying or the like to form a protective coating having a thickness of 0.5 to 1.5 mm on the surface of the water tube. .
However, the above prior art can prevent wear due to dust in the exhaust gas with a coating on the surface of the water tube, but the coating is laminated while sequentially spraying metal powder on the surface of the water tube at an injection speed of about 200 m / s to 480 m / s. The sprayed coating density is relatively high at about 88 to 92%, but when the sprayed particles collide with the sprayed particles on the surface of the water tube, the pressing force of the sprayed particles is Therefore, the bubbles formed between the sprayed particles are not crushed and remain as pores. As a result, the porosity is as high as 8 to 12%. For this reason, there is a problem that corrosive gases such as chlorine ions and hydrogen sulfide contained in the exhaust gas enter from the pores and reach the surface of the water tube, where the corrosion of the water tube proceeds.
In addition, since the above-described prior art is merely for thermal spraying of metal powder, the joint between the coating and the water tube is not metallurgically bonded, so that the coating is easy to peel off from the surface of the water tube. is there.
[0003]
An improvement of the above prior art is described in Japanese Patent Application Laid-Open No. 2002-146508. In this case, Cr = 15% or less, Fe = 8% or less, Cu = 4% or less, B = 1 to 3%, Si = 1 on the water pipe surface of the cooler constituting the exhaust gas passage of the converter exhaust gas treatment facility. .5-6%, W = 2% or less, C = 1% or less, the remainder being Ni material metal powder by thermal spraying with a powder type spraying method such as supersonic flame spraying, about 0.1 mm to 2 mm A protective film is formed with a thickness.
The coating sprayed on the surface of the water tube is kept at a temperature of 850 ° C. to 1,080 ° C. for 1 second or longer to be in a solid-liquid coexistence state, and hard components such as Cr boride and Cr carbide are deposited in the coating. It is intended to improve the corrosion resistance by densifying the inside of the film, and by heating, the interface between the water tube and the film is alloyed to increase the adhesion, thereby improving the peel resistance. .
However, in this prior art, since the spraying speed is 630 m / s to 780 m / s, when the sprayed particles collide with the particles sprayed on the surface of the water tube, the pressing force due to the collision causes the bubbles between the particles. The bubbles between the particles due to thermal spraying remain as pores in the coating (see the partial micrograph of the coating in Fig. 4), and corrosive gas enters from these pores to corrode the water tube. As a result, the protective film does not necessarily have sufficient peel resistance.
As described above, in the prior art, the cause of peeling of the protective film still remains, such as corrosive gas entering from the pores formed in the protective film and corroding the cooler. The protective function for preventing thinning cannot be maintained for a long time.
[0004]
[Patent Document] Japanese Patent Application Laid-Open No. 4-80089 [Patent Document] Japanese Patent Application Laid-Open No. 2002-146508
[Problems to be solved]
The present invention relates to the formation of a protective coating on the wall of the cooler that constitutes the exhaust gas passage in the converter exhaust gas treatment facility, particularly for corrosive gases such as chlorine ions and hydrogen sulfide contained in the exhaust gas. An object of the present invention is to devise a film forming method for forming a protective film having no pores on the wall surface of the cooler so as not to enter the protective film.
[0006]
[Measures taken to solve the problem]
[Solution 1]
Means for solving the above-mentioned problem of the present invention is to form a protective coating on the wall on the exhaust gas passage side of the cooler that constitutes the exhaust gas passage that cools the converter exhaust gas and safely leads it to the dust collector. This is due to (a) to (c).
(A) removing the rust on the wall surface of the cooler and applying a surface treatment to roughen the wall surface;
(B) A self-fluxing alloy powder such as Ni-base or Co-base is sprayed onto the cooler wall surface at a spraying speed of 780 m / s to 1200 m / s with a high-pressure / ultra-high-speed spray gun to form a coating of 0.03 mm to 1 mm Forming,
(C) Melting the film at a temperature of about 1,040 ° C. and welding it to the wall surface of the cooler.
[0007]
[Action]
JIS standard Ni-based or Co-based self-fluxing alloy powder is ultra-high speed of 780m / s to 1200m / s on the wall of the cooler that constitutes the exhaust gas passage that cools the converter exhaust gas and safely leads it to the dust collector The film is sprayed at a spraying speed of about 0.03 mm to 1 mm, and this film is heated at a temperature of about 1,040 ° C. to remelt and form a film. The particles of the molten alloy powder collide with particles sprayed on the wall surface with a strong pressing force, and all the bubbles formed between the particles are crushed to form a coating without pores. Furthermore, the hardness of the coating becomes very high and the wear rate of the coating becomes slow.
Further, the heat treatment of the protective coating causes an interface between the coating and the surface of the water pipe made of iron constituting the cooler to cause metallurgical bonding, thereby increasing the tight bonding force and improving the peelability.
If the spraying speed is less than 780 m / s, the thermal spray coating hardness of the wall surface is low and the density is low, so it is necessary to be 780 m / s or more. On the other hand, the upper limit of the spraying speed is a speed at which spraying is possible and a film having a thickness of 0.03 mm to 1 mm can be formed, and technically, it can be up to 1200 m / s.
Further, if the thickness of the coating is less than 0.03 mm, the thermal spray coating is not formed, and if it exceeds 1 mm greatly, cracking tends to occur in the thermal spray coating.
Further, the heating temperature “about 1,040 ° C.” for heating and remelting is optimal from 940 ° C. to 1,220 ° C. When the temperature is lower than 940 ° C., the sprayed coating becomes unmelted, and 1,220 ° C. Beyond, the bonding of the melt film becomes poor.
[0008]
Embodiment
Next, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a side view conceptually showing a converter exhaust gas treatment facility installed in a steelmaking factory.
This converter exhaust gas treatment facility treats high-temperature exhaust gas at a temperature of about 1,450 ° C. to 1,800 ° C. generated during blowing of the converter 1.
In this exhaust gas, dust having a small particle size of about 30 μm and dust having a large particle size of 100 μm or more are mixed, and the exhaust gas contains corrosive gases such as chlorine ions and hydrogen sulfide. For this reason, the water pipe 10 of the cooler provided as the exhaust gas passage of the exhaust gas treatment facility is very troublesome to handle, such as being worn by dust or corroded by corrosive gas.
The cooler 9 of this exhaust gas treatment facility is composed of a skirt 3, a lower hood 4, an upper hood 5, and a radiating section 6 provided with a cooler function above the furnace port 2 of the converter 1. It consists of an iron water pipe. The cooler 9 serving as the exhaust gas passage is provided with a primary dust collector 7 and a secondary dust collector 8 behind the radiating section 6, and the exhaust gas cooled by the dust collectors 7 and 8 is provided in the exhaust gas passage. The dust contained is collected.
By the way, in the above exhaust gas treatment equipment, molten steel, slag, etc. are blown up together with the exhaust gas from the converter 1, so that the skirt 3 and the hoods 4 and 5 are in particular a membrane structure so that they are difficult to adhere. It is. The dust having a large particle size of 100 μm or more contained in the dust is separated from the flow of the exhaust gas around the upper hood 5 and slides down the wall surface of the hood portions 4 and 5 of the membrane structure toward the converter. . For this reason, the hoods 4, 5 and the like are severely worn.
In addition, the iron water tube surface is worn by dust contained in the exhaust gas and corroded by chlorine ions and hydrogen sulfide, so a coating is formed on the surface of the iron water tube to protect it from wear and corrosion. By extending the service life, replacement with a new product and repair work are greatly reduced.
[0009]
Next, a film forming work procedure for forming a film on the wall surface of the cooler of the present invention will be described with reference to FIG.
The protective coating is formed by spraying a sprayed powder of a self-fluxing alloy onto the wall surface of the cooler 9 on the exhaust gas passage side using a high-pressure / ultra-high-speed spray gun to form a coating having a predetermined thickness, and the coating is heated and melted. It is a metallurgical combination.
The above-mentioned sprayed powder is made of a self-fluxing alloy of JIS standard Ni-base alloy or Co-base alloy, and its components are Ni-base alloy Cr = 0-20%, B = 1-4.5%, Si = 1.5-5%, C = 0-1.1%, Co = 1% or less, Mo = 4% or less, Cu = 4% or less, Fe = 5% or less, the balance being Ni, Co-based alloy Ni = 0-30%, Cr = 16-24%, B = 1.5-3%, Si = 1.5-4.5%, C = 1.5% or less, Mo = 7% or less, W = 0-15%, Fe = 5% or less, and the balance is Co.
In spraying the sprayed powder of the self-fluxing alloy onto the wall surface of the cooler 9, that is, the surface of the iron water pipe 10 and the fin 11 constituting the cooler 9, first, the water pipe 10 and fins on the converter exhaust gas passage side The surface of No. 11 is blasted to remove the rust, roughen the wall surface and increase the surface area.
Next, the surface of the water tube 10 and the fin 11 subjected to the base treatment is sprayed with a high-pressure / ultra-high-speed spray gun in a semi-molten state at a spray speed of 780 m / s or more in a thickness of 0.03 mm to 1 mm. The coating 12 is formed by continuously spraying until a predetermined target value is reached. In this case, although the said injection speed changes with individual implementation conditions and implementation conditions, 780 m / s-900 m / s are practical from the relationship between cost and efficiency. However, technically it is possible up to 1200 m / s.
Further, the thickness of the coating 12 may be appropriately selected to a value suitable for a specific purpose in each case.
Further, the coating 12 is heated to a temperature of about 1,040 ° C. by a burner to be melted by heating, and is metallurgically bonded to the water tube 10 and the fin 11. The coating temperature in this case is appropriately adjusted while visually confirming the melting state of the coating.
By this film forming method, the protective film has a high hardness with a film density of 98% or more.
Furthermore, since the pressing force when the sprayed particles collide with the sprayed powder previously sprayed on the surfaces of the water tube 10 and the fin 11 is strong, most of the bubbles formed between the particles are crushed and almost no pores remain. (See FIG. 3).
Further, since the coating 12, the water tube 10, and the fin 11 are reheated and melted at a temperature of about 1,040 ° C., the bonds between the particles existing in the coating, the surface of the water tube 10, the fin 11, and the coating 12 is metallurgically bonded, the coating 12 is densified and the hardness is increased, and the tight bonding force is greatly increased due to alloying of the interface between the coating 12 and the surface of the water tube 10 and the fin 11, thereby preventing peeling. Is significantly improved.
The durability of the coating film is superior to that of the protective film according to the prior art.
[0010]
【effect】
The present invention relates to a cooler constituting an exhaust gas passage of a converter exhaust gas treatment facility, after removing the rust and scale from the wall on the exhaust gas passage side of the cooler and roughening the wall surface, A coating is formed by spraying a self-fluxing alloy powder material such as Ni-base or Co-base at an ultra-high speed, and this coating is reheated at a temperature of about 1,040 ° C. together with a cooler to melt the coating and form a protective coating. This cooler wall surface is dense and high in hardness, is free from wear due to dust, etc., and can form a protective film without pores, corrosive gas of chlorine ions and hydrogen sulfide. Does not penetrate into the coating, resulting in a significant reduction in cooler corrosion. Also, the coating does not peel from the water pipe because the coating diffuses to the cooler wall surface and is completely metallurgically bonded. Accordingly, since the surface of the water pipe is not exposed to the exhaust gas passage side, the wear resistance and the corrosion resistance are extremely high.
[Brief description of the drawings]
FIG. 1 is a conceptual side view of a converter exhaust gas treatment facility.
FIG. 2 is an AA enlarged sectional view of FIG. 1;
3A is a micrograph of a partial plane of a coating formed on the wall surface of the cooler of the present invention, and FIG. 3B is a micrograph of its cross section.
4A is a micrograph of a partial plane of a coating formed on a cooler wall surface by a conventional powder spraying method, and FIG. 4B is a micrograph of its cross section.
FIG. 5 is a flowchart of a film forming operation procedure.
[Explanation of symbols]
1: Converter 2: Furnace port 3: Skirt 4: Lower hood 5: Upper hood 6: Radiation section 7: Primary dust collector 8: Secondary dust collector 9: Cooler 10: Water pipe 11: Fin 12: Coating

Claims (3)

転炉排ガス処理設備の排ガス通路を構成する冷却器の排ガス通路側の壁面に被膜を形成する方法において、
上記冷却器壁面の錆を除去すると共にブラスト処理を施し、
当該冷却器壁面に、Ni基、Co基などの自溶合金粉末を高圧・超高速溶射ガンにより780m/s〜1200m/sの溶射速度で溶射して、0.03mm〜1mmの被膜を形成し、
上記被膜を約1,040℃の温度で溶融させて冷却器壁面に溶着させることを特徴とする転炉排ガス処理設備における冷却器の保護被膜の形成方法。
In the method of forming a coating on the wall on the exhaust gas passage side of the cooler constituting the exhaust gas passage of the converter exhaust gas treatment facility,
Remove the rust on the wall of the cooler and perform blasting,
A self-fluxing alloy powder such as Ni-base or Co-base is sprayed on the cooler wall surface at a spraying speed of 780 m / s to 1200 m / s with a high-pressure / ultra-high-speed spray gun to form a film of 0.03 mm to 1 mm. ,
A method for forming a protective coating for a cooler in a converter exhaust gas treatment facility, wherein the coating is melted at a temperature of about 1,040 ° C. and welded to a wall surface of the cooler.
転炉排ガス処理設備における冷却器の保護被膜であって、Ni基あるいはCo基の自溶合金粉末を780m/s〜1200m/sの超高速で噴射して形成した、厚さ0.03mm〜1mmの保護被膜。A protective coating for a cooler in a converter exhaust gas treatment facility, which is formed by spraying Ni-based or Co-based self-fluxing alloy powder at an ultra-high speed of 780 m / s to 1200 m / s, and having a thickness of 0.03 mm to 1 mm Protective coating. 被膜を約1,040℃の温度で溶融させて冷却器壁面に溶着させたものであって、被膜緻密度が98%以上の高硬度である請求項2の保護被膜。The protective coating according to claim 2, wherein the coating is melted at a temperature of about 1,040 ° C and welded to the wall surface of the cooler, and the coating has a high hardness of 98% or more.
JP2003172532A 2003-06-17 2003-06-17 Protective film of cooler in converter off-gas treatment facility and method of forming the same Pending JP2005008921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172532A JP2005008921A (en) 2003-06-17 2003-06-17 Protective film of cooler in converter off-gas treatment facility and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172532A JP2005008921A (en) 2003-06-17 2003-06-17 Protective film of cooler in converter off-gas treatment facility and method of forming the same

Publications (1)

Publication Number Publication Date
JP2005008921A true JP2005008921A (en) 2005-01-13

Family

ID=34096655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172532A Pending JP2005008921A (en) 2003-06-17 2003-06-17 Protective film of cooler in converter off-gas treatment facility and method of forming the same

Country Status (1)

Country Link
JP (1) JP2005008921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277656A (en) * 2006-04-07 2007-10-25 Nippon Steel Hardfacing Co Ltd Fusion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277656A (en) * 2006-04-07 2007-10-25 Nippon Steel Hardfacing Co Ltd Fusion method

Similar Documents

Publication Publication Date Title
US6302318B1 (en) Method of providing wear-resistant coatings, and related articles
CN101519704B (en) Method for laser cladding Co-based alloy coating at blast-furnace tuyere
JP4546867B2 (en) Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method
CN101228295A (en) Laser cladding on low heat resistant substrates
CN101962768A (en) Technology for preparing metal surface coating through compounding multiple processes
JPH11351758A (en) Water-cooled jacket for arc type electric furnace
TW200821073A (en) Process for the manufacture of a heat exchanger
US6503442B1 (en) Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases
CN100503876C (en) Method for using braze welding material as corrosion-resistant coat
CN109023208A (en) Process for the ultra-thin nickel-base alloy erosion resistant coating of waste incinerator heating surface
JP2008174786A (en) Method for forming thermal spray coating, and device for high speed thermal flame spraying
FI123631B (en) COOLING ELEMENT
JPH01139749A (en) Surface treatment for blade member
JP2005008921A (en) Protective film of cooler in converter off-gas treatment facility and method of forming the same
JP2793759B2 (en) Cold water skirt for converter exhaust gas hood
CN109321860A (en) A kind of workpiece wear-resistant coating and its spraying method
JP3576479B2 (en) Water-cooled steel structure
JP4146112B2 (en) Water cooling lance for metallurgy and manufacturing method thereof
JP2018091333A (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
JP7044328B2 (en) A method for producing a Ni—Fe-based alloy powder and an alloy film using the Ni—Fe-based alloy powder.
JP4475376B2 (en) Water-cooled steel structure and method for forming protective film on water-cooled steel structure
JP7020540B2 (en) Top-blown lance and coating method for top-blown lance
JPH0480089B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060906